1
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Transporters and New Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14010245. [PMID: 35008407 PMCID: PMC8750728 DOI: 10.3390/cancers14010245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In recent years, aspartate has been increasingly acknowledged as a critical player in the metabolism of cancer cells which use this metabolite for nucleotide and protein synthesis and for redox homeostasis. Most intracellular aspartate derives from the mitochondrial catabolism of glutamine. To date at least four mitochondrial transporters have been involved in this metabolic pathway. Their involvement appears to be cancer type-specific and dependent on glutamine availability. Targeting these mitochondrial transporters may represent a new attractive strategy to fight cancer. The aim of this review is to dissect the role of each of these transporters in relation to the type of cancer and the availability of nutrients in the tumoral microenvironment. Abstract Aspartate has a central role in cancer cell metabolism. Aspartate cytosolic availability is crucial for protein and nucleotide biosynthesis as well as for redox homeostasis. Since tumor cells display poor aspartate uptake from the external environment, most of the cellular pool of aspartate derives from mitochondrial catabolism of glutamine. At least four transporters are involved in this metabolic pathway: the glutamine (SLC1A5_var), the aspartate/glutamate (AGC), the aspartate/phosphate (uncoupling protein 2, UCP2), and the glutamate (GC) carriers, the last three belonging to the mitochondrial carrier family (MCF). The loss of one of these transporters causes a paucity of cytosolic aspartate and an arrest of cell proliferation in many different cancer types. The aim of this review is to clarify why different cancers have varying dependencies on metabolite transporters to support cytosolic glutamine-derived aspartate availability. Dissecting the precise metabolic routes that glutamine undergoes in specific tumor types is of upmost importance as it promises to unveil the best metabolic target for therapeutic intervention.
Collapse
|
3
|
Smith HQ, Li C, Stanley CA, Smith TJ. Glutamate Dehydrogenase, a Complex Enzyme at a Crucial Metabolic Branch Point. Neurochem Res 2017; 44:117-132. [PMID: 29079932 DOI: 10.1007/s11064-017-2428-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/27/2022]
Abstract
In-vitro, glutamate dehydrogenase (GDH) catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate (α-KG). GDH is found in all organisms, but in animals is allosterically regulated by a wide array of metabolites. For many years, it was not at all clear why animals required such complex control. Further, in both standard textbooks and some research publications, there has been some controversy as to the directionality of the reaction. Here we review recent work demonstrating that GDH operates mainly in the catabolic direction in-vivo and that the finely tuned network of allosteric regulators allows GDH to meet the varied needs in a wide range of tissues in animals. Finally, we review the progress in using pharmacological agents to activate or inhibit GDH that could impact a wide range of pathologies from insulin disorders to tumor growth.
Collapse
Affiliation(s)
- Hong Q Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Changhong Li
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charles A Stanley
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas James Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
4
|
Wong CC, Qian Y, Li X, Xu J, Kang W, Tong JH, To KF, Jin Y, Li W, Chen H, Go MYY, Wu JL, Cheng KW, Ng SSM, Sung JJY, Cai Z, Yu J. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology 2016; 151:945-960.e6. [PMID: 27451147 DOI: 10.1053/j.gastro.2016.07.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/14/2016] [Accepted: 07/06/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Many colorectal cancer (CRC) cells contain mutations in KRAS. Analyses of CRC cells with mutations in APC or CTNNB1 and KRAS identified SLC25A22, which encodes mitochondrial glutamate transporter, as a synthetic lethal gene. We investigated the functions of SLC25A22 in CRC cells with mutations in KRAS. METHODS We measured levels of SLC25A22 messenger RNA and protein in paired tumor and nontumor colon tissues collected from 130 patients in Hong Kong and 17 patients in China and compared protein levels with patient survival times. Expression of SLC25A22 was knocked down in KRAS mutant CRC cell lines (DLD1, HCT116, LOVO, SW480, SW620, and SW1116) and CRC cell lines without mutations in KRAS (CACO-2, COLO205, HT29, and SW48); cells were analyzed for colony formation, proliferation, glutaminolysis and aspartate synthesis, and apoptosis in Matrigel and polymerase chain reaction array analyses. DLD1 and HCT116 cells with SLC25A22 knockdown were grown as xenograft tumors in nude mice; tumor growth and metastasis were measured. SLC25A22 was expressed ectopically in HCT116 cells, which were analyzed in vitro and grown as xenograft tumors in nude mice. RESULTS Levels of SLC25A22 messenger RNA and protein were increased in colorectal tumor tissues compared with matched nontumor colon tissues; increased protein levels were associated with shorter survival times of patients (P = .01). Knockdown of SLC25A22 in KRAS mutant CRC cells reduced their proliferation, migration, and invasion in vitro, and tumor formation and metastasis in mice, compared with cells without SLC25A22 knockdown. Knockdown of SLC25A22 reduced aspartate biosynthesis, leading to apoptosis, decreased cell proliferation in KRAS mutant CRC cells. Incubation