1
|
Zhang X, Wu Z, Zhou X, Tao H. Mitochondrial dysfunction in epilepsy: mechanistic insights and clinical strategies. Mol Biol Rep 2025; 52:470. [PMID: 40392243 DOI: 10.1007/s11033-025-10577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
Epilepsy is a common neurological disorder that is increasingly recognized for its significant association with mitochondrial dysfunction. This review explores the intricate relationship between mitochondrial dysfunction and epilepsy, highlighting the molecular mechanisms, diagnostic strategies, and therapeutic approaches involved. Mitochondrial abnormalities, including defects in the electron transport chain, impaired mitochondrial dynamics, disrupted autophagy, and increased oxidative stress, are implicated in epilepsy pathogenesis. The molecular mechanisms involve respiratory chain impairments, fission-fusion imbalances, inadequate mitophagy, and oxidative stress-induced neuronal excitability. The diagnosis of mitochondrial epilepsy requires a multifaceted approach, combining clinical assessment, biochemical testing, imaging, and genetic analysis, with a particular focus on mtDNA mutations. Therapeutic strategies include antiepileptic drugs with variable mitochondrial effects, the ketogenic diet, and emerging potential approaches such as antioxidants and mitochondrial-targeted therapies. Despite advances in understanding and treatment, challenges persist due to the complexity of mtDNA mutations and treatment resistance. Future directions involve gene-editing technologies, mitochondrial transplantation, and induced pluripotent stem cells, which hold promise for addressing the underlying defects and improving epilepsy management.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, NO.57, Renmindadaonan Road, Xiashan District, Zhanjiang, 524001, Guangdong, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, NO.57, Renmindadaonan Road, Xiashan District, Zhanjiang, 524001, Guangdong, China
| | - Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, NO.57, Renmindadaonan Road, Xiashan District, Zhanjiang, 524001, Guangdong, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, NO.57, Renmindadaonan Road, Xiashan District, Zhanjiang, 524001, Guangdong, China.
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
2
|
Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, Krga I, Glibetić M, Pinton P, Giorgi C, Matter ML. Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Front Cell Dev Biol 2021; 8:624216. [PMID: 33511136 PMCID: PMC7835522 DOI: 10.3389/fcell.2020.624216] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiac tissue requires a persistent production of energy in order to exert its pumping function. Therefore, the maintenance of this function relies on mitochondria that represent the “powerhouse” of all cardiac activities. Mitochondria being one of the key players for the proper functioning of the mammalian heart suggests continual regulation and organization. Mitochondria adapt to cellular energy demands via fusion-fission events and, as a proof-reading ability, undergo mitophagy in cases of abnormalities. Ca2+ fluxes play a pivotal role in regulating all mitochondrial functions, including ATP production, metabolism, oxidative stress balance and apoptosis. Communication between mitochondria and others organelles, especially the sarcoplasmic reticulum is required for optimal function. Consequently, abnormal mitochondrial activity results in decreased energy production leading to pathological conditions. In this review, we will describe how mitochondrial function or dysfunction impacts cardiac activities and the development of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Daniela Ramaccini
- University of Hawaii Cancer Center, Honolulu, HI, United States.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | | - Femke J Aan
- University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Lorenzo Modesti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Irena Krga
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Marija Glibetić
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy
| | | |
Collapse
|
3
|
Rossini M, Filadi R. Sarcoplasmic Reticulum-Mitochondria Kissing in Cardiomyocytes: Ca 2+, ATP, and Undisclosed Secrets. Front Cell Dev Biol 2020; 8:532. [PMID: 32671075 PMCID: PMC7332691 DOI: 10.3389/fcell.2020.00532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
In cardiomyocytes, to carry out cell contraction, the distribution, morphology, and dynamic interaction of different cellular organelles are tightly regulated. For instance, the repetitive close apposition between junctional sarcoplasmic reticulum (jSR) and specialized sarcolemma invaginations, called transverse-tubules (TTs), is essential for an efficient excitation-contraction coupling (ECC). Upon an action potential, Ca2+ microdomains, generated in synchrony at the interface between TTs and jSR, underlie the prompt increase in cytosolic Ca2+ concentration, ultimately responsible for cell contraction during systole. This process requires a considerable amount of energy and the active participation of mitochondria, which encompass ∼30% of the cell volume and represent the major source of ATP in the heart. Importantly, in adult cardiomyocytes, mitochondria are distributed in a highly orderly fashion and strategically juxtaposed with SR. By taking advantage of the vicinity to Ca2+ releasing sites, they take up Ca2+ and modulate ATP synthesis according to the specific cardiac workload. Interestingly, with respect to SR, a biased, polarized positioning of mitochondrial Ca2+ uptake/efflux machineries has been reported, hinting the importance of a strictly regulated mitochondrial Ca2+ handling for heart activity. This notion, however, has been questioned by the observation that, in some mouse models, the deficiency of specific molecules, modulating mitochondrial Ca2+ dynamics, triggers non-obvious cardiac phenotypes. This review will briefly summarize the physiological significance of SR-mitochondria apposition in cardiomyocytes, as well as the pathological consequences of an altered organelle communication, focusing on Ca2+ signaling. We will discuss ongoing debates and propose future research directions.
Collapse
Affiliation(s)
- Michela Rossini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute - Italian National Research Council (CNR), Padua, Italy
| |
Collapse
|
4
|
De la Fuente S, Sheu SS. SR-mitochondria communication in adult cardiomyocytes: A close relationship where the Ca 2+ has a lot to say. Arch Biochem Biophys 2019; 663:259-268. [PMID: 30685253 PMCID: PMC6377816 DOI: 10.1016/j.abb.2019.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
In adult cardiomyocytes, T-tubules, junctional sarcoplasmic reticulum (jSR), and mitochondria juxtapose each other and form a unique and highly repetitive functional structure along the cell. The close apposition between jSR and mitochondria creates high Ca2+ microdomains at the contact sites, increasing the efficiency of the excitation-contraction-bioenergetics coupling, where the Ca2+ transfer from SR to mitochondria plays a critical role. The SR-mitochondria contacts are established through protein tethers, with mitofusin 2 the most studied SR-mitochondrial "bridge", albeit controversial. Mitochondrial Ca2+ uptake is further optimized with the mitochondrial Ca2+ uniporter preferentially localized in the jSR-mitochondria contact sites and the mitochondrial Na+/Ca2+ exchanger localized away from these sites. Despite all these unique features facilitating the privileged transport of Ca2+ from SR to mitochondria in adult cardiomyocytes, the question remains whether mitochondrial Ca2+ concentrations oscillate in synchronicity with cytosolic Ca2+ transients during heartbeats. Proper Ca2+ transfer controls not only the process of mitochondrial bioenergetics, but also of mitochondria-mediated cell death, autophagy/mitophagy, mitochondrial fusion/fission dynamics, reactive oxygen species generation, and redox signaling, among others. Our review focuses specifically on Ca2+ signaling between SR and mitochondria in adult cardiomyocytes. We discuss the physiological and pathological implications of this SR-mitochondrial Ca2+ signaling, research gaps, and future trends.
Collapse
Affiliation(s)
- Sergio De la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Ghaffarzadegan T, Essén S, Verbrugghe P, Marungruang N, Hållenius FF, Nyman M, Sandahl M. Determination of free and conjugated bile acids in serum of Apoe(-/-) mice fed different lingonberry fractions by UHPLC-MS. Sci Rep 2019; 9:3800. [PMID: 30846721 PMCID: PMC6405994 DOI: 10.1038/s41598-019-40272-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are known to be involved in cholesterol metabolism but interactions between the diet, BA profiles, gut microbiota and lipid metabolism have not been extensively explored. In the present study, primary and secondary BAs including their glycine and taurine-conjugated forms were quantified in serum of Apoe−/− mice by protein precipitation followed by reversed phase ultra-high-performance liquid chromatography and QTOF mass spectrometry. The mice were fed different lingonberry fractions (whole, insoluble and soluble) in a high-fat setting or cellulose in a high and low-fat setting. Serum concentrations of BAs in mice fed cellulose were higher with the high-fat diet compared to the low-fat diet (20–70%). Among the lingonberry diets, the diet containing whole lingonberries had the highest concentration of chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA), tauro-ursodeoxycholic acid (T-UDCA), α and ω-muricholic acids (MCA) and tauro-α-MCA (T-α-MCA), and the lowest concentration of tauro-cholic acid (T-CA), deoxycholic acid (DCA) and tauro-deoxycholic acid (T-DCA). The glycine-conjugated BAs were very similar with all diets. CDCA, UDCA and α-MCA correlated positively with Bifidobacterium and Prevotella, and T-UDCA, T-α-MCA and ω-MCA with Bacteroides and Parabacteroides.
