1
|
Wu J, Heemskerk JWM, Baaten CCFMJ. Platelet Membrane Receptor Proteolysis: Implications for Platelet Function. Front Cardiovasc Med 2021; 7:608391. [PMID: 33490118 PMCID: PMC7820117 DOI: 10.3389/fcvm.2020.608391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
The activities of adhesion and signaling receptors in platelets are controlled by several mechanisms. An important way of regulation is provided by proteolytic cleavage of several of these receptors, leading to either a gain or a loss of platelet function. The proteases involved are of different origins and types: (i) present as precursor in plasma, (ii) secreted into the plasma by activated platelets or other blood cells, or (iii) intracellularly activated and cleaving cytosolic receptor domains. We provide a comprehensive overview of the proteases acting on the platelet membrane. We describe how these are activated, which are their target proteins, and how their proteolytic activity modulates platelet functions. The review focuses on coagulation-related proteases, plasmin, matrix metalloproteinases, ADAM(TS) isoforms, cathepsins, caspases, and calpains. We also describe how the proteolytic activities are determined by different platelet populations in a thrombus and conversely how proteolysis contributes to the formation of such populations.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Constance C. F. M. J. Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
2
|
Martin-Fairey CA, Zhao P, Wan L, Roenneberg T, Fay J, Ma X, McCarthy R, Jungheim ES, England SK, Herzog ED. Pregnancy Induces an Earlier Chronotype in Both Mice and Women. J Biol Rhythms 2019; 34:323-331. [PMID: 31018734 PMCID: PMC7408307 DOI: 10.1177/0748730419844650] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Daily rhythms generated by endogenous circadian mechanisms and synchronized to the light-dark cycle have been implicated in the timing of birth in a wide variety of species. Although chronodisruption (e.g., shift work or clock gene mutations) is associated with poor reproductive outcomes, little is known about circadian timing during pregnancy. This study tested whether daily rhythms change during full-term pregnancies in mice and women. We compared running wheel activity continuously in both nonpregnant ( n = 14) and pregnant ( n = 13) 12- to 24-week-old C57BL/6NJ mice. We also monitored wrist actigraphy in women ( N = 39) for 2 weeks before conception and then throughout pregnancy and measured daily times of sleep onset. We found that on the third day of pregnancy, mice shift their activity to an earlier time compared with nonpregnant dams. Their time of daily activity onset was maximally advanced by almost 4 h around day 7 of pregnancy and then shifted back to the nonpregnant state approximately 1 week before delivery. Mice also showed reduced levels of locomotor activity during their last week of pregnancy. Similarly, in women, the timing of sleep onset was earlier during the first and second trimesters (gestational weeks 4-13 and 14-27) than before pregnancy and returned to the prepregnant state during the third trimester (weeks 28 until delivery). Women also showed reduced levels of locomotor activity throughout pregnancy. These results indicate that pregnancy induces changes in daily rhythms, altering both time of onset and amount of activity. These changes are conserved between mice and women.
Collapse
Affiliation(s)
- Carmel A Martin-Fairey
- Department of Biology, Washington University, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA
| | - Leping Wan
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA
| | - Till Roenneberg
- Institute for Medical Psychology, Department of Human Chronobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Justin Fay
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA
| | - Emily S Jungheim
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO, USA
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, MO, USA
| |
Collapse
|
3
|
van der Vorm LN, Remijn JA, de Laat B, Huskens D. Effects of Plasmin on von Willebrand Factor and Platelets: A Narrative Review. TH OPEN 2018; 2:e218-e228. [PMID: 31249945 PMCID: PMC6524877 DOI: 10.1055/s-0038-1660505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 02/01/2023] Open
Abstract
Plasmin is the major fibrinolytic protease responsible for dissolving thrombi by cleavage of its primary substrate fibrin. In addition, emerging evidence points to other roles of plasmin: (1) as a back-up for ADAMTS13 in proteolysis of ultra-large von Willebrand factor (VWF) multimers and (2) as an activator of platelets. Although the molecular mechanisms of fibrinolysis are well defined, insights on the effects of plasmin on VWF and platelets are relatively scarce and sometimes conflicting. Hence, this review provides an overview of the literature on the effects of plasmin on VWF multimeric structures, on VWF binding to platelets, and on platelet activation. This information is placed in the context of possible applications of thrombolytic therapy for the condition thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Lisa N van der Vorm
- Synapse Research Institute, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Chemistry and Hematology, Gelre Hospitals, Apeldoorn, The Netherlands
| | - Jasper A Remijn
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Chemistry and Hematology, Gelre Hospitals, Apeldoorn, The Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Chemistry and Hematology, Gelre Hospitals, Apeldoorn, The Netherlands
| | - Dana Huskens
- Synapse Research Institute, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
4
|
Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev 2016; 68:1110-1142. [PMID: 27677721 DOI: 10.1124/pr.115.010991] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Given that over 2% of the human genome codes for proteolytic enzymes and their inhibitors, it is not surprising that proteinases serve many physiologic-pathophysiological roles. In this context, we provide an overview of proteolytic mechanisms regulating inflammation, with a focus on cell signaling stimulated by the generation of inflammatory peptides; activation of the proteinase-activated receptor (PAR) family of G protein-coupled receptors (GPCR), with a mechanism in common with adhesion-triggered GPCRs (ADGRs); and by proteolytic ion channel regulation. These mechanisms are considered in the much wider context that proteolytic mechanisms serve, including the processing of growth factors and their receptors, the regulation of matrix-integrin signaling, and the generation and release of membrane-tethered receptor ligands. These signaling mechanisms are relevant for inflammatory, neurodegenerative, and cardiovascular diseases as well as for cancer. We propose that the inflammation-triggering proteinases and their proteolytically generated substrates represent attractive therapeutic targets and we discuss appropriate targeting strategies.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Christophe Altier
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Katerina Oikonomopoulou
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| |
Collapse
|
5
|
In vitro fibrinolysis and antithrombosis characterizations of novel recombinant microplasminogen with RGD and GPRP peptides. J Thromb Thrombolysis 2016; 42:118-26. [DOI: 10.1007/s11239-016-1334-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Suzuki N, Sugawara J, Kimura Y, Nagase S, Okamura K, Yaegashi N. Assessment of Maternal Heart-Rate Variability during Labor Using Wavelet-Based Power Spectral Analysis. Gynecol Obstet Invest 2012; 74:35-40. [PMID: 22472741 DOI: 10.1159/000336064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Noritsugu Suzuki
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Functional intersection of the kallikrein-related peptidases (KLKs) and thrombostasis axis. Biol Chem 2010; 391:311-20. [PMID: 20128685 DOI: 10.1515/bc.2010.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A large body of emerging evidence indicates a functional interaction between the kallikrein-related peptidases (KLKs) and proteases of the thrombostasis axis. These interactions appear relevant for both normal health as well as pathologies associated with inflammation, tissue injury, and remodeling. Regulatory interactions between the KLKs and thrombostasis proteases could impact several serious human diseases, including neurodegeneration and cancer. The emerging network of specific interactions between these two protease families appears to be complex, and much work remains to elucidate it. Complete understanding how this functional network resolves over time, given specific initial conditions, and how it might be controllably manipulated, will probably contribute to the emergence of novel diagnostics and therapeutic agents for major diseases.
