1
|
Delpire E, Ben-Ari Y. A Wholistic View of How Bumetanide Attenuates Autism Spectrum Disorders. Cells 2022; 11:2419. [PMID: 35954263 PMCID: PMC9367773 DOI: 10.3390/cells11152419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023] Open
Abstract
The specific NKCC1 cotransporter antagonist, bumetanide, attenuates the severity of Autism Spectrum Disorders (ASD), and many neurodevelopmental or neurodegenerative disorders in animal models and clinical trials. However, the pervasive expression of NKCC1 in many cell types throughout the body is thought to challenge the therapeutic efficacy of bumetanide. However, many peripheral functions, including intestinal, metabolic, or vascular, etc., are perturbed in brain disorders contributing to the neurological sequels. Alterations of these functions also increase the incidence of the disorder suggesting complex bidirectional links with the clinical manifestations. We suggest that a more holistic view of ASD and other disorders is warranted to account for the multiple sites impacted by the original intra-uterine insult. From this perspective, large-spectrum active repositioned drugs that act centrally and peripherally might constitute a useful approach to treating these disorders.
Collapse
Affiliation(s)
- Eric Delpire
- Departments of Anesthesiology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yehezkel Ben-Ari
- NeuroChlore, Campus Scientifique de Luminy, 163 Route de Luminy, 13273 Marseilles, France
| |
Collapse
|
2
|
Liu J, Shelton EL, Crescenzi R, Colvin DC, Kirabo A, Zhong J, Delpire EJ, Yang HC, Kon V. Kidney Injury Causes Accumulation of Renal Sodium That Modulates Renal Lymphatic Dynamics. Int J Mol Sci 2022; 23:ijms23031428. [PMID: 35163352 PMCID: PMC8836121 DOI: 10.3390/ijms23031428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/02/2023] Open
Abstract
Lymphatic vessels are highly responsive to changes in the interstitial environment. Previously, we showed renal lymphatics express the Na-K-2Cl cotransporter. Since interstitial sodium retention is a hallmark of proteinuric injury, we examined whether renal sodium affects NKCC1 expression and the dynamic pumping function of renal lymphatic vessels. Puromycin aminonucleoside (PAN)-injected rats served as a model of proteinuric kidney injury. Sodium 23Na/1H-MRI was used to measure renal sodium and water content in live animals. Renal lymph, which reflects the interstitial composition, was collected, and the sodium analyzed. The contractile dynamics of isolated renal lymphatic vessels were studied in a perfusion chamber. Cultured lymphatic endothelial cells (LECs) were used to assess direct sodium effects on NKCC1. MRI showed elevation in renal sodium and water in PAN. In addition, renal lymph contained higher sodium, although the plasma sodium showed no difference between PAN and controls. High sodium decreased contractility of renal collecting lymphatic vessels. In LECs, high sodium reduced phosphorylated NKCC1 and SPAK, an upstream activating kinase of NKCC1, and eNOS, a downstream effector of lymphatic contractility. The NKCC1 inhibitor furosemide showed a weaker effect on ejection fraction in isolated renal lymphatics of PAN vs controls. High sodium within the renal interstitium following proteinuric injury is associated with impaired renal lymphatic pumping that may, in part, involve the SPAK-NKCC1-eNOS pathway, which may contribute to sodium retention and reduce lymphatic responsiveness to furosemide. We propose that this lymphatic vessel dysfunction is a novel mechanism of impaired interstitial clearance and edema in proteinuric kidney disease.
Collapse
Affiliation(s)
- Jing Liu
- Department of Nephrology, Tongji University School of Medicine, Shanghai 200070, China;
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Rachelle Crescenzi
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (R.C.); (D.C.C.)
| | - Daniel C. Colvin
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (R.C.); (D.C.C.)
| | - Annet Kirabo
- Department of Medicine, Division of Clinal Pharmacology and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (A.K.); (J.Z.)
| | - Jianyong Zhong
- Department of Medicine, Division of Clinal Pharmacology and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (A.K.); (J.Z.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Eric J. Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hai-Chun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: (H.-C.Y.); (V.K.); Tel.: +1-615-343-0110 (H.-C.Y.); +1-615-322-7416 (V.K.)
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: (H.-C.Y.); (V.K.); Tel.: +1-615-343-0110 (H.-C.Y.); +1-615-322-7416 (V.K.)
| |
Collapse
|
3
|
Sun H, Paudel O, Sham JSK. Increased intracellular Cl - concentration in pulmonary arterial myocytes is associated with chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 2021; 321:C297-C307. [PMID: 34161154 DOI: 10.1152/ajpcell.00172.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloride channels play an important role in regulating smooth muscle contraction and proliferation, and contribute to the enhanced constriction of pulmonary arteries (PAs) in pulmonary hypertension (PH). The intracellular Cl- concentration ([Cl-]i), tightly regulated by various Cl- transporters, determines the driving force for Cl- conductance, thereby the functional outcome of Cl- channel activation. This study characterizes for the first time the expression profile of Cl- transporters/exchangers in PA smooth muscle and provides the first evidence that the intracellular Cl- homeostasis is altered in PA smooth muscle cells (PASMCs) associated with chronic hypoxic PH (CHPH). Quantitative RT-PCR revealed that the endothelium-denuded intralobar PA of rats expressed Slc12a gene family-encoded Na-K-2Cl cotransporter 1 (NKCC1), K-Cl cotransporters (KCC) 1, 3, and 4, and Slc4a gene family-encoded Na+-independent and Na+-dependent Cl-/HCO3- exchangers. Exposure of rats to chronic hypoxia (10% O2, 3 wk) caused CHPH and selectively increased the expression of Cl--accumulating NKCC1 and reduced the Cl--extruding KCC4. The intracellular Cl- concentration ([Cl-]i) averaged at 45 mM and 47 mM in normoxic PASMCs as determined by fluorescent indicator MEQ and by gramicidin-perforated patch-clamp technique, respectively. The ([Cl-]i was increased by ∼10 mM in PASMCs of rats with CHPH. Future studies are warranted to further establish the hypothesis that the altered intracellular Cl- homeostasis contributes to the pathogenesis of CHPH.
Collapse
Affiliation(s)
- Hui Sun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Garneau AP, Slimani S, Fiola MJ, Tremblay LE, Isenring P. Multiple Facets and Roles of Na+-K+-Cl−Cotransport: Mechanisms and Therapeutic Implications. Physiology (Bethesda) 2020; 35:415-429. [DOI: 10.1152/physiol.00012.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Na+-K+-Cl−cotransporters play key physiological and pathophysiological roles by regulating the membrane potential of many cell types and the movement of fluid across a variety of epithelial or endothelial structures. As such, they should soon become invaluable targets for the treatment of various disorders including pain, epilepsy, brain edema, and hypertension. This review highlights the nature of these roles, the mechanisms at play, and the unresolved issues in the field.
Collapse
Affiliation(s)
- A. P. Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
- Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, Canada
| | - S. Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - M. J. Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - L. E. Tremblay
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - P. Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| |
Collapse
|
5
|
Garneau AP, Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Mac-Way F, Isenring P. Physiological roles and molecular mechanisms of K + -Cl - cotransport in the mammalian kidney and cardiovascular system: where are we? J Physiol 2019; 597:1451-1465. [PMID: 30659612 DOI: 10.1113/jp276807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/07/2018] [Indexed: 11/08/2022] Open
Abstract
In the early 80s, renal microperfusion studies led to the identification of a basolateral K+ -Cl- cotransport mechanism in the proximal tubule, thick ascending limb of Henle and collecting duct. More than ten years later, this mechanism was found to be accounted for by three different K+ -Cl- cotransporters (KCC1, KCC3 and KCC4) that are differentially distributed along the renal epithelium. Two of these isoforms (KCC1 and KCC3) were also found to be expressed in arterial walls, the myocardium and a variety of neurons. Subsequently, valuable insights have been gained into the molecular and physiological properties of the KCCs in both the mammalian kidney and cardiovascular system. There is now robust evidence indicating that KCC4 sustains distal renal acidification and that KCC3 regulates myogenic tone in resistance vessels. However, progress in understanding the functional significance of these transporters has been slow, probably because each of the KCC isoforms is not identically distributed among species and some of them share common subcellular localizations with other KCC isoforms or sizeable conductive Cl- pathways. In addition, the mechanisms underlying the process of K+ -Cl- cotransport are still ill defined. The present review focuses on the knowledge gained regarding the roles and properties of KCCs in renal and cardiovascular tissues.
