1
|
Schmidt KE, Höving AL, Nowak K, an Mey N, Kiani Zahrani S, Nemeita B, Riedel L, Majewski A, Kaltschmidt B, Knabbe C, Kaltschmidt C. Serum Induces the Subunit-Specific Activation of NF-κB in Proliferating Human Cardiac Stem Cells. Int J Mol Sci 2024; 25:3593. [PMID: 38612406 PMCID: PMC11012129 DOI: 10.3390/ijms25073593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often linked to ageing and are the major cause of death worldwide. The declined proliferation of adult stem cells in the heart often impedes its regenerative potential. Thus, an investigation of the proliferative potential of adult human cardiac stem cells (hCSCs) might be of great interest for improving cell-based treatments of cardiovascular diseases. The application of human blood serum was already shown to enhance hCSC proliferation and reduce senescence. Here, the underlying signalling pathways of serum-mediated hCSC proliferation were studied. We are the first to demonstrate the involvement of the transcription factor NF-κB in the serum-mediated proliferative response of hCSCs by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). RNA-Sequencing (RNA-Seq) revealed ATF6B, COX5B, and TNFRSF14 as potential targets of NF-κB that are involved in serum-induced hCSC proliferation.
Collapse
Affiliation(s)
- Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna L. Höving
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Katja Nowak
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Nike an Mey
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Sina Kiani Zahrani
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Britta Nemeita
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Lena Riedel
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Agnes Majewski
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany;
| | - Cornelius Knabbe
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| |
Collapse
|
2
|
Yuan X, Zhang X, Hu J, Zhang B, Ma X, He J, Shi L. A ThT Derivative as Zn 2+ Sensor Based on DNA G-quadruplex. J Fluoresc 2024; 34:353-358. [PMID: 37256463 DOI: 10.1007/s10895-023-03278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
In this report, we developed a sensing strategy based on ThT-E (a ThT derivative) and DNA G-quadruplex for the label-free detection of Zn2+. In the absence of Zn2+, there was a fluorescence enhancement of ThT-E by interaction with human telomere sequence. On the addition of Zn2+, Zn2+ induced a more compact antiparallel G-quadruplex to release ThT-E, resulting in fluorescence quenching. The detection limit was 0.6996 μM, and the fluorescence intensity showed a good linear relationship with the concentration of Zn2+ in the range of 0-10 μM. This sensing strategy which only needs to mix two kinds of materials has the characteristics of label-feel, simple operation, short response time, economical and efficient.
Collapse
Affiliation(s)
- Xinyu Yuan
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Xiufeng Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China.
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan, 063210, China.
| | - Jinshan Hu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Buyue Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Xiaoying Ma
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Jinxing He
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Lei Shi
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan, 063210, China
| |
Collapse
|
3
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
4
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Lomovskaya Y, Pankratov A, Pankratova N, Buneeva O, Kopylov A, Medvedev A, Akatov V. Disulfiram Oxy-Derivatives Suppress Protein Retrotranslocation across the ER Membrane to the Cytosol and Initiate Paraptosis-like Cell Death. MEMBRANES 2022; 12:845. [PMID: 36135864 PMCID: PMC9506514 DOI: 10.3390/membranes12090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Disulfiram (DSF) and its derivatives were here investigated as antineoplastic agents, and their important feature is the ability to influence the UPS. We have recently shown that hydroxocobalamin catalyzes the aerobic oxidation of diethyldithiocarbamate to form disulfiram and its oxy-derivatives (DSFoxy; i.e., sulfones and sulfoxides), which induce cytoplasm vacuolization and paraptosis-like cancer cell death. We used LC-MS/MS and bioinformatics analysis to determine the key points in these processes. DSFoxy was found to induce an increase in the number of ubiquitinated proteins, including oxidized ones, and a decrease in the monomeric ubiquitin. Enhanced ubiquitination was revealed for proteins involved in the response to exogenous stress, regulation of apoptosis, autophagy, DNA damage/repair, transcription and translation, folding and ubiquitination, retrograde transport, the MAPK cascade, and some other functions. The results obtained indicate that DSF oxy-derivatives enhance the oxidation and ubiquitination of many proteins regulating proteostasis (including E3 ligases and deubiquitinases), which leads to inhibition of protein retrotranslocation across the ER membrane into the cytosol and accumulation of misfolded proteins in the ER followed by ER swelling and initiates paraptosis-like cell death. Our results provide new insight into the role of protein ubiquitination/deubiquitination in regulating protein retrotranslocation across the ER membrane into the cytosol and paraptosis-like cell death.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anton Pankratov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia Pankratova
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga Buneeva
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Arthur Kopylov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Alexei Medvedev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
5
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Mishukov A, Lomovskaya Y, Pavlik L, Mikheeva I, Holmuhamedov E, Akatov V. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim Biophys Acta Gen Subj 2022; 1866:130184. [PMID: 35660414 DOI: 10.1016/j.bbagen.2022.130184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dithiocarbamates and derivatives (including disulfiram, DSF) are currently investigated as antineoplastic agents. We have revealed earlier the ability of hydroxocobalamin (vitamin В12b) combined with diethyldithiocarbamate (DDC) to catalyze the formation of highly cytotoxic oxidized derivatives of DSF (DSFoxy, sulfones and sulfoxides). METHODS Electron and fluorescent confocal microscopy, molecular biology and conventional biochemical techniques were used to study the morphological and functional responses of MCF-7 human breast cancer cells to treatment with DDC and B12b alone or in combination. RESULTS DDC induces unfolded protein response in MCF-7 cells. The combined use of DDC and B12b causes MCF-7 cell death. Electron microscopy revealed the separation of ER and nuclear membranes, leading to the formation of both cytoplasmic and perinuclear vacuoles, with many fibers inside. The process of vacuolization coincided with the appearance of ER stress markers, a marked damage to mitochondria, a significant inhibition of 20S proteasome, and actin depolimerization at later stages. Specific inhibitors of apoptosis, necroptosis, autophagy, and ferroptosis did not prevent cell death. A short- time (6-h) exposure to DSFoxy caused a significant increase in the number of entotic cells. CONCLUSIONS These observations indicate that MCF-7 cells treated with a mixture of DDC and B12b die by the mechanism of paraptosis. A short- time exposure to DSFoxy caused, along with paraptosis, a significant activation of the entosis and its final stage, lysosomal cell death. GENERAL SIGNIFICANCE The results obtained open up opportunities for the development of new approaches to induce non-apoptotic death of cancer cells by dithiocarbamates.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Artem Mishukov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Laboratory of Biorheology and Biomechanics, Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russian Federation
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Liubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Ekhson Holmuhamedov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
6
|
|
7
|
Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Pat Anticancer Drug Discov 2020; 14:113-132. [PMID: 31084595 DOI: 10.2174/1574892814666190514104035] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity. OBJECTIVE To summarize the anti-cancer effects of Disulfiram through a thorough patent review. METHODS This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy. RESULTS Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug. CONCLUSION For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.
Collapse
Affiliation(s)
- Elmira Ekinci
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Sagar Rohondia
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Raheel Khan
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Qingping P Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
8
|
Vitamin B 12b Enhances the Cytotoxicity of Diethyldithiocarbamate in a Synergistic Manner, Inducing the Paraptosis-Like Death of Human Larynx Carcinoma Cells. Biomolecules 2020; 10:biom10010069. [PMID: 31906414 PMCID: PMC7023477 DOI: 10.3390/biom10010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
We have shown that hydroxycobalamin (vitamin B12b) increases the toxicity of diethyldithiocarbamate (DDC) to tumor cells by catalyzing the formation of disulfiram (DSF) oxi-derivatives. The purpose of this study was to elucidate the mechanism of tumor cell death induced by the combination DDC + B12b. It was found that cell death induced by DDC + B12b differed from apoptosis, autophagy, and necrosis. During the initiation of cell death, numerous vacuoles formed from ER cisterns in the cytoplasm, and cell death was partially suppressed by the inhibitors of protein synthesis and folding, the IP3 receptor inhibitor as well as by thiols. At this time, a short-term rise in the expression of ER-stress markers BiP and PERK with a steady increase in the expression of CHOP were detected. After the vacuolization of the cytoplasm, functional disorders of mitochondria and an increase in the generation of superoxide anion in them occurred. Taken together, the results obtained indicate that DDC and B12b used in combination exert a synergistic toxic effect on tumor cells by causing severe ER stress, extensive ER vacuolization, and inhibition of apoptosis, which ultimately leads to the induction of paraptosis-like cell death.
