1
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
2
|
Wasilewicz LJ, Gagnon ZE, Jung J, Mercier AJ. Investigating postsynaptic effects of a Drosophila neuropeptide on muscle contraction. J Neurophysiol 2024; 131:137-151. [PMID: 38150542 DOI: 10.1152/jn.00246.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023] Open
Abstract
The Drosophila neuropeptide, DPKQDFMRFamide, was previously shown to enhance excitatory junctional potentials (EJPs) and muscle contraction by both presynaptic and postsynaptic actions. Since the peptide acts on both sides of the synaptic cleft, it has been difficult to examine postsynaptic modulatory mechanisms, particularly when contractions are elicited by nerve stimulation. Here, postsynaptic actions are examined in 3rd instar larvae by applying peptide and the excitatory neurotransmitter, l-glutamate, in the bathing solution to elicit contractions after silencing motor output by removing the central nervous system (CNS). DPKQDFMRFamide enhanced glutamate-evoked contractions at low concentrations (EC50 1.3 nM), consistent with its role as a neurohormone, and the combined effect of both substances was supra-additive. Glutamate-evoked contractions were also enhanced when transmitter release was blocked in temperature-sensitive (Shibire) mutants, confirming the peptide's postsynaptic action. The peptide increased membrane depolarization in muscle when co-applied with glutamate, and its effects were blocked by nifedipine, an L-type channel blocker, indicating effects at the plasma membrane involving calcium influx. DPKQDFMRFamide also enhanced contractions induced by caffeine in the absence of extracellular calcium, suggesting increased calcium release from the sarcoplasmic reticulum (SR) or effects downstream of calcium release from the SR. The peptide's effects do not appear to involve calcium/calmodulin-dependent protein kinase II (CaMKII), previously shown to mediate presynaptic effects. The approach used here might be useful for examining postsynaptic effects of neurohormones and cotransmitters in other systems.NEW & NOTEWORTHY Distinguishing presynaptic and postsynaptic effects of neurohormones is a long-standing challenge in many model organisms. Here, postsynaptic actions of DPKQDFMRFamide are demonstrated by assessing its ability to potentiate contractions elicited by direct application of the neurotransmitter, glutamate, when axons are silent and when transmitter release is blocked. The peptide acts at multiple sites to increase contraction, increasing glutamate-induced depolarization at the cell membrane, acting on L-type channels, and acting downstream of calcium release from the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Lucas J Wasilewicz
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Zoe E Gagnon
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - JaeHwan Jung
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A Joffre Mercier
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
3
|
Oliveira-Paula GH, I M Batista R, Stransky S, Tella SC, Ferreira GC, Portella RL, Pinheiro LC, Damacena-Angelis C, Riascos-Bernal DF, Sidoli S, Sibinga N, Tanus-Santos JE. Orally administered sodium nitrite prevents the increased α-1 adrenergic vasoconstriction induced by hypertension and promotes the S-nitrosylation of calcium/calmodulin-dependent protein kinase II. Biochem Pharmacol 2023; 212:115571. [PMID: 37127250 PMCID: PMC10198929 DOI: 10.1016/j.bcp.2023.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The unsatisfactory rates of adequate blood pressure control among patients receiving antihypertensive treatment calls for new therapeutic strategies to treat hypertension. Several studies have shown that oral sodium nitrite exerts significant antihypertensive effects, but the mechanisms underlying these effects remain unclear. While these mechanisms may involve nitrite-derived S-nitrosothiols, their implication in important alterations associated with hypertension, such as aberrant α1-adrenergic vasoconstriction, has not yet been investigated. Here, we examined the effects of oral nitrite treatment on vascular responses to the α1-adrenergic agonist phenylephrine in two-kidney, one clip (2K1C) hypertensive rats and investigated the potential underlying mechanisms. Our results show that treatment with oral sodium nitrite decreases blood pressure and prevents the increased α1-adrenergic vasoconstriction in 2K1C hypertensive rats. Interestingly, we found that these effects require vascular protein S-nitrosylation, and to investigate the specific S-nitrosylated proteins we performed an unbiased nitrosoproteomic analysis of vascular smooth muscle cells (VSMCs) treated with the nitrosylating compound S-nitrosoglutathione (GSNO). This analysis revealed that GSNO markedly increases the nitrosylation of calcium/calmodulin-dependent protein kinase II γ (CaMKIIγ), a multifunctional protein that mediates the α1-adrenergic receptor signaling. This result was associated with reduced α1-adrenergic receptor-mediated CaMKIIγ activity in VSMCs. We further tested the relevance of these findings in vivo and found that treatment with oral nitrite increases CaMKIIγ S-nitrosylation and blunts the increased CaMKIIγ activity induced by phenylephrine in rat aortas. Collectively, these results are consistent with the idea that oral sodium nitrite treatment increases vascular protein S-nitrosylation, including CaMKIIγ as a target, which may ultimately prevent the increased α1-adrenergic vasoconstriction induced by hypertension. These mechanisms may help to explain the antihypertensive effects of oral nitrite and hold potential implications in the therapy of hypertension and other cardiovascular diseases associated with abnormal α1-adrenergic vasoconstriction.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Rose I M Batista
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Sandra C Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael L Portella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Celio Damacena-Angelis
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Nicholas Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
4
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|
5
|
Roberts-Craig FT, Worthington LP, O’Hara SP, Erickson JR, Heather AK, Ashley Z. CaMKII Splice Variants in Vascular Smooth Muscle Cells: The Next Step or Redundancy? Int J Mol Sci 2022; 23:ijms23147916. [PMID: 35887264 PMCID: PMC9318135 DOI: 10.3390/ijms23147916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) help to maintain the normal physiological contractility of arterial vessels to control blood pressure; they can also contribute to vascular disease such as atherosclerosis. Ca2+/calmodulin-dependent kinase II (CaMKII), a multifunctional enzyme with four isoforms and multiple alternative splice variants, contributes to numerous functions within VSMCs. The role of these isoforms has been widely studied across numerous tissue types; however, their functions are still largely unknown within the vasculature. Even more understudied is the role of the different splice variants of each isoform in such signaling pathways. This review evaluates the role of the different CaMKII splice variants in vascular pathological and physiological mechanisms, aiming to show the need for more research to highlight both the deleterious and protective functions of the various splice variants.
Collapse
Affiliation(s)
- Finn T. Roberts-Craig
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand;
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
| | - Luke P. Worthington
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Samuel P. O’Hara
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Jeffrey R. Erickson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Alison K. Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Zoe Ashley
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-7646
| |
Collapse
|
6
|
Genome-wide scan for selection signatures and genes related to heat tolerance in domestic chickens in the tropical and temperate regions in Asia. Poult Sci 2022; 101:101821. [PMID: 35537342 PMCID: PMC9118144 DOI: 10.1016/j.psj.2022.101821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Heat stress is one of the major environmental stressors challenging the global poultry industry. Identifying the genes responsible for heat tolerance is fundamentally important for direct breeding programs. To uncover the genetic basis underlying the ambient temperature adaptation of chickens, we analyzed a total of 59 whole genomes from indigenous chickens that inhabit South Asian tropical regions and temperate regions from Northern China. We applied FST and π-ratio to scan selective sweeps and identified 34 genes with a signature of positive selection in chickens from tropical regions. Several of these genes are functionally implicated in metabolism (FABP2, RAMP3, SUGCT, and TSHR) and vascular smooth muscle contractility (CAMK2), and they may be associated with adaptation to tropical regions. In particular, we found a missense mutation in thyroid-stimulating hormone receptor (41020238:G>A) that shows significant differences in allele frequency between the chicken populations of the two regions. To evaluate whether the missense mutation in TSHR could enhance the heat tolerance of chickens, we constructed segregated chicken populations and conducted heat stress experiments using homozygous mutations (AA) and wild-type (GG) chickens. We found that GG chickens exhibited significantly higher concentrations of alanine aminotransferase, lactate dehydrogenase, and creatine kinase than AA chickens under heat stress (35 ± 1°C) conditions (P < 0.05). These results suggest that TSHR (41020238:G>A) can facilitate heat tolerance and adaptation to higher ambient temperature conditions in tropical climates. Overall, our results provide potential candidate genes for molecular breeding of heat-tolerant chickens.
Collapse
|
7
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
8
|
Hosni A, El-Twab SA, Abdul-Hamid M, Prinsen E, AbdElgawad H, Abdel-Moneim A, Beemster GTS. Cinnamaldehyde mitigates placental vascular dysfunction of gestational diabetes and protects from the associated fetal hypoxia by modulating placental angiogenesis, metabolic activity and oxidative stress. Pharmacol Res 2021; 165:105426. [PMID: 33453370 DOI: 10.1016/j.phrs.2021.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Gestational diabetes mellitus (GDM) is a major pregnancy-related disorder with an increasing prevalence worldwide. GDM is associated with altered placental vascular functions and has severe consequences for fetal growth. There is no commonly accepted medication for GDM due to safety considerations. Actions of the currently limited therapeutic options focus exclusively on lowering the blood glucose level without paying attention to the altered placental vascular reactivity and remodelling. We used the fat-sucrose diet/streptozotocin (FSD/STZ) rat model of GDM to explore the efficacy of cinnamaldehyde (Ci; 20 mg/kg/day), a promising antidiabetic agent for GDM, and glyburide/metformin-HCl (Gly/Met; 0.6 + 100 mg/kg/day), as a reference drug for treatment of GDM, on the placenta structure and function at term pregnancy after their oral intake one week before mating onward. Through genome-wide transcriptome, biochemical, metabolome, metal analysis and histopathology we obtained an integrated understanding of their effects. GDM resulted in maternal and fetal hyperglycemia, fetal hyperinsulinemia and placental dysfunction with subsequent fetal anemia, hepatic iron deficiency and high serum erythropoietin level, reflecting fetal hypoxia. Differentially-regulated genes were overrepresented for pathways of angiogenesis, metabolic transporters and oxidative stress. Despite Ci and Gly/Met effectively alleviated the maternal and fetal glycemia, only Ci offered substantial protection from GDM-associated placental vasculopathy and prevented the fetal hypoxia. This was explained by Ci's impact on the molecular regulation of placental angiogenesis, metabolic activity and redox signaling. In conclusion, Ci provides a dual impact for the treatment of GDM at both maternal and fetal levels through its antidiabetic effect and the direct placental vasoprotective action. Lack of Gly/Met effectiveness to restore it's impaired functionality demonstrates the vital role of the placenta in developing efficient medications for GDM.