Collapse
Affiliation(s)
- A P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, Montreal University, 900, rue Saint-Denis, Montréal, (Qc) H2X 0A9
| | - A A Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - S Slimani
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - L E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - R Frenette-Cotton
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - F Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - P Isenring
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| |
Collapse
|
6
|
Delpire E, Gagnon KB. Na + -K + -2Cl - Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia. Compr Physiol 2018; 8:871-901. [PMID: 29687903 DOI: 10.1002/cphy.c170018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two genes encode the Na+ -K+ -2Cl- cotransporters, NKCC1 and NKCC2, that mediate the tightly coupled movement of 1Na+ , 1K+ , and 2Cl- across the plasma membrane of cells. Na+ -K+ -2Cl- cotransport is driven by the chemical gradient of the three ionic species across the membrane, two of them maintained by the action of the Na+ /K+ pump. In many cells, NKCC1 accumulates Cl- above its electrochemical potential equilibrium, thereby facilitating Cl- channel-mediated membrane depolarization. In smooth muscle cells, this depolarization facilitates the opening of voltage-sensitive Ca2+ channels, leading to Ca2+ influx, and cell contraction. In immature neurons, the depolarization due to a GABA-mediated Cl- conductance produces an excitatory rather than inhibitory response. In many cell types that have lost water, NKCC is activated to help the cells recover their volume. This is specially the case if the cells have also lost Cl- . In combination with the Na+ /K+ pump, the NKCC's move ions across various specialized epithelia. NKCC1 is involved in Cl- -driven fluid secretion in many exocrine glands, such as sweat, lacrimal, salivary, stomach, pancreas, and intestine. NKCC1 is also involved in K+ -driven fluid secretion in inner ear, and possibly in Na+ -driven fluid secretion in choroid plexus. In the thick ascending limb of Henle, NKCC2 activity in combination with the Na+ /K+ pump participates in reabsorbing 30% of the glomerular-filtered Na+ . Overall, many critical physiological functions are maintained by the activity of the two Na+ -K+ -2Cl- cotransporters. In this overview article, we focus on the functional roles of the cotransporters in nonpolarized cells and in epithelia. © 2018 American Physiological Society. Compr Physiol 8:871-901, 2018.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | - Kenneth B Gagnon
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Keystone, USA
| |
Collapse
|
7
|
Garneau AP, Marcoux AA, Frenette-Cotton R, Mac-Way F, Lavoie JL, Isenring P. Molecular insights into the normal operation, regulation, and multisystemic roles of K +-Cl - cotransporter 3 (KCC3). Am J Physiol Cell Physiol 2017; 313:C516-C532. [PMID: 28814402 DOI: 10.1152/ajpcell.00106.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Long before the molecular identity of the Na+-dependent K+-Cl- cotransporters was uncovered in the mid-nineties, a Na+-independent K+-Cl- cotransport system was also known to exist. It was initially observed in sheep and goat red blood cells where it was shown to be ouabain-insensitive and to increase in the presence of N-ethylmaleimide (NEM). After it was established between the early and mid-nineties, the expressed sequence tag (EST) databank was found to include a sequence that was highly homologous to those of the Na+-dependent K+-Cl- cotransporters. This sequence was eventually found to code for the Na+-independent K+-Cl- cotransport function that was described in red blood cells several years before. It was termed KCC1 and led to the discovery of three isoforms called KCC2, KCC3, and KCC4. Since then, it has become obvious that each one of these isoforms exhibits unique patterns of distribution and fulfills distinct physiological roles. Among them, KCC3 has been the subject of great attention in view of its important role in the nervous system and its association with a rare hereditary sensorimotor neuropathy (called Andermann syndrome) that affects many individuals in Quebec province (Canada). It was also found to play important roles in the cardiovascular system, the organ of Corti, and circulating blood cells. As will be seen in this review, however, there are still a number of uncertainties regarding the transport properties, structural organization, and regulation of KCC3. The same is true regarding the mechanisms by which KCC3 accomplishes its numerous functions in animal cells.
Collapse
Affiliation(s)
- A P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - A A Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - R Frenette-Cotton
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - F Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - J L Lavoie
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - P Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| |
Collapse
|
8
|
Chaban YHG, Chen Y, Hertz E, Hertz L. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 -/- Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal K v Channels. Neurochem Res 2017; 42:1747-1766. [PMID: 28214987 DOI: 10.1007/s11064-017-2194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022]
Abstract
The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.
Collapse
Affiliation(s)
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Elna Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
9
|
Hertz L, Chen Y. Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev 2016; 71:484-505. [DOI: 10.1016/j.neubiorev.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/12/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
|
10
|
Dayioglu E, Buharalioglu CK, Saracoglu F, Akar F. The Effects of Bumetanide on Human Umbilical Artery Contractions. Reprod Sci 2016; 14:246-52. [PMID: 17636238 DOI: 10.1177/1933719107300871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors investigate the effect of bumetan ide, an inhibitor of NKCC1 and a loop diuretic, on the tone of human umbilical artery (HUA). Rings of HUA (n = 35) from vaginal deliveries were suspended for isometric tension recordings in organ baths. Cumulative concentration-response curves to serotonin, histamine, and KCl were performed in the absence (control) or in the presence of bumetanide. The relaxant effect of bumetanide was also evaluated in serotonin- and histamine-induced contractions. Bumetanide inhibited HUA tone in serotonin- and histamine-induced contractions with significant changes in the potency (pD(2)) and maximum contractile response (E(max)) values. However, only pD( 2) values for KCl-induced contraction significantly changed in the presence of bumetanide. Bumetanide caused concentration-dependent and sustained relaxations in serotonin-induced contraction; however, there was refractoriness in histamine-induced contraction. These findings raise the possibility that NKCC1 may play a role in the regulation of the umbilical artery tone.
Collapse
Affiliation(s)
- Emel Dayioglu
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | | | | | |
Collapse
|
11
|
Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:F16-27. [PMID: 27009339 PMCID: PMC4967160 DOI: 10.1152/ajprenal.00358.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The With no Lysine [K] (WNK) family of enzymes are central in the regulation of blood pressure. WNKs have been implicated in hereditary hypertension disorders, mainly through control of the activity and levels of ion cotransporters and channels. Actions of WNKs in the kidney have been heavily investigated, and recent studies have provided insight into not only the regulation of these enzymes but also how mutations in WNKs and their interacting partners contribute to hypertensive disorders. Defining the roles of WNKs in the cardiovascular system will provide clues about additional mechanisms by which WNKs can regulate blood pressure. This review summarizes recent developments in the regulation of the WNK signaling cascade and its role in regulation of blood pressure.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
12
|
Garneau AP, Marcoux AA, Noël M, Frenette-Cotton R, Drolet MC, Couet J, Larivière R, Isenring P. Ablation of Potassium-Chloride Cotransporter Type 3 (Kcc3) in Mouse Causes Multiple Cardiovascular Defects and Isosmotic Polyuria. PLoS One 2016; 11:e0154398. [PMID: 27166674 PMCID: PMC4864296 DOI: 10.1371/journal.pone.0154398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Inactivation of Kcc3 in a mixed 129/Sv×C57BL/6 mouse background has been previously found to increase systemic blood pressure (BP) through presumed neurogenic mechanisms. Yet, while this background is generally not considered ideal to investigate the cardiovascular system, KCC3 is also expressed in the arterial wall and proximal nephron. In the current study, the effects of Kcc3 ablation was investigated in a pure rather than mixed C57BL/6J background under regular- and high-salt diets to determine whether they could be mediated through vasculogenic and nephrogenic mechanisms. Aortas were also assessed for reactivity to pharmacological agents while isolated from the influence of sympathetic ganglia. This approach led to the identification of unforeseen abnormalities such as lower pulse pressure, heart rate, aortic reactivity and aortic wall thickness, but higher diastolic BP, left ventricular mass and urinary output in the absence of increased catecholamine levels. Salt loading also led systolic BP to be higher, but to no further changes in hemodynamic parameters. Importantly, aortic vascular smooth muscle cells and cardiomyocytes were both found to express KCC3 abundantly in heterozygous mice. Hence, Kcc3 inactivation in our model caused systemic vascular resistance and ventricular mass to increase while preventing extracellular fluid volume to accumulate. Given that it also affected the physiological properties of aortas in vitro, vasculogenic mechanisms could therefore account for a number of the hemodynamic abnormalities observed.
Collapse
Affiliation(s)
- Alexandre P. Garneau
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Andrée-Anne Marcoux
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Micheline Noël
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Marie-Claude Drolet
- Valvulopathy Research Group, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Jacques Couet
- Valvulopathy Research Group, Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Richard Larivière
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
| | - Paul Isenring
- Nephrology Research Group, Centre de recherche L’Hôtel-Dieu de Québec, Centre hospitalier universitaire de Québec, Québec City, Canada
- Department of Medicine, Université Laval, Québec City, Canada
- * E-mail:
| |
Collapse
|
13
|
Orlov SN, Koltsova SV, Kapilevich LV, Gusakova SV, Dulin NO. NKCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension. Genes Dis 2015; 2:186-196. [PMID: 26114157 PMCID: PMC4477834 DOI: 10.1016/j.gendis.2015.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 11/17/2022] Open
Abstract
This review summarizes the data on the functional significance of ubiquitous (NKCC1) and renal-specific (NKCC2) isoforms of electroneutral sodium, potassium and chloride cotransporters. These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid, respectively. Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume. However, the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds.