Collapse
|
9
|
Yang F, Tang J, Dai K, Huang Y. Metallic wear debris collected from patients induces apoptosis in rat primary osteoblasts via reactive oxygen species‑mediated mitochondrial dysfunction and endoplasmic reticulum stress. Mol Med Rep 2019; 19:1629-1637. [PMID: 30628694 PMCID: PMC6390047 DOI: 10.3892/mmr.2019.9825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
Although total hip arthroplasty is considered to be an effective surgical procedure for treating hip joint diseases, it is hindered by implant wear debris, which induces aseptic loosening. Various cell types are involved in this pathogenesis; however, the interactions between wear debris and osteoblasts, which serve a crucial role in bone formation, have not been clearly illustrated. In the present study, minor metallic wear particles were collected from the interfacial membrane around loosened implants of patients, and the biological effects of these particles on rat primary osteoblasts were then explored. The results demonstrated that metallic wear debris was able to induce the apoptosis of treated cells in a concentration- and time-dependent manner. Furthermore, it was identified that reactive oxygen species (ROS) generation increased, the mitochondrial membrane potential collapsed, and the mitochondria-caspase-dependent and endoplasmic reticulum (ER) stress apoptotic pathways were activated following metallic wear debris application. In addition, apoptosis and associated pathways were inhibited by the use of N-acetyl-L-cysteine, an antioxidant that suppresses ROS production, indicating that the ROS generation triggered ER stress, mitochondrial dysfunction and downstream cascades that contributed to cell apoptosis. These findings suggest that metallic wear debris-induced ROS serve an important role in the apoptosis of osteoblasts. This provides a valuable insight, not only into understanding the mechanisms underlying the involvement of osteoblasts in osteolysis, but also into a potential novel therapeutic approach to treat implant aseptic loosening.
Collapse
Affiliation(s)
- Fei Yang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jian Tang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yan Huang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
10
|
Solovieva ME, Shatalin YV, Solovyev VV, Sazonov AV, Kutyshenko VP, Akatov VS. Hydroxycobalamin catalyzes the oxidation of diethyldithiocarbamate and increases its cytotoxicity independently of copper ions. Redox Biol 2019; 20:28-37. [PMID: 30290302 PMCID: PMC6171330 DOI: 10.1016/j.redox.2018.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023] Open
Abstract
It is known that some metals (Cu, Zn, Cd, Au) markedly increase the toxic effect of thiocarbamates. It was shown in the present study that hydroxycobalamin (a form of vitamin B12, HOCbl), which incorporates cobalt, significantly enhances the cytotoxicity of diethyldithiocarbamate (DDC), decreasing its IC50 value in tumor cells three to five times. The addition of HOCbl to aqueous DDC solutions accelerated the reduction of oxygen. No hydrogen peroxide accumulation was observed in DDC + HOCbl solutions; however, catalase slowed down the oxygen reduction rate. Catalase as well as the antioxidants N-acetylcysteine (NAC) and glutathione (GSH) partially inhibited the cytotoxic effect of DDC + HOCbl, whereas ascorbate, pyruvate, and tiron, a scavenger of superoxide anion, had no cytoprotective effect. The administration of HOCbl into DDC solutions (> 1 mM) resulted in the formation of a crystalline precipitate, which was inhibited in the presence of GSH. The data of UV and NMR spectroscopy and HPLC and Mass Spectrometry (LC/MS) indicated that the main products of the reaction of DDC with HOCbl are disulfiram (DSF) and its oxidized forms, sulfones and sulfoxides. The increase in the cytotoxicity of DDC combined with HOCbl occurred both in the presence of Cu2+ in culture medium and in nominally Cu-free solutions, as well as in growth medium containing the copper chelator bathocuproine disulfonate (BCS). The results indicate that HOCbl accelerates the oxidation of DDC with the formation of DSF and its oxidized forms. Presumably, the main cause of the synergistic increase in the toxic effect of DDC + HOCbl is the formation of sulfones and sulfoxides of DSF.
Collapse
Affiliation(s)
- M E Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - Yu V Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | | | | | - V P Kutyshenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| | - V S Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia.
| |
Collapse
|
11
|
Abstract
Human rhinovirus is responsible for causing 50% of common cold infections in infants and adults. It belongs to the picornavirus family of nonenveloped positive-strand RNA viruses. The RNA synthesis of rhinovirus is carried out by RNA-dependent RNA polymerase, also known as 3DPol. It catalyzes the synthesis of negative-strand RNA using a positive-strand template. The structure of the enzyme consists of three domains: palm, fingers, and thumb domains and Mg2+ in the active site. These conserved structural features of the enzyme help in catalyzing phosphodiester bond formation between the two consecutive nucleotide units complimentary to the template RNA using a VPg primer. Owing to the presence of over 100 serotypes of the enzyme, designing specific inhibitors targeting the polymerase is a challenging task and until now no clinically approved antirhino viral drug is reported. In this review, we have given detailed information about the structure and function of the enzyme and also discussed some of the inhibitors and their in vivo activity against 3DPol.
Collapse
|
12
|
Kim HJ, Jung CL, Jeong YS, Kim JS. Soybean-derived glyceollins induce apoptosis through ROS generation. Food Funct 2014; 5:688-95. [PMID: 24513878 DOI: 10.1039/c3fo60379b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glyceollins, which are synthesized from daidzein in soybeans infected with fungi, have been shown to have anti-fungal effects and antioxidant properties. However, the anti-proliferative mechanism of glyceollins against tumor cells is unknown. Glyceollin-induced apoptosis was evidenced by a decrease in cell viability and mitochondrial membrane potential, and an increase in early redistribution of plasma membrane phosphatidylserine, the sub G1 phase, and DNA fragmentation in hepa1c1c7 cells. Western blot analysis showed that treatment of the hepa1c1c7 cells with the glyceollins decreased the expression of pro-caspase-3, Bcl-2, and cell cycle-related proteins, but increased the expression of p21 and p27, and cytochrome C release into cytosol. At a concentration of 6 μg mL(-1) or higher, glyceollins significantly stimulated the production of reactive oxygen species (ROS), which appear to be responsible for the apoptotic activity of the compounds. Our present study demonstrated that the high dose of glyceollins possibly caused apoptosis in mouse hepatoma cells through the production of ROS, suggesting the potential to exploit glyceollins as anti-tumorigenic agents.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Research Institute for Biological Functions, Chubu University, Kasugai, Japan
| | | | | | | |
Collapse
|
13
|
Pyrrolidine dithiocarbamate inhibits herpes simplex virus 1 and 2 replication, and its activity may be mediated through dysregulation of the ubiquitin-proteasome system. J Virol 2013; 87:8675-86. [PMID: 23740985 DOI: 10.1128/jvi.00869-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) is widely used as an antioxidant or an NF-κB inhibitor. It has been reported to inhibit the replication of human rhinoviruses, poliovirus, coxsackievirus, and influenza virus. In this paper, we report that PDTC could inhibit the replication of herpes simplex virus 1 and 2 (HSV-1 and HSV-2). PDTC suppressed the expression of HSV-1 and HSV-2 viral immediate early (IE) and late (membrane protein gD) genes and the production of viral progeny. This antiviral property was mediated by the dithiocarbamate moiety of PDTC and required the presence of Zn(2+). Although PDTC could potently block reactive oxygen species (ROS) generation, it was found that this property did not contribute to its anti-HSV activity. PDTC showed no activity in disrupting the mitogen-activated protein kinase (MAPK) pathway activation induced by viral infection that was vital for the virus's propagation. We found that PDTC modulated cellular ubiquitination and, furthermore, influenced HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced PML stability in the nucleus, resulting in the inhibition of viral gene expression. These results suggested that the antiviral activity of PDTC might be mediated by its dysregulation of the cellular ubiquitin-proteasome system (UPS).
Collapse
|
14
|
Abstract
PURPOSE The process whereby liver inflammation develops in non-alcoholic steatohepatitis (NASH) is not fully understood. While modification of the inflammatory milieu is an attractive target to prevent the development of hepatocellular injury, most antiinflammatory agents have proven ineffective in this setting. Tetraethylthiuram disulfide (TDSF) is able to induce S-glutathionylation of NF-κB along with critical signaling proteins involved with inflammation, especially when complexed with a heavy metal. For this reason, we hypothesized that administration of TDSF would function to ameliorate necroinflammatory activity in a mouse model of NASH. METHODS Mice were divided into five groups and received control chow versus a methionine-choline-deficient diet. After 6 weeks of TDSF versus sham gavage, animals were necropsied. Using conventional H&E staining, livers were examined using the Brunt scoring system by a hepatopathologist blinded to treatment groups. Validated mouse primer sets were used for quantitative real-time PCR to evaluate changes in mRNA expression. RESULTS Livers treated with TDSF demonstrated a qualitative reduction in lobular inflammation, lipogranuloma formation, and Kupffer cell accumulation, but not steatosis. Significant reductions in inflammatory transcripts for α-1-collagen, TGF-β, Mmp2, MCP-1, and TNF-1α were also observed. CONCLUSIONS Animals treated with TDSF exhibit a reduction in lobular inflammation that is independent of lipid accumulation when administered MCD diet. Similar reductions are seen in several inflammatory transcripts associated with NASH. Additional work in this area may reveal a therapeutic role for TDSF or similar agents in curtailing inflammatory signaling within the liver.