of KRAS mutant CRC cells with knockdown of SLC25A22 with aspartate increased proliferation and reduced apoptosis, which required GOT1, indicating that oxaloacetate is required for cell survival. Decreased levels of oxaloacetate in cells with knockdown of SLC25A22 reduced regeneration of oxidized nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. Reduced oxidized nicotinamide adenine dinucleotide inhibited glycolysis and decreased levels of adenosine triphosphate, which inactivated mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling via activation of AMP-activated protein kinase. An increased ratio of oxidized nicotinamide adenine dinucleotide phosphate to reduced nicotinamide adenine dinucleotide phosphate induced oxidative stress and glutathione oxidation, which suppressed cell proliferation. Asparagine synthetase mediated synthesis of asparagine from aspartate to promote cell migration. CONCLUSIONS SLC25A22 promotes proliferation and migration of CRC cells with mutations KRAS, and formation and metastasis of CRC xenograft tumors in mice. Patients with colorectal tumors that express increased levels of SLC25A22 have shorter survival times than patients whose tumors have lower levels. SLC25A22 induces intracellular synthesis of aspartate, activation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling and reduces oxidative stress.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yun Qian
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaona Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jiaying Xu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Joanna H Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Jin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Minnie Y Y Go
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Ka Wing Cheng
- College of Engineering, Peking University, Peking, China
| | - Simon S M Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Hussain S, Davanger S. Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits. PLoS One 2015; 10:e0140868. [PMID: 26488171 PMCID: PMC4619507 DOI: 10.1371/journal.pone.0140868] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/01/2015] [Indexed: 12/03/2022] Open
Abstract
Vertebrate organisms adapt to a continuously changing environment by regulating the strength of synaptic connections between brain cells. Excitatory synapses are believed to increase their strength by vesicular insertion of transmitter glutamate receptors into the postsynaptic plasma membrane. These vesicles, however, have never been demonstrated or characterized. For the first time, we show the presence of small vesicles in postsynaptic spines, often closely adjacent to the plasma membrane and PSD (postsynaptic density). We demonstrate that they harbor vesicle-associated membrane protein 2 (VAMP2/synaptobrevin-2) and glutamate receptor subunit 1 (GluA1). Disrupting VAMP2 by tetanus toxin treatment reduces the concentration of GluA1 in the postsynaptic plasma membrane. GluA1/VAMP2-containing vesicles, but not GluA2/VAMP2-vesicles, are concentrated in postsynaptic spines relative to dendrites. Our results indicate that small postsynaptic vesicles containing GluA1 are inserted directly into the spine plasma membrane through a VAMP2-dependent mechanism.
Collapse
Affiliation(s)
- Suleman Hussain
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, P.O. Box 1105 Blindern, 0317 Oslo, Norway
| | - Svend Davanger
- Laboratory for Synaptic Plasticity, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, P.O. Box 1105 Blindern, 0317 Oslo, Norway
- * E-mail:
| |
Collapse
|
6
|
Glutamate and GABA-Metabolizing Enzymes in Post-mortem Cerebellum in Alzheimer’s Disease: Phosphate-Activated Glutaminase and Glutamic Acid Decarboxylase. THE CEREBELLUM 2014; 13:607-15. [DOI: 10.1007/s12311-014-0573-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Intertissue Differences for the Role of Glutamate Dehydrogenase in Metabolism. Neurochem Res 2013; 39:516-26. [DOI: 10.1007/s11064-013-0998-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/24/2013] [Accepted: 02/01/2013] [Indexed: 11/26/2022]
|
8
|
Haraldsdóttir HS, Thiele I, Fleming RMT. Quantitative assignment of reaction directionality in a multicompartmental human metabolic reconstruction. Biophys J 2012; 102:1703-11. [PMID: 22768925 DOI: 10.1016/j.bpj.2012.02.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 01/05/2023] Open
Abstract
Reaction directionality is a key constraint in the modeling of genome-scale metabolic networks. We thermodynamically constrained reaction directionality in a multicompartmental genome-scale model of human metabolism, Recon 1, by calculating, in vivo, standard transformed reaction Gibbs energy as a function of compartment-specific pH, electrical potential, and ionic strength. We show that compartmental pH is an important determinant of thermodynamically determined reaction directionality. The effects of pH on transport reaction thermodynamics are only seen to their full extent when metabolites are represented as pseudoisomer groups of multiple protonated species. We accurately predict the irreversibility of 387 reactions, with detailed propagation of uncertainty in input data, and manually curate the literature to resolve conflicting directionality assignments. In at least half of all cases, a prediction of a reversible reaction directionality is due to the paucity of compartment-specific quantitative metabolomic data, with remaining cases due to uncertainty in estimation of standard reaction Gibbs energy. This study points to the pressing need for 1), quantitative metabolomic data, and 2), experimental measurement of thermochemical properties for human metabolites.