Collapse
Affiliation(s)
- Sergei N. Orlov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Russia
- Тomsk State University, Russia
| | | | | | | | | |
Collapse
|
14
|
Orlov SN, Koltsova SV, Kapilevich LV, Dulin NO, Gusakova SV. Cation-chloride cotransporters: Regulation, physiological significance, and role in pathogenesis of arterial hypertension. BIOCHEMISTRY (MOSCOW) 2015; 79:1546-61. [DOI: 10.1134/s0006297914130070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Na+/H+ exchanger inhibitor augments hyperosmolarity-induced vasoconstriction by enhancing actin polymerization. Vascul Pharmacol 2013; 59:120-6. [DOI: 10.1016/j.vph.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 11/23/2022]
|
16
|
Ding B, Frisina RD, Zhu X, Sakai Y, Sokolowski B, Walton JP. Direct control of Na(+)-K(+)-2Cl(-)-cotransport protein (NKCC1) expression with aldosterone. Am J Physiol Cell Physiol 2013; 306:C66-75. [PMID: 24173102 DOI: 10.1152/ajpcell.00096.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sodium/potassium/chloride cotransporter (NKCC1) proteins play important roles in Na(+) and K(+) concentrations in key physiological systems, including cardiac, vascular, renal, nervous, and sensory systems. NKCC1 levels and functionality are altered in certain disease states, and tend to decline with age. A sensitive, effective way of regulating NKCC1 protein expression has significant biotherapeutic possibilities. The purpose of the present investigation was to determine if the naturally occurring hormone aldosterone (ALD) could regulate NKCC1 protein expression. Application of ALD to a human cell line (HT-29) revealed that ALD can regulate NKCC1 protein expression, quite sensitively and rapidly, independent of mRNA expression changes. Utilization of a specific inhibitor of mineralocorticoid receptors, eplerenone, implicated these receptors as part of the ALD mechanism of action. Further experiments with cycloheximide (protein synthesis inhibitor) and MG132 (proteasome inhibitor) revealed that ALD can upregulate NKCC1 by increasing protein stability, i.e., reducing ubiquitination of NKCC1. Having a procedure for controlling NKCC1 protein expression opens the doors for therapeutic interventions for diseases involving the mis-regulation or depletion of NKCC1 proteins, for example during aging.
Collapse
Affiliation(s)
- Bo Ding
- Department of Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, Florida
| | | | | | | | | | | |
Collapse
|
17
|
Hertz L, Xu J, Song D, Yan E, Gu L, Peng L. Astrocytic and neuronal accumulation of elevated extracellular K(+) with a 2/3 K(+)/Na(+) flux ratio-consequences for energy metabolism, osmolarity and higher brain function. Front Comput Neurosci 2013; 7:114. [PMID: 23986689 PMCID: PMC3749512 DOI: 10.3389/fncom.2013.00114] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022] Open
Abstract
Brain excitation increases neuronal Na+ concentration by 2 major mechanisms: (i) Na+ influx caused by glutamatergic synaptic activity; and (ii) action-potential-mediated depolarization by Na+ influx followed by repolarizating K+ efflux, increasing extracellular K+ concentration. This review deals mainly with the latter and it concludes that clearance of extracellular K+ is initially mainly effectuated by Na+,K+-ATPase-mediated K+ uptake into astrocytes, at K+ concentrations above ~10 mM aided by uptake of Na+,K+ and 2 Cl− by the cotransporter NKCC1. Since operation of the astrocytic Na+,K+-ATPase requires K+-dependent glycogenolysis for stimulation of the intracellular ATPase site, it ceases after normalization of extracellular K+ concentration. This allows K+ release via the inward rectifying K+ channel Kir4.1, perhaps after trans-astrocytic connexin- and/or pannexin-mediated K+ transfer, which would be a key candidate for determination by synchronization-based computational analysis and may have signaling effects. Spatially dispersed K+ release would have little effect on extracellular K+ concentration and allow K+ accumulation by the less powerful neuronal Na+,K+-ATPase, which is not stimulated by increases in extracellular K+. Since the Na+,K+-ATPase exchanges 3 Na+ with 2 K+, it creates extracellular hypertonicity and cell shrinkage. Hypertonicity stimulates NKCC1, which, aided by β-adrenergic stimulation of the Na+,K+-ATPase, causes regulatory volume increase, furosemide-inhibited undershoot in [K+]e and perhaps facilitation of the termination of slow neuronal hyperpolarization (sAHP), with behavioral consequences. The ion transport processes involved minimize ionic disequilibria caused by the asymmetric Na+,K+-ATPase fluxes.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Clinical Pharmacology, China Medical University Shenyang, China
| | | | | | | | | | | |
Collapse
|
18
|
Orlov SN, Koltsova SV, Tremblay J, Baskakov MB, Hamet P. NKCC1 and hypertension: role in the regulation of vascular smooth muscle contractions and myogenic tone. Ann Med 2012; 44 Suppl 1:S111-8. [PMID: 22713139 DOI: 10.3109/07853890.2011.653395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-ceiling diuretics (HCD), known potent inhibitors of housekeeping Na(+),K(+),2Cl cotransporter (NKCC1) and renal-specific NKCC2, decrease [Cl(-)](i), hyperpolarize vascular smooth muscle cells (VSMC), and suppress contractions evoked by modest depolarization, phenylephrine, angiotensin II, and UTP. These actions are absent in nkcc1 (/) knock-out mice, indicating that HCD interact with NKCC1 rather than with other potential targets. These findings also suggest that VSMC-specific inhibitors of NKCC1 may be considered potential pharmacological therapeutic tools in treatment of hypertension. It should be underlined that side by side with attenuation of peripheral resistance and systemic blood pressure, HCD blocked myogenic tone (MT) in renal afferent arterioles. Keeping this in mind, attenuation of MT might be a mechanism underlying the prevalence of end-stage renal disease documented in hypertensive African-Americans with decreased NKCC1 activity and in hypertensive patients subjected to chronic HCD treatment. The role of NKCC1-mediated MT in protection of the brain, heart, and other encapsulated organs deserves further investigation.
Collapse
Affiliation(s)
- Sergei N Orlov
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Technôpole Angus, and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
19
|
Cho HM, Lee DY, Kim HY, Lee HA, Seok YM, Kim IK. Upregulation of the Na+-K+-2Cl− cotransporter 1 via histone modification in the aortas of angiotensin II-induced hypertensive rats. Hypertens Res 2012; 35:819-24. [DOI: 10.1038/hr.2012.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ, Chu P, Sytwu HK, Uchida S, Sasaki S, Lin SH. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 2010; 21:1868-77. [PMID: 20813865 DOI: 10.1681/asn.2009121295] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polymorphisms in the gene encoding sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) associate with hypertension susceptibility in humans. SPAK interacts with WNK kinases to regulate the Na(+)-K(+)-2Cl(-) and Na(+)-Cl(-) co-transporters [collectively, N(K)CC]. Mutations in WNK1/4 and N(K)CC can cause changes in BP and dyskalemia in humans, but the physiologic role of SPAK in vivo is unknown. We generated and analyzed SPAK-null mice by targeting disruption of exons 9 and 10 of SPAK. Compared with SPAK(+/+) littermates, SPAK(+/-) mice exhibited hypotension without significant electrolyte abnormalities, and SPAK(-/-) mice not only exhibited hypotension but also recapitulated Gitelman syndrome with hypokalemia, hypomagnesemia, and hypocalciuria. In the kidney tissues of SPAK(-/-) mice, the expression of total and phosphorylated (p-)NCC was markedly decreased, but that of p-OSR1, total NKCC2, and p-NKCC2 was significantly increased. We observed a blunted response to thiazide but normal response to furosemide in SPAK(-/-) mice. In aortic tissues, total NKCC1 expression was increased but p-NKCC1 was decreased in SPAK-deficient mice. Both SPAK(+/-) and SPAK(-/-) mice had impaired responses to the selective α(1)-adrenergic agonist phenylephrine and the NKCC1 inhibitor bumetanide, suggesting that impaired aortic contractility may contribute to the hypotension of SPAK-null mice. In summary, SPAK-null mice have defects of NCC in the kidneys and NKCC1 in the blood vessels, leading to hypotension through renal salt wasting and vasodilation. SPAK may be a promising target for antihypertensive therapy.
Collapse
Affiliation(s)
- Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
NKCC1 and hypertension: a novel therapeutic target involved in the regulation of vascular tone and renal function. Curr Opin Nephrol Hypertens 2010; 19:163-8. [PMID: 20061948 DOI: 10.1097/mnh.0b013e3283360a46] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The present review summarizes recent advances in our understanding of the mechanisms involving the housekeeping Na+, K+, 2Cl(-) cotransporter (NKCC1) in blood pressure (BP) regulation. RECENT FINDINGS High-ceiling diuretics (HCDs), known potent inhibitors of NKCC1, renal-specific NKCC2 and four isoforms of K+, Cl(-) cotransporters decrease [Cl(-)]i, hyperpolarize vascular smooth muscle cells and suppress myogenic tone and contractions evoked by modest depolarization, phenylephrine, angiotensin II and uridine triphosphate. These actions are absent in NKCC1(-/-) mice, indicating that HCDs interact with NKCC1 rather than with other potential targets. NKCC1-null mice have decreased baseline BP but exhibit augmented BP increment evoked by high-salt diets. NKCC1 deficiency causes approximately three-fold elevation in plasma renin concentrations and attenuates HCD-induced renin production. In addition to HCDs, NKCC1 is also inhibited by extracellular HCO3(-) in the range corresponding to its concentration in ischemic extracellular fluids. SUMMARY NKCC1 modulates BP through vascular and renal effects. In addition to BP regulation, the decreased baseline activity of this carrier or its suppression by chronic treatment with HCDs may lead to inhibition of myogenic tone and progression of end-stage renal disease. NKCC1 activation in ischemia-induced acidosis may contribute to stroke via glutamate release caused by astrocyte swelling.