Collapse
|
15
|
Dehydroglyasperin C, a component of liquorice, attenuates proliferation and migration induced by platelet-derived growth factor in human arterial smooth muscle cells. Br J Nutr 2013; 110:391-400. [PMID: 23298457 DOI: 10.1017/s0007114512005399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Liquorice is one of the botanicals used frequently as a traditional medicine in the West and in the East. Platelet-derived growth factor (PDGF)-BB is involved in the development of CVD by inducing abnormal proliferation and migration of vascular smooth muscle cells. In our preliminary study, dehydroglyasperin C (DGC), an active compound of liquorice, showed strong antioxidant activity. Since phytochemicals with antioxidant activities showed beneficial effects on chronic inflammatory diseases, the present study aimed to investigate the effects of DGC on PDGF-induced proliferation and migration of human aortic smooth muscle cells (HASMC). Treatment of HASMC with DGC for 24 h significantly decreased PDGF-induced cell number and DNA synthesis in a dose-dependent manner without any cytotoxicity, as demonstrated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide test and thymidine incorporation. Upon cell cycle analysis, DGC blocked the PDGF-induced progression through the G0/G1 to S phase of the cell cycle, and down-regulated the expression of cyclin-dependent kinase (CDK); 2, cyclin E, CDK4 and cyclin D1. Furthermore, DGC significantly attenuated PDGF-stimulated phosphorylation of PDGF receptor-b, phospholipase C-g1, AKT and extracellular-regulated kinase 1/2, and DGC inhibited cell migration and the dissociation of actin filaments by PDGF. In a rat vascular balloon injury model, DGC suppressed an excessive reduction in luminal diameters and neointimal formation compared with the control group. These results demonstrate the mechanistic basis for the prevention of CVD and the potential therapeutic properties of DGC.
Collapse
|
16
|
Palladium(II) complexes of dithiocarbamic acids: synthesis, characterization, crystal structure and DNA binding study. TRANSIT METAL CHEM 2011. [DOI: 10.1007/s11243-011-9569-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Glyceollins inhibit platelet-derived growth factor-mediated human arterial smooth muscle cell proliferation and migration. Br J Nutr 2011; 107:24-35. [DOI: 10.1017/s0007114511002571] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Platelet-derived growth factor (PDGF)-BB can induce abnormal proliferation and migration of vascular smooth muscle cells (VSMC) that are involved in the development of CVD. In our preliminary study, phytoalexin glyceollins (glyceollins I, II and III) isolated from soyabean seeds cultured withAspergillus sojaeshowed strong antioxidant and anti-inflammatory activity. Since antioxidants showed beneficial effects on chronic inflammatory diseases, the purpose of the present study was to examine the effects of glyceollins on PDGF-induced proliferation and migration in human aortic smooth muscle cells (HASMC). Incubation of resting HASMC with glyceollins for 24 h significantly diminished PDGF-increased cell number and DNA synthesis in a dose-dependent manner without any cytotoxicity. In addition to blocking of the PDGF-inducible progression through the G0/G1to the S phase of the cell cycle, glyceollins down-regulated the expression of cyclin-dependent kinase (CDK)2 and cyclin D1, and up-regulated the expression of CDK inhibitors such as p27kip1and p53.Glyceollins also effectively inhibited reactive oxygen species generation and phosphorylation of PDGF receptor-β, phospholipase Cγ1, Akt and extracellular signal-regulated kinase 1/2 by PDGF stimulation. Furthermore, glyceollins were found to inhibit PDGF-induced dissociation of actin filaments and cell migration. Thus, the results suggest that glyceollins could become a potent therapeutic agent for regulating VSMC-associated vascular disease such as atherosclerosis and restenosis after angioplasty.
Collapse
|
18
|
Wiesener N, Zimmer C, Jarasch-Althof N, Wutzler P, Henke A. Therapy of experimental influenza virus infection with pyrrolidine dithiocarbamate. Med Microbiol Immunol 2010; 200:115-26. [PMID: 21174118 DOI: 10.1007/s00430-010-0182-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Indexed: 12/27/2022]
Abstract
The search for new antiviral strategies to treat influenza A virus (IAV) infections is one major international health care activity. Hereby, the IAV-caused misuse of cellular nuclear factor kappa B (NF-κB) signaling pathways in infected cells represents one target for antiviral therapy. In the present study, pyrrolidine dithiocarbamate (PDTC), which is known as an antioxidant and as an inhibitor of IAV-induced NF-κB activation, was studied in vivo. After the antiviral activity of PDTC was confirmed in MDCK cells, mice-infected with the mouse-adapted strain of IAV A/PR/8/34 (H1N1)-were treated intraperitoneally simultaneously with PDTC (75, 150, 200 mg/kg body weight). The influence of PDTC administrations was evaluated on viral replication and inflammatory reactions in lung tissue up to 14 days postinfection (p. i.). This therapy increased survival up to 80% and reduced IAV-caused weight loss and viral replication in lung tissue in a dose-dependent manner. Protective effects were less pronounced, if the therapy started later on during an ongoing IAV infection. In addition, simultaneous PDTC treatment also limited IAV-caused infiltration of immune cells as well as local interferon-γ expression in lung tissue. These results imply that PDTC decreases IAV-caused disease in mice significantly. Therefore, the development of drugs like PDTC that interfere with NF-κB signaling may represent a modern focus of anti-IAV therapy.
Collapse
Affiliation(s)
- Nadine Wiesener
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | | | | | | | | |
Collapse
|
19
|
Pyrrolidine dithiocarbamate (PDTC) blocks apoptosis and promotes ionizing radiation-induced necrosis of freshly-isolated normal mouse spleen cells. Apoptosis 2010; 15:705-14. [PMID: 20333468 DOI: 10.1007/s10495-010-0487-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ionizing radiation (IR) is a pro-oxidant that kills cells by both apoptotic and necrotic mechanisms. Pyrrolidine dithiocarbamate (PDTC) is a thiol-containing compound that may act either as a pro- or anti-oxidant depending on the experimental conditions. This study was designed to determine whether PDTC would reduce or enhance IR-induced cell death of freshly-isolated normal mouse B6/129 spleen cells (NMSC). We determined the effect of increasing doses of IR, PDTC alone and PDTC followed by IR on the viability of NMSC. Annexin V and propidium iodide (Annexin V/PI) staining demonstrated a dose and time-dependent relationship in which PDTC enhanced the percentage of IR-induced apoptotic/necrotic NMSC. Trypan blue dye inclusion confirmed that a loss of membrane integrity was occurring 1 h after incubation with PDTC plus IR. Reduction in the glutathione (GSH)/glutathione disulfide (GSSG) ratio and GSH demonstrated that both IR (8.5 Gy) and PDTC acted as pro-oxidants, but their mechanisms of action differed: In contrast to IR, which promoted p53 activation and caspase 3/7-mediated apoptosis, PDTC inhibited IR-induced p53 and caspase 3/7 activity. However, PDTC increased H(2)O(2) formation and necrosis, resulting in an overall increase in IR-induced cell death. Catalase prevented the PDTC-induced increase in IR cytotoxicity implicating the generation of H(2)O(2) as a major factor in this mechanism. These results demonstrate that in NMSC PDTC acts as pro-oxidant and enhances IR-induced cell cytotoxicity by increasing H(2)O(2)formation and thiol oxidation. As such, they strongly suggest that the use of PDTC as an adjunct to reduce radiation toxicity should be avoided.
Collapse
|
20
|
Landstetter N, Glaser W, Gregori C, Seipelt J, Kuchler K. Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:651-63. [PMID: 20695822 DOI: 10.1089/omi.2010.0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pyrrolidine dithiocarbamate (PDTC), a known inhibitor of NFκB activation, has antioxidative as well as antiviral activities. PDTC is effective against several virus families, indicating that its antiviral mechanism targets host rather than viral functions. To investigate its mode of action, we used baker's yeast as a simple eukaryotic model system and two types of genome-wide analysis. First, expression profiling using whole-genome DNA microarrays identifies more than 200 genes differentially regulated upon PDTC exposure. Interestingly, the Aft1-dependent iron regulon is a main target of PDTC, indicating a lack of iron availability. Moreover, the PDTC-caused zinc influx triggers a strong regulatory effect on zinc transporters due to the cytoplasmic zinc excess. Second, phenotypic screening the EUROSCARF collection for PDTC hypersensitivity identifies numerous mutants implicated in vacuolar maintenance, acidification as well as in transport, mitochondrial organization, and translation. Notably, the screening data indicate significant overlaps of PDTC-sensitive genes and those mediating zinc tolerance. Hence, we show that PDTC induces cytoplasmic zinc excess, eliciting vacuolar detoxification, which in turn, disturbs iron homeostasis and activates the iron-dependent regulator Aft1. Our work reveals a complex crosstalk in yeast ion homeostasis and the underlying regulatory networks.