Collapse
Affiliation(s)
- H S Haraldsdóttir
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | | | | |
Collapse
|
9
|
Kita K, Suzuki T, Ochi T. Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J Biol Chem 2012; 287:18163-72. [PMID: 22493432 DOI: 10.1074/jbc.m112.362699] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glutaminase C (GAC), a splicing variant of the kidney-type glutaminase (KGA) gene, is a vital mitochondrial enzyme protein that catalyzes glutamine to glutamate. Earlier studies have shown that GAC proteins in the human hepatocarcinoma cell line, HepG2, were down-regulated by diphenylarsinic acid (DPAA), but the mechanism by which DPAA induced GAC protein down-regulation remained poorly understood. Here, we showed that DPAA promoted GAC protein degradation without affecting GAC transcription and translation. Moreover, DPAA-induced GAC proteolysis was mediated by mitochondrial Lon protease. DPAA insolubilized 0.5% Triton X-100-soluble GAC protein and promoted the accumulation of insoluble GAC in Lon protease knockdown cells. DPAA destroyed the native tetrameric GAC conformation and promoted an increase in the unassembled form of GAC when DPAA was incubated with cell extracts. Decreases in the tetrameric form of GAC were observed in cells exposed to DPAA, and decreases occurred prior to a decrease in total GAC protein levels. In addition, decreases in the tetrameric form of GAC were observed independently with Lon protease. Mitochondrial heat shock protein 70 is known to be an indispensable protein that can bind to misfolded proteins, thereby supporting degradation of proteins sensitive to Lon protease. When cells were incubated with DPAA, GAC proteins that can bind with mtHsp70 increased. Interestingly, the association of mtHsp70 with GAC protein increased when the tetrameric form of GAC was reduced. These results suggest that degradation of native tetrameric GAC by DPAA may be a trigger in GAC protein degradation by Lon protease.
Collapse
Affiliation(s)
- Kayoko Kita
- Laboratory of Toxicology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.
| | | | | |
Collapse
|
10
|
Rama Rao KV, Reddy PVB, Tong X, Norenberg MD. Brain edema in acute liver failure: inhibition by L-histidine. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1400-8. [PMID: 20075201 DOI: 10.2353/ajpath.2010.090756] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain edema and the associated increase in intracranial pressure are potentially lethal complications of acute liver failure (ALF). Astrocyte swelling (cytotoxic edema) represents a significant component of the brain edema in ALF, and elevated blood and brain ammonia levels have been strongly implicated in its formation. We earlier showed in cultured astrocytes that oxidative stress (OS) and the mitochondrial permeability transition (mPT) play major roles in the mechanism of ammonia-induced astrocyte swelling. Glutamine, a byproduct of ammonia metabolism, has also been shown to induce OS, the mPT, and astrocyte swelling. Such effects of glutamine were suggested to be mediated by its hydrolysis in mitochondria, potentially yielding high levels of ammonia in this organelle and leading to OS and the mPT. L-histidine, an inhibitor of mitochondrial glutamine transport, was recently shown to mitigate OS, mPT, and cell swelling in cultured astrocytes treated with ammonia. The present study examined whether L-histidine similarly abolishes OS, the mPT, and brain edema in a rat model of ALF. Treatment of rats with thioacetamide caused a significant degree of brain edema, which was associated with induction of OS and the mPT. These changes were completely abolished by L-histidine, supporting a key role of mitochondrial glutamine transport and hydrolysis in the mechanism of the brain edema associated with ALF.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami, Miller School of Medicine, PO Box 016960, Miami, Fl 33101, USA
| | | | | | | |
Collapse
|
11
|
Roberg BA, Torgner IA, Kvamme E. Kinetics of a novel isoform of phosphate activated glutaminase (PAG) in SH-SY5Y neuroblastoma cells. Neurochem Res 2009; 35:875-80. [PMID: 19894115 DOI: 10.1007/s11064-009-0077-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2009] [Indexed: 11/25/2022]
Abstract
We have recently found that the neuroblastoma cell line SH-SY5Y expresses a novel form of phosphate activated glutaminase (PAG) which deamidates glutamine to glutamate and ammonia at high rates. Glutamate production is enhanced during the exponential phase of growth, and decreases when cell proliferation stops. Neuroblastoma PAG exists in a soluble and membrane associated form, and both the phosphate and the glutamine kinetics, as well as the effects of ammonia and glutamate are different from those of the known forms of PAG. Neuroblastoma PAG is mitochondrial, and our immunoblotting analyses of isolated mitochondria shows that our C-terminal antibody reacts with a protein of 65 kDa, while our N-terminal antibody primarily labels a protein of 58 kDa and to a minor degree one of 65 kDa. This strongly suggests that neuroblastoma cells mainly contain an active isoform of PAG lacking the C-terminal end, probably the GAC form.