Collapse
|
22
|
Koltsova SV, Maximov GV, Kotelevtsev SV, Lavoie JL, Tremblay J, Grygorczyk R, Hamet P, Orlov SN. Myogenic tone in mouse mesenteric arteries: evidence for P2Y receptor-mediated, Na(+), K (+), 2Cl (-) cotransport-dependent signaling. Purinergic Signal 2009; 5:343-9. [PMID: 19387869 PMCID: PMC2717317 DOI: 10.1007/s11302-009-9160-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/31/2009] [Indexed: 01/16/2023] Open
Abstract
This study examines the action of agonists and antagonists of P2 receptors on mouse mesenteric artery contractions and the possible involvement of these signaling pathways in myogenic tone (MT) evoked by elevated intraluminal pressure. Both ATP and its non-hydrolyzed analog alpha,beta-ATP triggered transient contractions that were sharply decreased in the presence of NF023, a potent antagonist of P2X(1) receptors. In contrast, UTP and UDP elicited sustained contractions which were suppressed by MRS2567, a selective antagonist of P2Y(6) receptors. Inhibition of Na(+), K(+), 2Cl(-) cotransport (NKCC) with bumetanide led to attenuation of contractions in UTP- but not ATP-treated arteries. Both UTP-induced contractions and MT were suppressed by MRS2567 and bumetanide but were insensitive to NF023. These data implicate a P2Y(6)-mediated, NKCC-dependent mechanism in MT of mesenteric arteries. The action of heightened intraluminal pressure on UTP release from mesenteric arteries and its role in the triggering of P2Y(6)-mediated signaling should be examined further.
Collapse
Affiliation(s)
- Svetlana V. Koltsova
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Georgy V. Maximov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Julie L. Lavoie
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
| | - Johanne Tremblay
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
| | - Ryszard Grygorczyk
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
| | - Pavel Hamet
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
| | - Sergei N. Orlov
- Research Centre, University of Montreal Hospital Centre (CRCHUM), Technopôle Angus, Moscow, Russia
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Centre de recherche, CRCHUM—Technopôle Angus, 2901 rue Rachel Est, Montreal, Quebec H1W 4A4 Canada
| |
Collapse
|
23
|
Koltsova SV, Kotelevtsev SV, Tremblay J, Hamet P, Orlov SN. Excitation-contraction coupling in resistance mesenteric arteries: evidence for NKCC1-mediated pathway. Biochem Biophys Res Commun 2009; 379:1080-3. [PMID: 19150334 DOI: 10.1016/j.bbrc.2009.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 01/03/2009] [Indexed: 01/16/2023]
Abstract
Bumetanide and other high-ceiling diuretics (HCD) attenuate myogenic tone and contractions of vascular smooth muscle cells (VSMC) triggered by diverse stimuli. HCD outcome may be mediated by their interaction with NKCC1, the only isoform of Na(+), K(+), 2Cl(-) cotransporter expressed in VSMC as well as with targets distinct from this carrier. To examine these hypotheses, we compared the effect of bumetanide on contractions of mesenteric arteries from wild-type and NKCC1 knockout mice. In mesenteric arteries from wild-type controls, 100 microM bumetanide evoked a decrease of up to 4-fold in myogenic tone and contractions triggered by modest [K(+)](o)-induced depolarization, phenylephrine and UTP. These actions of bumetanide were preserved after inhibition of nitric oxide synthase with NG-nitro-l-arginine methyl ester, but were absent in mesenteric arteries from NKCC1(-/-) mice. The data show that bumetanide inhibits VSMC contractile responses via its interaction with NKCC1 and independently of nitric oxide production by endothelial cells.
Collapse
Affiliation(s)
- Svetlana V Koltsova
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM - Technopôle Angus), Montreal, PQ, Canada H1W 4A4
| | | | | | | | | |
Collapse
|
24
|
Kim SM, Eisner C, Faulhaber-Walter R, Mizel D, Wall SM, Briggs JP, Schnermann J. Salt sensitivity of blood pressure in NKCC1-deficient mice. Am J Physiol Renal Physiol 2008; 295:F1230-8. [PMID: 18701622 DOI: 10.1152/ajprenal.90392.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NKCC1 is a widely expressed isoform of the Na-2Cl-K cotransporter that mediates several direct and indirect vascular effects and regulates expression and release of renin. In this study, we used NKCC1-deficient (NKCC1-/-) and wild-type (WT) mice to assess day/night differences of blood pressure (BP), locomotor activity, and renin release and to study the effects of high (8%) or low (0.03%) dietary NaCl intake on BP, activity, and the renin/aldosterone system. On a standard diet, 24-h mean arterial blood pressure (MAP) and heart rate determined by radiotelemetry, and their day/night differences, were not different in NKCC1-/- and WT mice. Spontaneous and wheel-running activities in the active night phase were lower in NKCC1-/- than WT mice. In NKCC1-/- mice on a high-NaCl diet, MAP increased by 10 mmHg in the night without changes in heart rate. In contrast, there was no salt-dependent blood pressure change in WT mice. MAP reductions by hydralazine (1 mg/kg) or isoproterenol (10 microg/mouse) were significantly greater in NKCC1-/- than WT mice. Plasma renin (PRC; ng ANG I.ml(-1).h(-1)) and aldosterone (aldo; pg/ml) concentrations were higher in NKCC1-/- than WT mice (PRC: 3,745+/-377 vs. 1,245+/-364; aldo: 763+/-136 vs. 327+/-98). Hyperreninism and hyperaldosteronism were found in NKCC1-/- mice during both day and night. High Na suppressed PRC and aldosterone in both NKCC1-/- and WT mice, whereas a low-Na diet increased PRC and aldosterone in WT but not NKCC1-/- mice. We conclude that 24-h MAP and MAP circadian rhythms do not differ between NKCC1-/- and WT mice on a standard diet, probably reflecting a balance between anti- and prohypertensive factors, but that blood pressure of NKCC1-/- mice is more sensitive to increases and decreases of Na intake.
Collapse
Affiliation(s)
- Soo Mi Kim
- National Institute of Digestive and Diabetes and Kidney Diseases, National Institutes of Health, 10 Center Dr.-MSC 1370, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
High salt consumption contributes to the development of hypertension and is considered an independent risk factor for vascular remodeling, cardiac hypertrophy, and stroke incidence. In this review, we discuss the molecular origins of primary sensors involved in the phenomenon of salt sensitivity. Based on the analysis of literature data, we conclude that the kidneys and central nervous system (CNS) are two major sites for salt sensing via several distinct mechanisms: 1) [Cl(-)] sensing in renal tubular fluids, primarily by Na(+)-K(+)-Cl(-) cotransporter (NKCC) isoforms NKCC2B and NKCC2A, whose expression is mainly limited to macula densa cells; 2) [Na(+)] sensing in cerebrospinal fluid (CSF) by a novel isoform of Na(+) channels, Na(x), expressed in subfornical organs; 3) sensing of CSF osmolality by mechanosensitive, nonselective cation channels (transient receptor potential vanilloid type 1 channels), expressed in neuronal cells of supraoptic and paraventricular nuclei; and 4) osmolarity sensing by volume-regulated anion channels in glial cells of supraoptic and paraventricular nuclei. Such multiplicity of salt-sensing mechanisms likely explains the differential effects of Na(+) and Cl(-) loading on the long-term maintenance of elevated blood pressure that is documented in experimental models of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sergei N Orlov
- Department of Medicine and Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
27
|
Oppermann M, Hansen PB, Castrop H, Schnermann J. Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice. Am J Physiol Renal Physiol 2007; 293:F279-87. [PMID: 17494095 DOI: 10.1152/ajprenal.00073.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Loop diuretics like furosemide have been shown to cause renal vasodilatation in dogs and humans, an effect thought to result from both a direct vascular dilator effect and from inhibition of tubuloglomerular feedback. In isolated perfused afferent arterioles preconstricted with angiotensin II or N(G)-nitro-L-arginine methyl ester, furosemide caused a dose-dependent increase of vascular diameter, but it was without effect in vessels from NKCC1-/- mice suggesting that inhibition of NKCC1 mediates dilatation in afferent arterioles. In the intact kidney, however, furosemide (2 mg/kg iv) caused a 50.5 +/- 3% reduction of total renal blood flow (RBF) and a 27% reduction of superficial blood flow (SBF) accompanied by a marked and immediate increase of tubular pressure and volume. At 10 mg/kg, furosemide reduced RBF by 60.4 +/- 2%. Similarly, NKCC1-/- mice responded to furosemide with a 45.4% decrease of RBF and a 29% decrease of SBF. Decreases in RBF and SBF and increases of tubular pressure by furosemide were ameliorated by renal decapsulation. In addition, pretreatment with candesartan (2 mg/kg) or indomethacin (5 mg/kg) attenuated the reduction of RBF and peak urine flows caused by furosemide. Our data indicate that furosemide, despite its direct vasodilator potential in isolated afferent arterioles, causes a marked increase in flow resistance of the vascular bed of the intact mouse kidney. We suggest that generation of angiotensin II and/or a vasoconstrictor prostaglandin combined with compression of peritubular capillaries by the expanding tubular compartment are responsible for the reduction of RBF in vivo.