Collapse
Affiliation(s)
- Nathalie Landstetter
- Medical University Vienna, Max F. Perutz Laboratories, Campus Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
21
|
Altaf M, Stoeckli-Evans H, Batool SS, Isab AA, Ahmad S, Saleem M, Awan SA, Shaheen MA. Mercury(II) complexes of pyrrolidinedithiocarbamate, crystal structure of bis{[μ2-(pyrrolidinedithiocarbamato-S,S ′)(pyrrolidinedithiocarbamato-S,S ′)mercury(II)]}. J COORD CHEM 2010. [DOI: 10.1080/00958971003759085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Muhammad Altaf
- a Institute of Physics, University of Neuchâtel , CH-2009 Neuchâtel, Switzerland
| | - Helen Stoeckli-Evans
- a Institute of Physics, University of Neuchâtel , CH-2009 Neuchâtel, Switzerland
| | - Syeda Shahzadi Batool
- b Department of Chemistry , University of Engineering and Technology , Lahore 54890, Pakistan
| | - Anvarhusein A. Isab
- c Department of Chemistry , King Fahd University of Petroleum and Minerals , Dhahran 31261, Saudi Arabia
| | - Saeed Ahmad
- b Department of Chemistry , University of Engineering and Technology , Lahore 54890, Pakistan
| | | | | | | |
Collapse
|
22
|
Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma. Melanoma Res 2010; 20:11-20. [DOI: 10.1097/cmr.0b013e328334131d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Tsubosaka Y, Murata T, Yamada K, Uemura D, Hori M, Ozaki H. Halichlorine Reduces Monocyte Adhesion to Endothelium Through the Suppression of Nuclear Factor-κB Activation. J Pharmacol Sci 2010; 113:208-13. [DOI: 10.1254/jphs.10065fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
24
|
Fruehauf JP, Trapp V. Reactive oxygen species: an Achilles' heel of melanoma? Expert Rev Anticancer Ther 2009; 8:1751-7. [PMID: 18983235 DOI: 10.1586/14737140.8.11.1751] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The successful treatment of melanoma has been hampered by the unique biology of this cancer. Fortunately, research to further our understanding of how melanoma cells differ from normal tissues has led to the discovery of potential new avenues of attack. One promising strategy relates to targeting the excess free radicals produced by melanomas. Melanocyte transformation into cancer is associated with significant structural alterations in the melanosome. In addition to pigment production, melanosomes also protect the cell by scavenging free radicals generated by sunlight and cellular metabolism. In melanoma, the disrupted and disorganized melanosome structure reverses this process. Melanosomes found in melanoma produce free radicals, such as hydrogen peroxide, furthering DNA damage. Melanosome generation of reactive oxygen species (ROS), in tandem with those generated by cancer metabolism, activate cellular signal transduction pathways that prevent cell death. ROS activation of proto-oncogene pathways in melanoma contributes to their resistance to chemotherapy. Fortunately, it may be possible to target these free radicals, just as Paris was able to successfully target Achilles' heel. The use of agents that block ROS scavenging, such as ATN-224 and disulfiram, have been explored clinically. A recent randomized Phase II trial with elesclomol, an agent that generates ROS, in combination with paclitaxel led to improved patient survival, suggesting that this may be a viable approach to advance the treatment of melanoma.
Collapse
Affiliation(s)
- John P Fruehauf
- University of California Irvine, Chao Family Comprehensive Cancer Center, CA, USA.
| | | |
Collapse
|
25
|
Choi JJ, Choi J, Kang CD, Chen X, Wu CF, Ko KH, Kim WK. Hydrogen peroxide induces the death of astrocytes through the down-regulation of the constitutive nuclear factor-kappaB activity. Free Radic Res 2009; 41:555-62. [PMID: 17454138 DOI: 10.1080/10715760601173010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) has a dual role in the promotion or attenuation of cell death. Here, we demonstrated the role of NF-kappaB in the H(2)O(2)-induced death of astrocytes. H(2)O(2) evoked the release of lactate dehydrogenase (LDH), a marker of cell death, and concomitantly decreased the DNA binding and transcriptional activity of NF-kappaB in cultured astrocytes. H(2)O(2)-induced astrocyte death was markedly increased by the co-treatment with pyrrolidinedithiocarbamate, an NF-kappaB inhibitor. Moreover, the elevation of constitutive NF-kappaB activity by overexpressing p65 NF-kappaB subunit attenuated H(2)O(2) toxicity, whereas NF-kappaB inhibition by overexpressing IkappaB potentiated the toxicity. NF-kappaB activity and H(2)O(2) cytotoxicity was further found to be dependent on cell density. Compared with astrocytes in low cell density, those in high cell density exhibited a higher constitutive NF-kappaB activity and a stronger resistance to H(2)O(2) cytotoxicity. These results indicate that the constitutive activity of NF-kappaB in astrocytes is required for their survival under oxidative stress such as H(2)O(2).
Collapse
Affiliation(s)
- Jung-Jin Choi
- Division of NanoSciences, Ewha Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol 2008; 83:58-64. [PMID: 18922875 DOI: 10.1128/jvi.01543-08] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have discovered two metal ion binding compounds, pyrithione (PT) and hinokitiol (HK), that efficiently inhibit human rhinovirus, coxsackievirus, and mengovirus multiplication. Early stages of virus infection are unaffected by these compounds. However, the cleavage of the cellular eukaryotic translation initiation factor eIF4GI by the rhinoviral 2A protease was abolished in the presence of PT and HK. We further show that these compounds inhibit picornavirus replication by interfering with proper processing of the viral polyprotein. In addition, we provide evidence that these structurally unrelated compounds lead to a rapid import of extracellular zinc ions into cells. Imported Zn(2+) was found to be localized in punctate structures, as well as in mitochondria. The observed elevated level of zinc ions was reversible when the compounds were removed. As the antiviral activity of these compounds requires the continuous presence of the zinc ionophore PT, HK, or pyrrolidine-dithiocarbamate, the requirement for zinc ions for the antiviral activity is further substantiated. Therefore, an increase in intracellular zinc levels provides the basis for a new antipicornavirus mechanism.
Collapse
|
27
|
Involvement of activating transcription factors JNK, NF-κB, and AP-1 in apoptosis induced by pyrrolidine dithiocarbamate/Cu complex. Eur J Pharmacol 2008; 594:9-17. [DOI: 10.1016/j.ejphar.2008.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/03/2008] [Accepted: 07/10/2008] [Indexed: 11/23/2022]
|
28
|
Induction of cellular stress overcomes the requirement of herpes simplex virus type 1 for immediate-early protein ICP0 and reactivates expression from quiescent viral genomes. J Virol 2008; 82:11775-83. [PMID: 18799580 DOI: 10.1128/jvi.01273-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants impaired in the activities of the structural protein VP16 and the immediate-early (IE) proteins ICP0 and ICP4 establish a quiescent infection in human fibroblasts, with most cells retaining an inactive, repressed viral genome for sustained periods in culture. To date, the quiescent state has been considered stable, since it has been reversed only by provision of herpesviral proteins, such as ICP0, not by alteration of the cell physiological state. We report that the interaction of HSV-1 with human fibroblasts can be altered significantly by transient treatment of cultures with sodium arsenite, an inducer of heat shock and oxidative stress, or gramicidin D, a toxin that selectively permeabilizes cell membranes, prior to infection. These regimens stimulated gene expression from IE-deficient HSV-1 mutants in a promoter sequence-independent manner and also overcame the replication defect of ICP0-null mutants. Reactivation of gene expression from quiescent HSV-1 genomes and the resumption of virus replication were observed following addition of arsenite or gramicidin D to cultures. Both agents induced reorganization of nuclear domain 10 structures, the sites of quiescent genomes, but appeared to do so through different mechanisms. The results demonstrate that the physiological state of the cell is important in determining the outcome of infection with IE-deficient HSV-1 and show novel methods for reactivating quiescent HSV-1 in fibroblasts with a high efficiency.
Collapse
|
29
|
Potent anticancer activity of pyrrolidine dithiocarbamate-copper complex against cisplatin-resistant neuroblastoma cells. Anticancer Drugs 2008; 19:125-32. [PMID: 18176108 DOI: 10.1097/cad.0b013e3282f2bdff] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Effective drugs are urgently needed for the treatment of advanced neuroblastoma refractory to conventional chemotherapy. Pyrrolidine dithiocarbamate (PDTC) is a copper-binding ligand, which showed cytotoxicity on many human tumor cells after binding with copper ions. In this study, we synthesized a copper-PDTC complex, which was characterized as a Cu(PDTC)2 complex, with elemental analyses (Fourier transform infrared, electrospray ionization mass spectra, and ultraviolet-visible spectroscopy). The Cu(PDTC)2 complex suppressed the proliferation of BE(2)C cells, a human neuroblastoma cell line, with an IC50 of 8.0 micromol/l, which was more potent than cisplatin (IC50 of 80 micromol/l). Treatment of BE(2)C cells with the Cu(PDTC)2 complex caused the S-phase arrest of cell cycle progression, cellular apoptosis, and necrosis, and increased the expression of p53 protein. The Cu(PDTC)2 complex holds potential as a new drug for the treatment of refractory neuroblastoma in children.
Collapse
|
30
|
Kang MS, Choi EK, Choi DH, Ryu SY, Lee HH, Kang HC, Koh JT, Kim OS, Hwang YC, Yoon SJ, Kim SM, Yang KH, Kang IC. Antibacterial activity of pyrrolidine dithiocarbamate. FEMS Microbiol Lett 2008; 280:250-4. [PMID: 18248425 DOI: 10.1111/j.1574-6968.2008.01069.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC), an antioxidant with a metal-chelating activity, has been used widely to inhibit the expression of inflammatory genes in vitro and in vivo. This study investigated whether PDTC has an antimicrobial activity against various bacteria. The antibacterial activity of PDTC and other compounds was evaluated in vitro by the broth microdilution method against Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Staphylococcus aureus, and Escherichia coli. Bacterial growth was inhibited by PDTC, where a wide range of sensitivity was demonstrated among the tested bacteria. The antibacterial activity of PDTC was reduced by the addition of copper chloride; in contrast, it was enhanced considerably by zinc chloride. Two different zinc chelators, Ca-saturated EDTA (Ca-EDTA) and N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine, blocked the antibacterial activity of PDTC, whereas Zn-EDTA failed to reduce the activity of PDTC. These results demonstrate for the first time that PDTC possesses an antibacterial activity, for which zinc is required, and suggest that PDTC, possessing a dual anti-inflammatory and antibacterial activity, may be considered for topical use for inflammatory diseases of bacterial origin.