Collapse
Affiliation(s)
- B A Roberg
- Department of Biochemistry, Neurochemical Section, Institute of Basic Medical Sciences, University of Oslo, PO Box 1112, Blindern, 0317, Oslo, Norway.
| | | | | |
Collapse
|
12
|
The importance of synapsin I and II for neurotransmitter levels and vesicular storage in cholinergic, glutamatergic and GABAergic nerve terminals. Neurochem Int 2009; 55:13-21. [DOI: 10.1016/j.neuint.2009.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/14/2009] [Accepted: 02/16/2009] [Indexed: 11/20/2022]
|
13
|
Novel form of phosphate activated glutaminase in cultured astrocytes and human neuroblastoma cells, PAG in brain pathology and localization in the mitochondria. Neurochem Res 2008; 33:1341-5. [PMID: 18274897 DOI: 10.1007/s11064-008-9589-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
A novel form of phosphate activated glutaminase (PAG), catalyzing the synthesis of glutamate from glutamine, has been detected in cultured astrocytes and SH-SY5Y neuroblastoma cells. This enzyme form is different from that of the kidney and liver isozymes. In these cells we found high enzyme activity, but no or very weak immunoreactivity against the kidney type of PAG, and no immunoreactivity against the liver type. PAG was also investigated in brain under pathological conditions. In patients with Down's syndrome the immunoreactivity in the frontoparietal cortex was significantly reduced. The findings leading to our conclusion of a functionally active PAG on the outer face of the inner mitochondrial membrane are discussed, and a model is presented.
Collapse
|
14
|
Bak LK, Ziemińska E, Waagepetersen HS, Schousboe A, Albrecht J. Metabolism of [U-13C]Glutamine and [U-13C]Glutamate in Isolated Rat Brain Mitochondria Suggests Functional Phosphate-Activated Glutaminase Activity in Matrix. Neurochem Res 2007; 33:273-8. [PMID: 17763943 DOI: 10.1007/s11064-007-9471-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 08/06/2007] [Indexed: 11/27/2022]
Abstract
One of the forms of phosphate activated glutaminase (PAG) is associated with the inner mitochondrial membrane. It has been debated whether glutamate formed from glutamine in the reaction catalyzed by PAG has direct access to mitochondrial or cytosolic metabolism. In this study, metabolism of [U-(13)C]glutamine (3 mM) or [U-(13)C]glutamate (10 mM) was investigated in isolated rat brain mitochondria. The presence of a functional tricarboxylic (TCA) cycle in the mitochondria was tested using [U-(13)C]succinate as substrate and extensive labeling in aspartate was seen. Accumulation of glutamine into the mitochondrial matrix was inhibited by histidine (15 mM). Extracts of mitochondria were analyzed for labeling in glutamine, glutamate and aspartate using liquid chromatography-mass spectrometry. Formation of [U-(13)C]glutamate from exogenous [U-(13)C]glutamine was decreased about 50% (P<0.001) in the presence of histidine. In addition, the (13)C-labeled skeleton of [U-(13)C]glutamine was metabolized more vividly in the tricarboxylic acid (TCA) cycle than that from [U-(13)C]glutamate, even though glutamate was labeled to a higher extent in the latter condition. Collectively the results show that transport of glutamine into the mitochondrial matrix may be a prerequisite for deamidation by PAG.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
15
|
Eid T, Hammer J, Rundén-Pran E, Roberg B, Thomas MJ, Osen K, Davanger S, Laake P, Torgner IA, Lee TSW, Kim JH, Spencer DD, Ottersen OP, de Lanerolle NC. Increased expression of phosphate-activated glutaminase in hippocampal neurons in human mesial temporal lobe epilepsy. Acta Neuropathol 2007; 113:137-52. [PMID: 17115168 DOI: 10.1007/s00401-006-0158-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 10/06/2006] [Accepted: 10/07/2006] [Indexed: 11/25/2022]
Abstract
Patients with mesial temporal lobe epilepsy (MTLE) have increased basal concentrations of extracellular glutamate in the epileptogenic versus the non-epileptogenic hippocampus. Such elevated glutamate levels have been proposed to underlie the initiation and maintenance of recurrent seizures, and a key question is what causes the elevation of glutamate in MTLE. Here, we explore the possibility that neurons in the hippocampal formation contain higher levels of the glutamate synthesizing enzyme phosphate-activated glutaminase (PAG) in patients with MTLE versus patients with other forms of temporal lobe epilepsy (non-MTLE). Increased PAG immunoreactivity was recorded in subpopulations of surviving neurons in the MTLE hippocampal formation, particularly in CA1 and CA3 and in the polymorphic layer of the dentate gyrus. Immunogold analysis revealed that PAG was concentrated in mitochondria. Double-labeling experiments indicated a positive correlation between the mitochondrial contents of PAG protein and glutamate, as well as between PAG enzyme activity and PAG protein as determined by Western blots. These data suggest that the antibodies recognize an enzymatically active pool of PAG. Western blots and enzyme activity assays of hippocampal homogenates revealed no change in PAG between MTLE and non-MTLE, despite a greatly (>50%) reduced number of neurons in the MTLE hippocampal formation compared to non-MTLE. Thus, the MTLE hippocampal formation contains an increased concentration and activity of PAG per neuron compared to non-MTLE. This increase suggests an enhanced capacity for glutamate synthesis-a finding that might contribute to the disrupted glutamate homeostasis in MTLE.