Collapse
|
8
|
Mao Y, Jin J, Daniel JL, Kunapuli SP. Regulation of plasmin-induced protease-activated receptor 4 activation in platelets. Platelets 2009; 20:191-8. [PMID: 19437337 DOI: 10.1080/09537100902803635] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plasmin, a major extracellular protease, activates platelets through PAR4 receptors. Plasmin-induced full aggregation is achieved at lower concentrations (0.1 U/mL) in murine platelets as compared to human platelets (1 U/mL). In COS7 cells expressing the murine PAR4 (mPAR4) receptor, 1 U/mL plasmin caused a higher intracellular calcium mobilization than in cells expressing the human PAR4 (hPAR4) receptor. This difference was reversed when the tethered ligand sequences of mPAR4 and hPAR4 were interchanged through site-directed mutagenesis. We further investigated whether PAR3 expressed in murine platelets serves as a co-receptor for PAR4 activation by plasmin. In COS7 cells, co-expressing mPAR3 and mPAR4, plamsin produced a smaller intracellular calcium mobilization compared to cells expressing mPAR4 alone, suggesting that PAR3 might inhibit plasmin-induced PAR4 stimulation. Consistent with these results, PAR3 null murine platelets also showed a greater plasmin-induced calcium mobilization and aggregation compared to wild-type murine platelets. In conclusion, murine platelets are more sensitive to activation by plasmin than human platelets due to differences in the primary sequence of PAR4. In contrast to thrombin-dependent activation of platelets, wherein PAR3 acts as a co-receptor, mPAR3 inhibits plasmin-induced PAR4 activation.
Collapse
Affiliation(s)
- Yingying Mao
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
9
|
Ulrich-Möckel NV, Riehle M, Vollert J, Heller G, Störk T, Riess H, Müller C, Frei U, Möckel M. Thrombin activity throughout the acute phase of acute ST-elevation myocardial infarction and the relation to outcome. Biomarkers 2009; 14:311-6. [DOI: 10.1080/13547500902878737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Hansen KK, Oikonomopoulou K, Baruch A, Ramachandran R, Beck P, Diamandis EP, Hollenberg MD. Proteinases as hormones: targets and mechanisms for proteolytic signaling. Biol Chem 2008. [PMID: 18979623 DOI: 10.1515/bc.2008.120_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proteinases, such as kallikrein-related peptidases, trypsin and thrombin, can play hormone-like 'messenger roles in vivo. They can regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1-4) by unmasking a tethered receptor-triggering ligand. Short synthetic PAR-derived peptide sequences (PAR-APs) can selectively activate PARs 1, 2 and 4, causing physiological responses in vitro and in vivo. Using the PAR-APs to activate the receptors in vivo, it has been found that PARs, like hormone receptors, can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (central and peripheral). PARs trigger responses ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased nociception. These PAR-stimulated responses have been implicated in various disease states, including cancer, atherosclerosis, asthma, arthritis, colitis and Alzheimer's disease. In addition to targeting the PARs, proteinases can also cause hormone-like effects by other signaling mechanisms that may be as important as the activation of PARs. Thus, the PARs themselves, their activating serine proteinases and their signaling pathways can be considered as attractive targets for therapeutic drug development. Further, proteinases can be considered as physiologically relevant 'hormone-like' messengers that can convey signals locally or systemically either via PARs or by other mechanisms.
Collapse
Affiliation(s)
- Kristina K Hansen
- Proteinases and Inflammation Network, University of Calgary Faculty of Medicine, Calgary T2N 4N1, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Hollenberg MD, Oikonomopoulou K, Hansen KK, Saifeddine M, Ramachandran R, Diamandis EP. Kallikreins and proteinase-mediated signaling: proteinase-activated receptors (PARs) and the pathophysiology of inflammatory diseases and cancer. Biol Chem 2008; 389:643-51. [PMID: 18627296 DOI: 10.1515/bc.2008.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proteinases such as thrombin and trypsin can affect tissues by activating a novel family of G protein-coupled proteinase-activated receptors (PARs 1-4) by exposing a 'tethered' receptor-triggering ligand (TL). Work with synthetic TL-derived PAR peptide sequences (PAR-APs) that stimulate PARs 1, 2 and 4 has shown that PAR activation can play a role in many tissues, including the gastrointestinal tract, kidney, muscle, nerve, lung and the central and peripheral nervous systems, and can promote tumor growth and invasion. PARs may play roles in many settings, including cancer, arthritis, asthma, inflammatory bowel disease, neurodegeneration and cardiovascular disease, as well as in pathogen-induced inflammation. In addition to activating or disarming PARs, proteinases can also cause hormone-like effects via PAR-independent mechanisms, such as activation of the insulin receptor. In addition to proteinases of the coagulation cascade, recent data suggest that members of the family of kallikrein-related peptidases (KLKs) represent endogenous PAR regulators. In summary: (1) proteinases are like hormones, signaling in a paracrine and endocrine manner via PARs or other mechanisms; (2) KLKs must now be seen as potential hormone-like PAR regulators in vivo; and (3) PAR-regulating proteinases, their target PARs, and their associated signaling pathways appear to be novel therapeutic targets.
Collapse
Affiliation(s)
- Morley D Hollenberg
- Proteinases and Inflammation Network, Department of Pharmacology and Therapeutics, University of Calgary Faculty of Medicine, Calgary T2N 4N1, AB, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Hansen KK, Oikonomopoulou K, Li Y, Hollenberg MD. Proteinases, proteinase-activated receptors (PARs) and the pathophysiology of cancer and diseases of the cardiovascular, musculoskeletal, nervous and gastrointestinal systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 377:377-92. [PMID: 17952408 DOI: 10.1007/s00210-007-0194-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 09/19/2007] [Indexed: 12/31/2022]
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1 to 4) via exposure of a 'tethered' receptor-triggering ligand. On their own, short synthetic peptides based on the 'tethered ligand' sequences of the PARs (PAR-APs) can, in the absence of receptor proteolysis, selectively activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral) and can promote cancer metastasis and invasion. The responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased nociception. Thus, PARs have been implicated in a number of disease states including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. Furthermore, PAR-regulating proteinases have been implicated in pathogen-induced inflammation. The identities of the proteinases that regulate PARs in these pathological settings in vivo have yet to be explored in depth. In addition to activating or dis-arming PARs, proteinases can also cause hormone-like effects by signaling mechanisms that do not involve the PARs and that may be as important as the activation of PARs. Thus, the working hypotheses of this article are: (1) that proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms and (2) that the PARs themselves, their activating serine proteinases and their associated signaling pathways can be considered as attractive targets for therapeutic drug development.
Collapse
Affiliation(s)
- Kristina K Hansen
- Department of Pharmacology & Therapeutics, Canadian Institutes of Health Research, Proteinases and Inflammation Network, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | |
Collapse
|
13
|
Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2007; 153 Suppl 1:S263-82. [PMID: 18059329 DOI: 10.1038/sj.bjp.0707507] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1-4) via exposure of a tethered receptor-triggering ligand. On their own, short synthetic PAR-selective PAR-activating peptides (PAR-APs) mimicking the tethered ligand sequences can activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as sentinel probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral nervous system) and can promote cancer metastasis and invasion. In general, responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased or decreased nociception. Further, PARs have been implicated in a number of disease states, including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. In addition to activating PARs, proteinases can cause hormone-like effects by other signalling mechanisms, like growth factor receptor activation, that may be as important as the activation of PARs. We, therefore, propose that the PARs themselves, their activating serine proteinases and their associated signalling pathways can be considered as attractive targets for therapeutic drug development. Thus, proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms.