Collapse
Affiliation(s)
- Mi-Sun Kang
- Brain Korea 21 Program, Chonnam National University, Kwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen J, Du C, Kang J, Wang J. Cu2+ is required for pyrrolidine dithiocarbamate to inhibit histone acetylation and induce human leukemia cell apoptosis. Chem Biol Interact 2008; 171:26-36. [DOI: 10.1016/j.cbi.2007.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 01/13/2023]
|
32
|
Lanke K, Krenn BM, Melchers WJG, Seipelt J, van Kuppeveld FJM. PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells. J Gen Virol 2007; 88:1206-1217. [PMID: 17374764 DOI: 10.1099/vir.0.82634-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Previously, it was shown that pyrrolidine dithiocarbamate (PDTC) inhibits proteolytic polyprotein processing and replication of human rhinovirus by transporting metal ions into cells. Here, it is shown that PDTC also inhibits replication of two other picornaviruses: coxsackievirus B3 (CVB3), a closely related virus that belongs to the genus Enterovirus, and mengovirus, an encephalomyocarditis virus strain that belongs to the genus Cardiovirus, and that this inhibition is due to the dithiocarbamate moiety of the compound. Making use of subgenomic replicons, evidence is provided that PDTC inhibits replication of these two viruses by disturbing viral RNA synthesis. Furthermore, it is shown that PDTC transports zinc ions into cells and that these zinc ions play an important role in the antiviral activity mediated by PDTC. Finally, it is shown that PDTC interferes with proteolytic processing of the polyproteins of both CVB3 and mengovirus, but that the underlying mechanism between these two viruses differs. In CVB3-infected cells, PDTC interferes strongly with the proteolytic activity of 3CD(pro), as shown by the impaired production of the mature capsid proteins as well as the autocleavage of 3CD(pro) into 3C(pro) and 3D(pol). In mengovirus-infected cells, however, PDTC had no effect on the proteolytic production of capsid proteins or the autocleavage of 3CD(pro). Instead, PDTC caused the accumulation of a high-molecular-mass precursor protein, due to an impairment in the primary 'break' that normally occurs at the 2A-2B junction. Thus, PDTC disturbs polyprotein processing and replication of two groups of picornaviruses, enteroviruses and cardioviruses, but the underlying mechanism is different.
Collapse
Affiliation(s)
- K Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | - B M Krenn
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - W J G Melchers
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands
| | - J Seipelt
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr Bohr Gasse 9/3, A-1030 Vienna, Austria
| | - F J M van Kuppeveld
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, PO Box 9101, NL-6500 HB Nijmegen, The Netherlands
| |
Collapse
|
33
|
Kaur P, Aschner M, Syversen T. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress. Toxicology 2007; 230:164-77. [PMID: 17169475 DOI: 10.1016/j.tox.2006.11.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/06/2006] [Accepted: 11/09/2006] [Indexed: 11/25/2022]
Abstract
Certain discrete areas of the CNS exhibit enhanced sensitivity towards MeHg. To determine whether GSH is responsible for this particular sensitivity, we investigated its role in MeHg-induced oxidative insult in primary neuronal and astroglial cell cultures of both cerebellar and cortical origins. For this purpose, ROS and GSH were measured with the fluorescent indicators, CMH(2)DCFDA and MCB. Cell associated-MeHg was measured with (14)C-radiolabeled MeHg. The intracellular GSH content was modified by pretreatment with NAC or DEM. For each of the dependent variables (ROS, GSH, and MTT), there was an overall significant effect of cellular origin, MeHg and pretreatment in all the cell cultures. A trend towards significant interaction between originxMeHgxpretreatment was observed only for the dependent variable, ROS (astrocytes p=0.056; neurons p=0.000). For GSH, a significant interaction between originxMeHg was observed only in astrocytes (p=0.030). The cerebellar cell cultures were more vulnerable (astrocytes(mean)=223.77; neurons(mean)=138.06) to ROS than the cortical cell cultures (astrocytes(mean)=125.18; neurons(mean)=107.91) for each of the tested treatments. The cell associated-MeHg increased when treated with DEM, and the cerebellar cultures varied significantly from the cortical cultures. Non-significant interactions between originxMeHgxpretreatment for GSH did not explain the significant interactions responsible for the increased amount of ROS produced in these cultures. In summary, although GSH modulation influences MeHg-induced toxicity, the difference in the content of GSH in cortical and cerebellar cultures fails to account for the increased ROS production in cerebellar cultures. Hence, different approaches for the future studies regarding the mechanisms behind selectivity of MeHg have been discussed.
Collapse
Affiliation(s)
- Parvinder Kaur
- Department of Neuroscience, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | |
Collapse
|
34
|
Demirbilek S, Akin M, Gürünlüoğlu K, Aydin NE, Emre MH, Taş E, Aksoy RT, Ay S. The NF-kappaB inhibitors attenuate hepatic injury in bile duct ligated rats. Pediatr Surg Int 2006; 22:655-63. [PMID: 16830161 DOI: 10.1007/s00383-006-1721-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2006] [Indexed: 12/11/2022]
Abstract
Cholestasis-induced liver injury during bile duct obstruction causes an inflammatory response and this inflammatory process may be an important source of tissue injury. We hypothesized that NF-kappaB inhibition would decrease liver injury in a rat model of extrahepatic biliary obstruction. A total of 40 female rats of Sprague-Dawley strain were allocated to four groups. First group was sham operated control. The second group underwent common bile duct ligation (BDL) and was monitored for 10 days. Third group of rats underwent BDL and received pyrrolidine dithiocarbomate (PDTC) at a dose of 100 mg/kg/day intraperitoneally. Fourth group underwent BDL and received sulfasalazine at a dose of 100 mg/kg b.w. Both inhibitors were administered once a day throughout last 7 days of the experimental period. Rats were terminated 10 days after sham operation or BDL. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamil transpeptidase, and tumor necrosis factor-alpha levels were elevated in the BDL group as compared to the control group, while this increase was significantly decreased by treatment with PDTC and sulfasalazine (P < 0.05). Hepatic GSH, SOD and catalase levels were significantly depressed by BDL, but were elevated back to control levels in NF-kappaB inhibitor-treated BDL groups. Increases in tissue free radical and MDA levels and MPO activity due to BDL were reduced back to control levels by NF-kappaB inhibitor treatment (P < 0.05). Similarly histological damage in the BDL rats was reduced by treatments. These results indicate that inhibitors of NF-kappaB activity such as PDTB and sulfasalazine exert a therapeutic effect on cholestatic liver injury in rats with BDL through anti-inflammatory and antioxidant actions.
Collapse
|
35
|
Thompson JS, Asmis R, Glass J, Liu H, Wilson C, Nelson B, Brown SA, Stromberg AJ. P53 status influences regulation of HSPs and ribosomal proteins by PDTC and radiation. Biochem Biophys Res Commun 2006; 343:435-42. [PMID: 16546138 DOI: 10.1016/j.bbrc.2006.02.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 02/25/2006] [Indexed: 01/13/2023]
Abstract
Pyrrolidine dithiocarbamate (PDTC) is a thiol-containing compound that can act under varying conditions as an anti-oxidant or pro-oxidant. Utilizing microarrays, we determined the effect of PDTC +/- ionizing radiation (IR) on the expression of heat shock protein (HSP) genes in isolated B6/129 wild-type (WT) and p53-/- spleen cells. Extremely significant microarrays demonstrated that PDTC, but not IR, markedly up-regulated the expression of the majority of detectable HSP genes in WT and many to a significantly greater degree in p53-/- deficient cells. Determination of the glutathione/glutathione disulfide ratio indicated that PDTC was acting as a pro-oxidant under these conditions. From these data we conclude that the clinical use of "antioxidants" with radiotherapy or chemotherapy must be very carefully based on knowledge of the p53 status of their intended normal and tumor target cells.
Collapse
Affiliation(s)
- John S Thompson
- Veterans Affairs Medical Center, Lexington Kentucky, 40502, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Viola-Rhenals M, Rieber MS, Rieber M. Suppression of survival in human SKBR3 breast carcinoma in response to metal–chelator complexes is preferential for copper–dithiocarbamate. Biochem Pharmacol 2006; 71:722-34. [PMID: 16412983 DOI: 10.1016/j.bcp.2005.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 11/17/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Since diethyl dithiocarbamate (DEDTC) forms complexes with either zinc or copper, and 8-hydroxyquinoline (8-OHQ) also complexes with copper, we now compared the cytotoxic activity of Cu[DEDTC]2, Zn[DEDTC]2 and Cu[8-OHQ]2. This report shows that at nanomolar levels, only copper-[DEDTC]2, suppresses proliferation and clonogenicity of SKBR3 human breast carcinoma, concurrently with induction of apoptosis-associated PARP fragmentation. Susceptibility to these agents was paralleled by reactive oxygen generation (ROS) and greater expression of anti-oxidant enzymes like MnSOD and catalase, with no comparable effect on Cu/Zn superoxide dismutase. The lethal effects of Cu[DEDTC]2 manifested when adding the two separate aqueous components or the preformed synthetic complexes in DMSO, was prevented by N-acetyl cysteine or glutathione, with no comparable protection afforded by non-thiol anti-oxidants like mannitol or DMSO. Exogenously added catalase also protected cells from Cu[DEDTC]2, suggesting that this complex may kill after the levels of superoxide anion [O2*-] dismutated by MnSOD increase hydrogen peroxide-related stress. Cu[DEDTC]2 also induced p21WAF1, a cdk inhibitor usually not inducible in mutant p53 tumors like SKBR3 carcinoma, correlating with dephosphorylation of the Sp1 transcription factor. Concentrations of Cu[DEDTC]2 cytotoxic for SKBR3 carcinoma did not induce comparable damage versus normal diploid human WI-38 fibroblasts. In contrast to the cytotoxic effect of nM levels of Cu[DEDTC]2 against SKBRR3 cells, no response was seen in the same cells exposed to 20 microM cis-platin. Since neither DEDTC bound to zinc, nor copper bound to 8-OHQ showed comparable cytotoxicity, our results suggest that the greater activity of copper-DEDTC reflects a specific structure-activity relationship for the active complex. Since Cu[DEDTC]2 shows more effectiveness than other metal-chelator complexes, it may be worth further investigation as an alternative to cancer therapies.