Collapse
Affiliation(s)
- Tore Eid
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208082, New Haven, CT 06520-8082, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Amiry-Moghaddam M, Lindland H, Zelenin S, Roberg BA, Gundersen BB, Petersen P, Rinvik E, Torgner IA, Ottersen OP. Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J 2005; 19:1459-67. [PMID: 16126913 DOI: 10.1096/fj.04-3515com] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aquaporins are a family of water channels found in animals, plants, and microorganisms. A subfamily of aquaporins, the aquaglyceroporins, are permeable for water as well as certain solutes such as glycerol, lactate, and urea. Here we show that the brain contains two isoforms of AQP9--an aquaglyceroporin with a particularly broad substrate specificity--and that the more prevalent of these isoforms is expressed in brain mitochondria. The mitochondrial AQP9 isoform is detected as an approximately 25 kDa band in immunoblots. This isoform is likely to correspond to a new AQP9 mRNA that is obtained by alternative splicing and has a shorter ORF than the liver isoform. Subfractionation experiments and high-resolution immunogold analyses revealed that this novel AQP9 isoform is enriched in mitochondrial inner membranes. AQP9 immunopositive mitochondria occurred in astrocytes throughout the brain and in a subpopulation of neurons in the substantia nigra, ventral tegmental area, and arcuate nucleus. In the latter structures, the AQP9 immunopositive mitochondria were located in neurons that were also immunopositive for tyrosine hydroxylase, as demonstrated by double labeling immunogold electron microscopy. Our findings suggest that mitochondrial AQP9 is a hallmark of astrocytes and midbrain dopaminergic neurons. In physiological conditions, the flux of lactate and other metabolites through AQP9 may confer an advantage by allowing the mitochondria to adjust to the metabolic status of the extramitochondrial cytoplasm. We hypothesize that the complement of mitochondrial AQP9 in dopaminergic neurons may relate to the vulnerability of these neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Mahmood Amiry-Moghaddam
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Solbu TT, Boulland JL, Zahid W, Lyamouri Bredahl MK, Amiry-Moghaddam M, Storm-Mathisen J, Roberg BA, Chaudhry FA. Induction and targeting of the glutamine transporter SN1 to the basolateral membranes of cortical kidney tubule cells during chronic metabolic acidosis suggest a role in pH regulation. J Am Soc Nephrol 2005; 16:869-77. [PMID: 15716335 DOI: 10.1681/asn.2004060433] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
During chronic metabolic acidosis (CMA), the plasma levels of glutamine are increased and so is glutamine metabolism in the kidney tubule cells. Degradation of glutamine results in the formation of ammonium (NH(4)(+)) and bicarbonate (HCO(3)(-)) ions, which are excreted in the pre-urine and transported to the peritubular blood, respectively. This process contributes to counteract acidosis and to restore normal pH, but the molecular mechanism, the localization of the proteins involved and the regulation of glutamine transport into the renal tubular cells, remains unknown. SN1, a Na(+)- and H(+)-dependent glutamine transporter has previously been identified molecularly, and its mRNA has been detected in tubule cells in the medulla of the kidney. Now shown is the selective targeting of the protein to the basolateral membranes of the renal tubule cells of the S3 segment throughout development of the normal rat kidney. During CMA, SN1 expression increases five- to six-fold and appears also in cortical tubule cells in parallel with the increased expression and activity of phosphate-activated glutaminase, a mitochondrial enzyme involved in ammoniagenesis. However, SN1 remains sorted to the basolateral membranes. The unique ability of SN1 to change transport direction according to physiologic changes in transmembrane gradients of [glutamine] and pH and its sorting to the basolateral membranes and the presence of a putative pH responsive element in the 3' untranslated region (UTR) of the gene (supported here by the demonstration in CMA kidney of a protein that binds SN1 mRNA) are conducive to the function of this transporter in pH regulation.