Collapse
|
14
|
Gereke M, Gröbe L, Prettin S, Kasper M, Deppenmeier S, Gruber AD, Enelow RI, Buer J, Bruder D. Phenotypic alterations in type II alveolar epithelial cells in CD4+ T cell mediated lung inflammation. Respir Res 2007; 8:47. [PMID: 17610738 PMCID: PMC1939847 DOI: 10.1186/1465-9921-8-47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 07/04/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although the contribution of alveolar type II epithelial cell (AEC II) activities in various aspects of respiratory immune regulation has become increasingly appreciated, our understanding of the contribution of AEC II transcriptosome in immunopathologic lung injury remains poorly understood. We have previously established a mouse model for chronic T cell-mediated pulmonary inflammation in which influenza hemagglutinin (HA) is expressed as a transgene in AEC II, in mice expressing a transgenic T cell receptor specific for a class II-restricted epitope of HA. Pulmonary inflammation in these mice occurs as a result of CD4+ T cell recognition of alveolar antigen. This model was utilized to assess the profile of inflammatory mediators expressed by alveolar epithelial target cells triggered by antigen-specific recognition in CD4+ T cell-mediated lung inflammation. METHODS We established a method that allows the flow cytometric negative selection and isolation of primary AEC II of high viability and purity. Genome wide transcriptional profiling was performed on mRNA isolated from AEC II isolated from healthy mice and from mice with acute and chronic CD4+ T cell-mediated pulmonary inflammation. RESULTS T cell-mediated inflammation was associated with expression of a broad array of cytokine and chemokine genes by AEC II cell, indicating a potential contribution of epithelial-derived chemoattractants to the inflammatory cell parenchymal infiltration. Morphologically, there was an increase in the size of activated epithelial cells, and on the molecular level, comparative transcriptome analyses of AEC II from inflamed versus normal lungs provide a detailed characterization of the specific inflammatory genes expressed in AEC II induced in the context of CD4+ T cell-mediated pneumonitis. CONCLUSION An important contribution of AEC II gene expression to the orchestration and regulation of interstitial pneumonitis is suggested by the panoply of inflammatory genes expressed by this cell population, and this may provide insight into the molecular pathogenesis of pulmonary inflammatory states. CD4+ T cell recognition of antigen presented by AEC II cells appears to be a potent trigger for activation of the alveolar cell inflammatory transcriptosome.
Collapse
Affiliation(s)
- Marcus Gereke
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Gröbe
- Department of Mucosal Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silvia Prettin
- Department of Mucosal Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Kasper
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | - Achim D Gruber
- Department of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Richard I Enelow
- Departments of Medicine, and Microbiology/Immunology, Dartmouth Medical School, Lebanon, NH, USA
| | - Jan Buer
- Department of Mucosal Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Medical Microbiology, University Hospital Essen, Essen, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
15
|
Bahou WF. Thrombin Receptors. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Bhaskaran M, Kolliputi N, Wang Y, Gou D, Chintagari NR, Liu L. Trans-differentiation of alveolar epithelial type II cells to type I cells involves autocrine signaling by transforming growth factor beta 1 through the Smad pathway. J Biol Chem 2006; 282:3968-76. [PMID: 17158884 DOI: 10.1074/jbc.m609060200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type II alveolar epithelial cells (AEC II) proliferate and transdifferentiate into type I alveolar epithelial cells (AEC I) when the normal AEC I population is damaged in the lung alveoli. We hypothesized that signaling by transforming growth factor beta1 (TGF beta1), through its downstream Smad proteins, is involved in keeping AEC II quiescent in normal cells and its altered signaling may be involved in the trans-differentiation of AEC II to AEC I. In the normal lung, TGF beta1 and Smad4 were highly expressed in AEC II. Using an in vitro cell culture model, we demonstrated that the trans-differentiation of AEC II into AEC I-like cells began with a proliferative phase, followed by a differentiation phase. The expression of TGF beta1, Smad2, and Samd3 and their phosphorylated protein forms, and cell cycle inhibitors, p15(Ink4b) and p21(Cip1), was lower during the proliferative phase but higher during the differentiation phase. Furthermore, cyclin-dependent kinases 2, 4, and 6 showed an opposite trend of expression. TGF beta1 secretion into the media increased during the differentiation phase, indicating an autocrine regulation. The addition of TGF beta1 neutralizing antibody after the proliferative phase and silencing of Smad4 by RNA interference inhibited the trans-differentiation process. In summary, our results suggest that the trans-differentiation of AEC II to AEC I is modulated by signaling through the Smad-dependent TGF beta1 pathway by altering the expression of proteins that control the G1 to S phase entry in the cell cycle.
Collapse
Affiliation(s)
- Manoj Bhaskaran
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | |
Collapse
|
17
|
Grigioni M, Carotti A, Del Gaudio C, Morbiducci U, Albanese SB, D'Avenio G. Multiresolution Analysis of Heart Rate Variability as Investigational Tool in Experimental Fetal Cardiac Surgery. Ann Biomed Eng 2006; 34:799-809. [PMID: 16538544 DOI: 10.1007/s10439-006-9084-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/20/2006] [Indexed: 11/28/2022]
Abstract
Multiresolution analysis of heart rate variability derived from aortic blood pressure, acquired before and after (30 and 60 min) experimental fetal cardiac bypass performed on five ewe's fetuses, was used to investigate the physiological response to an invasive clinical approach. Tachograms were implemented and analyzed by wavelet transform in order to verify the existence of a quantitative relationship between arterial blood gases and time series in the very-low (0.021<f<0.084 Hz) and low (0.084<f<0.337 Hz) frequency band. Multiresolution analysis showed an average decreasing trend from basal condition for all the fetuses investigated in the very-low frequency band, while an opposite trend was highlighted in the low frequency band: this resulting behavior could be related to the temporal evolution of blood gas data. Finally, a slight decrease of sympatho-vagal balance was monitored 30 min after the cardiac bypass was discontinued compared to basal condition. Multiresolution analysis could give more insights on fetal hypoxemia and could also represent a minimally invasive monitoring tool to limit the damage to the fetoplacental unit during experimental fetal cardiac surgery.
Collapse
Affiliation(s)
- Mauro Grigioni
- Cardiovascular Bioengineering, Technology and Health Department, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleux A, Tefft D, Unbekandt M, Wang K, Shi W. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 2005; 57:26R-37R. [PMID: 15817505 DOI: 10.1203/01.pdr.0000159570.01327.ed] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The "hard wiring" encoded within the genome that determines the emergence of the laryngotracheal groove and subsequently early lung branching morphogenesis is mediated by finely regulated, interactive growth factor signaling mechanisms that determine the automaticity of branching, interbranch length, stereotypy of branching, left-right asymmetry, and finally gas diffusion surface area. The extracellular matrix is an important regulator as well as a target for growth factor signaling in lung branching morphogenesis and alveolarization. Coordination not only of epithelial but also endothelial branching morphogenesis determines bronchial branching and the eventual alveolar-capillary interface. Improved prospects for lung protection, repair, regeneration, and engineering will depend on more detailed understanding of these processes. Herein, we concisely review the functionally integrated morphogenetic signaling network comprising the critical bone morphogenetic protein, fibroblast growth factor, Sonic hedgehog, transforming growth factor-beta, vascular endothelial growth factor, and Wnt signaling pathways that specify and drive early embryonic lung morphogenesis.
Collapse
Affiliation(s)
- David Warburton
- Developmental Biology Program, The Saban Research Institute of Childrens Hospital Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The plasminogen activator/plasmin system is believed to play an important role in diverse pathophysiological processes, including wound healing, vascular remodeling and pulmonary fibrosis. Our recent studies show that plasmin upregulates the expression of Cyr61, a growth factor-like gene that has been implicated in cell proliferation and migration. In the present study, we investigated whether plasmin promotes fibroblast proliferation and, if so, determine the role of Cyr61 in the plasmin-induced response. Human lung fibroblasts were exposed to varying concentrations of plasmin and DNA synthesis was monitored by measuring the incorporation of 3H-thymidine into DNA. Plasmin increased DNA synthesis of fibroblasts in a dose-dependent manner. Protease-activated receptor-1 (PAR-1)-specific antibodies, but not PAR-2-specific antibodies, reduced the plasmin-induced DNA synthesis. Consistent with this, plasmin had no substantial effect on the DNA synthesis in PAR-1-deficient mouse fibroblasts. Plasmin activated both p38 and p44/42 MAPKs and specific inhibitors of these pathways inhibited the plasmin-induced DNA synthesis. Plasmin-induced increase in the DNA synthesis was completely abrogated by anti-Cyr61 antibodies. Interestingly, thrombin, which is a potent inducer of Cyr61, had only a minimal effect on fibroblast proliferation. Additional experiments suggested that plasmin cleaved cell/extracellular matrix-associated Cyr61 and the conditioned media from plasmin-treated cells could support the cell proliferation. Overall, these data suggest that plasmin promotes fibroblast proliferation by a novel pathway, involving two independent steps. In the first step, plasmin induces Cyr61 expression via activation of PAR-1, and in the second step, plasmin releases Cyr61 deposited in the extracellular matrix, thus making it accessible to act on cells.