Collapse
Affiliation(s)
- Ahmed Hosni
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt; Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| | - Sanaa Abd El-Twab
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Histology and Cytology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Els Prinsen
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium; Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| |
Collapse
|
9
|
Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc Natl Acad Sci U S A 2020; 117:26822-26832. [PMID: 33033227 DOI: 10.1073/pnas.2016905117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.
Collapse
|
10
|
Heaps CL, Bray JF, Parker JL. Enhanced KCl-mediated contractility and Ca 2+ sensitization in porcine collateral-dependent coronary arteries persist after exercise training. Am J Physiol Heart Circ Physiol 2020; 319:H915-H926. [PMID: 32857599 DOI: 10.1152/ajpheart.00384.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have previously reported enhanced Ca2+ sensitivity of coronary arteries that is dependent upon collateral circulation for their blood supply. For the current study, we hypothesized that small collateral-dependent arteries would exhibit an enhanced KCl-mediated contractile response attributable to Ca2+ sensitization and increased Ca2+ channel current. Ameroid constrictors were surgically placed around the left circumflex (LCX) artery of female Yucatan miniature swine. Eight weeks postoperatively, pigs were randomized into sedentary or exercise-trained (treadmill run; 5 days/wk; 14 wk) groups. Small coronary arteries (150-300 μm luminal diameter) were isolated from myocardial regions distal to the collateral-dependent LCX and the nonoccluded left anterior descending arteries. Contractile tension and simultaneous measures of both tension and intracellular free Ca2+ levels (fura-2) were measured in response to increasing concentrations of KCl. In addition, whole cell Ca2+ currents were also obtained. Chronic occlusion enhanced contractile responses to KCl and increased Ca2+ sensitization in collateral-dependent compared with nonoccluded arteries of both sedentary and exercise-trained pigs. In contrast, smooth muscle cell Ca2+ channel current was not altered by occlusion or exercise training. Ca2+/calmodulin-dependent protein kinase II (CaMKII; inhibited by KN-93, 0.3-1 μM) contributed to the enhanced contractile response in collateral-dependent arteries of sedentary pigs, whereas both CaMKII and Rho-kinase (inhibited by hydroxyfasudil, 30 μM or Y27632, 10 μM) contributed to increased contraction in exercise-trained animals. Taken together, these data suggest that chronic occlusion leads to enhanced contractile responses to KCl in collateral-dependent coronary arteries via increased Ca2+ sensitization, a response that is further augmented with exercise training.NEW & NOTEWORTHY Small coronary arteries distal to chronic occlusion displayed enhanced contractile responses, which were further augmented after exercise training and attributable to enhanced calcium sensitization without alterations in calcium channel current. The calcium sensitization mediators Rho-kinase and CaMKII significantly contributed to enhanced contraction in collateral-dependent arteries of exercise-trained, but not sedentary, pigs. Exercise-enhanced contractile responses may increase resting arterial tone, creating an enhanced coronary flow reserve that is accessible during periods of increased metabolic demand.
Collapse
Affiliation(s)
- Cristine L Heaps
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas.,Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jeff F Bray
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Janet L Parker
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.,Department of Medical Physiology, Texas A&M Health Science Center, Texas A&M University, College Station, Texas
| |
Collapse
|
11
|
Zhou DD, Ran J, Li CC, Lu J, Zhao QY, Liu XY, Xu YD, Wang Y, Yang YQ, Yin LM. Metallothionein-2 is associated with the amelioration of asthmatic pulmonary function by acupuncture through protein phosphorylation. Biomed Pharmacother 2019; 123:109785. [PMID: 31874444 DOI: 10.1016/j.biopha.2019.109785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Acupuncture has long been used for asthma treatment but the underlying mechanism remains unclear. Previous study showed that metallothionein-2 (MT-2) was significantly decreased in asthmatic lung tissue. However, the relationship between acupuncture treatment and MT-2 expression during asthma is still unknown, and the detailed effect analysis of MT-2 on phosphorylation in airway smooth muscle cells (ASMCs) is also unclear. METHODS The acupuncture effect on pulmonary resistance (RL) was investigated in a rat model of asthma, and the mRNA and protein levels of MT-2 in lung tissue were detected. Primary ASMCs were isolated and treated with MT-2 recombinant protein to study the MT-2 effects on ASMC relaxation. A Phospho Explorer antibody microarray was applied to detect protein phosphorylation changes associated with MT-2-induced ASMC relaxation. Bioinformatic analysis were performed with PANTHER database, DAVID and STRING. Phosphorylation changes in key proteins were confirmed by Western blot. RESULTS Acupuncture significantly reduced RL at 2-5 min (P < 0.05 vs asthma) in asthmatic rats. Acupuncture continued to increase MT-2 mRNA expression in lung tissue for up to 14 days (P < 0.05 vs asthma). The MT-2 protein expression was significantly decreased in the asthmatic rats (P < 0.05 vs control), while MT-2 protein expression was significantly increased in the asthmatic model group treated with acupuncture (P < 0.05 vs asthma). Primary ASMCs were successfully isolated and recombinant MT-2 protein (100, 200, 400 ng/ml) significantly relaxed ASMCs (P < 0.05 vs control). MT-2 induced phosphorylation changes in 51 proteins. Phosphorylation of 14 proteins were upregulated while 37 proteins were downregulated. PANTHER classification revealed eleven functional groups, and the phosphorylated proteins were identified as transferases (27.8 %), calcium-binding proteins (11.1 %), etc. DAVID functional classification showed that the phosphorylated proteins could be attributed to eight functions, including protein phosphorylation and regulation of GTPase activity. STRING protein-protein interaction network analysis showed that Akt1 was one of the most important hubs for the phosphorylated proteins. The phosphorylation changes of Akt1 and CaMK2β were consistent in both the Phospho Explorer antibody microarray and Western blot. CONCLUSION Acupuncture can significantly ameliorate RL, and the MT-2 mRNA and protein levels in lung tissue are increased during treatment. MT-2 significantly relaxes ASMCs and induces a series of protein phosphorylation. These phosphorylation changes, including Akt1 and CaMK2β, may play important roles in the therapeutic effects of acupuncture on asthma.
Collapse
Affiliation(s)
- Dong-Dong Zhou
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Jun Ran
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China; Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Cong-Cong Li
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Jin Lu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Qing-Yi Zhao
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiao-Yan Liu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yu-Dong Xu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yu Wang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yong-Qing Yang
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Lei-Miao Yin
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China; Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai, 201203, China.
| |
Collapse
|
12
|
Erwin T, Rekulapally SP, Abraham TS, Liu Q. A non-radioactive in vitro CaMKII activity assay using HPLC-MS. J Pharmacol Toxicol Methods 2018; 94:64-70. [PMID: 29803814 DOI: 10.1016/j.vascn.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Calcium/Calmodulin-dependent protein kinase II (CaMKII) is a multifunctional protein kinase that phosphorylates and regulates activity of many substrates in various tissues. Traditional CaMKII activity assays rely on incorporation of radioactivity onto a CaMKII substrate by utilizing γ-32P ATP, which has a short half-life and can pose health risks to the researchers. METHODS An 8-minute HPLC-MS method was developed to measure a CaMKII-specific peptide substrate autocamtide-2 (AC-2) and its phosphorylated form, phosphoautocamtide-2 (PAC-2). Degradation of AC-2 and PAC-2 in solutions and how to stabilize them were studied. The method was validated according to FDA guidelines for bioassays, and applied to determine CaMKII activity in a C2C12 cell lysate and IC50 of KN-93, a known CaMKII inhibitor. RESULTS Simple acidification with formic acid prevented AC-2 and PAC-2 from undergoing rapid degradation in the CaMKII assay mixture and in diluted water solutions. LLOQ of the HPLC-MS method was 0.26 μM and 0.12 μM for quantification of AC-2 and PAC-2, respectively. Precision was within 15% and accuracy was within 100 ± 15%. Using the developed method, IC50 of KN-93 was measured to be 399 ± 66 nM, which was compatible to reported values. CONCLUSIONS A validated HPLC-MS method provides precise and accurate determination of AC-2 and PAC-2. This method enabled enzyme activity assay and inhibitor IC50 determination for CaMKII without radioactive labelled reagents.
Collapse
Affiliation(s)
- Tully Erwin
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Satish P Rekulapally
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Thomas S Abraham
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Qinfeng Liu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC 27506, USA.
| |
Collapse
|
13
|
Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ 2017; 27:560-567. [PMID: 29409723 DOI: 10.1016/j.hlc.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Signalling mechanisms within and between cells of the vasculature enable function and maintain homeostasis. However, a number of these mechanisms also contribute to the pathophysiology of vascular disease states. The multifunctional signalling molecule calcium/calmodulin-dependent kinase II (CaMKII) has been shown to have critical functional effects in many tissue types. For example, CaMKII is known to have a dual role in cardiac physiology and pathology. The function of CaMKII within the vasculature is incompletely understood, but emerging evidence points to potential physiological and pathological roles. This review discusses the evidence for CaMKII signalling within the vasculature, with the aim to better understand both positive and potentially deleterious effects of CaMKII activation in vascular tissue.