Collapse
Affiliation(s)
- Tannaz Ghaffarzadegan
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden. .,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.
| | - Sofia Essén
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Phebe Verbrugghe
- Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Nittaya Marungruang
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Margareta Nyman
- Food for Health Science Centre, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden.,Food Technology, Engineering and Nutrition, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Margareta Sandahl
- Centre for Analysis and Synthesis, Department of Chemistry, Kemicentrum, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
6
|
Gender-divergent expression of lipid and bile acid metabolism-related genes in adult mice offspring of dams fed a high-fat diet. J Biosci 2018. [DOI: 10.1007/s12038-018-9750-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Andrienko T, Pasdois P, Rossbach A, Halestrap AP. Real-Time Fluorescence Measurements of ROS and [Ca2+] in Ischemic / Reperfused Rat Hearts: Detectable Increases Occur only after Mitochondrial Pore Opening and Are Attenuated by Ischemic Preconditioning. PLoS One 2016; 11:e0167300. [PMID: 27907091 PMCID: PMC5131916 DOI: 10.1371/journal.pone.0167300] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/12/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial permeability transition pore (mPTP) opening is critical for ischemia / reperfusion (I/R) injury and is associated with increased [Ca2+] and reactive oxygen species (ROS). Here we employ surface fluorescence to establish the temporal sequence of these events in beating perfused hearts subject to global I/R. A bespoke fluorimeter was used to synchronously monitor surface fluorescence and reflectance of Langendorff-perfused rat hearts at multiple wavelengths, with simultaneous measurements of hemodynamic function. Potential interference by motion artefacts and internal filtering was assessed and minimised. Re-oxidation of NAD(P)H and flavoproteins on reperfusion (detected using autofluorescence) was rapid (t0.5 < 15 s) and significantly slower following ischemic preconditioning (IP). This argues against superoxide production from reduced Complex 1 being a critical mediator of initial mPTP opening during early reperfusion. Furthermore, MitoPY1 (a mitochondria-targeted H2O2-sensitive fluorescent probe) and aconitase activity measurements failed to detect matrix ROS increases during early reperfusion. However, two different fluorescent cytosolic ROS probes did detect ROS increases after 2–3 min of reperfusion, which was shown to be after initiation of mPTP opening. Cyclosporin A (CsA) and IP attenuated these responses and reduced infarct size. [Ca2+]i (monitored with Indo-1) increased progressively during ischemia, but dropped rapidly within 90 s of reperfusion when total mitochondrial [Ca2+] was shown to be increased. These early changes in [Ca2+] were not attenuated by IP, but substantial [Ca2+] increases were observed after 2–3 min reperfusion and these were prevented by both IP and CsA. Our data suggest that the major increases in ROS and [Ca2+] detected later in reperfusion are secondary to mPTP opening. If earlier IP-sensitive changes occur that might trigger initial mPTP opening they are below our limit of detection. Rather, we suggest that IP may inhibit initial mPTP opening by alternative mechanisms such as prevention of hexokinase 2 dissociation from mitochondria during ischemia.
Collapse
Affiliation(s)
- Tatyana Andrienko
- School of Biochemistry and Bristol Cardiovascular, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Philippe Pasdois
- School of Biochemistry and Bristol Cardiovascular, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- INSERM U1045—L'Institut de Rythmologie et Modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France
| | - Andreas Rossbach
- School of Biochemistry and Bristol Cardiovascular, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Cardiovascular, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Caz V, Gil-Ramírez A, Largo C, Tabernero M, Santamaría M, Martín-Hernández R, Marín FR, Reglero G, Soler-Rivas C. Modulation of Cholesterol-Related Gene Expression by Dietary Fiber Fractions from Edible Mushrooms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7371-7380. [PMID: 26284928 DOI: 10.1021/acs.jafc.5b02942] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mushrooms are a source of dietary fiber (DF) with a cholesterol-lowering effect. However, their underlying mechanisms are poorly understood. The effect of DF-enriched fractions from three mushrooms species on cholesterol-related expression was studied in vitro. The Pleurotus ostreatus DF fraction (PDF) was used in mice models to assess its potential palliative or preventive effect against hypercholesterolemia. PDF induced a transcriptional response in Caco-2 cells, suggesting a possible cholesterol-lowering effect. In the palliative setting, PDF reduced hepatic triglyceride likely because Dgat1 was downregulated. However, cholesterol-related biochemical data showed no changes and no relation with the observed transcriptional modulation. In the preventive setting, PDF modulated cholesterol-related genes expression in a manner similar to that of simvastatin and ezetimibe in the liver, although no changes in plasma and liver biochemical data were induced. Therefore, PDF may be useful reducing hepatic triglyceride accumulation. Because it induced a molecular response similar to hypocholesterolemic drugs in liver, further dose-dependent studies should be carried out.
Collapse
Affiliation(s)
- Víctor Caz
- Department of Experimental Surgery, Research Institute Hospital La Paz (IdiPAZ) , Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Production and Characterization of Novel Foods, CIAL - Research Institute in Food Science (UAM+CSIC), Universidad Autónoma de Madrid , C/Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Carlota Largo
- Department of Experimental Surgery, Research Institute Hospital La Paz (IdiPAZ) , Paseo de la Castellana 261, 28046 Madrid, Spain
| | - María Tabernero
- Department of Experimental Surgery, Research Institute Hospital La Paz (IdiPAZ) , Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Mónica Santamaría
- Department of Experimental Surgery, Research Institute Hospital La Paz (IdiPAZ) , Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Roberto Martín-Hernández
- IMDEA Food Institute , Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio no. 7), Carretera de Cantoblanco no. 8, 28049 Madrid, Spain
| | - Francisco R Marín
- Department of Production and Characterization of Novel Foods, CIAL - Research Institute in Food Science (UAM+CSIC), Universidad Autónoma de Madrid , C/Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Guillermo Reglero
- Department of Production and Characterization of Novel Foods, CIAL - Research Institute in Food Science (UAM+CSIC), Universidad Autónoma de Madrid , C/Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
- IMDEA Food Institute , Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio no. 7), Carretera de Cantoblanco no. 8, 28049 Madrid, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, CIAL - Research Institute in Food Science (UAM+CSIC), Universidad Autónoma de Madrid , C/Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
Hiess F, Vallmitjana A, Wang R, Cheng H, ter Keurs HEDJ, Chen J, Hove-Madsen L, Benitez R, Chen SRW. Distribution and Function of Cardiac Ryanodine Receptor Clusters in Live Ventricular Myocytes. J Biol Chem 2015; 290:20477-87. [PMID: 26109063 DOI: 10.1074/jbc.m115.650531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
The cardiac Ca(2+) release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study the distribution of RyR2 in living cardiomyocytes, we generated a knock-in mouse model expressing a GFP-tagged RyR2 (GFP-RyR2). Confocal imaging of live ventricular myocytes isolated from the GFP-RyR2 mouse heart revealed clusters of GFP-RyR2 organized in rows with a striated pattern. Similar organization of GFP-RyR2 clusters was observed in fixed ventricular myocytes. Immunofluorescence staining with the anti-α-actinin antibody (a z-line marker) showed that nearly all GFP-RyR2 clusters were localized in the z-line zone. There were small regions with dislocated GFP-RyR2 clusters. Interestingly, these same regions also displayed dislocated z-lines. Staining with di-8-ANEPPS revealed that nearly all GFP-RyR2 clusters were co-localized with transverse but not longitudinal tubules, whereas staining with MitoTracker Red showed that GFP-RyR2 clusters were not co-localized with mitochondria in live ventricular myocytes. We also found GFP-RyR2 clusters interspersed between z-lines only at the periphery of live ventricular myocytes. Simultaneous detection of GFP-RyR2 clusters and Ca(2+) sparks showed that Ca(2+) sparks originated exclusively from RyR2 clusters. Ca(2+) sparks from RyR2 clusters induced no detectable changes in mitochondrial Ca(2+) level. These results reveal, for the first time, the distribution of RyR2 clusters and its functional correlation in living ventricular myocytes.
Collapse
Affiliation(s)
- Florian Hiess
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| | - Alexander Vallmitjana
- the Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| | - Hongqiang Cheng
- the Department of Medicine, University of California at San Diego, La Jolla, California 92161, and
| | - Henk E D J ter Keurs
- the Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ju Chen
- the Department of Medicine, University of California at San Diego, La Jolla, California 92161, and
| | - Leif Hove-Madsen
- the Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, 08025 Barcelona, Spain
| | - Raul Benitez
- the Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| |
Collapse
|
10
|
Gil-Ramírez A, Caz V, Martin-Hernandez R, Marín FR, Largo C, Rodríguez-Casado A, Tabernero M, Ruiz-Rodríguez A, Reglero G, Soler-Rivas C. Modulation of cholesterol-related gene expression by ergosterol and ergosterol-enriched extracts obtained from Agaricus bisporus. Eur J Nutr 2015; 55:1041-57. [DOI: 10.1007/s00394-015-0918-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/25/2015] [Indexed: 01/31/2023]
|
11
|
Diversity of mitochondrial Ca²⁺ signaling in rat neonatal cardiomyocytes: evidence from a genetically directed Ca²⁺ probe, mitycam-E31Q. Cell Calcium 2014; 56:133-46. [PMID: 24994483 DOI: 10.1016/j.ceca.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/03/2014] [Accepted: 06/07/2014] [Indexed: 11/24/2022]
Abstract
I(Ca)-gated Ca(2+) release (CICR) from the cardiac SR is the main mechanism mediating the rise of cytosolic Ca(2+), but the extent to which mitochondria contribute to the overall Ca(2+) signaling remains controversial. To examine the possible role of mitochondria in Ca(2+) signaling, we developed a low affinity mitochondrial Ca(2+) probe, mitycam-E31Q (300-500 MOI, 48-72h) and used it in conjunction with Fura-2AM to obtain simultaneous TIRF images of mitochondrial and cytosolic Ca(2+) in cultured neonatal rat cardiomyocytes. Mitycam-E31Q staining of adult feline cardiomyocytes showed the typical mitochondrial longitudinal fluorescent bandings similar to that of TMRE staining, while neonatal rat cardiomyocytes had a disorganized tubular or punctuate appearance. Caffeine puffs produced rapid increases in cytosolic Ca(2+) while simultaneously measured global mitycam-E31Q signals decreased more slowly (increased mitochondrial Ca(2+)) before decaying to baseline levels. Similar, but oscillating mitycam-E31Q signals were seen in spontaneously pacing cells. Withdrawal of Na(+) increased global cytosolic and mitochondrial Ca(2+) signals in one population of mitochondria, but unexpectedly decreased it (release of Ca(2+)) in another mitochondrial population. Such mitochondrial Ca(2+) release signals were seen not only during long lasting Na(+) withdrawal, but also when Ca(2+) loaded cells were exposed to caffeine-puffs, and during spontaneous rhythmic beating. Thus, mitochondrial Ca(2+) transients appear to activate with a delay following the cytosolic rise of Ca(2+) and show diversity in subpopulations of mitochondria that could contribute to the plasticity of mitochondrial Ca(2+) signaling.