Collapse
Affiliation(s)
- Maricela Viola-Rhenals
- Instituto Venezolano de Investigaciones Cientificas, IVIC, Centre for Microbiology & Cell Biology, Laboratory of Tumor Cell Biology, Apartado 21827, Caracas 1020 A, Venezuela.
| | | | | |
Collapse
|
37
|
Pfrommer CA, Erl W, Weber PC. Docosahexaenoic acid induces ciap1 mRNA and protects human endothelial cells from stress-induced apoptosis. Am J Physiol Heart Circ Physiol 2006; 290:H2178-86. [PMID: 16473961 DOI: 10.1152/ajpheart.00933.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Induction of apoptosis represents a potential reaction of endothelial cells (ECs) after injury of the vascular endothelium. Beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) in vascular diseases are widely recognized although the responsible mechanisms are not fully understood. Because it is not known whether PUFAs modulate EC apoptosis, we investigated the effects of n-3 and n-6 PUFAs on 4-hydroxynonenal (HNE)-induced EC apoptosis by annexin V staining and caspase-3 activation assays. Pretreatment with the n-3 fatty acid docosahexaenoic acid (DHA) reduced HNE-induced EC apoptosis. DHA-treated cells did not show the pronounced drop in intracellular GSH after HNE exposure seen in vehicle- or n-6 arachidonic acid-treated cells. This is most likely due to increased GSH levels in DHA-treated cells. Furthermore, DHA pretreatment increased ciap1 mRNA levels and transfection of cIAP1 small interfering RNA abolished the protective effect of DHA in HNE-induced apoptosis in HUVECs. Thus pretreatment of HUVECs with DHA reduces HNE-induced oxidative stress and apoptosis, and the protective effects of DHA seem to be dependent on cIAP1. The results provide a possible new mechanism for the atheroprotective effects of n-3 fatty acids in vascular disease.
Collapse
Affiliation(s)
- Claudia A Pfrommer
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L7, Canada.
| | | | | |
Collapse
|
38
|
Krenn BM, Holzer B, Gaudernak E, Triendl A, van Kuppeveld FJ, Seipelt J. Inhibition of polyprotein processing and RNA replication of human rhinovirus by pyrrolidine dithiocarbamate involves metal ions. J Virol 2006; 79:13892-9. [PMID: 16254325 PMCID: PMC1280194 DOI: 10.1128/jvi.79.22.13892-13899.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) is an antiviral compound that was shown to inhibit the replication of human rhinoviruses (HRVs), poliovirus, and influenza virus. To elucidate the mechanism of PDTC, the effects on the individual steps of the infection cycle of HRV were investigated. PDTC did not interfere with receptor binding or internalization by receptor mediated endocytosis of HRV2 particles into HeLa cells. But we demonstrate that the processing of the viral polyprotein was prevented by PDTC treatment in HeLa cells infected with HRV2. Furthermore, PDTC inhibited the replication of the viral RNA, even when added four hours post infection. As PDTC is described as a metal ion binding agent, we investigated the effect of other metal chelators on the multiplication of HRV2. We show that EDTA, omicron-phenanthroline, and bathocuproine disulfonic acid do not exhibit any antiviral properties. Surprisingly, these substances, coadministered with PDTC, abolished the antiviral effect of PDTC, suggesting that metal ions play a pivotal role in the inhibition of virus multiplication. These results suggest that PDTC inhibits the activity of the viral proteases in a metal ion dependent way.
Collapse
Affiliation(s)
- B M Krenn
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Si X, McManus BM, Zhang J, Yuan J, Cheung C, Esfandiarei M, Suarez A, Morgan A, Luo H. Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 2005; 79:8014-23. [PMID: 15956547 PMCID: PMC1143712 DOI: 10.1128/jvi.79.13.8014-8023.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is one of the most common pathogens for viral myocarditis. The lack of effective therapeutics for CVB3-caused viral diseases underscores the importance of searching for antiviral compounds. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and is recently reported to inhibit ubiquitin-proteasome-mediated proteolysis. Previous studies have shown that PDTC inhibits replication of rhinovirus, influenza virus, and poliovirus. In the present study, we report that PDTC is a potent inhibitor of CVB3. Coxsackievirus-infected HeLa cells treated with PDTC showed a significant reduction of CVB3 viral RNA synthesis, viral protein VP1 expression, and viral progeny release. Similar to previous observation that divalent ions mediate the function of PDTC, we further report that serum-containing copper and zinc are required for its antiviral activity. CVB3 infection resulted in massive generation of reactive oxygen species (ROS). Although PDTC alleviated ROS generation, the antiviral activity was unlikely dependent on its antioxidant effect because the potent antioxidant, N-acetyl-L-cysteine, failed to inhibit CVB3 replication. Consistent with previous reports that PDTC inhibits ubiquitin-proteasome-mediated protein degradation, we found that PDTC treatment led to the accumulation of several short-lived proteins in infected cells. We further provide evidence that the inhibitory effect of PDTC on protein degradation was not due to inhibition of proteasome activity but likely modulation of ubiquitination. Together with our previous findings that proteasome inhibition reduces CVB3 replication (H. Luo, J. Zhang, C. Cheung, A. Suarez, B. M. McManus, and D. Yang, Am. J. Pathol. 163:381-385, 2003), results in this study suggest a strong antiviral effect of PDTC on coxsackievirus, likely through inhibition of the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Xiaoning Si
- Department of Pathology and Laboratory Medicine, The James HoggiCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia-St. Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Murakami H, Shinomiya N, Kikuchi T, Fujikawa K, Nemoto K. Differential sensitivity to NO-induced apoptosis between anterior cruciate and medial collateral ligament cells. J Orthop Sci 2005; 10:84-90. [PMID: 15666128 DOI: 10.1007/s00776-004-0858-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 09/17/2004] [Indexed: 02/09/2023]
Abstract
It is well known that the anterior cruciate ligament (ACL) of the knee joint has poorer healing responses than the medial collateral ligament (MCL). Nitric oxide (NO) induces free radicals and plays a key role in the induction of apoptosis in various wound-healing models. We hypothesized that the poor healing response of the ACL may be ascribed to high susceptibility to apoptosis, and we investigated the difference in susceptibility to apoptosis between ACL and MCL cells after treatment with sodium nitroprusside, a NO donor. Apoptosis was evaluated by phase contrast microscopy, electron microscopy, DNA gel electrophoresis, and flow cytometric analysis. Although morphological changes and DNA ladders were observed in both ACL and MCL cells after 2 mM sodium nitroprusside treatment, ACL cells were more prone to apoptosis at 1 mM. Based on flow cytometric analysis, DNA fragmentation at 1 mM sodium nitroprusside was significantly greater in ACL cells than in MCL cells (58.6% +/- 1.6% vs. 11.9% +/- 2.2%). Caspase-3 inhibitor (Ac-Asp-Glu-Val-Asp-CHO) and caspase-9 inhibitor (Ac-Leu-Glu-His-Asp-CHO) completely inhibited this DNA fragmentation. In conclusion, the ACL and MCL cells exhibit essential differences, and the differential sensitivity to NO-induced apoptosis between the ACL and MCL cells may be a reflection of these differences.