Collapse
Affiliation(s)
- Obialunanma V Ebenebe
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Alison Heather
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand.
| |
Collapse
|
14
|
Humphries ESA, Kamishima T, Quayle JM, Dart C. Calcium/calmodulin-dependent kinase 2 mediates Epac-induced spontaneous transient outward currents in rat vascular smooth muscle. J Physiol 2017; 595:6147-6164. [PMID: 28731505 PMCID: PMC5599484 DOI: 10.1113/jp274754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS The Ca2+ and redox-sensing enzyme Ca2+ /calmodulin-dependent kinase 2 (CaMKII) is a crucial and well-established signalling molecule in the heart and brain. In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII. The vasodilator-induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage-dependent Ca2+ influx. How Epac activates STOCs is unknown. In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII. To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. ABSTRACT Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)-sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+ -activated K+ (BKCa ) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage-dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3', 5-cyclic monophosphate-AM (8-pCPT-AM) induces autophosphorylation (activation) of calcium/calmodulin-dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8-pCPT-AM-induced increases in STOC activity. Epac-induced CaMKII activation is probably initiated by inositol 1,4,5-trisphosphate (IP3 )-mobilized Ca2+ : 8-pCPT-AM fails to induce CaMKII activation following intracellular Ca2+ store depletion and inhibition of IP3 receptors blocks both 8-pCPT-AM-mediated CaMKII phosphorylation and STOC activity. 8-pCPT-AM does not directly activate BKCa channels, but STOCs cannot be generated by 8-pCPT-AM in the presence of ryanodine. Furthermore, exposure to 8-pCPT-AM significantly slows the initial rate of [Ca2+ ]i rise induced by the RyR activator caffeine without significantly affecting the caffeine-induced Ca2+ transient amplitude, a measure of Ca2+ store content. We conclude that Epac-mediated STOC activity (i) occurs via activation of CaMKII and (ii) is driven by changes in the underlying behaviour of RyR channels. To our knowledge, this is the first report of CaMKII initiating cellular activity linked to vasorelaxation and suggests novel roles for this Ca2+ and redox-sensing enzyme in the regulation of vascular tone and blood flow.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- Guanine Nucleotide Exchange Factors/metabolism
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Wistar
- Vasodilation
Collapse
Affiliation(s)
| | | | - John M. Quayle
- Translational MedicineUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
15
|
Gatliff J, East DA, Singh A, Alvarez MS, Frison M, Matic I, Ferraina C, Sampson N, Turkheimer F, Campanella M. A role for TSPO in mitochondrial Ca 2+ homeostasis and redox stress signaling. Cell Death Dis 2017; 8:e2896. [PMID: 28640253 PMCID: PMC5520880 DOI: 10.1038/cddis.2017.186] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca2+ signaling leading to a parallel increase in the cytosolic Ca2+ pools that activate the Ca2+-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca2+ uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca2+ dynamics and redox transients in neuronal cytotoxicity.
Collapse
Affiliation(s)
- Jemma Gatliff
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Daniel A East
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Regina Elena-National Cancer Institute, 00144 Rome, Italy
| | - Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Maria Soledad Alvarez
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Michele Frison
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Ivana Matic
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
| | - Caterina Ferraina
- Regina Elena-National Cancer Institute, 00144 Rome, Italy
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
| | - Natalie Sampson
- Division of Experimental Urology, Medical University of Innsbruck, A6020 Innsbruck, Austria
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
- University College London Consortium for Mitochondrial Research, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
16
|
Saddouk FZ, Ginnan R, Singer HA. Ca 2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:171-202. [PMID: 28212797 DOI: 10.1016/bs.apha.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies.
Collapse
Affiliation(s)
- F Z Saddouk
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - R Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - H A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
17
|
Yu X, Hong F, Zhang YQ. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:68-77. [PMID: 27054666 DOI: 10.1016/j.jhazmat.2016.03.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The evaluation of toxicological effects of nanoparticles (NPs) is increasingly important due to their growing occupational use and presence as compounds in consumer products. Recent researches have demonstrated that long-term exposure to air particulate matter can induce cardiovascular events, but whether cardiovascular disease, such as cardiac damage, is induced by NP exposure and its toxic mechanisms is rarely evaluated. In the present study, when mice were continuously exposed to TiO2 NPs at 2.5, 5 or 10mg/kg BW by intragastric administration for 90days, obvious histopathological changes, and great alterations of NF-κB and its inhibitor I-κB, as well as TNF-α, IL-1β, IL-6 and IFN-α expression were induced. The NPs significantly decreased Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase and Na(+)/K(+)-ATPase activities and enhanced NCX-1 content. The NPs also considerably increased CAMK II and α1/β1-AR expression and up-regulated p-PKCε and p-ERK1/2 in a dose-dependent manner in the mouse heart. These data suggest that low-dose and long-term exposure to TiO2 NPs may cause cardiac damage such as cardiac fragmentation or disordered myocardial fibre arrangement, tissue necrosis, myocardial haemorrhage, swelling or cardiomyocyte hypertrophy, and the inflammatory response was potentially mediated by NF-κB activation via the PKCε or ERK1/2 signalling cascades in mice.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China.
| |
Collapse
|
18
|
Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ. Stem Cells Int 2016; 2016:1267480. [PMID: 27493668 PMCID: PMC4963582 DOI: 10.1155/2016/1267480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is known to participate in maintenance and switches of smooth muscle cell (SMC) phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs) into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC), while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.
Collapse
|
19
|
Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: heart and brain in your arteries. Am J Physiol Cell Physiol 2016; 311:C462-78. [PMID: 27306369 DOI: 10.1152/ajpcell.00341.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
Abstract
First characterized in neuronal tissues, the multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key signaling component in several mammalian biological systems. Its unique capacity to integrate various Ca(2+) signals into different specific outcomes is a precious asset to excitable and nonexcitable cells. Numerous studies have reported roles and mechanisms involving CaMKII in brain and heart tissues. However, corresponding functions in vascular cell types (endothelium and vascular smooth muscle cells) remained largely unexplored until recently. Investigation of the intracellular Ca(2+) dynamics, their impact on vascular cell function, the regulatory processes involved and more recently the spatially restricted oscillatory Ca(2+) signals and microdomains triggered significant interest towards proteins like CaMKII. Heteromultimerization of CaMKII isoforms (four isoforms and several splice variants) expands this kinase's peculiar capacity to decipher Ca(2+) signals and initiate specific signaling processes, and thus controlling cellular functions. The physiological functions that rely on CaMKII are unsurprisingly diverse, ranging from regulating contractile state and cellular proliferation to Ca(2+) homeostasis and cellular permeability. This review will focus on emerging evidence of CaMKII as an essential component of the vascular system, with a focus on the kinase isoform/splice variants and cellular system studied.
Collapse
Affiliation(s)
- Fanny Toussaint
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Molecular and Integrative Physiology, Université de Montréal, Montreal Quebec, Canada
| | - Chimène Charbel
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montreal Quebec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal Quebec, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and
| |
Collapse
|
20
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
21
|
Saddouk FZ, Sun LY, Liu YF, Jiang M, Singer DV, Backs J, Van Riper D, Ginnan R, Schwarz JJ, Singer HA. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling. FASEB J 2015; 30:1051-64. [PMID: 26567004 DOI: 10.1096/fj.15-279158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.
Collapse
Affiliation(s)
- Fatima Z Saddouk
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Li-Yan Sun
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Yong Feng Liu
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Miao Jiang
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Diane V Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Dee Van Riper
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Roman Ginnan
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - John J Schwarz
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Harold A Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Prasad AM, Morgan DA, Nuno DW, Ketsawatsomkron P, Bair TB, Venema AN, Dibbern ME, Kutschke WJ, Weiss RM, Lamping KG, Chapleau MW, Sigmund CD, Rahmouni K, Grumbach IM. Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function. J Am Heart Assoc 2015; 4:e001949. [PMID: 26077587 PMCID: PMC4599535 DOI: 10.1161/jaha.115.001949] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Multifunctional calcium/calmodulin-dependent kinase II (CaMKII) is activated by angiotensin II (Ang II) in cultured vascular smooth muscle cells (VSMCs), but its function in experimental hypertension has not been explored. The aim of this study was to determine the impact of CaMKII inhibition selectively in VSMCs on Ang II hypertension. Methods and Results Transgenic expression of a CaMKII peptide inhibitor in VSMCs (TG SM-CaMKIIN model) reduced the blood pressure response to chronic Ang II infusion. The aortic depressor nerve activity was reset in hypertensive versus normotensive wild-type animals but not in TG SM-CaMKIIN mice, suggesting that changes in baroreceptor activity account for the blood pressure difference between genotypes. Accordingly, aortic pulse wave velocity, a measure of arterial wall stiffness and a determinant of baroreceptor activity, increased in hypertensive versus normotensive wild-type animals but did not change in TG SM-CaMKIIN mice. Moreover, examination of blood pressure and heart rate under ganglionic blockade revealed that VSMC CaMKII inhibition abolished the augmented efferent sympathetic outflow and renal and splanchnic nerve activity in Ang II hypertension. Consequently, we hypothesized that VSMC CaMKII controls baroreceptor activity by modifying arterial wall remodeling in Ang II hypertension. Gene expression analysis in aortas from normotensive and Ang II–infused mice revealed that TG SM-CaMKIIN aortas were protected from Ang II–induced upregulation of genes that control extracellular matrix production, including collagen. VSMC CaMKII inhibition also strongly altered the expression of muscle contractile genes under Ang II. Conclusions CaMKII in VSMCs regulates blood pressure under Ang II hypertension by controlling structural gene expression, wall stiffness, and baroreceptor activity.