Collapse
|
12
|
Ghaffarzadegan T, Nyman M, Jönsson J, Sandahl M. Determination of bile acids by hollow fibre liquid-phase microextraction coupled with gas chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 944:69-74. [DOI: 10.1016/j.jchromb.2013.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 11/26/2022]
|
13
|
Dedkova EN, Blatter LA. Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol 2013; 58:125-33. [PMID: 23306007 DOI: 10.1016/j.yjmcc.2012.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/01/2012] [Accepted: 12/28/2012] [Indexed: 01/02/2023]
Abstract
Mitochondrial Ca signaling contributes to the regulation of cellular energy metabolism, and mitochondria participate in cardiac excitation-contraction coupling (ECC) through their ability to store Ca, shape the cytosolic Ca signals and generate ATP required for contraction. The mitochondrial inner membrane is equipped with an elaborate system of channels and transporters for Ca uptake and extrusion that allows for the decoding of cytosolic Ca signals, and the storage of Ca in the mitochondrial matrix compartment. Controversy, however remains whether the fast cytosolic Ca transients underlying ECC in the beating heart are transmitted rapidly into the matrix compartment or slowly integrated by the mitochondrial Ca transport machinery. This review summarizes established and novel findings on cardiac mitochondrial Ca transport and buffering, and discusses the evidence either supporting or arguing against the idea that Ca can be taken up rapidly by mitochondria during ECC.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
14
|
Hatano A, Okada JI, Washio T, Hisada T, Sugiura S. A three-dimensional simulation model of cardiomyocyte integrating excitation-contraction coupling and metabolism. Biophys J 2012; 101:2601-10. [PMID: 22261047 DOI: 10.1016/j.bpj.2011.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/15/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022] Open
Abstract
Recent studies have revealed that Ca(2+) not only regulates the contraction of cardiomyocytes, but can also function as a signaling agent to stimulate ATP production by the mitochondria. However, the spatiotemporal resolution of current experimental techniques limits our investigative capacity to understand this phenomenon. Here, we created a detailed three-dimensional (3D) cardiomyocyte model to study the subcellular regulatory mechanisms of myocardial energetics. The 3D cardiomyocyte model was based on the finite-element method, with detailed subcellular structures reproduced, and it included all elementary processes involved in cardiomyocyte electrophysiology, contraction, and ATP metabolism localized to specific loci. The simulation results were found to be reproducible and consistent with experimental data regarding the spatiotemporal pattern of cytosolic, intrasarcoplasmic-reticulum, and mitochondrial changes in Ca(2+); as well as changes in metabolite levels. Detailed analysis suggested that although the observed large cytosolic Ca(2+) gradient facilitated uptake by the mitochondrial Ca(2+) uniporter to produce cyclic changes in mitochondrial Ca(2+) near the Z-line region, the average mitochondrial Ca(2+) changes slowly. We also confirmed the importance of the creatine phosphate shuttle in cardiac energy regulation. In summary, our 3D model provides a powerful tool for the study of cardiac function by overcoming some of the spatiotemporal limitations of current experimental approaches.
Collapse
Affiliation(s)
- Asuka Hatano
- Department of Frontier Science, The University of Tokyo, Kashiwa, Chiba, Japan.
| | | | | | | | | |
Collapse
|
15
|
Tarasov AI, Griffiths EJ, Rutter GA. Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium 2012; 52:28-35. [PMID: 22502861 PMCID: PMC3396849 DOI: 10.1016/j.ceca.2012.03.003] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/10/2012] [Accepted: 03/14/2012] [Indexed: 01/09/2023]
Abstract
Stimulation of mitochondrial oxidative metabolism by Ca(2+) is now generally recognised as important for the control of cellular ATP homeostasis. Here, we review the mechanisms through which Ca(2+) regulates mitochondrial ATP synthesis. We focus on cardiac myocytes and pancreatic β-cells, where tight control of this process is likely to play an important role in the response to rapid changes in workload and to nutrient stimulation, respectively. We also describe a novel approach for imaging the Ca(2+)-dependent regulation of ATP levels dynamically in single cells.
Collapse
Affiliation(s)
- Andrei I Tarasov
- Section of Cell Biology, Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Imperial College London, SW7 2AZ, London, UK
| | | | | |
Collapse
|
16
|
Kodesh E, Nesher N, Simaan A, Hochner B, Beeri R, Gilon D, Stern MD, Gerstenblith G, Horowitz M. Heat acclimation and exercise training interact when combined in an overriding and trade-off manner: physiologic-genomic linkage. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1786-97. [PMID: 21957158 DOI: 10.1152/ajpregu.00465.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combined heat acclimation (AC) and exercise training (EX) enhance exercise performance in the heat while meeting thermoregulatory demands. We tested the hypothesis that different stress-specific adaptations evoked by each stressor individually trigger similar cardiac alterations, but when combined, overriding/trade-off interactions take place. We used echocardiography, isolated cardiomyocyte imaging and cDNA microarray techniques to assay in situ cardiac performance, excitation-contraction (EC) coupling features, and transcriptional programs associated with cardiac contractility. Rat groups studied were controls (sedentary 24°C); AC (sedentary, 34°C, 1 mo); normothermic EX (treadmill at 24°C, 1 mo); and heat-acclimated, exercise-trained (EXAC; treadmill at 34°C, 1 mo). Prolonged heat exposure decreased heart rate and contractile velocity and increased end ventricular diastolic diameter. Compared with controls, AC/EXAC cardiomyocytes demonstrated lower l-type Ca(2+) current (I(CaL)) amplitude, higher Ca(2+) transient (Ca(2+)T), and a greater Ca(2+)T-to-I(CaL) ratio; EX alone enhanced I(CaL) and Ca(2+)T, whereas aerobic training in general induced cardiac hypertrophy and action potential elongation in EX/EXAC animals. At the genomic level, the transcriptome profile indicated that the interaction between AC and EX yields an EXAC-specific molecular program. Genes affected by chronic heat were linked with the EC coupling cascade, whereas aerobic training upregulated genes involved with Ca(2+) turnover via an adrenergic/metabolic-driven positive inotropic response. In the EXAC cardiac phenotype, the impact of chronic heat overrides that of EX on EC coupling components and heart rate, whereas EX regulates cardiac morphometry. We suggest that concerted adjustments induced by AC and EX lead to enhanced metabolic and mechanical performance of the EXAC heart.
Collapse
Affiliation(s)
- Einat Kodesh
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dedkova EN, Blatter LA. Measuring mitochondrial function in intact cardiac myocytes. J Mol Cell Cardiol 2011; 52:48-61. [PMID: 21964191 DOI: 10.1016/j.yjmcc.2011.08.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/30/2011] [Accepted: 08/09/2011] [Indexed: 12/01/2022]
Abstract
Mitochondria are involved in cellular functions that go beyond the traditional role of these organelles as the power plants of the cell. Mitochondria have been implicated in several human diseases, including cardiac dysfunction, and play a role in the aging process. Many aspects of our knowledge of mitochondria stem from studies performed on the isolated organelle. Their relative inaccessibility imposes experimental difficulties to study mitochondria in their natural environment-the cytosol of intact cells-and has hampered a comprehensive understanding of the plethora of mitochondrial functions. Here we review currently available methods to study mitochondrial function in intact cardiomyocytes. These methods primarily use different flavors of fluorescent dyes and genetically encoded fluorescent proteins in conjunction with high-resolution imaging techniques. We review methods to study mitochondrial morphology, mitochondrial membrane potential, Ca(2+) and Na(+) signaling, mitochondrial pH regulation, redox state and ROS production, NO signaling, oxygen consumption, ATP generation and the activity of the mitochondrial permeability transition pore. Where appropriate we complement this review on intact myocytes with seminal studies that were performed on isolated mitochondria, permeabilized cells, and in whole hearts.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
18
|
Rafferty EP, Wylie AR, Hand KH, Elliott CE, Grieve DJ, Green BD. Investigating the effects of physiological bile acids on GLP-1 secretion and glucose tolerance in normal and GLP-1R(-/-) mice. Biol Chem 2011; 392:539-46. [PMID: 21521075 DOI: 10.1515/bc.2011.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.