Collapse
Affiliation(s)
- Tom Tallak Solbu
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, P.O. Box 1105 Blindern, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Taylor L, Curthoys NP. Glutamine metabolism: Role in acid-base balance*. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 32:291-304. [PMID: 21706743 DOI: 10.1002/bmb.2004.494032050388] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The intent of this review is to provide a broad overview of the interorgan metabolism of glutamine and to discuss in more detail its role in acid-base balance. Muscle, adipose tissue, and the lungs are the primary sites of glutamine synthesis and release. During normal acid-base balance, the small intestine and the liver are the major sites of glutamine utilization. The periportal hepatocytes catabolize glutamine and convert ammonium and bicarbonate ions to urea. In contrast, the perivenous hepatocytes are capable of synthesizing glutamine. During metabolic acidosis, the kidney becomes the major site of glutamine extraction and catabolism. This process generates ammonium ions that are excreted in the urine to facilitate the excretion of acids and bicarbonate ions that are transported to the blood to partially compensate the acidosis. The increased renal extraction of glutamine is balanced by an increased release from muscle and liver and by a decreased utilization in the intestine. During chronic acidosis, this adaptation is sustained, in part, by increased renal expression of genes that encode various transport proteins and key enzymes of glutamine metabolism. The increased levels of phosphoenolpyruvate carboxykinase result from increased transcription, while the increase in glutaminase and glutamate dehydrogenase activities result from stabilization of their respective mRNAs. Where feasible, this review draws upon data obtained from studies in humans. Studies conducted in model animals are discussed where available data from humans is either lacking or not firmly established. Because there are quantitative differences in tissue utilization and synthesis of glutamine in different mammals, the review will focus more on common principles than on quantification.
Collapse
Affiliation(s)
- Lynn Taylor
- Department of Biochemistry and Molecular Biology Colorado State University, Fort Collins, CO 80523-1870
| | | |
Collapse
|
19
|
Van der Gucht E, Jacobs S, Kaneko T, Vandesande F, Arckens L. Distribution and morphological characterization of phosphate-activated glutaminase-immunoreactive neurons in cat visual cortex. Brain Res 2003; 988:29-42. [PMID: 14519524 DOI: 10.1016/s0006-8993(03)03332-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phosphate-activated glutaminase (PAG) is the major enzyme involved in the synthesis of the excitatory neurotransmitter glutamate in cortical neurons of the mammalian cerebral cortex. In this study, the distribution and morphology of glutamatergic neurons in cat visual cortex was monitored through immunocytochemistry for PAG. We first determined the specificity of the anti-rat brain PAG polyclonal antibody for cat brain PAG. We then examined the laminar expression profile and the phenotype of PAG-immunopositive neurons in area 17 and 18 of cat visual cortex. Neuronal cell bodies with moderate to intense PAG immunoreactivity were distributed throughout cortical layers II-VI and near the border with the white matter of both visual areas. The largest and most intensely labeled cells were mainly restricted to cortical layers III and V. Careful examination of the typology of PAG-immunoreactive cells based on the size and shape of the cell body together with the dendritic pattern indicated that the vast majority of these cells were pyramidal neurons. However, PAG immunoreactivity was also observed in a paucity of non-pyramidal neurons in cortical layers IV and VI of both visual areas. To further characterize the PAG-immunopositive neuronal population we performed double-stainings between PAG and three calcium-binding proteins, parvalbumin, calbindin and calretinin, to determine whether GABAergic non-pyramidal cells can express PAG, and neurofilament protein, a marker for a subset of pyramidal neurons in mammalian neocortex. We here present PAG as a neurochemical marker to map excitatory cortical neurons that use the amino acid glutamate as their neurotransmitter in cat visual cortex.