Collapse
Affiliation(s)
- S K Mandal
- Biomedical Research, The University of Texas Health Center at Tyler, Tyler, TX 75708, USA
| | | | | | | |
Collapse
|
21
|
Majumdar M, Tarui T, Shi B, Akakura N, Ruf W, Takada Y. Plasmin-induced Migration Requires Signaling through Protease-activated Receptor 1 and Integrin α9β1. J Biol Chem 2004; 279:37528-34. [PMID: 15247268 DOI: 10.1074/jbc.m401372200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Plasmin is a major extracellular protease that elicits intracellular signals to mediate platelet aggregation, chemotaxis of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types in a G protein-dependent manner. Angiostatin, a fragment of plasmin(ogen), is a ligand and an antagonist for integrin alpha(9)beta(1). Here we report that plasmin specifically interacts with alpha(9)beta(1) and that plasmin induces of cells expressing migration recombinant alpha(9)beta(1) (alpha(9)-Chinese hamster ovary (CHO) cells). Migration was dependent on an interaction of the kringle domains of plasmin with alpha(9)beta(1) as well as the catalytic activity of plasmin. Angiostatin, representing the kringle domains of plasmin, alone did not induce the migration of alpha(9)-CHO cells, but simultaneous activation of the G protein-coupled protease-activated receptor (PAR)-1 with an agonist peptide induced the migration on angiostatin, whereas PAR-2 or PAR-4 agonist peptides were without effect. Furthermore, a small chemical inhibitor of PAR-1 (RWJ 58259) and a palmitoylated PAR-1-blocking peptide inhibited plasmin-induced migration of alpha(9)-CHO cells. These results suggest that plasmin induces migration by kringle-mediated binding to alpha(9)beta(1) and simultaneous proteolytic activation of PAR-1.
Collapse
Affiliation(s)
- Mousumi Majumdar
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yonemoto H, Nishina H, Yoshida K, Kinoshita K, Ehara Y. Power Spectral Analysis of the Heart Rate Variability of Goat Fetuses During Extrauterine Incubation. Artif Organs 2004; 28:704-8. [PMID: 15270951 DOI: 10.1111/j.1525-1594.2004.00069.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our aim is to determine the relationship between heart rate and behavioral states of a fetal goat using power spectral analysis. Electrocardiograms, electrocortical activity, and fetal breathing movements are recorded from 7 goat fetuses during extrauterine incubation. The heart rate power spectrum is classified into very low, low, and high frequency bands, and behavioral states are classified into low-voltage electrocortical activity with fetal breathing movements (LVB), low-voltage electrocortical activity without fetal breathing movements (LVN), and high-voltage electrocortical activity (HVN). There is a significant difference in total power spectral density in the high frequency band between LVN and HVN, and LVN and LVB. The relationship between each fetal behavioral state is assessed by power spectral analysis.
Collapse
Affiliation(s)
- Hisashi Yonemoto
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Wadie F Bahou
- Division of Hematology, State University of New York, Stony Brook, New York 11794-8151, USA
| |
Collapse
|
24
|
KIMURA M, INOUE S. Is hormone replacement therapy worth trying to treat postmenopausal insomnia?: A basic study. Sleep Biol Rhythms 2003. [DOI: 10.1046/j.1446-9235.2003.00046.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Warburton D, Bellusci S, Del Moral PM, Kaartinen V, Lee M, Tefft D, Shi W. Growth factor signaling in lung morphogenetic centers: automaticity, stereotypy and symmetry. Respir Res 2003; 4:5. [PMID: 12818006 PMCID: PMC185249 DOI: 10.1186/1465-9921-4-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Revised: 01/28/2003] [Accepted: 02/17/2003] [Indexed: 12/16/2022] Open
Abstract
Lung morphogenesis is stereotypic, both for lobation and for the first several generations of airways, implying mechanistic control by a well conserved, genetically hardwired developmental program. This program is not only directed by transcriptional factors and peptide growth factor signaling, but also co-opts and is modulated by physical forces. Peptide growth factors signal within repeating epithelial-mesenchymal temporospatial patterns that constitute morphogenetic centers, automatically directing millions of repetitive events during both stereotypic branching and nonstereotypic branching as well as alveolar surface expansion phases of lung development. Transduction of peptide growth factor signaling within these centers is finely regulated at multiple levels. These may include ligand expression, proteolytic activation of latent ligand, ligand bioavailability, ligand binding proteins and receptor affinity and presentation, receptor complex assembly and kinase activation, phosphorylation and activation of adapter and messenger protein complexes as well as downstream events and cross-talk both inside and outside the nucleus. Herein we review the critical Sonic Hedgehog, Fibroblast Growth Factor, Bone Morphogenetic Protein, Vascular Endothelial Growth Factor and Transforming Growth Factorbeta signaling pathways and propose how they may be functionally coordinated within compound, highly regulated morphogenetic gradients that drive first stereotypic and then non-stereotypic, automatically repetitive, symmetrical as well as asymmetrical branching events in the lung.
Collapse
Affiliation(s)
- David Warburton
- Developmental Biology Program, Childrens Hospital Los Angeles Research Institute and the Center for Craniofacial Molecular Biology, Keck School of Medicine and School of Dentistry, University of Southern California, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Berry LR, Klement P, Andrew M, Chan AKC. Effect of covalent serpin-heparinoid complexes on plasma thrombin generation on fetal distal lung epithelium. Am J Respir Cell Mol Biol 2003; 28:150-8. [PMID: 12540482 DOI: 10.1165/rcmb.4849] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extravascular coagulation within the lung airspace is a hallmark of respiratory distress syndrome (RDS) in premature infants. We previously showed that covalent antithrombin-heparin complex (ATH) is superior to noncovalent antithrombin (AT) + heparin (H) mixtures at inhibiting plasma thrombin generation on rat fetal distal lung epithelium (FDLE) in vitro. However, heparin cofactor II (HC) has been shown to selectively inhibit thrombin, which may be advantageous if other enzyme activities are present in the airspace. We compared the abilities of ATH, covalent HC-heparin complex (HCH), and covalent HC-dermatan sulfate (HCD) to inhibit thrombin generation on FDLE in plasmas from either adults or newborns. In the presence of ATH, peak free thrombin generation in adult plasma on the cell surface was reduced by 92% compared with controls (no anticoagulant). However, whereas HCH reduced peak free thrombin generation in adult plasma by 81%, HCD was only able to reduce activity by 33%. All covalent complexes caused a greater decrease in thrombin activity compared with that with the corresponding noncovalent serpin + heparinoid mixtures. Experiments in plasma from newborns resulted in peak free thrombin that was less than or equal to that in adult plasma when covalent conjugates were added. Relative peak free thrombin was proportional to rate of prothrombin consumption and amount of thrombin-inhibitor complexes formed. In vivo, experiments in newborn rats showed that a greater percentage of intratracheally instilled ATH and HCH could be recovered in lung lavage fluid compared withwith that for HCD. In summary, ATH, HCH, and HCD are inhibitors of thrombin generation on FDLE superior to the corresponding noncovalent mixtures, with ATH and HCH being more potent than HCD. Covalent conjugates of AT or HC with H may be preferred in treatment of extravascular coagulation.