Collapse
Affiliation(s)
- Eamon P Rafferty
- School of Biological Sciences, Queen's University Belfast, BT9 5AG, UK
| | | | | | | | | | | |
Collapse
|
19
|
Imura H, Lin H, Griffiths EJ, Suleiman MS. Controlled hyperkalemic reperfusion with magnesium rescues ischemic juvenile hearts by reducing calcium loading. J Thorac Cardiovasc Surg 2010; 141:1529-37. [PMID: 21168858 DOI: 10.1016/j.jtcvs.2010.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/17/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Our objectives were (1) to determine whether elevated Mg(2+) in controlled hyperkalemic reperfusate without intervention during ischemia protects the juvenile heart against reperfusion injury; and (2) to identify the mechanism(s) underlying any protective effect of Mg(2+). METHODS Langendorff-perfused hearts from juvenile (11- to 14-day-old) guinea pigs were subjected to mild (30-minute) or severe (45-minute) normothermic global ischemia and 35-minute reperfusion. Hearts were subjected to controlled hyperkalemic reperfusion without or with various concentrations of Mg(2+) (5, 10, 16, 23 mM). The mechanisms underlying the effect of Mg(2+) on intracellular Ca(2+) ([Ca(2+)]i) were also studied in isolated cardiomyocytes exposed to metabolic inhibition followed by washout using hyperkalemic solutions (reperfusion). RESULTS Sixteen mM Mg(2+) conferred maximal cardioprotection as assessed by improved functional recovery and reduced cardiac injury; this was associated with a significant recovery of cardiac energetics and metabolism following both mild and severe ischemia. The Mg(2+)-induced protection was additive to that of hyperkalemia following mild ischemia and conferred protection following severe ischemia when hyperkalemia alone had no significant effect. Elevated Mg(2+) in the hyperkalemic reperfusate of cardiomyocytes acutely prevented [Ca(2+)]i loading following mild metabolic inhibition and augmented the fall in [Ca(2+)]i following severe metabolic inhibition. CONCLUSIONS This work demonstrates for the first time in juvenile hearts that elevated Mg(2+) during controlled hyperkalemic reperfusion rescues the heart following ischemia, and that this is likely to be facilitated by reducing [Ca(2+)]i which, in turn, would aid metabolic recovery.
Collapse
Affiliation(s)
- Hajime Imura
- Department of Surgery 2, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
20
|
Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:246-51. [PMID: 19818872 PMCID: PMC2824076 DOI: 10.1016/j.bbalip.2009.09.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 12/14/2022]
Abstract
Although the underlying causes of insulin resistance have not been completely delineated, in most analyses, a recurring theme is dysfunctional metabolism of fatty acids. Because the conversion of fatty acids to activated acyl-CoAs is the first and essential step in the metabolism of long-chain fatty acid metabolism, interest has grown in the synthesis of acyl-CoAs, their contribution to the formation of signaling molecules like ceramide and diacylglycerol, and their direct effects on cell function. In this review, we cover the evidence for the involvement of acyl-CoAs in what has been termed lipotoxicity, the regulation of the acyl-CoA synthetases, and the emerging functional roles of acyl-CoAs in the major tissues that contribute to insulin resistance and lipotoxicity, adipose, liver, heart and pancreas.
Collapse
Affiliation(s)
- Lei O. Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric L. Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rosalind A. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
21
|
Griffiths EJ, Balaska D, Cheng WHY. The ups and downs of mitochondrial calcium signalling in the heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:856-64. [PMID: 20188059 DOI: 10.1016/j.bbabio.2010.02.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/18/2010] [Accepted: 02/18/2010] [Indexed: 12/17/2022]
Abstract
Regulation of intramitochondrial free calcium ([Ca2+]m) is critical in both physiological and pathological functioning of the heart. The full extent and importance of the role of [Ca2+]m is becoming apparent as evidenced by the increasing interest and work in this area over the last two decades. However, controversies remain, such as the existence of beat-to-beat mitochondrial Ca2+ transients; the role of [Ca2+]m in modulating whole-cell Ca2+ signalling; whether or not an increase in [Ca2+]m is essential to couple ATP supply and demand; and the role of [Ca2+]m in cell death by both necrosis and apoptosis, especially in formation of the mitochondrial permeability transition pore. The role of [Ca2+]m in heart failure is an area that has also recently been highlighted. [Ca2+]m can now be measured reasonably specifically in intact cells and hearts thanks to developments in fluorescent indicators and targeted proteins and more sensitive imaging technology. This has revealed interactions of the mitochondrial Ca2+ transporters with those of the sarcolemma and sarcoplasmic reticulum, and has gone a long way to bringing the mitochondrial Ca2+ transporters to the forefront of cardiac research. Mitochondrial Ca2+ uptake occurs via the ruthenium red sensitive Ca2+ uniporter (mCU), and efflux via an Na+/Ca2+ exchanger (mNCX). The purification and cloning of the transporters, and development of more specific inhibitors, would produce a step-change in our understanding of the role of these apparently critical but still elusive proteins. In this article we will summarise the key physiological roles of [Ca2+]m in ATP production and cell Ca2+ signalling in both adult and neonatal hearts, as well as highlighting some of the controversies in these areas. We will also briefly discuss recent ideas on the interactions of nitric oxide with [Ca2+]m.
Collapse
Affiliation(s)
- Elinor J Griffiths
- Department of Biochemistry and Bristol Heart Institute, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
22
|
Andrienko TN, Picht E, Bers DM. Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. J Mol Cell Cardiol 2009; 46:1027-36. [PMID: 19345225 PMCID: PMC2683203 DOI: 10.1016/j.yjmcc.2009.03.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/08/2009] [Accepted: 03/21/2009] [Indexed: 11/18/2022]
Abstract
Cardiac mitochondria can take up Ca(2+), competing with Ca(2+) transporters like the sarcoplasmic reticulum (SR) Ca(2+)-ATPase. Rapid mitochondrial [Ca(2+)] transients have been reported to be synchronized with normal cytosolic [Ca(2+)](i) transients. However, most intra-mitochondrial free [Ca(2+)] ([Ca(2+)](mito)) measurements have been uncalibrated, and potentially contaminated by non-mitochondrial signals. Here we measured calibrated [Ca(2+)](mito) in single rat myocytes using the ratiometric Ca(2+) indicator fura-2 AM and plasmalemmal permeabilization by saponin (to eliminate cytosolic fura-2). The steady-state [Ca(2+)](mito) dependence on [Ca(2+)](i) (with 5 mM EGTA) was sigmoid with [Ca(2+)](mito)<[Ca(2+)](i) for [Ca(2+)](i) below 475 nM. With low [EGTA] (50 microM) and 150 nM [Ca(2+)](i) (+/-15 mM Na(+)) cyclical spontaneous SR Ca(2+) release occurred (5-15/min). Changes in [Ca(2+)](mito) during individual [Ca(2+)](i) transients were small ( approximately 2-10 nM/beat), but integrated gradually to steady-state. Inhibition SR Ca(2+) handling by thapsigargin, 2 mM tetracaine or 10 mM caffeine all stopped the progressive rise in [Ca(2+)](mito) and spontaneous Ca(2+) transients (confirming that SR Ca(2+) releases caused the [Ca(2+)](mito) rise). Confocal imaging of local [Ca(2+)](mito) (using rhod-2) showed that [Ca(2+)](mito) rose rapidly with a delay after SR Ca(2+) release (with amplitude up to 10 nM), but declined much more slowly than [Ca(2+)](i) (time constant 2.8+/-0.7 s vs. 0.19+/-0.06 s). Total Ca(2+) uptake for larger [Ca(2+)](mito) transients was approximately 0.5 micromol/L cytosol (assuming 100:1 mitochondrial Ca(2+) buffering), consistent with prior indirect estimates from [Ca(2+)](i) measurements, and corresponds to approximately 1% of the SR Ca(2+) uptake during a normal Ca(2+) transient. Thus small phasic [Ca(2+)](mito) transients and gradually integrating [Ca(2+)](mito) signals occur during repeating [Ca(2+)](i) transients.
Collapse
Affiliation(s)
- Tatyana N Andrienko
- Department of Pharmacology, University of California Davis, Davis, CA 95616-8636, USA
| | | | | |
Collapse
|
23
|
O'Rourke B, Blatter LA. Mitochondrial Ca2+ uptake: tortoise or hare? J Mol Cell Cardiol 2009; 46:767-74. [PMID: 19162034 PMCID: PMC4005816 DOI: 10.1016/j.yjmcc.2008.12.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 11/20/2022]
Abstract
Mitochondria are equipped with an efficient machinery for Ca(2+) uptake and extrusion and are capable of storing large amounts of Ca(2+). Furthermore, key steps of mitochondrial metabolism (ATP production) are Ca(2+)-dependent. In the field of cardiac physiology and pathophysiology, two main questions have dominated the thinking about mitochondrial function in the heart: 1) how does mitochondrial Ca(2+) buffering shape cytosolic Ca(2+) levels and affect excitation-contraction coupling, particularly the Ca(2+) transient, on a beat-to-beat basis, and 2) how does mitochondrial Ca(2+) homeostasis influence cardiac energy metabolism. To answer these questions, a thorough understanding of the kinetics of mitochondrial Ca(2+) transport and buffer capacity is required. Here, we summarize the role of mitochondrial Ca(2+) signaling in the heart, discuss the evidence either supporting or arguing against the idea that Ca(2+) can be taken up rapidly by mitochondria during excitation-contraction coupling and highlight some interesting new areas for further investigation.