Collapse
Affiliation(s)
- Estel Van der Gucht
- Laboratory for Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
20
|
Coates G, Nissim I, Battarbee H, Welbourne T. Glitazones regulate glutamine metabolism by inducing a cellular acidosis in MDCK cells. Am J Physiol Endocrinol Metab 2002; 283:E729-37. [PMID: 12217890 DOI: 10.1152/ajpendo.00485.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effect of the antihyperglycemic glitazones, ciglitazone, troglitazone, and rosiglitazone, on glutamine metabolism in renal tubule-derived Madin-Darby canine kidney (MDCK) cells. Troglitazone (25 microM) enhanced glucose uptake and lactate production by 108 and 92% (both P < 0.001). Glutamine utilization was not inhibited, but alanine formation decreased and ammonium formation increased (both P < 0.005). The decrease in net alanine formation occurred with a change in alanine aminotransferase (ALT) reactants, from close to equilibrium to away from equilibrium, consistent with inhibition of ALT activity. A shift of glutamine's amino nitrogen from alanine into ammonium was confirmed by using L-[2-(15)N]glutamine and measuring the [(15)N]alanine and [(15)N]ammonium production. The glitazone-induced shift from alanine to ammonium in glutamate metabolism was dose dependent, with troglitazone being twofold more potent than rosiglitazone and ciglitazone. All three glitazones induced a spontaneous cellular acidosis, reflecting impaired acid extrusion in responding to both an exogenous (NH) and an endogenous (lactic acid) load. Our findings are consistent with glitazones inducing a spontaneous cellular acidosis associated with a shift in glutamine amino nitrogen metabolism from predominantly anabolic into a catabolic pathway.
Collapse
Affiliation(s)
- Greg Coates
- Departments of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
21
|
Welbourne T, Su G, Coates G, Routh R, McCarthy K, Battarbee H. Troglitazone induces a cellular acidosis by inhibiting acid extrusion in cultured rat mesangial cells. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1600-7. [PMID: 12010740 DOI: 10.1152/ajpregu.00506.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effect of troglitazone on cellular acid-base balance and alanine formation in isolated rat mesangial cells. Mesangial cells were grown to confluency in RPMI 1640 media on 30-mm chambers used to monitor both cellular pH using the pH-sensitive dye 2'7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein and metabolic acid production as well as glutamine metabolism. Troglitazone (10 microM) induced a spontaneous cellular acidosis (6.95 +/- 0.02 vs. 7.47 +/- 0.04, respectively; P < 0.0001) but without an increase in lactic acid production. Alanine production was reduced 64% (P < 0.01) consistent with inhibition of the glutamate transamination. These findings pointed to a decrease in acid extrusion rather than an increase in acid production as the underlying mechanism leading to the cellular acidosis. To test their acid extrusion capabilities, mesangial cells were acid loaded with NH and then allowed to recover in Krebs-Henseleit media or in Krebs-Henseleit media minus bicarbonate (HEPES substituted), and the recovery response (Delta pH(i)/min) was monitored. In the presence of 10 microM troglitazone, the recovery response to the NH acid load was virtually eliminated in the bicarbonate-buffered media (0.00 +/- 0.001 vs. 0.06 +/- 0.02 pH(i)/min, P < 0.0001 vs. control) and reduced 75% in HEPES-buffered media (0.01 +/- 0.01 vs. 0.04 +/- 0.02 pH(i)/min, P < 0.002 vs. control). These results show that troglitazone induces a spontaneous cellular acidosis resulting from a reduction in cellular acid extrusion.
Collapse
Affiliation(s)
- Tomas Welbourne
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, Louisiana 71130, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Kvamme E, Torgner IA, Roberg B. Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 2001; 66:951-8. [PMID: 11746423 DOI: 10.1002/jnr.10041] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cellular concentration of phosphate, the main activator of phosphate activated glutaminase (PAG) is rather constant in brain and kidney. The enzyme activity, however, is modulated by a variety of compounds affecting the binding of phosphate, such as glutamate, calcium, certain long chain fatty acids, fatty acyl CoA derivatives, members of the tricarboxylic acid cycle and protons (Kvamme et al. [2000] Neurochem. Res. 25:1407-1419). Therefore, the kinetic and allosteric properties of the enzyme are essential for regulating the enzyme activity in situ, especially because the enzymically active pool of PAG is assumed to have an external localization in the inner mitochondrial membrane, being exposed to cytosolic variation in the content of effectors. This has largely been overlooked. A hypothetical model for the allosteric interactions based on the sequential induced fit allosteric model by Koshland et al. ([1966] Biochemistry 5:365-385) is presented. Furthermore, it has been generally accepted that there exist only two isoforms of PAG, the kidney PAG that is similar to brain PAG, and the liver PAG. Therefore, the immunoreactivity of brain cells against kidney PAG antibodies has been considered a measure of PAG protein. Gomez-Fabre et al. ([2000] Biochem. J. 345:365-375) recently found, however, that a PAG mRNA from human breast cancer ZR75 cells is present in human brain and liver, but not in the kidney. We observed only traces of PAG immunoreactivity in cultured astrocytes and cultured neuroblastoma cells, regardless whether antibodies against the C- and N-termini of kidney PAG or antibodies against liver PAG were used, but considerable enzyme activity, demonstrating hitherto unknown isoforms of PAG (Torgner et al. [2001] FEBS Lett. 268(Suppl 1):PS2-031).