Collapse
Affiliation(s)
- Anand M Prasad
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Donald A Morgan
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Daniel W Nuno
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Thomas B Bair
- The Iowa Institute for Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA (T.B.B.)
| | - Ashlee N Venema
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Megan E Dibbern
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - William J Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Kathryn G Lamping
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Mark W Chapleau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Curt D Sigmund
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.) Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA (C.D.S.)
| | - Kamal Rahmouni
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Isabella M Grumbach
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| |
Collapse
|
23
|
Hill BJF, Muldrew E. Oestrogen upregulates the sarcoplasmic reticulum Ca(2+) ATPase pump in coronary arteries. Clin Exp Pharmacol Physiol 2015; 41:430-6. [PMID: 24684418 DOI: 10.1111/1440-1681.12233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 12/30/2022]
Abstract
The presence of circulating plasma 17β-oestradiol (E2) is beneficial in women against abnormal vascular tone development, such as coronary arterial vasospasms. Several vascular diseases have demonstrated that increased expression of the sarcoplasmic reticulum Ca(2+) -ATPase pump (SERCA2b) serves to limit the excessive accumulation of intracellular Ca(2+) . Therefore, the hypothesis of the present study was that E2 would increase SERCA2b expression in the coronary vasculature. Coronary arteries were dissected from hearts obtained from mature female pigs. Artery segments were cultured for 24 h in E2 (1 pmol/L or 1 nmol/L) and homogenized for western blot analysis. At 1 nmol/L, E2 induced an approximate 50% increase in immunoreactivity for SERCA2b. In addition, E2 increased the protein expression of the known SERCA regulatory proteins, protein kinase A (PKA) and protein kinase G (PKG). The E2-induced increase in SERCA2b was attenuated when the culture medium was supplemented with the oestrogen receptor (ER) α/β antagonist ICI 182,780 and the PKG antagonist KT5823 (10 μmol/L, 24 h for both). The PKA antagonist (KT5720; 10 μmol/L, 24 h) had no effect on SERCA2b expression. Removal of the endothelium (using a wooden toothpick) from artery segments prior to culture decreased the E2-mediated increase in SERCA2b and PKG expression by 45% and 47%, respectively. Overall, the findings suggest that one of the potential cardiovascular benefits of E2 in women is upregulation of SERCA2b, via activation of the classic ERα and ERβ pathway.
Collapse
Affiliation(s)
- Brent J F Hill
- Department of Biology, University of Central Arkansas, Conway, AR, USA
| | | |
Collapse
|
24
|
Huang B, Yang CS, Wojton J, Huang NJ, Chen C, Soderblom EJ, Zhang L, Kornbluth S. Metabolic control of Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated caspase-2 suppression by the B55β/protein phosphatase 2A (PP2A). J Biol Chem 2014; 289:35882-90. [PMID: 25378403 DOI: 10.1074/jbc.m114.585844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
High levels of metabolic activity confer resistance to apoptosis. Caspase-2, an apoptotic initiator, can be suppressed by high levels of nutrient flux through the pentose phosphate pathway. This metabolic control is exerted via inhibitory phosphorylation of the caspase-2 prodomain by activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). We show here that this activation of CaMKII depends, in part, on dephosphorylation of CaMKII at novel sites (Thr(393)/Ser(395)) and that this is mediated by metabolic activation of protein phosphatase 2A in complex with the B55β targeting subunit. This represents a novel locus of CaMKII control and also provides a mechanism contributing to metabolic control of apoptosis. These findings may have implications for metabolic control of the many CaMKII-controlled and protein phosphatase 2A-regulated physiological processes, because both enzymes appear to be responsive to alterations in glucose metabolized via the pentose phosphate pathway.
Collapse
Affiliation(s)
- Bofu Huang
- From the Department of Pharmacology and Cancer Biology
| | | | | | - Nai-Jia Huang
- From the Department of Pharmacology and Cancer Biology
| | - Chen Chen
- From the Department of Pharmacology and Cancer Biology
| | | | - Liguo Zhang
- the Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27705
| | | |
Collapse
|
25
|
Kamiya T, Nagaoka T, Omae T, Yoshioka T, Ono S, Tanano I, Yoshida A. Role of Ca2+-dependent and Ca2+-sensitive mechanisms in sphingosine 1-phosphate-induced constriction of isolated porcine retinal arterioles in vitro. Exp Eye Res 2014; 121:94-101. [DOI: 10.1016/j.exer.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 01/15/2023]
|
26
|
Zinc regulates the activity of kinase-phosphatase pair (BasPrkC/BasPrpC) in Bacillus anthracis. Biometals 2013; 26:715-30. [PMID: 23793375 DOI: 10.1007/s10534-013-9646-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/09/2013] [Indexed: 01/02/2023]
Abstract
Bacillus anthracis Ser/Thr protein kinase PrkC (BasPrkC) is important for virulence of the bacterium within the host. Homologs of PrkC and its cognate phosphatase PrpC (BasPrpC) are the most conserved mediators of signaling events in diverse bacteria. BasPrkC homolog in Bacillus subtilis regulates critical processes like spore germination and BasPrpC modulates the activity of BasPrkC by dephosphorylation. So far, biochemical and genetic studies have provided important insights into the roles of BasPrkC and BasPrpC; however, regulation of their activities is not known. We studied the regulation of BasPrkC/BasPrpC pair and observed that Zn(2+) metal ions can alter their activities. Zn(2+) promotes BasPrkC kinase activity while inhibits the BasPrpC phosphatase activity. Concentration of Zn(2+) in growing B. anthracis cells was found to vary with growth phase. Zn(2+) was found to be lowest in log phase cells while it was highest in spores. This variation in Zn(2+) concentration is significant for understanding the antagonistic activities of BasPrkC/BasPrpC pair. Our results also show that BasPrkC activity is modulated by temperature changes and kinase inhibitors. Additionally, we identified Elongation Factor Tu (BasEf-Tu) as a substrate of BasPrkC/BasPrpC pair and assessed the impact of their regulation on BasEf-Tu phosphorylation. Based on these results, we propose Zn(2+) as an important regulator of BasPrkC/BasPrpC mediated phosphorylation cascades. Thus, this study reveals additional means by which BasPrkC can be activated leading to autophosphorylation and substrate phosphorylation.
Collapse
|
27
|
Prasad AM, Nuno DW, Koval OM, Ketsawatsomkron P, Li W, Li H, Shen FY, Joiner MLA, Kutschke W, Weiss RM, Sigmund CD, Anderson ME, Lamping KG, Grumbach IM. Differential control of calcium homeostasis and vascular reactivity by Ca2+/calmodulin-dependent kinase II. Hypertension 2013; 62:434-41. [PMID: 23753415 DOI: 10.1161/hypertensionaha.113.01508] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The multifunctional Ca(2+)/calmodulin-dependent kinase II (CaMKII) is activated by vasoconstrictors in vascular smooth muscle cells (VSMC), but its impact on vasoconstriction remains unknown. We hypothesized that CaMKII inhibition in VSMC decreases vasoconstriction. Using novel transgenic mice that express the inhibitor peptide CaMKIIN in smooth muscle (TG SM-CaMKIIN), we investigated the effect of CaMKII inhibition on L-type Ca(2+) channel current (ICa), cytoplasmic and sarcoplasmic reticulum Ca(2+), and vasoconstriction in mesenteric arteries. In mesenteric VSMC, CaMKII inhibition significantly reduced action potential duration and the residual ICa 50 ms after peak amplitude, indicative of loss of L-type Ca(2+) channel-dependent ICa facilitation. Treatment with angiotensin II or phenylephrine increased the intracellular Ca(2+) concentration in wild-type but not TG SM-CaMKIIN VSMC. The difference in intracellular Ca(2+) concentration was abolished by pretreatment with nifedipine, an L-type Ca(2+) channel antagonist. In TG SM-CaMKIIN VSMC, the total sarcoplasmic reticulum Ca(2+) content was reduced as a result of diminished sarcoplasmic reticulum Ca(2+) ATPase activity via impaired derepression of the sarcoplasmic reticulum Ca(2+) ATPase inhibitor phospholamban. Despite the differences in intracellular Ca(2+) concentration, CaMKII inhibition did not alter myogenic tone or vasoconstriction of mesenteric arteries in response to KCl, angiotensin II, and phenylephrine. However, it increased myosin light chain kinase activity. These data suggest that CaMKII activity maintains intracellular calcium homeostasis but is not required for vasoconstriction of mesenteric arteries.
Collapse
Affiliation(s)
- Anand M Prasad
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity. Biosci Rep 2013; 33:BSR20120116. [PMID: 23289753 PMCID: PMC3566533 DOI: 10.1042/bsr20120116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CaMKII (Ca2+/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser26, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser26, we generated a phosphospecific Ser26 antibody and demonstrated an increase in Ser26 phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser26 affects the kinase activity, we mutated Ser26 to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr287 autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser26 of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr287 most probably by blocking ATP binding. We propose that Ser26 phosphorylation constitutes an important mechanism for switching off CaMKII activity.