Collapse
Affiliation(s)
- Brian O'Rourke
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Institute of Molecular Cardiobiology, Baltimore, MD 21205-2195, USA.
| | | |
Collapse
|
24
|
Murgia M, Giorgi C, Pinton P, Rizzuto R. Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling. J Mol Cell Cardiol 2009; 46:781-8. [PMID: 19285982 PMCID: PMC2851099 DOI: 10.1016/j.yjmcc.2009.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Transient increases in intracellular calcium concentration activate and coordinate a wide variety of cellular processes in virtually every cell type. This review describes the main homeostatic mechanisms that control Ca(2+) transients, focusing on the mitochondrial checkpoint. We subsequently extend this paradigm to the cardiomyocyte and to the interplay between cytosol, endoplasmic reticulum and mitochondria that occurs beat-to-beat in excitation-contraction coupling. The mechanisms whereby mitochondria decode fast cytosolic calcium spikes are discussed in the light of the results obtained with recombinant photoproteins targeted to the mitochondrial matrix of contracting cardiomyocytes. Mitochondrial calcium homeostasis is then highlighted as a crucial point of convergence of the environmental signals that mediate cardiac cell death, both by necrosis and by apoptosis. Altogether we point to a role of the mitochondrion as an integrator of calcium signalling and a fundamental decision maker in cardiomyocyte metabolism and survival.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padua, Italy
| | - Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory BioPharmaNet, University of Ferrara, Via Borsari 46, 44100 Ferrara; Italy
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI) and Emilia Romagna Laboratory BioPharmaNet, University of Ferrara, Via Borsari 46, 44100 Ferrara; Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padua, Italy
| |
Collapse
|
25
|
Kettlewell S, Cabrero P, Nicklin SA, Dow JAT, Davies S, Smith GL. Changes of intra-mitochondrial Ca2+ in adult ventricular cardiomyocytes examined using a novel fluorescent Ca2+ indicator targeted to mitochondria. J Mol Cell Cardiol 2009; 46:891-901. [PMID: 19249308 DOI: 10.1016/j.yjmcc.2009.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
In this study a Ca(2+) sensitive protein was targeted to the mitochondria of adult rabbit ventricular cardiomyocytes using an adenovirus transfection technique. The probe (Mitycam) was a Ca(2+)-sensitive inverse pericam fused to subunit VIII of human cytochrome c oxidase. Mitycam expression pattern and Ca(2+) sensitivity was characterized in HeLa cells and isolated adult rabbit cardiomyocytes. Cardiomyocytes expressing Mitycam were voltage-clamped and depolarized at regular intervals to elicit a Ca(2+) transient. Cytoplasmic (Fura-2) and mitochondrial Ca(2+) (Mitycam) fluorescence were measured simultaneously under a range of cellular Ca(2+) loads. After 48 h post-adenoviral transfection, Mitycam expression showed a characteristic localization pattern in HeLa cells and cardiomyocytes. The Ca(2+) sensitive component of Mitycam fluorescence was 12% of total fluorescence in HeLa cells with a K(d) of approximately 220 nM. In cardiomyocytes, basal and beat-to-beat changes in Mitycam fluorescence were detected on initiation of a train of depolarizations. Time to peak of the mitochondrial Ca(2+) transient was slower, but the rate of decay was faster than the cytoplasmic signal. During spontaneous Ca(2+) release the relative amplitude and the time course of the mitochondrial and cytoplasmic signals were comparable. Inhibition of mitochondrial respiration decreased the mitochondrial transient amplitude by approximately 65% and increased the time to 50% decay, whilst cytosolic Ca(2+) transients were unchanged. The mitochondrial Ca(2+) uniporter (mCU) inhibitor Ru360 prevented both the basal and transient components of the rise in mitochondrial Ca(2+). The mitochondrial-targeted Ca(2+) probe indicates sustained and transient phases of mitochondrial Ca(2+) signal, which are dependent on cytoplasmic Ca(2+) levels and require a functional mCU.
Collapse
Affiliation(s)
- S Kettlewell
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | | | |
Collapse
|
26
|
Mitochondrial calcium transport in the heart: Physiological and pathological roles. J Mol Cell Cardiol 2009; 46:789-803. [DOI: 10.1016/j.yjmcc.2009.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 12/20/2022]
|
27
|
Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1324-33. [PMID: 19366607 DOI: 10.1016/j.bbabio.2009.01.019] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 12/30/2022]
Abstract
Mitochondrial Ca(2+) transport was initially considered important only in buffering of cytosolic Ca(2+) by acting as a "sink" under conditions of Ca(2+) overload. The main regulator of ATP production was considered to be the relative concentrations of high energy phosphates. However, work by Denton and McCormack in the 1970s and 1980s showed that free intramitochondrial Ca(2+) ([Ca(2+)](m)) activated dehydrogenase enzymes in mitochondria, leading to increased NADH and hence ATP production. This leads them to propose a scheme, subsequently termed a "parallel activation model" whereby increases in energy demand, such as hormonal stimulation or increased workload in muscle, produced an increase in cytosolic [Ca(2+)] that was relayed by the mitochondrial Ca(2+) transporters into the matrix to give an increase in [Ca(2+)](m). This then stimulated energy production to meet the increased energy demand. With the development of methods for measuring [Ca(2+)](m) in living cells that proved [Ca(2+)](m) changed over a dynamic physiological range rather than simply soaking up excess cytosolic [Ca(2+)], this model has now gained widespread acceptance. However, work by ourselves and others using targeted probes to measure changes in both [Ca(2+)] and [ATP] in different cell compartments has revealed variations in the interrelationships between these two in different tissues, suggesting that metabolic regulation by Ca(2+) is finely tuned to the demands and function of the individual organ.
Collapse
Affiliation(s)
- Elinor J Griffiths
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
28
|
Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7:678-93. [PMID: 18670431 DOI: 10.1038/nrd2619] [Citation(s) in RCA: 1029] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile acids are increasingly being appreciated as complex metabolic integrators and signalling factors and not just as lipid solubilizers and simple regulators of bile-acid homeostasis. It is therefore not surprising that a number of bile-acid-activated signalling pathways have become attractive therapeutic targets for metabolic disorders. Here, we review how the signalling functions of bile acids can be exploited in the development of drugs for obesity, type 2 diabetes, hypertriglyceridaemia and atherosclerosis, as well as other associated chronic diseases such as non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Charles Thomas
- Institute of Genetics and Molecular and Cellular Biology, 1 Rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
29
|
Tetievsky A, Cohen O, Eli-Berchoer L, Gerstenblith G, Stern MD, Wapinski I, Friedman N, Horowitz M. Physiological and molecular evidence of heat acclimation memory: a lesson from thermal responses and ischemic cross-tolerance in the heart. Physiol Genomics 2008; 34:78-87. [PMID: 18430807 PMCID: PMC10585612 DOI: 10.1152/physiolgenomics.00215.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sporadic findings in humans suggest that reinduction of heat acclimation (AC) after its loss occurs markedly faster than that during the initial AC session. Animal studies substantiated that the underlying acclimatory processes are molecular. Here we test the hypothesis that faster reinduction of AC (ReAC) implicates "molecular memory." In vivo measurements of colonic temperature profiles during heat stress and ex vivo assessment of cross-tolerance to ischemia-reperfusion or anoxia insults in the heart demonstrated that ReAC only needs 2 days vs. the 30 days required for the initial development of AC. Stress gene profiling in the experimental groups highlighted clusters of transcriptionally activated genes (37%), which included heat shock protein (HSP) genes, antiapoptotic genes, and chromatin remodeling genes. Despite a return of the physiological phenotype to its preacclimation state, after a 1 mo deacclimation (DeAC) period, the gene transcripts did not resume their preacclimation levels, suggesting a dichotomy between genotype and phenotype in this system. Individual detection of hsp70 and hsf1 transcripts agreed with these findings. HSP72, HSF1/P-HSF1, and Bcl-xL protein profiles followed the observed dichotomized genomic response. In contrast, HSP90, an essential cytoprotective component mismatched transcriptional activation upon DeAC. The uniform activation of the similarly responding gene clusters upon De-/ReAC implies that reacclimatory phenotypic plasticity is associated with upstream denominators. During AC, DeAC, and ReAC, the maintenance of elevated/phosphorylated HSF1 protein levels and transcriptionally active chromatin remodeling genes implies that chromatin remodeling plays a pivotal role in the transcriptome profile and in preconditioning to rapid cytoprotective acclimatory memory.
Collapse
Affiliation(s)
- Anna Tetievsky
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ohsaki Y, Shirakawa H, Koseki T, Komai M. Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2825-2830. [PMID: 18345632 DOI: 10.1021/jf072896y] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We studied the effects of a single oral administration of ferulic acid (FA) on the blood pressure (BP) and lipid profile in stroke-prone spontaneously hypertensive rats (SHRSP). Male 12-week-old SHRSP were administered FA (9.5 mg/kg of body weight) and distilled water as the control (C) (1 mL) via a gastric tube. The hypotensive effect of FA was observed at the lowest value after 2 h administration. A decrease in the angiotensin-1-converting enzyme (ACE) activity in the plasma corresponded well with the reduction of BP. Plasma total cholesterol and triglyceride levels were lower after 2 h administration. The mRNA expression of genes involved in lipid and drug metabolism was downregulated in the FA group. These results suggest that oral administration of FA appears beneficial in improving hypertension and hyperlipidemia.