Collapse
|
27
|
Salamalekis E, Thomopoulos P, Giannaris D, Salloum I, Vasios G, Prentza A, Koutsouris D. Computerised intrapartum diagnosis of fetal hypoxia based on fetal heart rate monitoring and fetal pulse oximetry recordings utilising wavelet analysis and neural networks. BJOG 2002; 109:1137-42. [PMID: 12387467 DOI: 10.1111/j.1471-0528.2002.01388.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To develop a computerised system that will assist the early diagnosis of fetal hypoxia and to investigate the relationship between the fetal heart rate variability and the fetal pulse oximetry recordings. DESIGN Retrospective off-line analysis of cardiotocogram and FSpO2 recordings. SETTING The Maternity Unit of the 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens. POPULATION Sixty-one women of more than 37 weeks of gestation were monitored throughout labour. METHODS Multiresolution wavelet analysis was applied in each 10-minute period of second stage of labour focussing on long term variability changes in different frequency ranges and statistical analysis was performed in the associated 10-minute FSpO2 recordings. Self-organising map neural network was used to categorise the different 10-minute fetal heart rate patterns and the associated 10-minute FSpO2 recordings. MAIN OUTCOME MEASURES Umbilical artery pH of < or = 7.20 and Apgar score at 5 minutes of < or = 7 formed the inclusion criteria of the risk group. RESULTS After using k-means clustering algorithm, the two-dimensional output layer of the self-organising map neural network was divided into three distinct clusters. All the cases that mapped in cluster 3 belonged in the risk group except one. The sensitivity of the system was 83.3% and the specificity 97.9% for the detection of risk group cases. CONCLUSIONS A relationship between the fetal heart rate variability in different frequency ranges and the time in which FSpO2 is less than 30% was noticed. Fetal pulse oximetry seems to be an important additional source of information. Computerised analysis of the fetal heart rate monitoring and pulse oximetry recordings is a promising technique in objective intrapartum diagnosis of fetal hypoxia. Further evaluation of this technique is mandatory to evaluate its efficacy and reliability in interpreting fetal heart rate recordings.
Collapse
Affiliation(s)
- E Salamalekis
- Maternity Unit of the 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
28
|
Pendurthi UR, Ngyuen M, Andrade-Gordon P, Petersen LC, Rao LVM. Plasmin induces Cyr61 gene expression in fibroblasts via protease-activated receptor-1 and p44/42 mitogen-activated protein kinase-dependent signaling pathway. Arterioscler Thromb Vasc Biol 2002; 22:1421-6. [PMID: 12231560 DOI: 10.1161/01.atv.0000030200.59331.3f] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The plasminogen system has been proposed to participate in vascular remodeling and angiogenesis. Although plasmin-mediated proteolysis could contribute these processes, proteolytic targets for plasmin and their downstream effector molecules are yet to be fully defined. The aim of the present study was to elucidate potential mechanisms by which plasmin affects various cellular processes. METHODS AND RESULTS Plasmin upregulated the expression of Cyr61, a growth factor-like gene that has been implicated in cell proliferation, adhesion, and migration. Plasmin-induced gene expression is dependent on its proteolytic activity and requires its binding to cells. Studies that used wild-type fibroblasts and fibroblasts derived from PAR-1- and PAR-2-deficient mice showed that plasmin induced Cyr61 gene expression in wild-type fibroblasts and PAR-2-deficient cells but not in PAR-1-deficient cells. Consistent with this, plasmin induced the activation of p44/42 mitogen-activated protein kinase in wild-type, PAR-2 -/- cells but not in PAR-1 -/- cells. In contrast with thrombin, plasmin failed to induce Ca2+ signaling in fibroblasts. CONCLUSIONS Plasmin induced an angiogenic and wound-healing promoter, Cyr61, in fibroblasts through activation of PAR-1. Plasmin-induced Cyr61 expression is mediated via the p44/42 mitogen-activated protein kinase pathway independent of Ca2+ signaling.
Collapse
Affiliation(s)
- Usha R Pendurthi
- Biomedical Research, The University of Texas Health Center at Tyler, Tex 75708, USA.
| | | | | | | | | |
Collapse
|
29
|
Kimura M, Inoué S. Involvement of granulocyte-macrophage colony-stimulating factor (GM-CSF) in pregnancy-enhanced sleep. Psychiatry Clin Neurosci 2002; 56:337-8. [PMID: 12047622 DOI: 10.1046/j.1440-1819.2002.00968.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a crucial cytokine for establishing pregnancy. It has been demonstrated previously in rats that sleep increases during early pregnancy and that centrally administered GM-CSF promotes both rapid eye movement (REM) and non-REM sleep. Therefore, whether GM-CSF is involved in pregnancy-enhanced sleep was investigated using the anti-GM-CSF antibody. Female rats received an intracerebroventricular infusion of either anti-GM-CSF or control IgG (10 microg each) for four nights from the first day of pregnancy (PD1-PD4). Although sleep amounts on PD1 were not affected, anti-GM-CSF decreased non-REM and REM sleep significantly during PD2-PD4 compared with the control baseline of the IgG group. The results demonstrated that anti-GM-CSF treatment suppresses pregnancy-enhanced sleep, suggesting that GM-CSF contributes to sleep regulation during pregnancy.
Collapse
Affiliation(s)
- Mayumi Kimura
- Department of Biocybernetics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan.
| | | |
Collapse
|
30
|
Warburton D, Tefft D, Mailleux A, Bellusci S, Thiery JP, Zhao J, Buckley S, Shi W, Driscoll B. Do lung remodeling, repair, and regeneration recapitulate respiratory ontogeny? Am J Respir Crit Care Med 2001; 164:S59-62. [PMID: 11734468 DOI: 10.1164/ajrccm.164.supplement_2.2106064] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herein we posit that modeling of the lungs during morphogenesis, repair, and regeneration is tightly coordinated by conserved stimulatory and inhibitory signaling mechanisms, including specific transcriptional factors, cytokines, peptide growth factors, proteases, and matrix elements. This evolutionary-developmental (evo-devo) functional conservation has been extended to morphogenesis of the respiratory tracheae in Drosophila. Fifty or more genes direct fruit fly tracheal organogenesis. Among them, hedgehog, patched, smoothened, cubitus interruptus, branchless, breathless, sprouty, decapentaplegic, and mad are functionally conserved between flies, mice, and humans. For example, fibroblast growth factor (FGF) signaling is essential, not only for fly trachea and mouse bronchial branching morphogenesis, but also for postnatal modeling and repair of alveoli. Likewise, sprouty family genes act as inducible negative regulators of FGF signaling, which in part may determine interbranch length during bronchial development. Alveolar epithelial survival, migration, and proliferation during remodeling after hyperoxic injury also require FGF signaling. In addition, FGF signaling appears to regulate a small (< 5%) population of putative alveolar stem/ progenitor cells that express telomerase and are relatively resistant to hyperoxic apoptosis. We speculate that genes in evo-devo functionally conserved signaling pathways such as FGF-FGF receptor-Sprouty may provide novel therapeutic targets to augment lung repair and induce lung regeneration.
Collapse
Affiliation(s)
- D Warburton
- Developmental Biology Program, Childrens Hospital Los Angeles Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Plasmin has been reported to activate and inhibit platelet function depending on dose and exposure temperature. The present study examines the induction of fibrinogen-dependent platelet aggregation following prolonged (60 min) platelet exposure to very low doses of plasmin (0.05 CU/ml) at either 22 or 37 degrees C. Maximum aggregation [mean +/- SD, 60 +/- 19 light transmission units (LTU); n = 43] occurred following platelet exposure to plasmin at 22 degrees C, but significant platelet aggregation (28 +/- 4 LTU, n = 3) also occurred following plasmin treatment at 37 degrees C. Plasmin-induced platelet aggregates appeared microscopically larger than aggregates of adenosine diphosphate (ADP)-activated platelets, and were less reversible. Aggregated plasmin-treated platelets also expressed more procoagulant activity than platelets aggregated with ADP, as reflected by shortening of the plasma kaolin recalcification time. Aggregation of platelets exposed to very low doses of plasmin was not accompanied by dense or alpha-granule secretion, and was unaffected by ADP antagonists or aspirin. Partial inhibition of platelet aggregation, however, was achieved with metabolic inhibitors, PGE1, and inhibitors of phosphoinositide 3-kinase or protein kinase C. Although fibrinogen was required for plasmin-treated platelet aggregation, [125I]-fibrinogen binding comprised only 58 +/- 3% (n = 3) of fibrinogen binding associated with ADP aggregated platelets. This was consistent with observed decreases in reptilase-induced fibrin clot retraction. Taken together, these data suggest that sustained exposure of platelets to very low plasmin doses leads to platelet activation and thus may contribute to thrombotic complications in vivo.