Collapse
|
29
|
Tsai MH, Kamm KE, Stull JT. Signalling to contractile proteins by muscarinic and purinergic pathways in neurally stimulated bladder smooth muscle. J Physiol 2012; 590:5107-21. [PMID: 22890701 DOI: 10.1113/jphysiol.2012.235424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urinary bladder smooth muscle contraction is triggered by parasympathetic nerves, which release ATP and acetylcholine (ACh) that bind to purinergic and muscarinic receptors, respectively. Neuronal signalling may thus elicit myosin regulatory light chain (RLC) phosphorylation and contraction through the combined, but distinct contributions of these receptors. Both receptors mediate Ca2+ influx whereas muscarinic receptors may also recruit Ca2+-sensitization mechanisms. Using transgenic mice expressing calmodulin sensor myosin light chain kinase (MLCK) in smooth muscles, the effects of suramin/α,β-methylene ATP (α,β-meATP) (purinergic inhibition) or atropine (muscarinic inhibition) on neurally stimulated elevation of [Ca2+]i, MLCK activation, force and phosphorylation of RLC, myosin light chain phosphatase (MLCP) targeting subunit MYPT1 and MLCP inhibitor protein CPI-17 were examined. Electric field stimulation (EFS) increased [Ca2+]i, MLCK activation and concomitant force in a frequency-dependent manner. The dependence of force on [Ca2+]i and MLCK activation decreased with time suggesting increased Ca2+ sensitization in the late contractile phase. RLC and CPI-17 phosphorylation increased upon stimulation with maximal responses at 20 Hz; both responses were attenuated by atropine, but only RLC phosphorylation was inhibited by suramin/α,β-meATP. Antagonism of purinergic receptors suppressed maximal MLCK activation to a greater extent in the early contractile phase than in the late contractile phase; atropine had the opposite effect. A frequency- and time-dependent increase in MLCK phosphorylation explained the desensitization of MLCK to Ca2+, since MLCK activation declined more rapidly than [Ca2+]i. EFS elicited little or no effect on MYPT1 Thr696 or 850 phosphorylation. Thus, purinergic Ca2+ signals provide the initial activation of MLCK with muscarinic receptors supporting sustained responses. Activation of muscarinic receptors recruits CPI-17, but not MYPT1-mediated Ca2+ sensitization. Furthermore, nerve-released ACh also initiates signalling cascades leading to phosphorylation-dependent desensitization of MLCK.
Collapse
Affiliation(s)
- Ming-Ho Tsai
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| | | | | |
Collapse
|
30
|
Arora G, Sajid A, Arulanandh MD, Singhal A, Mattoo AR, Pomerantsev AP, Leppla SH, Maiti S, Singh Y. Unveiling the novel dual specificity protein kinases in Bacillus anthracis: identification of the first prokaryotic dual specificity tyrosine phosphorylation-regulated kinase (DYRK)-like kinase. J Biol Chem 2012; 287:26749-63. [PMID: 22711536 PMCID: PMC3411013 DOI: 10.1074/jbc.m112.351304] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/14/2012] [Indexed: 12/23/2022] Open
Abstract
Dual specificity protein kinases (DSPKs) are unique enzymes that can execute multiple functions in the cell, which are otherwise performed exclusively by serine/threonine and tyrosine protein kinases. In this study, we have characterized the protein kinases Bas2152 (PrkD) and Bas2037 (PrkG) from Bacillus anthracis. Transcriptional analyses of these kinases showed that they are expressed in all phases of growth. In a serendipitous discovery, both kinases were found to be DSPKs. PrkD was found to be similar to the eukaryotic dual specificity Tyr phosphorylation-regulated kinase class of dual specificity kinases, which autophosphorylates on Ser, Thr, and Tyr residues and phosphorylates Ser and Thr residues on substrates. PrkG was found to be a bona fide dual specificity protein kinase that mediates autophosphorylation and substrate phosphorylation on Ser, Thr, and Tyr residues. The sites of phosphorylation in both of the kinases were identified through mass spectrometry. Phosphorylation on Tyr residues regulates the kinase activity of PrkD and PrkG. PrpC, the only known Ser/Thr protein phosphatase, was also found to possess dual specificity. Genistein, a known Tyr kinase inhibitor, was found to inhibit the activities of PrkD and PrkG and affect the growth of B. anthracis cells, indicating a possible role of these kinases in cell growth and development. In addition, the glycolytic enzyme pyruvate kinase was found to be phosphorylated by PrkD on Ser and Thr residues but not by PrkG. Thus, this study provides the first evidence of DSPKs in B. anthracis that belong to different classes and have different modes of regulation.
Collapse
Affiliation(s)
- Gunjan Arora
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Andaleeb Sajid
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Mary Diana Arulanandh
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Anshika Singhal
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Abid R. Mattoo
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Andrei P. Pomerantsev
- the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202
| | - Stephen H. Leppla
- the Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3202
| | - Souvik Maiti
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| | - Yogendra Singh
- From the Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India and
| |
Collapse
|
31
|
MEF2 is regulated by CaMKIIδ2 and a HDAC4-HDAC5 heterodimer in vascular smooth muscle cells. Biochem J 2012; 444:105-14. [PMID: 22360269 DOI: 10.1042/bj20120152] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
VSMCs (vascular smooth muscle cells) dedifferentiate from the contractile to the synthetic phenotype in response to acute vascular diseases such as restenosis and chronic vascular diseases such as atherosclerosis, and contribute to growth of the neointima. We demonstrated previously that balloon catheter injury of rat carotid arteries resulted in increased expression of CaMKII (Ca(2+)/calmodulin-dependent protein kinase) IIδ(2) in the medial wall and the expanding neointima [House and Singer (2008) Arterioscler. Thromb. Vasc. Biol. 28, 441-447]. These findings led us to hypothesize that increased expression of CaMKIIδ(2) is a positive mediator of synthetic VSMCs. HDAC (histone deacetylase) 4 and HDAC5 function as transcriptional co-repressors and are regulated in a CaMKII-dependent manner. In the present paper, we report that endogenous HDAC4 and HDAC5 in VSMCs are activated in a Ca(2+)- and CaMKIIδ(2)-dependent manner. We show further that AngII (angiotensin II)- and PDGF (platelet-derived growth factor)-dependent phosphorylation of HDAC4 and HDAC5 is reduced when CaMKIIδ(2) expression is suppressed or CaMKIIδ(2) activity is attenuated. The transcriptional activator MEF2 (myocyte-enhancer factor 2) is an important determinant of VSMC phenotype and is regulated in an HDAC-dependent manner. In the present paper, we report that stimulation of VSMCs with ionomycin or AngII potentiates MEF2's ability to bind DNA and increases the expression of established MEF2 target genes Nur77 (nuclear receptor 77) (NR4A1) and MCP1 (monocyte chemotactic protein 1) (CCL2). Suppression of CaMKIIδ(2) attenuates increased MEF2 DNA-binding activity and up-regulation of Nur77 and MCP1. Finally, we show that HDAC5 is regulated by HDAC4 in VSMCs. Suppression of HDAC4 expression and activity prevents AngII- and PDGF-dependent phosphorylation of HDAC5. Taken together, these results illustrate a mechanism by which CaMKIIδ(2) mediates MEF2-dependent gene transcription in VSMCs through regulation of HDAC4 and HDAC5.
Collapse
|
32
|
Potts LB, Ren Y, Lu G, Kuo E, Ngo E, Kuo L, Hein TW. Constriction of retinal arterioles to endothelin-1: requisite role of rho kinase independent of protein kinase C and L-type calcium channels. Invest Ophthalmol Vis Sci 2012; 53:2904-12. [PMID: 22427601 DOI: 10.1167/iovs.12-9542] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Although endothelin-1 (ET-1) is a potent vasoconstrictor peptide implicated in several retinal pathologies, the underlying mechanism of vasoconstriction is understood incompletely. We addressed this issue by assessing the contributions of extracellular calcium (Ca²⁺), L-type voltage-operated calcium channels (L-VOCCs), Rho kinase (ROCK), and protein kinase C (PKC) to ET-1-induced constriction of porcine retinal arterioles, all of which have been implicated commonly in vascular smooth muscle contraction. METHODS Porcine retinal arterioles (~50-100 μm) were isolated for vasomotor study and molecular assessment of ROCK isoforms. RESULTS Isolated arterioles developed stable basal tone at 55 cmH₂O luminal pressure and constricted to ET-1 (0.1 nM) with a 40 ± 6% reduction in resting diameter in 20 minutes. In the absence of extraluminal Ca²⁺, arterioles lost basal tone and failed to constrict to ET-1. Although L-VOCC inhibitor nifedipine reduced basal tone and blocked vasoconstriction to PKC activator PDBu, vasoconstriction to ET-1 was unaffected. The broad-spectrum PKC inhibitor Gö-6983 abolished vasoconstriction to PDBu, but did not alter ET-1-induced vasoconstriction or basal tone. Incubation of arterioles with ROCK inhibitor H-1152 abolished basal tone and vasoconstrictions to ET-1 and PDBu. Both ROCK1 and ROCK2 isoforms were expressed in the retinal arteriolar wall. CONCLUSIONS Extracellular Ca²⁺ entry via L-VOCCs and basal ROCK activity play important roles in the maintenance of basal tones of porcine retinal arterioles. ET-1-induced constriction is mediated by extracellular Ca²⁺ entry independent of L-VOCCs and by ROCK activation without the involvement of PKC. However, direct PKC activation can cause vasoconstriction via L-VOCC and ROCK signaling.
Collapse
Affiliation(s)
- Luke B Potts
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Singer HA. Ca2+/calmodulin-dependent protein kinase II function in vascular remodelling. J Physiol 2011; 590:1349-56. [PMID: 22124148 DOI: 10.1113/jphysiol.2011.222232] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vascular smooth muscle (VSM) undergoes a phenotypic switch in response to injury, a process that contributes to pathophysiological vascular wall remodelling. VSM phenotype switching is a consequence of changes in gene expression, including an array of ion channels and pumps affecting spatiotemporal features of intracellular Ca(2+) signals. Ca(2+) signalling promotes vascular wall remodelling by regulating cell proliferation, motility, and/or VSM gene transcription, although the mechanisms are not clear. In this review, the functions of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in VSM phenotype switching and synthetic phenotype function are considered. CaMKII isozymes have complex structural and autoregulatory properties. Vascular injury in vivo results in rapid changes in CaMKII isoform expression with reduced expression of CaMKIIγ and upregulation of CaMKIIδ in medial wall VSM. SiRNA-mediated suppression of CaMKIIδ or gene deletion attenuates VSM proliferation and consequent neointimal formation. In vitro studies support functions for CaMKII in the regulation of cell proliferation, motility and gene expression via phosphorylation of CREB1 and HDACIIa/MEF2 complexes. These studies support the concept, and provide potential mechanisms, whereby Ca(2+) signalling through CaMKIIδ promotes VSM phenotype transitions and vascular remodelling.