Collapse
|
31
|
Zorov DB, Isaev NK, Plotnikov EY, Zorova LD, Stelmashook EV, Vasileva AK, Arkhangelskaya AA, Khrjapenkova TG. The mitochondrion as janus bifrons. BIOCHEMISTRY (MOSCOW) 2008; 72:1115-26. [PMID: 18021069 DOI: 10.1134/s0006297907100094] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling function of mitochondria is considered with a special emphasis on their role in the regulation of redox status of the cell, possibly determining a number of pathologies including cancer and aging. The review summarizes the transport role of mitochondria in energy supply to all cellular compartments (mitochondria as an electric cable in the cell), the role of mitochondria in plastic metabolism of the cell including synthesis of heme, steroids, iron-sulfur clusters, and reactive oxygen and nitrogen species. Mitochondria also play an important role in the Ca(2+)-signaling and the regulation of apoptotic cell death. Knowledge of mechanisms responsible for apoptotic cell death is important for the strategy for prevention of unwanted degradation of postmitotic cells such as cardiomyocytes and neurons.
Collapse
Affiliation(s)
- D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Ursodeoxycholic acid (UDCA) is used in the treatment of cholestatic liver diseases, gallstone dissolution, and for patients with hepatitis C virus infection to ameliorate elevated alanine aminotransferase levels. The efficacy of UDCA treatment has been debated and the mechanisms of action in humans have still not defined. Suggested mechanisms include the improvement of bile acid transport and/or detoxification, cytoprotection, and anti-apoptotic effects. In this review, we summarize the proposed molecular mechanisms for the action of UDCA, especially in hepatocytes, and also discuss the putative future clinical usage of this unique drug.
Collapse
Affiliation(s)
- Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University, Kasumigaura Hospital, Ibaraki, Japan
| | | |
Collapse
|
33
|
Maack C, O'Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 2007; 102:369-92. [PMID: 17657400 PMCID: PMC2785083 DOI: 10.1007/s00395-007-0666-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 12/20/2022]
Abstract
Cardiac excitation-contraction (EC) coupling consumes vast amounts of cellular energy, most of which is produced in mitochondria by oxidative phosphorylation. In order to adapt the constantly varying workload of the heart to energy supply, tight coupling mechanisms are essential to maintain cellular pools of ATP, phosphocreatine and NADH. To our current knowledge, the most important regulators of oxidative phosphorylation are ADP, Pi, and Ca2+. However, the kinetics of mitochondrial Ca2+-uptake during EC coupling are currently a matter of intense debate. Recent experimental findings suggest the existence of a mitochondrial Ca2+ microdomain in cardiac myocytes, justified by the close proximity of mitochondria to the sites of cellular Ca2+ release, i. e., the ryanodine receptors of the sarcoplasmic reticulum. Such a Ca2+ microdomain could explain seemingly controversial results on mitochondrial Ca2+ uptake kinetics in isolated mitochondria versus whole cardiac myocytes. Another important consideration is that rapid mitochondrial Ca2+ uptake facilitated by microdomains may shape cytosolic Ca2+ signals in cardiac myocytes and have an impact on energy supply and demand matching. Defects in EC coupling in chronic heart failure may adversely affect mitochondrial Ca2+ uptake and energetics, initiating a vicious cycle of contractile dysfunction and energy depletion. Future therapeutic approaches in the treatment of heart failure could be aimed at interrupting this vicious cycle.
Collapse
Affiliation(s)
- Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Germany.
| | | |
Collapse
|
34
|
Cohen O, Kanana H, Zoizner R, Gross C, Meiri U, Stern MD, Gerstenblith G, Horowitz M. Altered Ca2+ handling and myofilament desensitization underlie cardiomyocyte performance in normothermic and hyperthermic heat-acclimated rat hearts. J Appl Physiol (1985) 2007; 103:266-75. [PMID: 17395755 DOI: 10.1152/japplphysiol.01351.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat acclimation (AC) improves cardiac mechanical and metabolic performance. Using cardiomyocytes and isolated hearts from 30-day and 2-day acclimated rats (AC and AC-2d, 34°C), we characterized cellular contractile mechanisms under normothermic (37°C) and hyperthermic (39–42°C) conditions. To determine contractile responses, Ca2+ transients (Ca2+ T), sarcoplasmic reticulum (SR) Ca2+ pool size (fura-2/indo-1 fluorescence), force generation [amplitude systolic motion (ASM)], L-type Ca2+ channels [dihydropyridine receptor (DHPR)], ryanodine receptors (RyRs), and total (PLBt) and phosphorylated phospholamban [serine phosphorylated (PLBs) and theonine phosphorylated (PLBtr)] proteins and transcripts were measured (Western blot, RT-PCR). Cardiac mechanical performance was measured using a Langendorff system. We demonstrated that AC and AC-2d increased Ca2+ T amplitude (148% and 147%, respectively) and twitch force (180% and 130%, respectively) and desensitized myofilaments, as indicated by a rightward shift in the ASM-Ca2+ relationships, despite no change in SR Ca2+ pool size. Hence, generation of higher Ca2+ T underlies greater force development in AC and AC-2d myocytes. In isolated hearts, ryanodine administration eliminated differences between AC and control (C) hearts, implying an important role for RyRs in that acclimation phase. Increased expression of DHPR and RyRs, and decreased PLBs/PLBt in AC hearts only, suggest that different pathways increase force generation in the AC-2d vs. AC myocytes. At basal beating rates, hyperthermia (39–41°C) enhanced pressure generation in AC hearts. C hearts failed to restitute pressure beyond 39°C. Increased beating frequency produced negative inotropic response. In C cardiomyocytes, hyperthermia elevated basal cytosolic Ca2+ and tension, Ca2+ T, and ASM. AC myocytes enhanced Ca2+ T but showed myofilament desensitization, suggesting its involvement in cardiac protection against hyperthermia. Collectively, both Ca2+ turnover and myofilament responsiveness are important adaptive acclimatory targets during normothermic and hyperthermic conditions.
Collapse
Affiliation(s)
- Omer Cohen
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, Hadassah Medical Center, The Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Werdich AA, Baudenbacher F, Dzhura I, Jeyakumar LH, Kannankeril PJ, Fleischer S, LeGrone A, Milatovic D, Aschner M, Strauss AW, Anderson ME, Exil VJ. Polymorphic ventricular tachycardia and abnormal Ca2+ handling in very-long-chain acyl-CoA dehydrogenase null mice. Am J Physiol Heart Circ Physiol 2007; 292:H2202-11. [PMID: 17209005 DOI: 10.1152/ajpheart.00382.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with mutations in the mitochondrial very-long-chain acyl-CoA dehydrogenase (VLCAD) gene are at risk for cardiomyopathy, myocardial dysfunction, ventricular tachycardia (VT), and sudden cardiac death. The mechanism is not known. Here we report a novel mechanism of VT in mice lacking VLCAD (VLCAD(-/-)). These mice exhibited polymorphic VT and increased incidence of VT after isoproterenol infusion. Polymorphic VT was induced in 10 out of 12 VLCAD(-/-) mice (83%) when isoproterenol was used. One out of 10 VLCAD(-/-) mice with polymorphic VT had VT with the typical bidirectional morphology. At the molecular level, VLCAD(-/-) cardiomyocytes showed increased levels of cardiac ryanodine receptor 2, phospholamban, and calsequestrin with increased [(3)H]ryanodine binding in heart microsomes. At the single cardiomyocyte level, VLCAD(-/-) cardiomyocytes showed significant increase in diastolic indo 1 and fura 2 fluorescence, with increased Ca(2+) transient amplitude. These changes were associated with altered Ca(2+) dynamics, to include: faster sarcomere contraction, larger time derivative of the upstroke, and shorter time-to-minimum sarcomere length compared with VLCAD(+/+) control cells. The L-type Ca(2+) current characteristics were not different under voltage-clamp conditions in the two VLCAD genotypes. Sarcoplasmic reticulum Ca(2+) load measured as normalized integrated Na(+)/Ca(2+) exchange current after rapid caffeine application was increased by 48% in VLCAD(-/-) cells. We conclude that intracellular Ca(2+) handling represents a possible molecular mechanism of arrhythmias in mice and perhaps in VLCAD-deficient humans.
Collapse
Affiliation(s)
- Andreas A Werdich
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232-0001, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sedova M, Dedkova EN, Blatter LA. Integration of rapid cytosolic Ca2+signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol 2006; 291:C840-50. [PMID: 16723510 DOI: 10.1152/ajpcell.00619.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decoding of fast cytosolic Ca2+concentration ([Ca2+]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca2+] ([Ca2+]m) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca2+] ([Ca2+]em) to >0.5 μM resulted in a [Ca2+]em-dependent increase in the rate of mitochondrial Ca2+accumulation ([Ca2+]emresulting in half-maximal rate of Ca2+accumulation = 4.4 μM) via Ca2+uniporter. Ca2+uptake was sensitive to the Ca2+uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca2+]mincrease and recovery were dependent on the extramitochondrial [Na+] ([Na+]em) due to Ca2+extrusion via mitochondrial Na+/Ca2+exchanger. The maximal rate of Ca2+extrusion was observed with [Na+]emin the range of 20–40 mM. Rapid switching (0.25–1 Hz) of [Ca2+]embetween 0 and 100 μM simulated rapid beat-to-beat changes in [Ca2+]i(with [Ca2+]itransient duration of 100–500 ms). No [Ca2+]moscillations were observed, either under conditions of maximal rate of Ca2+uptake (100 μM [Ca2+]em, 0 [Na+]em) or with maximal rate of Ca2+removal (0 [Ca2+]em, 40 mM [Na+]em). The slow frequency-dependent increase of [Ca2+]margues against a rapid transmission of Ca2+signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca2+]mchanges elicited by continuous or pulsatile exposure to elevated [Ca2+]emshowed no difference in mitochondrial Ca2+uptake. Thus in cardiac myocytes fast [Ca2+]itransients are integrated by mitochondrial Ca2+transport systems, resulting in a frequency-dependent net mitochondrial Ca2+accumulation.