Collapse
Affiliation(s)
- E Kvamme
- Neurochemical Section, Institute of Medical Biochemistry, P.O. Box 1115, Blindern, Domus Medica, University of Oslo, Norway.
| | | | | |
Collapse
|
23
|
Welbourne T, Routh R, Yudkoff M, Nissim I. The glutamine/glutamate couplet and cellular function. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2001; 16:157-60. [PMID: 11479364 DOI: 10.1152/physiologyonline.2001.16.4.157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All cells require glutamine as a nitrogen donor as well as an energy source for cell-specific functions. Understanding how glutamine utilization is metered to these demands is fundamental to basic cell processes as well as to therapeutic manipulation of regulatory mechanisms. The regulatory role of the glutamine/glutamate couplet in cellular function is illustrated for acid-base homeostasis and for production of the extracellular matrix.
Collapse
Affiliation(s)
- T Welbourne
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
24
|
Taylor L, Liu X, Newsome W, Shapiro RA, Srinivasan M, Curthoys NP. Isolation and characterization of the promoter region of the rat kidney-type glutaminase gene. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1518:132-6. [PMID: 11267668 DOI: 10.1016/s0167-4781(01)00183-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A lambdaEMBL3 rat genomic library was screened to clone a phage that contained the promoter region of the kidney-type mitochondrial glutaminase gene. The resulting lambdaGA1 phage contained 13.7 kb of genomic DNA that was mapped by Southern blotting and restriction analysis. The 2.22 kb and 0.83 kb SacI fragments of lambdaGA1 were sequenced and the transcription initiation site was identified by RNase mapping. The reported sequence contains 2287 bp of the promoter, the entire exon 1 (542 bp), and 223 bp of the initial intron of the glutaminase gene. The initial exon contains 141 bp of 5'-nontranslated sequence and 401 bp of coding sequence that encodes the 72-amino acid mitochondrial targeting presequence and 61 amino acids from the N-terminus of the mature 66 kDa glutaminase subunit. Various segments of the GA promoter were cloned into a chloramphenicol acetyltransferase (CAT) expression vector. The resulting GA-CAT constructs were transfected into LLC-PK(1)-F(+) kidney cells to assess the promoter function of the isolated genomic DNA. The GA(-402)CAT construct produced a 10-fold greater CAT activity than the promoter-less pCAT vector. Analysis of various deletion constructs indicated that elements located between -402 and -63 bp must act in synergy with more proximal elements to create a functional promoter. The initial 402 bp segment lacks a TATA sequence but is GC-rich and contains two CCAAT boxes and two Sp1 sites.
Collapse
Affiliation(s)
- L Taylor
- Department of Biochemistry and Molecular Biology, Colorado State University, 80523-1870, Fort Collins, CO, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kvamme E, Roberg B, Torgner IA. Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res 2000; 25:1407-19. [PMID: 11059811 DOI: 10.1023/a:1007668801570] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A review of the properties of purified and tissue bound phosphate activated glutaminase (PAG) in brain and kidney (pig and rat) is presented, based on kinetic, electron microscopic and immunocytochemical studies. PAG is a mitochondrial enzyme and two pools can be separated, a soluble and membrane associated one. Intact mitochondria appear to express PAG accessible only to the outer phase of the inner mitochondrial membrane. This PAG has properties similar to that of the membrane fraction and polymeric form of purified enzyme. PAG in the soluble fraction has properties similar to that of the monomeric form of purified enzyme and is assumed to be dormant due to the high matrix concentration of the inhibitor glutamate. A hypothetical model for the localization of PAG in the mitochondria is presented. The activity of PAG in vivo is assumed to be regulated by cytosolic glutamate and other compounds, that affect the activation by phosphate. Glutamine is transported into brain and kidney mitochondria by a protein catalyzed energy requiring process, which may be mediated by more than one protein. There is no correlation between glutamine hydrolysis and transport.
Collapse
Affiliation(s)
- E Kvamme
- Neurochemical Laboratory, University of Oslo, Blindern.
| | | | | |
Collapse
|