Collapse
Affiliation(s)
- Harold A Singer
- Center for Cardiovascular Sciences, Albany Medical College (MC-8), 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
34
|
Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 2011; 91:889-915. [PMID: 21742790 DOI: 10.1152/physrev.00018.2010] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure, and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca(2+)/CaM). Under conditions of sustained exposure to elevated Ca(2+)/CaM, CaMKII transitions into a Ca(2+)/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine-287 in the CaMKII regulatory domain "traps" CaMKII into an open configuration even after Ca(2+)/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca(2+)/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Pharmacology, University of California at Davis, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
35
|
Gupte RS, Ata H, Rawat D, Abe M, Taylor MS, Ochi R, Gupte SA. Glucose-6-phosphate dehydrogenase is a regulator of vascular smooth muscle contraction. Antioxid Redox Signal 2011; 14:543-58. [PMID: 20649491 PMCID: PMC3029003 DOI: 10.1089/ars.2010.3207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway and a major source of nicotinamide adenine dinucleotide phosphate reduced (NADPH), which regulates numerous enzymatic (including glutathione reductase and NADPH oxidase that, respectively, generates reduced glutathione and reactive oxygen species) reactions involved in various cellular actions, yet its physiological function is seldom investigated. We, however, recently showed that inhibiting G6PD causes precontracted coronary artery (CA) to relax in an endothelium-derived relaxing factor- and second messenger-independent manner. Here we assessed the role of G6PD in regulating CA contractility. Treating bovine CAs for 20 min with potassium chloride (KCl; 30 mM), amphotericin B (50 μM), or U46619 (100 nM) significantly (p < 0.05) increased both G6PD activity and glucose flux through the pentose phosphate pathway. The effect was Ca(2+) independent, and there was a corresponding increase in protein kinase C (PKC) activity. Activation of G6PD by KCl was blocked by the PKCδ inhibitor rottlerin (10 μM) or by knocking down PKCδ expression using siRNA. Phorbol 12, 13-dibutyrate (10 μM), a PKC activator, significantly increased G6PD phosphorylation and activity, whereas single (S210A, T266A) and double (S210A/T266A) mutations at sites flanking the G6PD active site significantly inhibited phosphorylation, shifted the isoelectric point, and reduced enzyme activity. Knocking down G6PD decreased NADPH and reactive oxygen species generation, and reduced KCl-evoked increases in [Ca(2+)](i) and myosin light chain phosphorylation, thereby reducing CA contractility. Similarly, aortas from G6PD-deficient mice developed less KCl/phorbol 12, 13-dibutyrate-evoked force than those from their wild-type littermates. Conversely, overexpression of G6PD augmented KCl-evoked increases in [Ca(2+)](i), thereby augmenting CA contraction. Our findings demonstrate that G6PD activity and NADPH is increased in activated CA in a PKCδ-dependent manner and that G6PD modulates Ca(2+) entry and CA contractions evoked by membrane depolarization.
Collapse
Affiliation(s)
- Rakhee S Gupte
- Department of Biochemistry, University of South Alabama, College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kim MT, Park WJ, Kim S, Lee JW, Lee SY, Jeon JH, So I, Kim BJ, Kim SJ. Involvement of calmodulin kinase II in the action of sulphur mustard on the contraction of vascular smooth muscle. Basic Clin Pharmacol Toxicol 2011; 108:28-33. [PMID: 20735375 DOI: 10.1111/j.1742-7843.2010.00623.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sulphur mustard (SM) is an alkylating agent whose mechanism is not fully understood. To investigate the early action of SM, we examined the effect of SM on contraction of vascular smooth muscles. Phenylephrine (PE)-induced contraction was reduced by SM, but only marginally by 70 mM KCl(-) . Additional reduction was induced by nifedipine in SM-treated arteries. In the absence of extracellular Ca(2+) , contraction of arteries by PE was reduced, which was fully recovered by addition of 2 mM Ca(2+) . However, recovery was attenuated by pre-treatment with SM. The effect of SM on contraction by PE was not influenced by pre- and post-treatment with Phorbol 12, 13-dibutyrate. Calmodulin kinase II (CaMKII) was implicated as being responsible for the action of SM, because the contractile mechanisms of vascular smooth muscle via both Ca(2+) -calmodulin-myosin light chain kinase axis and protein kinase C-proline-rich tyrosine kinase axis were not related to the action of SM. Elevation of phosphorylated CaMKII level by Ionomycin or PE was attenuated by treatment of SM on western blot. CaMKII may be a candidate target molecule of SM in early stage contraction of vascular smooth muscle.
Collapse
Affiliation(s)
- Min Tae Kim
- Department of Rehabilitation Medicine, Kwandong University of Medicine, Goyang, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang Z, Ginnan R, Abdullaev IF, Trebak M, Vincent PA, Singer HA. Calcium/Calmodulin-dependent protein kinase II delta 6 (CaMKIIdelta6) and RhoA involvement in thrombin-induced endothelial barrier dysfunction. J Biol Chem 2010; 285:21303-12. [PMID: 20442409 DOI: 10.1074/jbc.m110.120790] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple Ca(2+) release and entry mechanisms and potential cytoskeletal targets have been implicated in vascular endothelial barrier dysfunction; however, the immediate downstream effectors of Ca(2+) signals in the regulation of endothelial permeability still remain unclear. In the present study, we evaluated the contribution of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) as a mediator of thrombin-stimulated increases in human umbilical vein endothelial cell (HUVEC) monolayer permeability. For the first time, we identified the CaMKIIdelta(6) isoform as the predominant CaMKII isoform expressed in endothelium. As little as 2.5 nM thrombin maximally increased CaMKIIdelta(6) activation assessed by Thr(287) autophosphorylation. Electroporation of siRNA targeting endogenous CaMKIIdelta (siCaMKIIdelta) suppressed expression of the kinase by >80% and significantly inhibited 2.5 nM thrombin-induced increases in monolayer permeability assessed by electrical cell-substrate impedance sensing (ECIS). siCaMKIIdelta inhibited 2.5 nM thrombin-induced activation of RhoA, but had no effect on thrombin-induced ERK1/2 activation. Although Rho kinase inhibition strongly suppressed thrombin-induced HUVEC hyperpermeability, inhibiting ERK1/2 activation had no effect. In contrast to previous reports, these results indicate that thrombin-induced ERK1/2 activation in endothelial cells is not mediated by CaMKII and is not involved in endothelial barrier hyperpermeability. Instead, CaMKIIdelta(6) mediates thrombin-induced HUVEC barrier dysfunction through RhoA/Rho kinase as downstream intermediates. Moreover, the relative contribution of the CaMKIIdelta(6)/RhoA pathway(s) diminished with increasing thrombin stimulation, indicating recruitment of alternative signaling pathways mediating endothelial barrier dysfunction, dependent upon thrombin concentration.
Collapse
Affiliation(s)
- Zhen Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
38
|
Li H, Li W, Gupta AK, Mohler PJ, Anderson ME, Grumbach IM. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy. Am J Physiol Heart Circ Physiol 2009; 298:H688-98. [PMID: 20023119 DOI: 10.1152/ajpheart.01014.2009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII is enriched in vascular smooth muscle (VSM) and that CaMKII inhibition blocks ANG II-dependent VSM cell hypertrophy in vitro and in vivo. Specifically, systemic CaMKII inhibition with KN-93 prevented ANG II-mediated hypertension and medial hypertrophy in vivo. Adenoviral transduction with the CaMKII peptide inhibitor CaMKIIN abrogated ANG II-induced VSM hypertrophy in vitro, which was augmented by overexpression of CaMKII-delta2. Finally, we identify the downstream signaling components critical for ANG II- and CaMKII-mediated VSM hypertrophy. Specifically, we demonstrate that CaMKII induces VSM hypertrophy by regulating histone deacetylase 4 (HDAC4) activity, thereby stimulating activity of the hypertrophic transcription factor MEF2. MEF2 transcription is activated by ANG II in vivo and abrogated by the CaMKII inhibitor KN-93. Together, our studies identify a complete pathway for ANG II-triggered arterial VSM hypertrophy and identify new potential therapeutic targets for chronic human hypertension.
Collapse
Affiliation(s)
- Hui Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
39
|
Waldsee R, Ahnstedt H, Eftekhari S, Edvinsson L. Involvement of calcium-calmodulin-dependent protein kinase II in endothelin receptor expression in rat cerebral arteries. Am J Physiol Heart Circ Physiol 2009; 298:H823-32. [PMID: 20008273 DOI: 10.1152/ajpheart.00759.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental cerebral ischemia and organ culture of cerebral arteries result in the enhanced expression of endothelin ET(B) receptors in smooth muscle cells via increased transcription. The present study was designed to evaluate the involvement of calcium-calmodulin-dependent protein kinase (CAMK) in the transcriptional expression of endothelin receptors after organ culture. Rat basilar arteries were incubated for 24 h with or without the CAMK inhibitor KN93 or ERK1/2 inhibitor U0126. The contractile responses to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and sarafotoxin 6c (S6c; ET(B) receptor agonist) were studied using a sensitive myograph. The mRNA levels of the ET(A) and ET(B) receptors and CAMKII were determined by real-time PCR, and their protein levels were evaluated by immunohistochemistry and Western blot. The mRNA levels of CAMKII and the ET(B) receptor increased during organ culture, but there was no change in the expression of the ET(A) receptor. This effect was abolished by coincubation with KN93 or U0126. In functional studies, both inhibitors attenuated the S6c-induced contraction. Incubating the arteries with KN93, but not U0126, decreased the amount of phosphorylated CAMKII. The inhibitors had no effect on the levels of myosin light chain during organ culture, as measured by Western blot. CAMKII is involved in the upregulation of the endothelin ET(B) receptor and interacts with the ERK1/2 pathway to enhance receptor expression. CAMKII has no effect on the contractile apparatus in rat cerebral arteries.