Collapse
Affiliation(s)
- Marina Sedova
- Dept. of Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|
37
|
Bell CJ, Bright NA, Rutter GA, Griffiths EJ. ATP regulation in adult rat cardiomyocytes: time-resolved decoding of rapid mitochondrial calcium spiking imaged with targeted photoproteins. J Biol Chem 2006; 281:28058-67. [PMID: 16882672 DOI: 10.1074/jbc.m604540200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms that enable the heart to rapidly increase ATP supply in line with increased demand have not been fully elucidated. Here we used an adenoviral system to express the photoproteins luciferase and aequorin, targeted to the mitochondria or cytosol of adult cardiomyocytes, to investigate the interrelationship between ATP and Ca(2+) in these compartments. In neither compartment were changes in free [ATP] observed upon increased workload (addition of isoproterenol) in myocytes that were already beating. However, when myocytes were stimulated to beat rapidly from rest, in the presence of isoproterenol, a significant but transient drop in mitochondrial [ATP] ([ATP](m)) occurred (on average to 10% of the initial signal). Corresponding changes in cytosolic [ATP] ([ATP](c)) were much smaller (<5%), indicating that [ATP](c) was effectively buffered in this compartment. Although mitochondrial [Ca(2+)] ([Ca(2+)](m)) is an important regulator of respiratory chain activity and ATP production in other cells, the kinetics of mitochondrial Ca(2+) transport are controversial. Parallel experiments in cells expressing mitochondrial aequorin showed that the drop in [ATP](m) occurred over the same time scale as average [Ca(2+)](m) was increasing. Conversely, in the absence or presence of isoproterenol, clear beat-to-beat peaks in [Ca(2+)](m) were observed at 0.9 or 1.3 mum, respectively, concentrations similar to those observed in the cytosol. These results suggest that mitochondrial Ca(2+) transients occur during the contractile cycle and are translated into a time-averaged increase in mitochondrial ATP production that keeps pace with increased cytosolic demand.
Collapse
Affiliation(s)
- Christopher J Bell
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
38
|
Warraich RS, Griffiths E, Falconar A, Pabbathi V, Bell C, Angelini G, Suleiman MS, Yacoub MH. Human cardiac myosin autoantibodies impair myocyte contractility: a cause‐and‐effect relationship. FASEB J 2006; 20:651-60. [PMID: 16581973 DOI: 10.1096/fj.04-3001com] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The functional relevance of autoantibodies (Abs) against cardiac myosin (CM) in clinical idiopathic dilated cardiomyopathy (DCM) remains controversial. The study sought to determine effects of human Abs affinity-purified (AF) by immunoaffinity column chromotography on excitation-contraction coupling in isolated myocytes. Effects of CM-Abs from heart failure patients with DCM (n=19) and ischemic heart disease (IHD, n=19) on contractility, L-type Ca2+ current, and Ca2+ transients in continuously perfused rat ventricular myocytes were studied. Immunofluorescence studies using confocal microscopy were carried out to determine whether Abs were internalized. AF-Abs from either group did not differ in IgG titer but differed in their elution profiles. The IgG3 subclass response was higher in AF fractions from DCM (21%) than IHD (5%) patients. The Abs reduced the capacity of field-stimulated myocytes to contract in a dose-dependent manner. Inhibition of contraction, as a percentage of untreated cells, was greater with DCM than IHD-Abs (P=0.004), and the effect was independent of Ab titer. An increase in frequency of the beating myocytes (0.2 to 3.0 Hz) raised peak systolic and diastolic levels of [Ca2+]i of cells treated with DCM but not IHD-Abs (P<0.005). The AF-Abs were not internalized by myocytes and had no effect on L-type Ca2+ currents. The altered sensitivity of the myofilaments to [Ca2+]i by CM-Abs may represent a potential mechanism of autoantibody-mediated impairment in clinical DCM.
Collapse
Affiliation(s)
- Rahat S Warraich
- Department of Cardiothoracic Surgery, National Heart and Lung Institute, Imperial College School of Medicine, Royal Brompton and Harefield Trust, Harefield Hospital, Middlesex, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006; 25:1419-25. [PMID: 16541101 PMCID: PMC1440314 DOI: 10.1038/sj.emboj.7601049] [Citation(s) in RCA: 446] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 02/24/2006] [Indexed: 12/19/2022] Open
Abstract
Bile acids (BAs), a group of structurally diverse molecules that are primarily synthesized in the liver from cholesterol, are the chief components of bile. Besides their well-established roles in dietary lipid absorption and cholesterol homeostasis, it has recently emerged that BAs are also signaling molecules, with systemic endocrine functions. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor TGR5, and activate nuclear hormone receptors such as farnesoid X receptor alpha. Through activation of these diverse signaling pathways, BAs can regulate their own enterohepatic circulation, but also triglyceride, cholesterol, energy, and glucose homeostasis. Thus, BA-controlled signaling pathways are promising novel drug targets to treat common metabolic diseases, such as obesity, type II diabetes, hyperlipidemia, and atherosclerosis.
Collapse
Affiliation(s)
- Sander M Houten
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Mitsuhiro Watanabe
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Illkirch, France
| | - Johan Auwerx
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Illkirch, France
- Institut Clinique de la Souris, Illkirch, France
- Laboratoire de Biochimie Générale et Spécialisée, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, Parc d'Innovation, BP10142, 67404 Illkirch, France. Tel.: +33 388 653425; Fax: +33 388 653201; E-mail:
| |
Collapse
|
40
|
Jo H, Noma A, Matsuoka S. Calcium-mediated coupling between mitochondrial substrate dehydrogenation and cardiac workload in single guinea-pig ventricular myocytes. J Mol Cell Cardiol 2006; 40:394-404. [PMID: 16480740 DOI: 10.1016/j.yjmcc.2005.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/23/2005] [Accepted: 12/19/2005] [Indexed: 11/29/2022]
Abstract
We measured mitochondrial NADH autofluorescence or Ca(2+) using Rhod-2, simultaneously with cell shortening in isolated guinea-pig ventricular myocytes. When both frequency and amplitude of twitch shortening (work intensity) were increased by raising stimulus frequency in incremental steps from 0.1 to 3.3 Hz, the steady level of NADH signal increased in a frequency-dependent manner. Mitochondrial Ca(2+) also increased with increasing work intensity. Applying Ru360, an inhibitor of mitochondrial Ca(2+) uniporter, largely attenuated the response of both NADH fluorescence and mitochondrial Ca(2+). The increase in mitochondrial Ca(2+) was slow with t(1/2)=~12 s and no obvious cyclic changes were observed in the NADH signal. When a step change from 0.1 to 3.3 Hz stimulation was applied, the NADH signal first decreased to 83% and then increased to 155% of the control level. Upon returning to 0.1 Hz, the NADH signal showed an overshoot before declining to the control level. The biphasic onset time course was well explained by the delayed Ca(2+) activation of the substrate dehydrogenation superimposed on the feedback control of the ATP synthesis, while the offset time course with a delayed deactivation of dehydrogenation. A computer simulation using an oxidative phosphorylation linked to the cardiac excitation contraction model well reconstructed the response of NADH. This model simulation predicts that the activation of substrate dehydrogenation provides ~23% of driving force of the ATP synthesis to meet the increased workload induced by the jump of stimulus from 0.1 to 3.3 Hz, and remaining ~77% is supplied by the feedback control.
Collapse
Affiliation(s)
- Hikari Jo
- Department of Physiology and Biophysics, Kyoto University Graduate School of Medicine, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
41
|
|
42
|
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439:484-9. [PMID: 16400329 DOI: 10.1038/nature04330] [Citation(s) in RCA: 1673] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 10/19/2005] [Indexed: 12/11/2022]
Abstract
While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.