Collapse
Affiliation(s)
- Hideaki Murakami
- Department of Orthopaedic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, 359-8513, Japan
| | | | | | | | | |
Collapse
|
41
|
Kim HJ, Vosseler CA, Weber PC, Erl W. Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells. J Cell Physiol 2005; 204:881-8. [PMID: 15795939 DOI: 10.1002/jcp.20351] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFAs) have been shown to exert beneficial effects in the prevention of cardiovascular disease, inflammation, and on tumor growth. To investigate effects of PUFAs on proliferation and apoptosis in endothelial cells, we tested the n-3 PUFA docosahexaenoic acid (DHA) and the n-6 PUFA arachidonic acid (AA) in human umbilical vein endothelial cells (HUVEC). The mitochondrial membrane potential (MMP) and the production of reactive oxygen species were examined by flow cytometry. Phosphorylation of p53 or p38 MAP kinase, and total levels of p53 were measured by Western blot. DNA binding activity of p53 was analyzed with a TransAM transcription factor assay kit. Tube formation was assessed on Matrigel. In proliferating HUVEC, but not in confluent cells, DHA reduced cell viability and induced apoptosis, as demonstrated by increases in membrane leakage (propidium iodide (PI) staining), Annexin-V binding, sub G(1) phase in the cell cycle, and TUNEL-positive cells. AA had no effect on these parameters. In addition to a reduced MMP and increased reactive oxygen species, phosphorylation of p38 and p53 (serine 15) and impaired DNA binding of p53 were observed. There was no change in total levels of p53. The p38 inhibitor SB203580 had no effect on Annexin V binding. DHA also attenuated HUVEC tube formation. Taken together, DHA induces apoptosis in proliferating, but not in resting HUVEC, potentially via the phosphorylation of p53, resulting in decreased p53 DNA binding. The results suggest that anti-angiogenic effects of DHA may be due to induction of apoptosis in proliferating endothelial cells.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | |
Collapse
|
42
|
Hardy K, Hunt NH. Effects of a redox-active agent on lymphocyte activation and early gene expression patterns. Free Radic Biol Med 2004; 37:1550-63. [PMID: 15477007 DOI: 10.1016/j.freeradbiomed.2004.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 07/08/2004] [Accepted: 07/15/2004] [Indexed: 11/19/2022]
Abstract
Antioxidants can inhibit the proliferation of T lymphocytes induced by mitogens. This has been postulated to be due to their scavenging of reactive oxygen species which may act as second messengers in the antigen-induced signaling cascade leading to cell proliferation. When added concurrently with various mitogens, the thiol pyrrolidine dithiocarbamate (PDTC) inhibited the subsequent proliferation of lymphocytes. The extracellular copper chelator bathocuproine disulfonic acid (BCPS) increased the amount of PDTC needed for inhibition. We sought to determine the mechanism by which the two different treatments, PDTC (0.4 microM, copper-dependent) and PDTC (20 microM with BCPS, redox-sensitive) affected proliferation. We found that both inhibited the increase in expression of many of the genes, including IL-2 and MKP-2, that were induced early after stimulation of lymphocytes with phorbol myristate acetate and ionomycin. The inhibition of MKP-2 may have contributed to the enhancement observed by the thiol of mitogen-induced ERK phosphorylation. Of the two redox-sensitive, IL-2 regulating transcription factors, NF-kappaB and AP-1, the mitogen-induced activity of the former was inhibited by PDTC. Treatment of unstimulated cells with PDTC induced the expression of many genes, most notably several metallothioneins and heat shock proteins, and this may provide an alternative explanation for the inhibition of cellular proliferation.
Collapse
Affiliation(s)
- Kristine Hardy
- Department of Pathology, University of Sydney, New South Wales, 2006, Australia
| | | |
Collapse
|
43
|
Brar SS, Grigg C, Wilson KS, Holder WD, Dreau D, Austin C, Foster M, Ghio AJ, Whorton AR, Stowell GW, Whittall LB, Whittle RR, White DP, Kennedy TP. Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1049.3.9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The thiocarbamate alcoholism drug disulfiram blocks the P-glycoprotein extrusion pump, inhibits the transcription factor nuclear factor-κB, sensitizes tumors to chemotherapy, reduces angiogenesis, and inhibits tumor growth in mice. Thiocarbamates react with critical thiols and also complex metal ions. Using melanoma as the paradigm, we tested whether disulfiram might inhibit growth by forming mixed disulfides with critical thiols in a mechanism facilitated by metal ions. Disulfiram given to melanoma cells in combination with Cu2+ or Zn2+ decreased expression of cyclin A and reduced proliferation in vitro at lower concentrations than disulfiram alone. In electrophoretic mobility shift assays, disulfiram decreased transcription factor binding to the cyclic AMP-responsive element in a manner potentiated by Cu2+ ions and by the presence of glutathione, suggesting that thiocarbamates might disrupt transcription factor binding by inducing S-glutathionylation of the transcription factor DNA binding region. Disulfiram inhibited growth and angiogenesis in melanomas transplanted in severe combined immunodeficient mice, and these effects were potentiated by Zn2+ supplementation. The combination of oral zinc gluconate and disulfiram at currently approved doses for alcoholism also induced >50% reduction in hepatic metastases and produced clinical remission in a patient with stage IV metastatic ocular melanoma, who has continued on oral zinc gluconate and disulfiram therapy for 53 continuous months with negligible side effects. These findings present a novel strategy for treating metastatic melanoma by employing an old drug toward a new therapeutic use.
Collapse
Affiliation(s)
- Sukhdev S. Brar
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Claude Grigg
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Kimberly S. Wilson
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Walter D. Holder
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Didier Dreau
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Catherine Austin
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Mareva Foster
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| | - Andrew J. Ghio
- 2U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - A. Richard Whorton
- 3Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina; and
| | | | | | | | | | - Thomas P. Kennedy
- 1Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina
| |
Collapse
|
44
|
Moon SK, Jung SY, Kim CH. Transcription factor Sp1 mediates p38MAPK-dependent activation of the p21WAF1 gene promoter in vascular smooth muscle cells by pyrrolidine dithiocarbamate. Biochem Biophys Res Commun 2004; 316:605-11. [PMID: 15033443 DOI: 10.1016/j.bbrc.2004.02.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that pyrrolidine dithiocarbamate (PDTC) induced G1 cell cycle arrest in vascular smooth muscle cells (VSMC) through inducing p21WAF1 expression. It has recently been reported that the transcription factors involved in p21WAF1 activation by certain signaling factors may vary in different cell types. However, little is known concerning the molecular mechanisms by which PDTC induces p21WAF1 gene expression in VSMC. In this report, we demonstrate that PDTC induces the p21WAF1 expression at the mRNA level. This increase in p21WAF1 gene expression was due to p38MAPK-dependent activation of the p21WAF1 promoter by PDTC. Transcription factor Sp1 binding site was identified as the cis-element for the activation of p21WAF1 promoter by PDTC, as determined by deletion and mutation analysis. In addition, gel shift and supershift assays demonstrated that this PDTC-responsive element binds specifically to the transcription factor Sp1. Treatment with SB203580, an inhibitor of the p38MAPK, significantly down-regulated transactivation of PDTC-induced Sp1. Finally, the transient expression of VSMC with dominant negative p38MAPK plasmid suppressed PDTC-stimulated Sp1 activity. In conclusion, we report the novel finding that transcription factor Sp1 that is involved in the p38MAPK-mediated control of p21WAF1 regulation on VSMC in response to PDTC has now been identified.
Collapse
MESH Headings
- Antioxidants/pharmacology
- Binding Sites
- Blotting, Northern
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/genetics
- Down-Regulation
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- G1 Phase/drug effects
- Gene Deletion
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Humans
- Imidazoles/pharmacology
- Immunoblotting
- Luciferases/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Models, Genetic
- Muscle, Smooth, Vascular/cytology
- Mutagenesis
- Myocytes, Smooth Muscle/cytology
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Pyridines/pharmacology
- Pyrrolidines/pharmacology
- RNA/metabolism
- RNA, Messenger/metabolism
- Signal Transduction
- Sp1 Transcription Factor/physiology
- Thiocarbamates/pharmacology
- Transcriptional Activation
- Transfection
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- Sung-Kwon Moon
- National Research Laboratory for Glycobiology, Korean Ministry of Science and Technology, Kyungju, Kyungbuk 780-714, Republic of Korea
| | | | | |
Collapse
|
45
|
Yeh KY, Yeh M, Glass J. Hepcidin regulation of ferroportin 1 expression in the liver and intestine of the rat. Am J Physiol Gastrointest Liver Physiol 2004; 286:G385-94. [PMID: 14592944 DOI: 10.1152/ajpgi.00246.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepcidin has been implicated as the iron stores regulator: a hepatic signaling molecule that regulates intestinal iron absorption by undefined mechanisms. The possibility that hepcidin regulates the expression of ferroportin 1 (FPT1), the basolateral iron transporter, was examined in rats after administration of LPS, an iron chelator, or His-tagged recombinant hepcidin (His-rHepc). In the liver, LPS stimulated a biphasic increase of hepcidin mRNA with peaks of mRNA at 6 and 36 h. Concurrently, hepatic FPT1 mRNA expression decreased to minimal level at 6 h and then increased with a peak at 24-36 h. LPS also induced biphasic changes in intestinal FPT1 mRNA expression, with decreased levels at 6 h and increased expression at 48 h. Whereas the initial decrease of FPT1 coincides with an LPS-induced decrease in serum iron, both intestinal and hepatic FPT1 expression recovered, whereas serum iron concentration continued to decrease for at least 24 h. Dietary iron ingestion increased intestinal ferritin protein production but did not reduce intestinal FPT1 mRNA expression. The iron chelator pyrrolidinedithiocarbamate (PDTC) stimulated hepatic hepcidin without suppressing intestinal FPT1 expression. In PDTC-treated rats, LPS stimulated no additional hepatic hepcidin expression but did increase intestinal FPT1 expression. Administration of HisrHepc induced significant reduction of intestinal FPT1 expression. Taken together, these data suggest that hepcidin mediates LPS-induced downregulation of intestinal FPT1 expression and that the hepcidin signaling pathway involves a PDTC-sensitive step.