Collapse
Affiliation(s)
- Mona Oppermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Orlov SN. NKCC1 as a regulator of vascular tone and a novel target for antihypertensive therapeutics. Am J Physiol Heart Circ Physiol 2007; 292:H2035-6. [PMID: 17308011 DOI: 10.1152/ajpheart.00157.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Garg P, Martin CF, Elms SC, Gordon FJ, Wall SM, Garland CJ, Sutliff RL, O'Neill WC. Effect of the Na-K-2Cl cotransporter NKCC1 on systemic blood pressure and smooth muscle tone. Am J Physiol Heart Circ Physiol 2007; 292:H2100-5. [PMID: 17259435 PMCID: PMC1871614 DOI: 10.1152/ajpheart.01402.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies in rat aorta have shown that the Na-K-2Cl cotransporter NKCC1 is activated by vasoconstrictors and inhibited by nitrovasodilators, contributes to smooth muscle tone in vitro, and is upregulated in hypertension. To determine the role of NKCC1 in systemic vascular resistance and hypertension, blood pressure was measured in rats before and after inhibition of NKCC1 with bumetanide. Intravenous infusion of bumetanide sufficient to yield a free plasma concentration above the IC(50) for NKCC1 produced an immediate drop in blood pressure of 5.2% (P < 0.001). The reduction was not prevented when the renal arteries were clamped, indicating that it was not due to a renal effect of bumetanide. Bumetanide did not alter blood pressure in NKCC1-null mice, demonstrating that it was acting specifically through NKCC1. In third-order mesenteric arteries, bumetanide-inhibitable efflux of (86)Rb was acutely stimulated 133% by phenylephrine, and bumetanide reduced the contractile response to phenylephrine, indicating that NKCC1 influences tone in resistance vessels. The hypotensive effect of bumetanide was proportionately greater in rats made hypertensive by a 7-day infusion of norepinephrine (12.7%, P < 0.001 vs. normotensive rats) but much less so when hypertension was produced by a fixed aortic coarctation (8.0%), again consistent with an effect of bumetanide on resistance vessels rather than other determinants of blood pressure. We conclude that NKCC1 influences blood pressure through effects on smooth muscle tone in resistance vessels and that this effect is augmented in hypertension.
Collapse
Affiliation(s)
- Puneet Garg
- Renal Division, Emory University Hospital, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wangensteen R, Rodríguez-Gomez I, Moreno JM, Vargas F, Alvarez-Guerra M. Chronic nitric oxide blockade modulates renal Na–K–2Cl cotransporters. J Hypertens 2006; 24:2451-8. [PMID: 17082729 DOI: 10.1097/01.hjh.0000251907.93298.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The Na-K-2Cl cotransporter (NKCC2 isoform) of the thick ascending limb of Henle's loop (TAL) plays an important role in renal sodium handling, and the vascular isoform (NKCC1) participates in the response to vasoconstrictors. Both isoforms appear to be regulated by nitric oxide. This study aimed to analyze the effect of chronic nitric oxide deficiency on tubular and vascular Na-K-2Cl cotransporters in kidney and their potential role in the development of N-nitro-L-arginine-methyl ester (L-NAME) hypertension. METHODS Wistar rats were given L-NAME (vehicle, 10, 35 and 80 mg/100 ml drinking water) for 4 weeks. Blood pressure was measured by the tail-cuff method. NKCC2 activity was estimated as the bumetanide-sensitive Rb influx in fresh isolated TAL tubules. NKCC1-contractile function was estimated as the bumetanide-sensitive vasocontractile response to phenylephrine in isolated perfused kidneys. Acute effects of L-NAME and endothelium removal were also evaluated. NKCC2 and NKCC1 protein expression were assessed by western blot analysis. RESULTS Chronic L-NAME administration increased, in a dose-dependent manner, both blood pressure and NKCC2 activity, and these changes significantly correlated (r2 = 0.89, P < 0.01). NKCC1-contractile activity decreased with the highest dose of L-NAME (80 mg/100 ml drinking water group) but it was not affected by acute nitric oxide blockade or endothelium removal. This 80 mg group showed increased NKCC2 expression in the renal medulla and decreased NKCC1 expression in aorta. CONCLUSIONS Chronic nitric oxide deficiency stimulates tubular Na-K-2Cl cotransporter, suggesting that NKCC2 hyperactivity contributes to the inability to excrete sodium, and hence to the development of L-NAME hypertension. In contrast, L-NAME hypertension develops independently of vascular NKCC1-contractile activity.
Collapse
|
31
|
Ortiz PA, Garvin JL. Nitric oxide (NO) modulation of Cl-dependent transporters in the kidney. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 559:147-56. [PMID: 18727236 DOI: 10.1007/0-387-23752-6_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Pablo A Ortiz
- Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA.
| | | |
Collapse
|
32
|
Valero M, Pereboom D, Garay RP, Alda JO. Role of chloride transport proteins in the vasorelaxant action of nitroprusside in isolated rat aorta. Eur J Pharmacol 2006; 553:205-8. [PMID: 17074318 DOI: 10.1016/j.ejphar.2006.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/21/2022]
Abstract
Chloride ions play a key role in smooth muscle contraction, but little is known concerning their role in smooth muscle relaxation. Here we investigated the effect of chloride transport inhibitors on the vasorelaxant responses to nitroprusside in isolated and endothelium-denuded rat aorta, precontracted with phenylephrine 1 muM. Incubation of aortic rings in NO(3)(-) media strongly potentiated the vasorelaxant responses to nitroprusside. Bumetanide, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and acetazolamide strongly potentiated the vasorelaxant responses to nitroprusside (by 70-100%). EC(50) were 2.3+/-0.5 microM for bumetanide, 26+/-15 microM for DIDS and 510+/-118 microM for acetazolamide (n=6 for condition). Niflumic acid, a selective inhibitor of ClCa (calcium-activated chloride channels), potentiated nitroprusside relaxation to a similar extent as chloride transport inhibitors, in a non-additive manner. Zinc and nickel ions, both modestly potentiated nitroprusside vasorelaxation (by 20-30%). Cobaltum had negligible effect on nitroprusside vasorelaxation. CPA (p-chlorophenoxy-acetic acid), an inhibitor of volume-sensitive chloride channels (ClC), slightly potentiated nitroprusside vasorelaxation (by 15%), and the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel inhibitors CFTR(inh)172 (5-[(4-Carboxyphenyl)methylene]-2-thioxo-3-[(3-trifluoromethyl)phenyl-4-thiazolidinone), DPC (diphenylamine-2,2'-dicarboxylic acid) and glibenclamide were without significant effect. In conclusion, inhibition of chloride transport proteins strongly potentiates the vasorelaxant responses to nitroprusside in isolated rat aorta. This effect seems mediated by chloride depletion and inhibition of a chloride channel activated by both, calcium and cyclic GMP (cGMP).
Collapse
Affiliation(s)
- Marta Valero
- Department of Physiology and Pharmacology, School of Medicine, University of Zaragoza, Spain
| | | | | | | |
Collapse
|
33
|
Orlov SN, Hamet P. Intracellular monovalent ions as second messengers. J Membr Biol 2006; 210:161-72. [PMID: 16909338 DOI: 10.1007/s00232-006-0857-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 02/08/2006] [Indexed: 01/03/2023]
Abstract
It is generally accepted that electrochemical gradients of monovalent ions across the plasma membrane, created by the coupled function of pumps, carriers and channels, are involved in the maintenance of resting and action membrane potential, cell volume adjustment, intracellular Ca(2+ )handling and accumulation of glucose, amino acids, nucleotides and other precursors of macromolecular synthesis. In the present review, we summarize data showing that side-by-side with these classic functions, modulation of the intracellular concentration of monovalent ions in a physiologically reasonable range is sufficient to trigger numerous cellular responses, including changes in enzyme activity, gene expression, protein synthesis, cell proliferation and death. Importantly, the engagement of monovalent ions in regulation of the above-listed cellular responses occurs at steps upstream of Ca(2+) (i) and other key intermediates of intracellular signaling, which allows them to be considered as second messengers. With the exception of HCO (3) (-) -sensitive soluble adenylyl cyclase, the molecular origin of sensors involved in the function of monovalent ions as second messengers remains unknown.
Collapse
Affiliation(s)
- S N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal, (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada.
| | | |
Collapse
|
34
|
Palacios J, Espinoza F, Munita C, Cifuentes F, Michea L. Na+ -K+ -2Cl- cotransporter is implicated in gender differences in the response of the rat aorta to phenylephrine. Br J Pharmacol 2006; 148:964-72. [PMID: 16799647 PMCID: PMC1751927 DOI: 10.1038/sj.bjp.0706818] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inhibition of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) with bumetanide reduced contractile responses to phenylephrine (PE) in male rat aortas (129+/-4% of 60 mM KCl-induced contraction control vs 108+/-7% bumetanide; PE 10(-5) M; P<0.01) but did not change equivalent responses in female rat aortas. Removal of the endothelium blunted the effect of NKCC1 inhibition on the response to PE (10(-5) M) in males, whereas in denuded aorta from female rats, bumetanide reduced this response (162+/-5% control vs 146+/-3% bumetanide; P<0.05). NKCC1 basal activity did not show gender differences in intact aortic rings, but in the presence of PE, bumetanide-sensitive (86)Rb(+)/K(+) uptake increased more in male than female aortas (179+/-8 in males vs 158+/-5 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1) in females; P<0.05). PE did not stimulate NKCC1 activity in denuded aorta from male rats. However, in female rats, PE increased NKCC1 activity similarly in both denuded (169+/-11 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1)) and intact aortas. Ovariectomy increased the bumetanide-sensitive (86)Rb(+)/K(+) uptake increase elicited by PE (223+/-17 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1)) and hormone replacement with 17beta-estradiol prevented this effect (159+/-29 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1)). Na(+),K(+)-ATPase basal activity, measured as ouabain-sensitive (86)Rb(+)/K(+) uptake, was similar in male and female rats, but the effect of PE was significantly less in intact male aortas (232+/-16 in males vs 296+/-25 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1) in females; P<0.05). Our results suggest that PE induced activation of NKCC1 and Na(+),K(+)-ATPase in the rat aorta in a gender-dependent way.