Collapse
Affiliation(s)
- A L Ervin
- Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
32
|
Loew D, Perrault C, Morales M, Moog S, Ravanat C, Schuhler S, Arcone R, Pietropaolo C, Cazenave JP, van Dorsselaer A, Lanza F. Proteolysis of the exodomain of recombinant protease-activated receptors: prediction of receptor activation or inactivation by MALDI mass spectrometry. Biochemistry 2000; 39:10812-22. [PMID: 10978167 DOI: 10.1021/bi0003341] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protease-activated receptors (PARs) mediate cell activation after proteolytic cleavage of their extracellular amino terminus. Thrombin selectively cleaves PAR1, PAR3, and PAR4 to induce activation of platelets and vascular cells, while PAR2 is preferentially cleaved by trypsin. In pathological situations, other proteolytic enzymes may be generated in the circulation and could modify the responses of PARs by cleaving their extracellular domains. To assess the ability of such proteases to activate or inactivate PARs, we designed a strategy for locating cleavage sites on the exofacial NH(2)-terminal fragments of the receptors. The first extracellular segments of PAR1 (PAR1E) and PAR2 (PAR2E) expressed as recombinant proteins in Escherichia coli were incubated with a series of proteases likely to be encountered in the circulation during thrombosis or inflammation. Kinetic and dose-response studies were performed, and the cleavage products were analyzed by MALDI-TOF mass spectrometry. Thrombin cleaved PAR1E at the Arg41-Ser42 activation site at concentrations known to induce cellular activation, supporting a native conformation of the recombinant polypeptide. Plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3 cleaved at multiple sites and would be expected to disable PAR1 by cleaving COOH-terminal to the activation site. Cleavage specificities were further confirmed using activation site defective PAR1E S42P mutant polypeptides. Surface plasmon resonance studies on immobilized PAR1E or PAR1E S42P were consistent with cleavage results obtained in solution and allowed us to determine affinities of PAR1E-thrombin binding. FACS analyses of intact platelets confirmed the cleavage of PAR1 downstream of the Arg41-Ser42 site. Mass spectrometry studies of PAR2E predicted activation of PAR2 by trypsin through cleavage at the Arg36-Ser37 site, no effect of thrombin, and inactivation of the receptor by plasmin, calpain and leukocyte elastase, cathepsin G, and proteinase 3. The inhibitory effect of elastase was confirmed on native PAR1 and PAR2 on the basis of Ca(2+) signaling studies in endothelial cells. It was concluded that none of the main proteases generated during fibrinolysis or inflammation appears to be able to signal through PAR1 or PAR2. This strategy provides results which can be extended to the native receptor to predict its activation or inactivation, and it could likewise be used to study other PARs or protease-dependent processes.
Collapse
MESH Headings
- Amino Acid Sequence
- Blood Platelets/metabolism
- Calcium Signaling
- Cell Line
- Chromatography, High Pressure Liquid
- Chromatography, Liquid
- Endopeptidases/metabolism
- Escherichia coli/genetics
- Flow Cytometry
- Humans
- Hydrolysis
- Mass Spectrometry
- Molecular Sequence Data
- Pancreatic Elastase/physiology
- Peptide Fragments/biosynthesis
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Structure, Tertiary/genetics
- Receptor, PAR-1
- Receptor, PAR-2
- Receptors, Thrombin/antagonists & inhibitors
- Receptors, Thrombin/chemistry
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Surface Plasmon Resonance
- Thrombin/agonists
- Thrombin/metabolism
- Trypsin/metabolism
Collapse
Affiliation(s)
- D Loew
- Laboratoire de Spectrométrie de Masse Bio Organique, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
1. The effects of cold saline (25 mL) injected over the fetal skin on fetal heart rate (HR) and HR variability (HRV), measured as the coefficient of variation (CV) in pulse interval (PI) and by power spectral analysis (PSA), were measured in 10 chronically catheterized fetal sheep aged 140-144 days. To determine the extent to which effects on HR and HRV were mediated by the sympathoadrenal neuroendocrine axis and the cardiac vagus, experiments were performed before and after beta-adrenoreceptor blockade with propranolol (n = 12 fetuses) or before and after cardiac vagal blockade with atropine (n = 4 fetuses). 2. Injection of ice-cold saline over the skin caused an immediate rise in mean arterial pressure (MAP) from 46+/-1 to 55+/-1 mmHg (P < 0.001) and HR from 156+/-2 to 182+/-2 b.p.m. (P < 0.001). Heart rate variability, measured as CV of PI, rose from 3.5+/-0.2 to 8.0+/-0.2% (P < 0.001) and total power spectral density (PSD) increased from 78+/-6 to 278+/-16 units (P < 0.001) as measured by PSA. Within 100s, MAP, HR and HRV had returned to baseline. 3. Beta-adrenoreceptor blockade abolished all these changes in HR, HRV and PSD, but had no effect on changes in MAP. Atropine had no demonstrable effect on the responses to cold. 4. Therefore, the increase in fetal MAP, HR and HRV that occurred with stimulation of peripheral thermoreceptors was the result of increased activity of the sympathetic nervous system. Alterations in efferent cardiac vagal tone were not involved in the cardiac response to cold.
Collapse
Affiliation(s)
- Z Y Yu
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
34
|
Santos BF, Serrano SM, Kuliopulos A, Niewiarowski S. Interaction of viper venom serine peptidases with thrombin receptors on human platelets. FEBS Lett 2000; 477:199-202. [PMID: 10908720 DOI: 10.1016/s0014-5793(00)01803-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The serine peptidases, thrombocytin and PA-BJ, isolated from the venom of Bothrops atrox and Bothrops jararaca, respectively, induce platelet aggregation and granule secretion without clotting fibrinogen. The specific platelet aggregation activity of each enzyme was about 15 times lower than that of thrombin. This activity was blocked by monoclonal antibodies recognizing protease activated receptor 1 (PAR1) and by heparin, but not by hirudin nor thrombomodulin. Both enzymes induced calcium mobilization in platelets and desensitized platelets to the action of thrombin and the SFLLRN peptide. We compared the effect of thrombin, PA-BJ, and thrombocytin on the degradation of the soluble N-terminal domain of the PAR1 receptor. The major cleavage site by thrombin and both viper enzymes was Arg41-Ser42. In addition, a rapid cleavage of the peptide bond at Arg46-Asn47 by the viper enzymes was observed, resulting in the inactivation of the tethered ligand. PA-BJ and thrombocytin both cleaved at 41-42 and 46-47 peptide bonds, and fragment 42-103 disappeared rapidly. Both viper enzymes caused calcium mobilization in fibroblasts transfected with PAR4 and desensitized these cells to the thrombin action. In conclusion, both PAR1 and PAR4 mediate the effect of viper venom serine peptidases on platelets.