Collapse
Affiliation(s)
- Kwo-yih Yeh
- Department of Medicine, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | | | |
Collapse
|
46
|
Vosseler CA, Erl W, Weber PC. Structural requirements of cyclopentenone prostaglandins to induce endothelial cell apoptosis. Biochem Biophys Res Commun 2003; 307:322-6. [PMID: 12859958 DOI: 10.1016/s0006-291x(03)01204-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prostaglandins are a family of structurally related molecules formed by many cells in response to extrinsic stimuli. A member of this family, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), shows unique biological properties including anti-inflammatory, anti-viral, and anti-tumour activity, and has attracted much attention as a high affinity ligand for the peroxisome proliferator-activated receptor gamma. Increasing evidence points to additional effects. We investigated several structurally related prostaglandins in comparison to 15d-PGJ(2) with respect to their apoptosis-inducing capacity in human umbilical endothelial cells (HUVEC). Cell viability was tested with a modified MTT assay and apoptosis was detected by Annexin V staining and cell cycle analysis by flow cytometry. Incubation of confluent HUVECs with 15d-PGJ(2) markedly reduced endothelial cell viability which was due to apoptosis. In contrast, none of the other PGs tested affected cell viability. Interestingly, the cyclopentenone ring alone dose-dependently reduced cell viability and significantly induced apoptosis in HUVECs with as low a concentration as 0.25 microM. In conclusion, we report that the cyclopentenone moiety of cyPGs is an essential component for the apoptosis-inducing properties of 15d-PGJ(2). For 15d-PGJ(2) the position of the cyclopentenone ring in conjunction with the side chains yields a molecule with unique biological properties.
Collapse
Affiliation(s)
- Claudia A Vosseler
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-Maximilians-Universität, Munich, Germany.
| | | | | |
Collapse
|
47
|
Farmer PJ, Gidanian S, Shahandeh B, Di Bilio AJ, Tohidian N, Meyskens FL. Melanin as a target for melanoma chemotherapy: pro-oxidant effect of oxygen and metals on melanoma viability. PIGMENT CELL RESEARCH 2003; 16:273-9. [PMID: 12753401 DOI: 10.1034/j.1600-0749.2003.00046.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Melanoma cells have a poor ability to mediate oxidative stress, which may be attributed to constitutive abnormalities in their melanosomes. We hypothesize that disorganization of the melanosomes will allow chemical targeting of the melanin within. Chemical studies show that under oxidative conditions, synthetic melanins demonstrate increased metal affinity and a susceptibility to redox cycling with oxygen to form reactive oxygen species. The electron paramagnetic resonance (EPR)-active 5,5'-dimethyl-pyrollidine N-oxide spin adduct was used to show that binding of divalent Zn or Cu to melanin induces a pro-oxidant response under oxygen, generating superoxide and hydroxyl radicals. A similar pro-oxidant behaviour is seen in melanoma cell lines under external peroxide stress. Melanoma cultures grown under 95% O2/5% CO2 atmospheres show markedly reduced viability as compared with normal melanocytes. Cu- and Zn-dithiocarbamate complexes, which induce passive uptake of the metal ions into cells, show significant antimelanoma activity. The antimelanoma effect of metal- and oxygen-induced stress appears additive rather than synergistic; both treatments are shown to be significantly less toxic to melanocytes.
Collapse
Affiliation(s)
- Patrick J Farmer
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | | | | | | | | | | |
Collapse
|
48
|
de Erausquin GA, Hyrc K, Dorsey DA, Mamah D, Dokucu M, Mascó DH, Walton T, Dikranian K, Soriano M, García Verdugo JM, Goldberg MP, Dugan LL. Nuclear translocation of nuclear transcription factor-kappa B by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors leads to transcription of p53 and cell death in dopaminergic neurons. Mol Pharmacol 2003; 63:784-90. [PMID: 12644578 DOI: 10.1124/mol.63.4.784] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe a new molecular mechanism of cell death by excitotoxicity mediated through nuclear transcription factor kappa B (NF kappa B) in rat embryonic cultures of dopaminergic neurons. Treatment of mesencephalic cultures with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) resulted in a number of changes that occurred selectively in dopaminergic neurons, including persistent elevation in intracellular Ca(2+) monitored with Fura-2, and a significant increase in intramitochondrial oxidation of dihydrorhodamine 123, probably associated with transient increase of mitochondrial permeability, cytochrome c release, nuclear translocation of NF kappa B, and transcriptional activation of the oncogene p53. Interruption of any of these steps by specific antagonists prevented neurite pruning and programmed cell death. In contrast, cell death was not prevented by caspase antagonists and only partly prevented by nitric-oxide synthase inhibitors. This signal transduction pathway might be a contributing mechanism in ongoing neuronal death in Parkinson disease.
Collapse
Affiliation(s)
- Gabriel A de Erausquin
- Department of Psychiatry and Center for the Study of Nervous System Injury, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Min YK, Park JH, Chong SA, Kim YS, Ahn YS, Seo JT, Bae YS, Chung KC. Pyrrolidine dithiocarbamate-induced neuronal cell death is mediated by Akt, casein kinase 2, c-Jun N-terminal kinase, and IkappaB kinase in embryonic hippocampal progenitor cells. J Neurosci Res 2003; 71:689-700. [PMID: 12584727 DOI: 10.1002/jnr.10520] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pyrrolidine dithiocarbamate (PDTC) is known to induce cell death by the stimulation of intracellular zinc transport and subsequent modulation of nuclear factor-kappaB (NF-kappaB) activity. Zinc is a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes to severe neuronal cell death. In the present study, we explored how PDTC modulates intracellular signal transduction pathways, leading to neuronal cell death. The exposure of immortalized embryonic hippocampal cells (H19-7) to PDTC within the range of 1-100 microM caused cell death in a dose-dependent manner. During the cell death, NF-kappaB activity increased in response to PDTC, and this activity corresponded well with the increase of intracellular free zinc levels, implying that the activation of NF-kappaB transmits the cell death signals of PDTC. Furthermore, PDTC caused the activation of IkappaB kinase (IKK), casein kinase 2 (CK2), phosphatidylinositol 3-kinase (PI-3K), and Akt, as well as mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p38 kinase. The blockade of PI-3K, JNK, and CK2 pathways resulted in a remarkable suppression of PDTC-induced cell death and also the activation of IKK, which subsequently led to a decrease of IkappaB phosphorylation. Although the overexpression of dominant-negative SEK in a transient manner did not inhibit the activation of Akt by PDTC, the transfection of kinase-inactive Akt mutants did cause a remarkable blockade of JNK activation, implying that Akt is present upstream of JNK in the PDTC-signaling pathways. Moreover, whereas selective CK2 inhibitors suppressed PDTC-induced JNK activation, the inhibition of JNK did not affect CK2 activity, suggesting that CK2 is directly related to the regulation of cell viability by PDTC and that the CK2-JNK pathway could be a downstream target of PDTC. Taken together, our results suggest that PDTC-mediated accumulation of intracellular zinc ions may affect cell viability by modulating several intracellular signaling pathways in neuronal hippocampal progenitor cells.
Collapse
Affiliation(s)
- Young Kyu Min
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Moon SK, Jung SY, Choi YH, Lee YC, Patterson C, Kim CH. PDTC, metal chelating compound, induces G1 phase cell cycle arrest in vascular smooth muscle cells through inducing p21Cip1 expression: Involvement of p38 mitogen activated protein kinase. J Cell Physiol 2003; 198:310-23. [PMID: 14603533 DOI: 10.1002/jcp.10728] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pyrrolidine dithiocarbamate (PDTC), a metal chelating compound, is known to induce cell death in vascular smooth muscle cells (VSMC). However, the molecular mechanism for PDTC-induced VSMC death is not well understood. Addition of PDTC reduced cell growth and DNA synthesis on VSMC in low density conditions. However, in serum depleted medium, PDTC did not affect the cell viability, suggesting that certain factors in serum may mediate the cytotoxic effect of PDTC. Several metal chelators prevented the cell death induced by PDTC. In a serum-deprived condition, addition of exogenous metals, copper, iron, and zinc, restored the cytotoxic effect of PDTC. These data indicate that metals such as copper, iron, and zinc in serum may mediate the cytotoxic effect of PDTC. At low VSMC density in 10% FBS, treatment of PDTC, which induced a cell-cycle block in G1-phase, induced down-regulation of cyclins and CDKs and up-regulation of the CDK inhibitor p21 expression, whereas up-regulation of p27 or p53 by PDTC was not observed. Finally, we determined PDTC-mediated signaling pathway involved in VSMC death. Among relevant pathways, PDTC induced marked activation of p38MAPK and JNK. Expression of dominant negative p38MAPK and SB203580, a p38MAPK specific inhibitor, blocked PDTC-dependent p38MAPK, growth inhibition, and p21 expression. These data demonstrate that the p38MAPK pathway participates in p21 induction, which consequently leads to decrease of cyclin D1/cdk4 and cyclin E/cdk2 complexes and PDTC-dependent VSMC growth inhibition. In conclusion, an understanding of the molecular mechanisms of PDTC in VSMC provides a theoretical basis for clinical approaches using antioxidant therapies in atherosclerosis.
Collapse
Affiliation(s)
- Sung-Kwon Moon
- National Research Laboratory for Glycobiology, Korean Ministry of Science and Technology, Kyungju, Kyungbuk, Korea
| | | | | | | | | | | |
Collapse
|