Collapse
Affiliation(s)
- Mitsuhiro Watanabe
- Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maass DL, White J, Sanders B, Horton JW. Role of cytosolic vs. mitochondrial Ca2+accumulation in burn injury-related myocardial inflammation and function. Am J Physiol Heart Circ Physiol 2005; 288:H744-51. [PMID: 15388497 DOI: 10.1152/ajpheart.00367.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to examine the role of mitochondrial Ca2+homeostasis in burn-related myocardial inflammation. We hypothesized that mitochondrial Ca2+is a primary modulator of cardiomyocyte TNF-α, IL-1β, and IL-6 responses to injury and infection. Ventricular myocytes were prepared by Langendorff perfusion of hearts from adult rats subjected to sham burn or burn injury over 40% of total body surface area to produce enzymatic (collagenase) digestion. Isolated cardiomyocytes were suspended in MEM, cell number was determined, and aliquots of myocytes from each experimental group were loaded with fura 2-AM (2 μg/ml) for 1) 45 min at room temperature to measure total cellular Ca2+, 2) 45 min at 30°C followed by incubation at 37°C for 2 h to eliminate cytosolic fluorescence, and 3) 20 min at 37°C in MnCl2(200 μM)-containing buffer to quench cytosolic fura 2-AM signal. In vitro studies included preparation of myocytes from control hearts and challenge of myocytes with LPS or burn serum (BS), which have been shown to increase cytosolic Ca2+. Additional aliquots of myocytes were challenged with LPS or BS with or without a selective inhibitor of mitochondrial Ca2+, ruthenium red (RR). All cells were examined on a stage-inverted microscope that was interfaced with the InCyt Im2 fluorescence imaging system. Heat treatment or MnCl2challenge eliminated myocyte cytosolic fluorescence, whereas cells maintained at room temperature retained 95% of their initial fluorescence. Compared with Ca2+levels measured in sham myocytes, burn trauma increased cytosolic Ca2+from 90 ± 3 to 293 ± 6 nM ( P < 0.05) and mitochondrial Ca2+from 24 ± 1 to 75 ± 2 nM ( P < 0.05). LPS (25 μg/5 × 104cells) or BS (10% by volume) challenge for 18 h increased cardiomyocyte cytosolic and mitochondrial Ca2+and promoted myocyte secretion of TNF-α, IL-1β, and IL-6. RR pretreatment decreased LPS- and BS-related rise in mitochondrial Ca2+and cytokine secretion but had no effect on cytosolic Ca2+. BS challenge in perfused control hearts impaired myocardial contraction/relaxation, and RR pretreatment of hearts prevented BS-related myocardial contractile dysfunction. Our data suggest that a rise in mitochondrial Ca2+is one modulator of myocardial inflammation and dysfunction in injury states such as sepsis and burn trauma.
Collapse
Affiliation(s)
- David L Maass
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9160, USA
| | | | | | | |
Collapse
|
44
|
Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113:1408-18. [PMID: 15146238 PMCID: PMC406532 DOI: 10.1172/jci21025] [Citation(s) in RCA: 1032] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 03/23/2004] [Indexed: 12/11/2022] Open
Abstract
We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) alpha and beta, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXR alpha and LXR beta. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.
Collapse
Affiliation(s)
- Mitsuhiro Watanabe
- Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Scaduto RC, Grotyohann LW. Hydrolysis of Ca2+-sensitive fluorescent probes by perfused rat heart. Am J Physiol Heart Circ Physiol 2003; 285:H2118-24. [PMID: 14561682 DOI: 10.1152/ajpheart.00881.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat hearts were loaded with the fluorescent calcium indicators fura 2, indo 1, rhod 2, or fluo 3 to determine cytosolic calcium levels in the perfused rat heart. With fura 2, however, basal tissue fluorescence increased above anticipated levels, suggesting accumulation of intermediates of fura 2-AM deesterification. To examine this process, we separated the intermediates of the deesterification process using HPLC after incubation of fura 2-AM with tissue homogenates and after loading in the rat heart. Loading of hearts with fura 2-AM resulted in tissue levels of fura 2 free acid that were only 5% of the total heart dye content of all fura 2 species. The parent fura 2-AM form accumulated without accumulation of intermediate products. Similar results were obtained with indo 1-AM. Fluo 3 loaded very poorly in perfused hearts. Unlike other indictors, rhod 2 rapidly loaded in perfused hearts and was completely converted to the free acid form. To determine the subcellular localization of the free acid form of these indictors, mitochondria from indicator-loaded hearts were assayed for the free acid form. Approximately 75% of the total amount of rhod 2 in hearts could be recovered in isolated mitochondria. Subcellular localization of indo 1 and fura 2 was more evenly distributed between mitochondria and nonmitochondrial compartments. We conclude that measurement of calcium in the perfused rat heart using surface fluorescence with either indo 1 or fura 2 is complicated by an inconsistent accumulation of the parent ester and that the resulting signal cannot be easily calibrated using “in situ” methods using the free acid form. Rhod 2 does not display this shortcoming, but like other indicators, it also loads into the mitochondrial matrix.
Collapse
Affiliation(s)
- Russell C Scaduto
- Department of Cellular and Molecular Physiology, Milton Hershey Medical Center, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
46
|
Abstract
BACKGROUND Human consumption of moderate amounts of ethanol is associated with reduced cardiovascular events. Studies examining the effect of ethanol on atherosclerosis in mouse models have yielded conflicting results that may be due to differences in dietary fat and cholate content. To determine if dietary cholate influences ethanol's effect on atherosclerosis, we fed apolipoprotein E-/- and low-density lipoprotein receptor (LDLR)-/- mice different liquid diets with or without ethanol. METHODS Apolipoprotein E-/- mice were fed a low-fat or high saturated fat, cholate-containing diet with or without ethanol for 3 to 10 weeks, and LDLR-/- mice were fed a low-fat, high saturated fat, or high saturated fat diet with cholate with or without ethanol for 7 weeks. At the end of the feeding study, aortic root lesion size was determined and compared with serum cholesterol, triglycerides, and high-density lipoprotein cholesterol. Because dietary cholate increases hepatic nuclear factor (NF)-kappaB and ethanol inhibits NF-kappaB, we also examined the effect of ethanol on aortic NF-kappaB binding activity. RESULTS Adding ethanol to a low-fat diet had no effect on lesion size. Similarly, ethanol had no effect on lesion size in LDLR-/- mice consuming a high saturated fat diet. Adding ethanol to a high-fat, cholate-containing diet for either strain resulted in a 25% to 50% reduction in lesion size. Dietary cholate increased and ethanol reduced NF-kappaB binding activity in the aorta. CONCLUSIONS These results suggest that ethanol inhibits atherosclerosis in the presence of dietary cholate, which may occur via an anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Mark A Deeg
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Michael R Duchen
- Life Sciences Imaging Cooperative and Mitochondrial Biology Group, Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
48
|
Ogawa H, Nakashima S, Baba K. Effects of dietary Angelica keiskei on lipid metabolism in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2003; 30:284-8. [PMID: 12680848 DOI: 10.1046/j.1440-1681.2003.03830.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The effect of dietary Angelica keiskei on lipid metabolism was examined in stroke-prone spontaneously hypertensive rats (SHRSP). 2. Six-week-old male SHRSP were fed diets containing 0.2% A. keiskei extract (ethyl acetate extract from the yellow liquid of stems) for 6 weeks with free access to the diet and water. 3. Elevation of systolic blood pressure tended to be suppressed on and after 2 weeks; however, this effect was not statistically significant. 4. Serum levels of cholesterol and phospholipid in SHRSP were significantly elevated after treatment with A. keiskei extract and this effect was accompanied by significant increases in serum apolipoprotein (Apo) A-I and ApoE concentrations. These changes in the serum were due to increases in high-density lipoprotein (HDL) containing ApoA-I and ApoE. 5. In the liver, significant decreases in relative weight and triglyceride content were observed in SHRSP after treatment with A. keiskei extract. An investigation of mRNA expression of enzymes involved in hepatic triglyceride metabolism indicated a decreased level of hepatic Acyl-coenzyme A synthetase mRNA expression. 6. In conclusion, dietary A. keiskei produces elevation of serum HDL levels and a reduction of liver triglyceride levels in SHRSP.
Collapse
Affiliation(s)
- Hiroshi Ogawa
- Department of Hygiene, Kinki University School of Medicine, Osaka University of Pharmaceutical Sciences, Japan.
| | | | | |
Collapse
|
49
|
Bers DM. Regulation of Cellular Calcium in Cardiac Myocytes. Compr Physiol 2002. [DOI: 10.1002/cphy.cp020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Hajnóczky G, Csordás G, Yi M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 2002; 32:363-77. [PMID: 12543096 DOI: 10.1016/s0143416002001872] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In many cell types, IP(3) and ryanodine receptor (IP(3)R/RyR)-mediated Ca(2+) mobilization from the sarcoendoplasmic reticulum (ER/SR) results in an elevation of mitochondrial matrix [Ca(2+)]. Although delivery of the released Ca(2+) to the mitochondria has been established as a fundamental signaling process, the molecular mechanism underlying mitochondrial Ca(2+) uptake remains a challenge for future studies. The Ca(2+) uptake can be divided into the following three steps: (1) Ca(2+) movement from the IP(3)R/RyR to the outer mitochondrial membrane (OMM); (2) Ca(2+) transport through the OMM; and (3) Ca(2+) transport through the inner mitochondrial membrane (IMM). Evidence has been presented that Ca(2+) delivery to the OMM is facilitated by a local coupling between closely apposed regions of the ER/SR and mitochondria. Recent studies of the dynamic changes in mitochondrial morphology and visualization of the subcellular pattern of the calcium signal provide important clues to the organization of the ER/SR-mitochondrial interface. Interestingly, key steps of phospholipid synthesis and transfer to the mitochondria have also been confined to subdomains of the ER tightly associated with the mitochondria, referred as mitochondria-associated membranes (MAMs). Through the OMM, the voltage-dependent anion channels (VDAC, porin) have been thought to permit free passage of ions and other small molecules. However, recent studies suggest that the VDAC may represent a regulated step in Ca(2+) transport from IP(3)R/RyR to the IMM. A novel proposal regarding the IMM Ca(2+) uptake site is a mitochondrial RyR that would mediate rapid Ca(2+) uptake by mitochondria in excitable cells. An overview of the progress in these directions is described in the present paper.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 19107, Philadelphia, PA, USA.
| | | | | |
Collapse
|