Collapse
Affiliation(s)
- Roya Waldsee
- Department of Clinical Sciences, Lund University and Lund University Hospital, Sweden.
| | | | | | | |
Collapse
|
40
|
Giachini FR, Sullivan JC, Lima VV, Carneiro FS, Fortes ZB, Pollock DM, Carvalho MHC, Webb RC, Tostes RC. Extracellular signal-regulated kinase 1/2 activation, via downregulation of mitogen-activated protein kinase phosphatase 1, mediates sex differences in desoxycorticosterone acetate-salt hypertension vascular reactivity. Hypertension 2009; 55:172-9. [PMID: 19901158 DOI: 10.1161/hypertensionaha.109.140459] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular signal-regulated kinase (ERK)1/2 has been reported to play a role in vascular dysfunction associated with mineralocorticoid hypertension. We hypothesized that, compared with female rats, an upregulation of ERK1/2 signaling in the vasculature of male rats contributes to augmented contractile responses in mineralocorticoid hypertension. Uninephrectomized male and female Sprague-Dawley rats received desoxycorticosterone acetate (DOCA) pellets (200 mg per animal) and saline to drink for 3 weeks. Control uninephrectomized rats received tap water to drink. Blood pressure, measured by telemetry, was significantly higher in male DOCA rats (191+/-3 mm Hg) compared with female DOCA rats (172+/-7 mm Hg; n=5). DOCA treatment resulted in augmented contractile responses to phenylephrine in aorta (22+/-3 mN; n=6) and small mesenteric arteries (13+/-2 mN; n=6) from male DOCA rats versus uninephrectomized male rats (16+/-3 and 10+/-2 mN, respectively; P<0.05) and female DOCA rats (15+/-1 and 11+/-1 mN, respectively). ERK1/2 inhibition with PD-98059 (10 micromol/L) abrogated increased contraction to phenylephrine in aorta (14+/-2 mN) and small mesenteric arteries (10+/-2 mN) from male DOCA rats, without any effects in arteries from male uninephrectomized or female animals. Compared with the other groups, phosphorylated ERK1/2 levels were increased in the aorta from male DOCA rats, whereas mitogen-activated protein kinase phosphatase 1 expression was decreased. Interleukin-10 plasma levels, which positively regulate mitogen-activated protein kinase phosphatase 1 activity, were reduced in male DOCA-salt rats. We speculate that augmented vascular reactivity in male hypertensive rats is mediated via activation of the ERK1/2 pathway. In addition, mitogen-activated protein kinase phosphatase 1 and interleukin 10 play regulatory roles in this process.
Collapse
Affiliation(s)
- Fernanda R Giachini
- Medical College of Georgia, Department of Physiology, 1120 Fifteenth St, CA-2095, Augusta, GA 30912-3000, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li QF, Tang DD. Role of p47(phox) in regulating Cdc42GAP, vimentin, and contraction in smooth muscle cells. Am J Physiol Cell Physiol 2009; 297:C1424-33. [PMID: 19812368 DOI: 10.1152/ajpcell.00324.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cdc42GAP (GTPase activating protein) has been shown to regulate smooth muscle contraction as well as cell motility, adhesion, proliferation, and apoptosis. We have recently shown that Cdc42GAP activity is suppressed in smooth muscle cells during contractile activation, which is reversed by inhibitors of reactive oxygen species (ROS). Because p47(phox), a regulatory subunit of NAD(P)H oxidase, has been implicated in smooth muscle signaling, we determined whether this subunit modulates Cdc42GAP activity in response to contractile stimulation. Transfection of smooth muscle cells with plasmids encoding short hairpin RNA (shRNA) against p47(phox), but not plasmids for luciferase shRNA, inhibited the expression of p47(phox). ROS production and the suppression of Cdc42GAP activity in response to stimulation with 5-hydroxytryptamine (5-HT) were attenuated in cells producing p47(phox) shRNA compared with cells producing luciferase shRNA. In contrast, the addition of hydrogen peroxide to p47(phox)-deficient cells suppressed the activity of Cdc42GAP. Furthermore, exposure to hydrogen peroxide led to a decrease in Cdc42GAP activity in an in vitro assay. Cdc42 activation, p21-activated kinase 1 (PAK1) phosphorylation at Thr-423 (an indication of PAK activation), and vimentin phosphorylation at Ser-56 in response to 5-HT activation were also attenuated in smooth muscle cells producing shRNA against p47(phox). The knockdown of p47(phox) inhibited smooth muscle contraction during stimulation with 5-HT but not hydrogen peroxide. These results suggest that the p47(phox) subunit of NAD(P)H oxidase may mediate the agonist-induced GAP suppression by controlling ROS generation in smooth muscle cells during agonist stimulation. p47(phox)-regulated GAP affects smooth muscle contraction likely through the Cdc42/PAK1/vimentin pathway.
Collapse
Affiliation(s)
- Qing-Fen Li
- The Center for Cardiovascular Sciences, Albany Medical College, NY 12208, USA
| | | |
Collapse
|
42
|
Li QF, Spinelli AM, Tang DD. Cdc42GAP, reactive oxygen species, and the vimentin network. Am J Physiol Cell Physiol 2009; 297:C299-309. [PMID: 19494238 DOI: 10.1152/ajpcell.00037.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cdc42GAP (GTPase-activating protein) has been implicated in the regulation of cell motility, adhesion, proliferation, and apoptosis. In this study, Cdc42GAP was cloned from smooth muscle tissues. Cdc42GAP, but not inactive R282A Cdc42GAP (alanine substitution at arginine-282), enhanced the GTP hydrolysis of Cdc42 in an in vitro assay. Furthermore, we developed an assay to evaluate the activity of Cdc42GAP in vivo. Stimulation of smooth muscle cells with 5-hydroxytryptamine (5-HT) resulted in the decrease in Cdc42GAP activity. The agonist-induced GAP suppression was reversed by reactive oxygen species inhibitors. Treatment with hydrogen peroxide also inhibited GAP activity in smooth muscle cells. Because the vimentin cytoskeleton undergoes dynamic changes in response to contractile activation, we evaluated the role of Cdc42GAP in regulating vimentin filaments. Smooth muscle cells were infected with retroviruses encoding wild-type Cdc42GAP or its R282A mutant. Expression of wild-type Cdc42GAP, but not mutant R282A GAP, inhibited the increase in the activation of Cdc42 upon agonist stimulation. Phosphorylation of p21-activated kinase (PAK) at Thr-423 (an indication of PAK activation), vimentin phosphorylation (Ser-56), partial disassembly and spatial remodeling, and contraction were also attenuated in smooth muscle cells expressing Cdc42GAP. Our results suggest that the activity of Cdc42GAP is regulated upon contractile activation, which is mediated by intracellular ROS. Cdc42GAP regulates the vimentin network through the Cdc42-PAK pathway in smooth muscle cells during 5-HT stimulation.
Collapse
Affiliation(s)
- Qing-Fen Li
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
43
|
Ratz PH, Miner AS, Barbour SE. Calcium-independent phospholipase A2 participates in KCl-induced calcium sensitization of vascular smooth muscle. Cell Calcium 2009; 46:65-72. [PMID: 19487023 DOI: 10.1016/j.ceca.2009.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/15/2009] [Accepted: 05/04/2009] [Indexed: 01/14/2023]
Abstract
In vascular smooth muscle, KCl not only elevates intracellular free Ca(2+) ([Ca(2+)](i)), myosin light chain kinase activity and tension (T), but also can inhibit myosin light chain phosphatase activity by activation of rhoA kinase (ROCK), resulting in Ca(2+) sensitization (increased T/[Ca(2+)](i) ratio). Precisely how KCl causes ROCK-dependent Ca(2+) sensitization remains to be determined. Using Fura-2-loaded isometric rings of rabbit artery, we found that the Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibitor, bromoenol lactone (BEL), reduced the KCl-induced tonic but not early phasic phase of T and potentiated [Ca(2+)](i), reducing Ca(2+) sensitization. The PKC inhibitor, GF-109203X (> or =3 microM) and the pseudo-substrate inhibitor of PKCzeta produced a response similar to BEL. BEL reduced basal and KCl-stimulated myosin phosphatase phosphorylation. Whereas BEL and H-1152 produced strong inhibition of KCl-induced tonic T (approximately 50%), H-1152 did not induce additional inhibition of tissues already inhibited by BEL, suggesting that iPLA(2) links KCl stimulation with ROCK activation. The cPLA(2) inhibitor, pyrrolidine-1, inhibited KCl-induced tonic increases in [Ca(2+)](i) but not T, whereas the inhibitor of 20-HETE production, HET0016, acted like the ROCK inhibitor H-1152 by causing Ca(2+) desensitization. These data support a model in which iPLA(2) activity regulates Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, USA.