Collapse
Affiliation(s)
- Javier Palacios
- Facultad de Ciencias, Dpto. de Ciencias Químicas y Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Casilla 1280 Chile.
| | | | | | | | | |
Collapse
|
35
|
Wouters M, De Laet A, Donck LV, Delpire E, van Bogaert PP, Timmermans JP, de Kerchove d'Exaerde A, Smans K, Vanderwinden JM. Subtractive hybridization unravels a role for the ion cotransporter NKCC1 in the murine intestinal pacemaker. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1219-27. [PMID: 16123204 DOI: 10.1152/ajpgi.00032.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the small intestine, interstitial cells of Cajal (ICC) surrounding the myenteric plexus generate the pacemaking slow waves that are essential for an efficient intestinal transit. The underlying molecular mechanisms of the slow wave are poorly known. Our aim was to identify ICC-specific genes and their function in the mouse jejunum. Suppression subtractive hybridization using two independent ICC-deficient mouse models identified 56 genes putatively downregulated in the muscularis propria compared with wild-type littermates. Differential expression was confirmed by real-time quantitative PCR for the tyrosine kinase receptor KIT, the established marker for ICC, and for the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). Immunoreactivity for NKCC1 was detected in myenteric ICC but not in the ICC population located at the deep muscular plexus. NKCC1 was also expressed in enteric neurons and mucosal crypts. Bumetanide, an NKCC1 inhibitor, reversibly affected the shape, amplitude, and frequency of the slow waves. Similar alterations were observed in NKCC1 knockout mice. These data support the hypothesis that NKCC1 expressed in myenteric ICC is involved in the mechanism of slow waves in the murine jejunum.
Collapse
Affiliation(s)
- Mira Wouters
- Laboratoire de Neurophysiology, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dai Y, Tang J, Zhang JH. Role of Cl- in cerebral vascular tone and expression of Na+-K+-2Cl- co-transporter after neonatal hypoxia-ischemia. Can J Physiol Pharmacol 2006; 83:767-73. [PMID: 16333378 DOI: 10.1139/y05-076] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloride (Cl-) efflux induces depolarization and contraction of vascular smooth muscle cells. In the basilar arteries from the New Zealand white rabbits, the role of Cl- flux in serotonin-induced contraction was demonstrated by (i) inhibition of Na+-K+-2Cl- co-transporter (NKCC1) to decreased Cl- influx with bumetanide; (ii) a disabled Cl-/HCO3- exchanger with bicarbonate free HEPES solution; (iii) blockade of Cl- channels using 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and indanyloxyacetic acid 94, R-(+)-methylindazone (R-(+)-IAA-94); and (iv) substitution of extracellular Cl- with methanesulfonate acid (113 mmol/L; Cl-, 10 mmol/L). In addition, the expression of NKCC1 in brain tissues after neonatal hypoxia-ischemia was examined at mRNA and protein levels using RT-PCR and Western blotting techniques. NKCC1 mRNA and protein expressions were increased at 24 and 48 h and returned to normal levels at 72 h after hypoxia insult when compared with the control littermates. In conclusion, Cl- efflux regulates cerebral circulation and the up-regulation of NKCC1 after neonatal hypoxia-ischemia may contribute to brain injury.
Collapse
Affiliation(s)
- Yun Dai
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
37
|
Anfinogenova YJ, Baskakov MB, Kovalev IV, Kilin AA, Dulin NO, Orlov SN. Cell-volume-dependent vascular smooth muscle contraction: role of Na+, K+, 2Cl- cotransport, intracellular Cl- and L-type Ca2+ channels. Pflugers Arch 2005; 449:42-55. [PMID: 15293051 DOI: 10.1007/s00424-004-1316-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study elucidates the role of cell volume in contractions of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat aorta. We observed that hyposmotic swelling as well as hyper- and isosmotic shrinkage led to VSMR contractions. Swelling-induced contractions were accompanied by activation of Ca2+ influx and were abolished by nifedipine and verapamil. In contrast, contractions of shrunken cells were insensitive to the presence of L-type channel inhibitors and occurred in the absence of Ca2+ o. Thirty minutes preincubation with bumetanide, a potent Na+, K+, CI- cotransport (NKCC) inhibitor, decreased Cl(-)i content, nifedipine-sensitive 45Ca uptake and contractions triggered by modest depolarization ([K+]o = 36 mM). Elevation of [K+]o to 66 mM completely abolished the effect of bumetanide on these parameters. Bumetanide almost completely abrogated phenylephrine-induced contraction, partially suppressed contractions triggered by hyperosmotic shrinkage, but potentiated contractions of isosmotically shrunken VSMR. Our results suggest that bumetanide suppresses contraction of modestly depolarized cells via NKCC inhibition and Cl(-)i-mediated membrane hyperpolarization, whereas augmented contraction of isosmotically shrunken VSMR by bumetanide is a consequence of suppression of NKCC-mediated regulatory volume increase. The mechanism of bumetanide inhibition of contraction of phenylephrine-treated and hyperosmotically shrunken VSMR should be examined further.
Collapse
Affiliation(s)
- Yana J Anfinogenova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russia
| | | | | | | | | | | |
Collapse
|
38
|
Saleh SN, Greenwood IA. Activation of chloride currents in murine portal vein smooth muscle cells by membrane depolarization involves intracellular calcium release. Am J Physiol Cell Physiol 2005; 288:C122-31. [PMID: 15355851 DOI: 10.1152/ajpcell.00384.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study describes the first characterization of Ca2+-activated Cl− currents ( IClCa) in single smooth muscle cells from a murine vascular preparation (portal veins). IClCa was recorded using the perforated patch version of the whole cell voltage-clamp technique and was evoked using membrane depolarization. Generation of IClCa relied on Ca2+ entry through dihydropyridine-sensitive Ca2+ channels because IClCa was abolished by 1 μM nicardipine and enhanced by raising external Ca2+ concentration or by application of BAY K 8644. IClCa was characterized by the sensitivity to Cl− channel blockers and the effect of altering the external anion on reversal potential. Activation of IClCa after membrane depolarization was dependent on Ca2+ release from intracellular stores. Thus the amplitude of IClCa was diminished by the SR-ATPase inhibitor cyclopiazonic acid, the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the ryanodine receptor blocker tetracaine. The degree of inhibition produced by the application of 2-APB and tetracaine together was significantly greater than the effect of each agent applied alone. In current-clamp mode, injection of depolarizing current elicited a biphasic action potential, with the later depolarization being sensitive to niflumic acid (NFA; 10 μM). In isometric tension recordings, NFA inhibited spontaneous contractions. These data support a role for this conductance in portal vein excitability.
Collapse
Affiliation(s)
- Sohag N Saleh
- Department of Basic Medical Sciences, Pharmacology and Clinical Pharmacology, St. George's Hospital Medical School, London, United Kingdom
| | | |
Collapse
|
39
|
Cal?? LA, Pessina AC, Semplicini A. Angiotensin II Signalling in Bartter???s and Gitelman???s Syndromes. High Blood Press Cardiovasc Prev 2005. [DOI: 10.2165/00151642-200512010-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
40
|
Jiang G, Akar F, Cobbs SL, Lomashvilli K, Lakkis R, Gordon FJ, Sutliff RL, O'Neill WC. Blood pressure regulates the activity and function of the Na-K-2Cl cotransporter in vascular smooth muscle. Am J Physiol Heart Circ Physiol 2004; 286:H1552-7. [PMID: 15020309 DOI: 10.1152/ajpheart.00695.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na-K-2Cl cotransporter (NKCC1) is one of several transporters that have been linked to hypertension, and its inhibition reduces vascular smooth muscle tone and blood pressure. NKCC1 in the rat aorta is stimulated by vasoconstrictors and inhibited by nitrovasodilators, and this is linked to the contractile state of the smooth muscle. To determine whether blood pressure also regulates NKCC1, we examined the acute effect of hypertension on NKCC1 in rats after aortic coarctation. In the hypertensive aorta (28-mmHg rise in mean blood pressure), an increase in NKCC1 activity (measured as bumetanide-sensitive (86)Rb efflux) was apparent by 16 h and reached a plateau of 62% greater than control at 48 h. In contrast, there was a slight decrease in NKCC1 activity in the hypotensive aorta (21% decrease in mean blood pressure). Measurement of NKCC1 mRNA by real-time PCR revealed a fivefold increase in the hypertensive aorta compared with the hypotensive aorta or sham aorta. The inhibition by bumetanide of isometric force response to phenylephrine was significantly greater in the hypertensive aorta than in the control aorta or hypotensive aorta. We conclude that NKCC1 in rat aortic smooth muscle is regulated by blood pressure, most likely through changes in transporter abundance. This upregulation of NKCC1 is associated with a greater contribution to force generation in the hypertensive aorta. This is the first demonstration that NKCC1 in vascular smooth muscle is regulated by blood pressure and indicates that this transporter is important in the acute response of vascular smooth muscle to hypertension.