Collapse
|
35
|
Streptokinase-induced platelet activation involves antistreptokinase antibodies and cleavage of protease-activated receptor-1. Blood 2000. [DOI: 10.1182/blood.v95.4.1301.004k24_1301_1308] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptokinase activates platelets, limiting its effectiveness as a thrombolytic agent. The role of antistreptokinase antibodies and proteases in streptokinase-induced platelet activation was investigated. Streptokinase induced localization of human IgG to the platelet surface, platelet aggregation, and thromboxane A2production. These effects were inhibited by a monoclonal antibody to the platelet Fc receptor, IV.3. The platelet response to streptokinase was also blocked by an antibody directed against the cleavage site of the platelet thrombin receptor, protease-activated receptor-1 (PAR-1), but not by hirudin or an active site thrombin inhibitor, Ro46-6240. In plasma depleted of plasminogen, exogenous wild-type plasminogen, but not an inactive mutant protein, S741A plasminogen, supported platelet aggregation, suggesting that the protease cleaving PAR-1 was streptokinase-plasminogen. Streptokinase-plasminogen cleaved a synthetic peptide corresponding to PAR-1, resulting in generation of PAR-1 tethered ligand sequence and selectively reduced binding of a cleavage-sensitive PAR-1 antibody in intact cells. A combination of streptokinase, plasminogen, and antistreptokinase antibodies activated human erythroleukemic cells and was inhibited by pretreatment with IV.3 or pretreating the cells with the PAR-1 agonist SFLLRN, suggesting Fc receptor and PAR-1 interactions are necessary for cell activation in this system also. Streptokinase-induced platelet activation is dependent on both antistreptokinase-Fc receptor interactions and cleavage of PAR-1.
Collapse
|
36
|
Bartha K, Dömötör E, Lanza F, Adam-Vizi V, Machovich R. Identification of thrombin receptors in rat brain capillary endothelial cells. J Cereb Blood Flow Metab 2000; 20:175-82. [PMID: 10616806 DOI: 10.1097/00004647-200001000-00022] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both thrombin and plasmin induce contraction of brain endothelial cells, which may increase capillary permeability thereby leading to disruption of the blood-brain barrier. Identification of thrombin receptors, as well as the influence of plasmin on their activation, in capillary endothelial cells and astrocytes are therefore essential for understanding injury-related actions of thrombin in the brain. Using the reverse transcriptase-polymerase chain reaction method, the present study shows that primary cultures of rat brain capillary endothelial (RBCE) cells and astrocytes derived from rat brain express two different thrombin receptors. The first is proteolytically activated receptor (PAR)-1, the receptor responsible for the vast majority of the thrombin's cellular activation functions; the second is PAR-3, a receptor described to be essential for normal responsiveness to thrombin in mouse platelets. In addition to these thrombin receptors, the mRNA (messenger RNA) for PAR-2, a possible trypsin receptor, was also identified. Functional significance of thrombin receptors was indicated by changes in [Ca2+]i in response to thrombin, as measured by FURA-2 fluorescence in RBCE cells. Thrombin as low as 4 nmol/L induced an abrupt increase in [Ca2+]i whereas, upon addition of active site-blocked thrombin or plasmin, [Ca2+]i remained unchanged. The [Ca2+]i signal attributable to thrombin was smaller in a low Ca2+-containing medium, indicating that an influx of Ca2+ from the extracellular medium makes a contribution to the overall [Ca2+]i rise. The amplitude of the transient [Ca2+]i signal was dependent on the concentration of thrombin, and repeated application of the enzyme caused an essentially complete and long-term desensitization of the receptor. The PAR-1 agonist peptide SFLLRN also elicited a transient increase in [Ca2+]i. After activation by SFLLRN, cells showed a diminished response to thrombin, but the response was not absent, indicating that PAR-3 might contribute to the generation of the [Ca2+]i signal. Pretreatment of RBCE cells with 100 nmol/L plasmin completely prevented [Ca2+]i rise attributable to thrombin. These data show that RBCE cells and astrocytes express at least two receptors for thrombin, PAR-1 and PAR-3, and probably both receptors are involved in thrombin-induced [Ca2+]i signals. Plasmin itself does not elevate [Ca2+]i but prevents the activation of receptors by thrombin.
Collapse
Affiliation(s)
- K Bartha
- Department of Medical Biochemistry, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
37
|
Gelband CH, Warth JD, Mason HS, Zhu M, Moore JM, Kenyon JL, Horowitz B, Sumners C. Angiotensin II type 1 receptor-mediated inhibition of K+ channel subunit kv2.2 in brain stem and hypothalamic neurons. Circ Res 1999; 84:352-9. [PMID: 10024310 DOI: 10.1161/01.res.84.3.352] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) has powerful modulatory actions on cardiovascular function that are mediated by specific receptors located on neurons within the hypothalamus and brain stem. Incubation of neuronal cocultures of rat hypothalamus and brain stem with Ang II elicits an Ang II type 1 (AT1) receptor-mediated inhibition of total outward K+ current that contributes to an increase in neuronal firing rate. However, the exact K+ conductance(s) that is inhibited by Ang II are not established. Pharmacological manipulation of total neuronal outward K+ current revealed a component of K+ current sensitive to quinine, tetraethylammonium, and 4-aminopyridine, with IC50 values of 21.7 micromol/L, 1.49 mmol/L, and 890 micromol/L, respectively, and insensitive to alpha-dendrotoxin (100 to 500 nmol/L), charybdotoxin (100 to 500 nmol/L), and mast cell degranulating peptide (1 micromol/L). Collectively, these data suggest the presence of Kv2.2 and Kv3.1b. Biophysical examination of the quinine-sensitive neuronal K+ current demonstrated a macroscopic conductance with similar biophysical properties to those of Kv2.2 and Kv3.1b. Ang II (100 nmol/L), in the presence of the AT2 receptor blocker PD123,319, elicited an inhibition of neuronal K+ current that was abolished by quinine (50 micromol/L). Reverse transcriptase-polymerase chain reaction analysis confirmed the presence of Kv2.2 and Kv3.1b mRNA in these neurons. However, Western blot analyses demonstrated that only Kv2.2 protein was present. Coexpression of Kv2.2 and the AT1 receptor in Xenopus oocytes demonstrated an Ang II-induced inhibition of Kv2.2 current. Therefore, these data suggest that inhibition of Kv2.2 contributes to the AT1 receptor-mediated reduction of neuronal K+ current and subsequently to the modulation of cardiovascular function.
Collapse
Affiliation(s)
- C H Gelband
- Department of Physiology, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Figueroa BE, Keep RF, Betz AL, Hoff JT. Plasminogen activators potentiate thrombin-induced brain injury. Stroke 1998; 29:1202-7; discussion 1208. [PMID: 9626295 DOI: 10.1161/01.str.29.6.1202] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Evidence suggests that cerebral edema following intracerebral hemorrhage (i.c.h.) results from a mass effect in combination with neurotoxic injury from clot-derived substrates such as thrombin. Thrombolytics can compete for thrombin inhibitors endogenous to the brain. This study examines the effect of intracerebral infusion of thrombolytics, tissue plasminogen activator (tPA), and urokinase (uPA), individually and in combination with thrombin. METHODS Various 100 microL solutions were stereotactically infused into the right basal ganglia of adult male rats. Animals were euthanized 24 hours later, and brain sections were taken for measurement of water, sodium, and potassium content. RESULTS Regardless of dose, when infused independently tPA (2 micrograms) and uPA (2000 and 5000 Plough units) failed to produce any significant tissue edema compared with vehicle control tissues. However, when either thrombolytic was infused concomitantly with thrombin (1 or 5 U), brain water, sodium, and potassium content all demonstrated a potentiation of thrombin-induced brain injury (P < 0.05). In addition, animal deaths were significantly greater than expected in animals receiving a combination of tPA (2 micrograms) and thrombin (5 U) compared with either drug alone (P < 0.001). CONCLUSIONS This study indicates that brain edema caused by thrombin can be greatly amplified by the presence of plasminogen activators, perhaps because the latter compete for naturally occurring thrombin inhibitors. In the context of ICH, our results suggest that the use of tPA or uPA to lyse clotted blood in brain parenchyma may promote edema formation in surrounding tissue.