| | | | | |
Collapse
|
44
|
Raina H, Zacharia J, Li M, Wier WG. Activation by Ca2+/calmodulin of an exogenous myosin light chain kinase in mouse arteries. J Physiol 2009; 587:2599-612. [PMID: 19403597 DOI: 10.1113/jphysiol.2008.165258] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of myosin light chain kinase (MLCK) and other kinases was studied in the arteries of transgenic mice that express an optical fluorescence resonance energy transfer (FRET) MLCK activity biosensor. Binding of Ca(2+)/calmodulin (Ca(2+)/CaM) induces an increase in MLCK activity and a change in FRET. After exposure to high external [K(+)], intracellular [Ca(2+)] (fura-2 ratio or fluo-4 fluorescence) and MLCK activity both increased rapidly to an initial peak and then declined, rapidly at first and then very slowly. After an initial peak ('phasic') force was constant or increased slowly (termed 'tonic' force). Inhibition of rho-kinase (Y-27632) decreased tonic force more than phasic, but had little effect on [Ca(2+)] and MLCK activation. Inhibition of PKCalpha and PKCbeta with Gö6976 had no effect. KN-93, an inhibitor of CaMK II, markedly reduced force, MLCK FRET and [Ca(2+)]. Applied during tonic force, forskolin caused a rapid decrease in MLCK FRET ratio and force, but no change in Ca(2+), suggesting a cAMP mediated decrease in affinity of MLCK for Ca(2+)/CaM. However, receptor (beta-adrenergic) activated increases in cAMP during KCl were ineffective in causing relaxation, changes in [Ca(2+)], or MLCK FRET. At the same tonic force, MLCK FRET ratio activated by alpha(1)-adrenoceptors was approximately 60% of that activated by KCl. In conclusion, MLCK activity of arterial smooth muscle during KCl-induced contraction is determined primarily by Ca(2+)/CaM. Rho-kinase is activated, by unknown mechanisms, and increases 'Ca(2+) sensitivity' significantly. Forskolin mediated increases in cAMP, but not receptor mediated increases in cAMP cause a rapid decrease in the affinity of MLCK for Ca(2+)/CaM.
Collapse
Affiliation(s)
- H Raina
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
45
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2009. [PMID: 19120701 DOI: 10.1111/j.1582-4934.2008.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
46
|
Gupte SA, Kaminski PM, George S, Kouznestova L, Olson SC, Mathew R, Hintze TH, Wolin MS. Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction. Am J Physiol Heart Circ Physiol 2009; 296:H1048-57. [PMID: 19168729 DOI: 10.1152/ajpheart.00491.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein kinase C (PKC) stimulation of NAD(P)H oxidases (Nox) is an important component of multiple vascular disease processes; however, the relationship between oxidase activation and the regulation of vascular smooth muscle contraction by PKC remains poorly understood. Therefore, we examined the signaling cascade of PKC-elicited Nox activation and the role of superoxide and hydrogen peroxide in mediating PKC-induced vascular contraction. Endothelium-denuded bovine coronary arteries showed a PKC-dependent basal production of lucigenin (5 muM)-detected Nox oxidase-derived superoxide, which was stimulated fourfold by PKC activation with 10 muM phorbol 12,13-dibutyrate (PDBu). PDBu appeared to increase superoxide generation by Nox2 through both p47(phox) and peroxide-dependent Src activation mechanisms based on the actions of inhibitors, properties of Src phosphorylation, and the loss of responses in aorta from mice deficient in Nox2 and p47(phox). The actions of inhibitors of contractile regulating mechanisms, scavengers of superoxide and peroxide, and responses in knockout mouse aortas suggest that a major component of the contraction elicited by PDBu appeared to be mediated through peroxide derived from Nox2 activation stimulating force generation through Rho kinase and calmodulin kinase-II mechanisms. Superoxide generated by PDBu also attenuated relaxation to nitroglycerin. Peroxide-derived from Nox2 activation by PKC appeared to be a major contributor to the thromboxane A(2) receptor agonist U46619 (100 nM)-elicited contraction of coronary arteries. Thus a p47(phox) and Src kinase activation of peroxide production by Nox2 appears to be an important contributor to vascular contractile mechanisms mediated through activation of PKC.
Collapse
Affiliation(s)
- Sachin A Gupte
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Giachini FRC, Zemse SM, Carneiro FS, Lima VV, Carneiro ZN, Callera GE, Ergul A, Webb RC, Tostes RC. Interleukin-10 attenuates vascular responses to endothelin-1 via effects on ERK1/2-dependent pathway. Am J Physiol Heart Circ Physiol 2008; 296:H489-96. [PMID: 19074677 DOI: 10.1152/ajpheart.00251.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine with protective actions on the vasculature. On the other hand, endothelin (ET)-1 has potent vasoconstrictor, mitogenic, and proinflammatory activities, which have been implicated in the pathophysiology of a number of cardiovascular diseases. We hypothesized that, in a condition where ET-1 expression is upregulated, i.e., on infusion of TNF-alpha, IL-10 confers vascular protection from ET-1-induced injury. Aortic rings and first-order mesenteric arteries from male C57BL/6 (WT) and IL-10-knockout (IL-10(-/-)) mice were treated with human recombinant TNF-alpha (220 ng x kg(-1) x day(-1)) or vehicle (saline) for 14 days. TNF-alpha infusion significantly increased blood pressure in IL-10(-/-), but not WT, mice. TNF-alpha augmented vascular ET-1 mRNA expression in arteries from WT and IL-10(-/-) mice. ET type A (ET(A)) receptor expression was increased in arteries from IL-10(-/-) mice, and TNF-alpha infusion did not change vascular ET(A) receptor expression in control or IL-10(-/-) mice. Aorta and mesenteric arteries from TNF-alpha-infused IL-10(-/-) mice displayed increased contractile responses to ET-1, but not the ET type B receptor agonist IRL-1620. The ET(A) receptor antagonist atrasentan completely abolished responses to ET-1 in aorta and mesenteric vessels, whereas the ERK1/2 inhibitor PD-98059 abrogated increased contractions to ET-1 in arteries from TNF-alpha-infused IL-10(-/-) mice. Infusion of TNF-alpha, as well as knockdown of IL-10 (IL-10(-/-)), induced an increase in total and phosphorylated ERK1/2. These data demonstrate that IL-10 counteracts ET(A)-mediated vascular responses to ET-1, as well as activation of the ERK1/2 pathway.
Collapse
|
48
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2008; 12:2165-80. [PMID: 19120701 PMCID: PMC2692531 DOI: 10.1111/j.1582-4934.2008.00552.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/08/2008] [Indexed: 12/24/2022] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Appel
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Vetterkind
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | | | - K G Morgan
- Department of Health Sciences, Boston UniversityBoston, MA, USA
- Boston Biomedical Research InstituteWatertown, MA, USA
| |
Collapse
|
49
|
Mercure MZ, Ginnan R, Singer HA. CaM kinase II delta2-dependent regulation of vascular smooth muscle cell polarization and migration. Am J Physiol Cell Physiol 2008; 294:C1465-75. [PMID: 18385282 DOI: 10.1152/ajpcell.90638.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous studies indicate involvement of the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) in vascular smooth muscle (VSM) cell migration. In the present study, molecular loss-of-function studies were used specifically to assess the role of the predominant CaMKII delta2 isoform on VSM cell migration using a scratch wound healing assay. Targeted CaMKII delta2 knockdown using siRNA or inhibition of activity by overexpressing a kinase-negative mutant resulted in attenuation of VSM cell migration. Temporal and spatial assessments of kinase autophosphorylation indicated rapid and transient activation in response to wounding, in addition to a sustained activation in the leading edge of migrating and spreading cells. Furthermore, siRNA-mediated suppression of CaMKII delta2 resulted in the inhibition of wound-induced Rac activation and Golgi reorganization, and disruption of leading edge morphology, indicating an important function for CaMKII delta2 in regulating VSM cell polarization. Numerous previous reports link activation of CaMKII to ERK1/2 signaling in VSM. Wound-induced ERK1/2 activation was also found to be dependent on CaMKII; however, ERK activity did not account for effects of CaMKII in regulating Golgi polarization, indicating alternative mechanisms by which CaMKII affects the complex events involved in cell migration. Wounding a VSM cell monolayer results in CaMKII delta2 activation, which positively regulates VSM cell polarization and downstream signaling, including Rac and ERK1/2 activation, leading to cell migration.
Collapse
Affiliation(s)
- Melissa Z Mercure
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
50
|
The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 2008; 456:769-85. [PMID: 18365243 DOI: 10.1007/s00424-008-0491-8] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 03/04/2008] [Indexed: 01/09/2023]
Abstract
Calcium (Ca(2+)) is a highly versatile second messenger that controls vascular smooth muscle cell (VSMC) contraction, proliferation, and migration. By means of Ca(2+) permeable channels, Ca(2+) pumps and channels conducting other ions such as potassium and chloride, VSMC keep intracellular Ca(2+) levels under tight control. In healthy quiescent contractile VSMC, two important components of the Ca(2+) signaling pathways that regulate VSMC contraction are the plasma membrane voltage-operated Ca(2+) channel of the high voltage-activated type (L-type) and the sarcoplasmic reticulum Ca(2+) release channel, Ryanodine Receptor (RyR). Injury to the vessel wall is accompanied by VSMC phenotype switch from a contractile quiescent to a proliferative motile phenotype (synthetic phenotype) and by alteration of many components of VSMC Ca(2+) signaling pathways. Specifically, this switch that culminates in a VSMC phenotype reminiscent of a non-excitable cell is characterized by loss of L-type channels expression and increased expression of the low voltage-activated (T-type) Ca(2+) channels and the canonical transient receptor potential (TRPC) channels. The expression levels of intracellular Ca(2+) release channels, pumps and Ca(2+)-activated proteins are also altered: the proliferative VSMC lose the RyR3 and the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase isoform 2a pump and reciprocally regulate isoforms of the ca(2+)/calmodulin-dependent protein kinase II. This review focuses on the changes in expression of Ca(2+) signaling proteins associated with VSMC proliferation both in vitro and in vivo. The physiological implications of the altered expression of these Ca(2+) signaling molecules, their contribution to VSMC dysfunction during vascular disease and their potential as targets for drug therapy will be discussed.
Collapse
|