Collapse
Affiliation(s)
- Gengru Jiang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schettino T, Lionetto MG. Cl- absorption in European eel intestine and its regulation. ACTA ACUST UNITED AC 2004; 300:63-8. [PMID: 14598387 DOI: 10.1002/jez.a.10310] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The intestinal epithelium of the euryhaline teleost fish, Anguilla anguilla, absorbs Cl(-) transepithelially. This gives rise to a negative transepithelial potential at the basolateral side of the epithelium and to a measured short circuit current. Cl(-) absorption occurs via bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransport, localized on the luminal membrane. The cotransport operates in parallel with a luminal K(+) conductance that recycles the ion into the lumen. Cl(-) leaves the cell across the basolateral membrane by way of Cl(-) conductance and presumably via a KCl cotransport. The driving force for this process is provided by the electrochemical sodium gradient across the plasma membrane, generated and maintained by the basolateral Na(+)-K(+)-ATPase. The resulting NaCl absorption process is active and enables marine fish to take up water, thereby compensating for water that was lost passively from the body. Fresh water acclimatized eel also absorb Cl(-) actively, although in smaller quantities, utilizing the same ion transport mechanisms as marine eels. This mechanism is basically the same as the model proposed for the thick ascending limb (cTAL). Cl(-) absorption is regulated by a number of cellular factors, such as HCO(3) (-), pH, Ca(2+), cyclic nucleotides, and cytoskeletal elements. It is sensitive to osmotic stress, and therefore is a good physiological model to study ion transport mechanisms that are activated when osmotic stress induces cell volume regulation. The activation of these various ion transport pathways is dependent on cellular transduction mechanisms in which phosphorylation events (mainly by PKC and MLCK for the hypertonic response) and cytoskeletal elements, either microfilaments or microtubules, seem to play key roles.
Collapse
Affiliation(s)
- T Schettino
- Department of Biological and Environmental Sciences and Technologies, University of Lecce, 73100 Lecce, Italy.
| | | |
Collapse
|
42
|
Adragna NC, Chen Y, Delpire E, Lauf PK, Morris M. Hypertension in K-Cl cotransporter-3 knockout mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 559:379-385. [PMID: 18727257 DOI: 10.1007/0-387-23752-6_35] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Norma C Adragna
- Dept. of Pharmacology and Toxicology, Wright State University School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | | | | | | | | |
Collapse
|
43
|
Kovács G, Komlósi P, Fuson A, Peti-Peterdi J, Rosivall L, Bell PD. Neuronal Nitric Oxide Synthase: Its Role and Regulation in Macula Densa Cells. J Am Soc Nephrol 2003; 14:2475-83. [PMID: 14514725 DOI: 10.1097/01.asn.0000088737.05283.2b] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT. Macula densa (MD) cells detect changes in distal tubular sodium chloride concentration ([NaCl]L), at least in part, through an apical Na:2Cl:K co-transporter. This co-transporter may be a site for regulation of tubuloglomerular feedback (TGF), and recently angiotensin II (Ang II) was shown to regulate the MD Na:2Cl:K co-transporter. In addition, nitric oxide (NO) produced via neuronal NO synthase (nNOS) in MD cells attenuates MD-TGF signaling. This study investigated [NaCl]L-dependent MD-NO production, the regulation of co-transporter activity by NO, and the possible interaction of NO with Ang II. MD cell Na+ concentration ([Na+]i) and NO production were measured using sodium-binding benzofuran isophthalate and 4-amino-5-methylamino-2′,7′-difluorescein diacetate, respectively, using fluorescence microscopy. Na:2Cl:K co-transport activity was assessed as the initial rate of increase in [Na+]i when [NaCl]L was elevated from 25 to 150 mM. 10−4 M 7-nitroindazole, a specific nNOS blocker, significantly increased by twofold the initial rate of rise in [Na+]i when [NaCl]L was increased from 25 to 150 mM, indicating co-transporter stimulation. There was no evidence for an interaction between the stimulatory effect of Ang II and the inhibitory effect of NO on co-transport activity, and, furthermore, Ang II failed to alter MD-NO production. NO production was sensitive to [NaCl]L but increased only when [NaCl]L was elevated from 60 to 150 mM. These studies indicate that MD-NO directly inhibits Na:2Cl:K co-transport and that NO and Ang II independently alter co-transporter activity. In addition, generation of MD-NO seems to occur only at markedly elevated [NaCl]L, suggesting that NO may serve as a buffer against high rates of MD cell transport and excessive TGF-mediated vasoconstriction. E-mail: pdbell@uab.edu
Collapse
Affiliation(s)
- Gergely Kovács
- Nephrology Research and Training Center, Division of Nephrology, Departments of Medicine and Physiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
44
|
He H, Podymow T, Zimpelmann J, Burns KD. NO inhibits Na+-K+-2Cl- cotransport via a cytochrome P-450-dependent pathway in renal epithelial cells (MMDD1). Am J Physiol Renal Physiol 2003; 284:F1235-44. [PMID: 12582005 DOI: 10.1152/ajprenal.00192.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) exerts direct effects on nephron transport. We determined the effect of NO on Na(+)-K(+)-2Cl(-) cotransport in a cell line (MMDD1) with properties of macula densa. Na(+)-K(+)-2Cl(-) cotransport was measured as bumetanide-sensitive (86)Rb(+) uptake in the presence of ouabain. MMDD1 cells expressed mRNA for the neuronal isoform of nitric oxide synthase, as well as NKCC1 and NKCC2(B) isoforms of the Na(+)-K(+)-2Cl(-) cotransporter. Preincubation of cells with the NO donors sodium nitroprusside (SNP) or S-nitroso-N-acetylpenicillamine (SNAP) caused concentration-dependent inhibition of Na(+)-K(+)-2Cl(-) cotransport. Both apical and basolateral Na(+)-K(+)-2Cl(-) cotransport was inhibited by NO donors. SNP or SNAP had no significant effect on cellular levels of cGMP, cAMP, cytosolic calcium, or phosphorylation of ERK1 and ERK2. In contrast, the inhibitors of cytochrome P-450, 1-aminobenzotriazole (ABT; 10(-3) M) or ketoconazole (1.5 x 10(-5) M), completely reversed the inhibitory effect of SNAP on apical or basolateral Na(+)-K(+)-2Cl(-) cotransport [apical: control 1.18 +/- 0.15 vs. SNAP (10(-4) M) 0.41 +/- 0.05 pmol x mg(-1) x 5 min(-1); P < 0.001; SNAP (10(-4) M) + ABT 1.32 +/- 0.10 pmol x mg(-1) x 5 min(-1); P = not significant vs. control; n = 5]. The cytochrome P-450 epoxyeicosatrienoic acid (EET) metabolite 14,15-EET (5 x 10(-7) M) inhibited both apical and basolateral cotransport, whereas 8,9-EET and 11,12-EET had no significant effect. Although 20-hydroxyeicosatetraenoic acid inhibited apical cotransport, the inhibitor of omega-hydroxylase activity HET0016 did not reverse SNAP-mediated inhibition of apical cotransport. These data indicate that NO inhibits apical and basolateral Na(+)-K(+)-2Cl(-) cotransport in MMDD1 cells. The results suggest that the inhibitory pathway is independent of cGMP and might involve stimulation of a cytochrome P-450-dependent pathway.
Collapse
Affiliation(s)
- Hao He
- Department of Medicine, Ottawa Hospital, and the Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | |
Collapse
|
45
|
Jiang G, Cobbs S, Klein JD, O'Neill WC. Aldosterone regulates the Na-K-2Cl cotransporter in vascular smooth muscle. Hypertension 2003; 41:1131-5. [PMID: 12668585 DOI: 10.1161/01.hyp.0000066128.04083.ca] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldosterone increases cation transport and contractility of vascular smooth muscle, but the specific transporter involved and how it is linked to smooth muscle tone is unknown. Because the Na-K-2Cl cotransporter (NKCC1) contributes to vascular smooth muscle contraction and is regulated by vasoactive compounds, we sought to determine whether this transporter is a target of aldosterone in rat aorta. Treatment of adrenalectomized rats with aldosterone for 7 days resulted in a 63% increase in NKCC1 activity as measured by bumetanide-sensitive efflux of 86Rb+. Treatment of normal aortas in culture with aldosterone for 3 and 7 days resulted in 29% and 47% increases in NKCC1 activity, respectively. Aldosterone had no acute effect on 86Rb+ efflux. Stimulation of NKCC1 was blocked by spironolactone, a mineralocorticoid receptor antagonist, but not by RU38486, a glucocorticoid receptor antagonist. Aldosterone did not augment the stimulation of NKCC1 by phenylephrine and did not increase NKCC1 mRNA as determined by real-time polymerase chain reaction. We conclude that aldosterone regulates the Na-K-2Cl cotransporter in vascular smooth muscle through classic mineralocorticoid receptors but not through changes in the abundance of NKCC1 mRNA. This could account for the increase in Na+, K+, and Cl- fluxes previously observed in vascular smooth muscle from mineralocorticoid-treated animals and may contribute to increased vascular tone.