Collapse
Affiliation(s)
- B E Figueroa
- Department of Surgery, University of Michigan, Ann Arbor 48109-0532, USA
| | | | | | | |
Collapse
|
39
|
Abstract
We studied basic sleep changes in pregnant rats in order to understand how pregnancy alters sleep. In the rat, pregnancy increased nocturnal nonREM sleep across the entire period but increased REM sleep only in the early period. By the end of pregnancy, diurnal sleep was decreased, showing that pregnancy in rats causes biphasic sleep changes as it does in humans. Termination of pregnancy returned the enhanced sleep to baseline as in the estrous cycle. Therefore, significant changes in the pattern of sleep occurred during pregnancy in rats, suggesting that the animal model may contribute to understanding the mechanism of sleep disorders related to human pregnancy.
Collapse
Affiliation(s)
- M Kimura
- Division of Biocybernetics, Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
40
|
Selim TE, Ghoneim HR, Uknis AB, Colman RW, DeLa Cadena RA. High-molecular-mass and low-molecular-mass kininogens block plasmin-induced platelet aggregation by forming a complex with kringle 5 of plasminogen/plasmin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:532-8. [PMID: 9428707 DOI: 10.1111/j.1432-1033.1997.0532a.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously demonstrated a low-affinity (0.8 microM, non-covalent complex formation between high-molecular-mass kininogen (HK) and plasminogen (Plg) which prevented Plg interaction with glioma and endothelial cells. We have now extended our previous observations by exploring the potential complex formation between Plg and low-molecular-mass kininogen (LK) and between LK and HK with Plg cleaved with human neutrophil elastase (HNE). Plg cleavage by HNE (PlgHNE) yielded kringles 1-3, kringle 4 and mini-plasminogen. PlgHNE was subjected to SDS/PAGE under non-reducing conditions, followed by western blotting, and incubated with either 125I-HK or 125I-LK. Autoradiograms revealed that 125I-HK bound to miniplasminogen and to kringles 1-3 but not to kringle 4 and the presence of 10 mM 6-aminohexanoic acid (Ahx) disrupted only the interaction with kringles 1-3. In contrast, 125I-LK bound to miniplasminogen but not to kringles 1-3 or 4 and Ahx had no effect at all. The complex formation of either HK (0.67 microM) or LK (3 microM) with Plg (1.5 microM) did not affect its conversion to plasmin by tissue plasminogen activator (t-PA) (10 U/ml) in the presence of a tissue plasminogen stimulator (0.14 microM). However, the rate of conversion of plasminogen to plasmin by t-PA was affected when platelets were added to the reaction mixture. Since HK (0.83 microM) has been shown to inhibit plasmin-induced platelet aggregation, we investigated whether this inhibitory property is found within the heavy chain shared by HK and LK. We found that LK inhibited plasmin-induced platelet aggregation, but a 4-fold molar excess was required when compared to HK. Compared to plasmin, 3-5-fold molar excess of miniplasmin is required to induce platelet aggregation, indicating the important role of kringles 1-3 for plasmin interactions with these cells. These results indicate that HK and LK-mediated inhibition of plasmin-induced platelet aggregation is likely due to complex formation with kringle 5 without interfering with plasmin's active site. We found an additional interaction between HK and kringles 1-3 enhancing the inhibitory effect, presumably by interfering with plasmin's interaction with platelets. This HK and LK-associated modulation of plasmin-induced platelet aggregation may serve as a template to develop synthetic peptides as novel therapeutic agents to prevent some of the plasmin-associated thrombocytopenia seen during thrombolytic therapy.
Collapse
Affiliation(s)
- T E Selim
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
41
|
Molino M, Woolkalis MJ, Reavey-Cantwell J, Praticó D, Andrade-Gordon P, Barnathan ES, Brass LF. Endothelial cell thrombin receptors and PAR-2. Two protease-activated receptors located in a single cellular environment. J Biol Chem 1997; 272:11133-41. [PMID: 9111010 DOI: 10.1074/jbc.272.17.11133] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human endothelial cells express thrombin receptors and PAR-2, the two known members of the family of protease-activated G protein-coupled receptors. Because previous studies have shown that the biology of the human thrombin receptor varies according to the cell in which it is expressed, we have taken advantage of the presence of both receptors in endothelial cells to examine the enabling and disabling interactions with candidate proteases likely to be encountered in and around the vascular space to compare the responses elicited by the two receptors when they are present in the same cell and to compare the mechanisms of thrombin receptor and PAR-2 clearance and replacement in a common cellular environment. Of the proteases that were tested, only trypsin activated both receptors. Cathepsin G, which disables thrombin receptors, had no effect on PAR-2, while urokinase, kallikrein, and coagulation factors IXa, Xa, XIa, and XIIa neither substantially activated nor noticeably disabled either receptor. Like thrombin receptors, activation of PAR-2 caused pertussis toxin-sensitive phospholipase C activation as well as activation of phospholipase A2, leading to the release of PGI2. Concurrent activation of both receptors caused a greater response than activation of either alone. It also abolished a subsequent response to the PAR-2 agonist peptide, SLIGRL, while only partially inhibiting the response to the agonist peptide, SFLLRN, which activates both receptors. After proteolytic or nonproteolytic activation, PAR-2, like thrombin receptors, was cleared from the endothelial cell surface and then rapidly replaced with new receptors by a process that does not require protein synthesis. Selective activation of either receptor had no effect on the clearance of the other. These results suggest that the expression of both thrombin receptors and PAR-2 on endothelial cells serves more to extend the range of proteases to which the cells can respond than it does to extend the range of potential responses. The results also show that proteases that can disable these receptors can distinguish between them, just as do most of the proteases that activate them. Finally, the residual response to SFLLRN after activation of thrombin receptors and PAR-2 raises the possibility that a third, as yet unidentified member of this family is expressed on endothelial cells, one that is activated by neither thrombin nor trypsin.
Collapse
Affiliation(s)
- M Molino
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A, Hoxie JA, Schechter N, Woolkalis M, Brass LF. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 1997; 272:4043-9. [PMID: 9020112 DOI: 10.1074/jbc.272.7.4043] [Citation(s) in RCA: 456] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tryptase is a serine protease secreted by mast cells that is able to activate other cells. In the present studies we have tested whether these responses could be mediated by thrombin receptors or PAR-2, two G-protein-coupled receptors that are activated by proteolysis. When added to a peptide corresponding to the N terminus of PAR-2, tryptase cleaved the peptide at the activating site, but at higher concentrations it also cleaved downstream, as did trypsin, a known activator of PAR-2. Thrombin, factor Xa, plasmin, urokinase, plasma kallikrein, and tissue kallikrein had no effect. Tryptase also cleaved the analogous thrombin receptor peptide at the activating site but less efficiently. When added to COS-1 cells expressing either receptor, tryptase stimulated phosphoinositide hydrolysis. With PAR-2, this response was half-maximal at 1 nM tryptase and could be inhibited by the tryptase inhibitor, APC366, or by antibodies to tryptase and PAR-2. When added to human endothelial cells, which normally express PAR-2 and thrombin receptors, or keratinocytes, which express only PAR-2, tryptase caused an increase in cytosolic Ca2+. However, when added to platelets or CHRF-288 cells, which express thrombin receptors but not PAR-2, tryptase caused neither aggregation nor increased Ca2+. These results show that 1) tryptase has the potential to activate both PAR-2 and thrombin receptors; 2) for PAR-2, this potential is realized, although cleavage at secondary sites may limit activation, particularly at higher tryptase concentrations; and 3) in contrast, although tryptase clearly activates thrombin receptors in COS-1 cells, it does not appear to cleave endogenous thrombin receptors in platelets or CHRF-288 cells. These distinctions correlate with the observed differences in the rate of cleavage of the PAR-2 and thrombin receptor peptides by tryptase. Tryptase is the first protease other than trypsin that has been shown to activate human PAR-2. Its presence within mast cell granules places it in tissues where PAR-2 is expressed but trypsin is unlikely to reach.
Collapse
Affiliation(s)
- M Molino
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|