Collapse
Affiliation(s)
- Gengru Jiang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Ga 30322, USA
| | | | | | | |
Collapse
|
46
|
Flatman PW. Regulation of Na-K-2Cl cotransport by phosphorylation and protein-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:140-51. [PMID: 12421545 DOI: 10.1016/s0005-2736(02)00586-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Na-K-2Cl cotransporter plays important roles in cell ion homeostasis and volume control and is particularly important in mediating the movement of ions and thus water across epithelia. In addition to being affected by the concentration of the transported ions, cotransport is affected by cell volume, hormones, growth factors, oxygen tension, and intracellular ionized Mg(2+) concentration. These probably influence transport through three main routes acting in parallel: cotransporter phosphorylation, protein-protein interactions and cell Cl(-) concentration. Many effects are mediated, at least in part, by changes in protein phosphorylation, and are disrupted by kinase and phosphatase inhibitors, and manoeuvres that reduce cell ATP content. In some cases, phosphorylation of the cotransporter itself on serine and threonine (but not tyrosine) is associated with changes in transport rate, in others, phosphorylation of associated proteins has more influence. Analysis of the stimulation of cotransport by calyculin A, arsenite and deoxygenation suggests that the cotransporter is phosphorylated by several kinases and dephosphorylated by several phosphatases. These kinases and phosphatases may themselves be regulated by phosphorylation of residues including tyrosine, with Src kinases possibly playing an important role. Protein-protein interactions also influence cotransport activity. Cotransporter molecules bind to each other to form high molecular weight complexes, they also bind to other members of the cation-chloride cotransport family, to a variety of cytoskeletal proteins, and to enzymes that are part of regulatory cascades. Many of these interactions affect transport and may override the effects of cotransporter phosphorylation. Cell Cl(-) may also directly affect the way the cotransporter functions independently of its role as substrate.
Collapse
Affiliation(s)
- Peter W Flatman
- Membrane Biology Group, Division of Biomedical and Clinical Laboratory Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh Scotland, UK.
| |
Collapse
|
47
|
Meyer JW, Flagella M, Sutliff RL, Lorenz JN, Nieman ML, Weber CS, Paul RJ, Shull GE. Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na(+)-K(+)-2Cl(-) cotransporter. Am J Physiol Heart Circ Physiol 2002; 283:H1846-55. [PMID: 12384462 DOI: 10.1152/ajpheart.00083.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly lower systolic blood pressure than wild-type (Nkcc1(+/+)) mice (114.5 +/- 2.2 and 131.8 +/- 2.5 mmHg, respectively). Serum aldosterone levels were normal, indicating that extracellular fluid-volume homeostasis was not impaired. Studies using pressure transducers in the femoral artery and left ventricle showed that anesthetized Nkcc1(-/-) mice have decreased mean arterial pressure and left ventricular pressure, whereas myocardial contraction parameters were not significantly different from those of Nkcc1(+/+) mice. When stimulated with phenylephrine, aortic smooth muscle from Nkcc1(+/+) and Nkcc1(-/-) mice exhibited no significant differences in maximum contractility and only moderate dose-response shifts. In phasic portal vein smooth muscle from Nkcc1(-/-) mice, however, a sharp reduction in mechanical force was noted. These results indicate that NKCC1 can be important for the maintenance of normal blood pressure and vascular tone.
Collapse
Affiliation(s)
- Jamie W Meyer
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dai Y, Zhang JH. Manipulation of chloride flux affects histamine-induced contraction in rabbit basilar artery. Am J Physiol Heart Circ Physiol 2002; 282:H1427-36. [PMID: 11893580 DOI: 10.1152/ajpheart.00837.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cl(-) efflux induces depolarization and contraction of smooth muscle cells. This study was undertaken to explore the role of Cl(-) flux in histamine-induced contraction in the rabbit basilar artery. Male New Zealand White rabbits (n = 16) weighing 1.8-2.5 kg were euthanized by an overdose of pentobarbital sodium. The basilar arteries were removed for isometric tension recording. Histamine produced a concentration-dependent contraction that was attenuated by the H(1) receptor antagonist chlorpheniramine (10(-8) M) but not by the H(2) receptor antagonist cimetidine (3 x 10(-6) M) in normal Cl(-) Krebs-Henseleit bicarbonate solution (123 mM Cl(-)). The histamine-induced contraction was reduced by the following manipulations: 1) inhibition of Na(+)-K(+)-2Cl(-) cotransporter with bumetanide (3 x 10(-5) and 10(-4) M), 2) bicarbonate-free HEPES solution to disable Cl(-)/HCO exchanger, and 3) blockade of Cl(-) channels with the use of niflumic acid, 5-nitro-2-(3-phenylpropylamino) benzoic acid, and indoleacetic acid 94 R-(+)-methylindazone. In addition, substitution of extracellular Cl(-) (10 mM) with methanesulfonate acid (113 mM) transiently enhanced histamine-induced contraction. Manipulation of Cl(-) flux affects histamine-induced contraction in the rabbit basilar artery.
Collapse
Affiliation(s)
- Yun Dai
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | |
Collapse
|
49
|
Gosmanov AR, Thomason DB. Insulin and isoproterenol differentially regulate mitogen-activated protein kinase-dependent Na(+)-K(+)-2Cl(-) cotransporter activity in skeletal muscle. Diabetes 2002; 51:615-23. [PMID: 11872658 DOI: 10.2337/diabetes.51.3.615] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies have demonstrated that p44/42(MAPK) extracellular signal-regulated kinase (ERK)1 and -2-dependent Na(+)-K(+)-2Cl(-) co-transporter (NKCC) activity may contribute to total potassium uptake by skeletal muscle. To study the precise mechanisms regulating NKCC activity, rat soleus and plantaris muscles were stimulated ex vivo by insulin or isoproterenol (ISO). Both hormones stimulated total uptake of the potassium congener (86)Rb by 25--70%. However, only ISO stimulated the NKCC-mediated (86)Rb uptake. Insulin inhibited the ISO-stimulated NKCC activity, and this counteraction was sensitive to the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 in the predominantly slow-twitch soleus muscle. Pretreatment of the soleus muscle with the phosphatidylinositol (PI) 3-kinase inhibitors wortmannin and LY294002 or with SB203580 uncovered an insulin-stimulated NKCC activity and also increased the insulin-stimulated phosphorylation of ERK. In the predominantly fast-twitch plantaris muscle, insulin-stimulated NKCC activity became apparent only after inhibition of PI 3-kinase activity, accompanied by an increase in ERK phosphorylation. PI 3-kinase inhibitors also abolished insulin-stimulated p38 MAPK phosphorylation in the plantaris muscle and Akt phosphorylation in both muscles. These data demonstrated that insulin inhibits NKCC-mediated transport in skeletal muscle through PI 3-kinase-sensitive and SB203580-sensitive mechanisms. Furthermore, differential activation of signaling cascade elements after hormonal stimulation may contribute to fiber-type specificity in the control of potassium transport by skeletal muscle.
Collapse
Affiliation(s)
- Aidar R Gosmanov
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
50
|
Kovács G, Peti-Peterdi J, Rosivall L, Bell PD. Angiotensin II directly stimulates macula densa Na-2Cl-K cotransport via apical AT(1) receptors. Am J Physiol Renal Physiol 2002; 282:F301-6. [PMID: 11788444 DOI: 10.1152/ajprenal.00129.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II is a modulator of tubuloglomerular feedback (TGF); however, the site of its action remains unknown. Macula densa (MD) cells sense changes in luminal NaCl concentration ([NaCl](L)) via a Na-2Cl-K cotransporter, and these cells do possess ANG II receptors. We tested whether ANG II regulates Na-2Cl-K cotransport in MD cells. MD cell Na(+) concentration ([Na(+)](i)) was measured using sodium-binding benzofuran isophthalate with fluorescence microscopy. Resting [Na(+)](i) in MD cells was 27.7 +/- 1.05 mM (n = 138) and increased (Delta[Na(+)](i)) by 18.5 +/- 1.14 mM (n = 17) at an initial rate (Delta[Na(+)](i)/Deltat) of 5.54 +/- 0.53 x 10(-4) U/s with an increase in [NaCl](L) from 25 to 150 mM. Both Delta[Na(+)](i) and Delta[Na(+)](i)/Deltat were inhibited by 80% with 100 microM luminal furosemide. ANG II (10(-9) or 10(-12) M) added to the lumen increased MD resting [Na(+)](i) and [NaCl](L)-dependent Delta[Na(+)](i) and caused a twofold increase in Delta[Na(+)](i)/Deltat. Bath (10(-9) M) ANG II also stimulated cotransport activity, and there was no additive effect of simultaneous addition of ANG II to bath and lumen. The effects of luminal ANG II were furosemide sensitive and abolished by the AT(1) receptor blocker candesartan. ANG II at 10(-6) M failed to stimulate the cotransporter, whereas increased cotransport activity could be restored by blocking AT(2) receptors with PD-123, 319. Thus ANG II may modulate TGF responses via alterations in MD Na-2Cl-K cotransport activity.
Collapse
Affiliation(s)
- Gergely Kovács
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|