1
|
Bernasconi R, Soodla K, Sirp A, Zovo K, Kuhtinskaja M, Lukk T, Vendelin M, Birkedal R. Higher AMPK activation in mouse oxidative compared with glycolytic muscle does not correlate with LKB1 or CaMKKβ expression. Am J Physiol Endocrinol Metab 2025; 328:E21-E33. [PMID: 39607028 DOI: 10.1152/ajpendo.00261.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine kinase involved in metabolic regulation. It is phosphorylated by the upstream liver kinase B1 (LKB1) or calcium/calmodulin-dependent kinase kinase 2 (CaMKKβ). In cultured cells, AMPK activation correlates with LKB1 activity. The phosphorylation activates AMPK, shifting metabolism toward catabolism and promoting mitogenesis. In muscles, inactivity reduces AMPK activation, shifting the phenotype of oxidative muscles toward a more glycolytic profile. Here, we compared the basal level of AMPK activation in glycolytic and oxidative muscles and analyzed whether this relates to LKB1 or CaMKKβ. Using Western blotting, we assessed AMPK expression and phosphorylation in soleus, gastrocnemius (GAST), extensor digitorum longus (EDL), and heart from C57BL6J mice. We also assessed LKB1 and CaMKKβ expression, and CaMKKβ activity in tissue homogenates. AMPK activation was higher in oxidative (soleus and heart) than in glycolytic muscles (gastrocnemius and EDL). This correlated with AMPK α1-isoform expression, but not LKB1 and CaMKKβ. LKB1 expression was sex dependent and lower in male than female muscles. CaMKKβ expression was very low in skeletal muscles and did not phosphorylate AMPK in muscle lysates. The higher AMPK activation in oxidative muscles is in line with the fact that activated AMPK maintains an oxidative phenotype. However, this could not be explained by LKB1 and CaMKKβ. These results suggest that the regulation of AMPK activation is more complex in muscle than in cultured cells. As AMPK has been proposed as a therapeutic target for several diseases, future research should consider AMPK isoform expression and localization, and energetic compartmentalization.NEW & NOTEWORTHY It is important to understand how AMP-activated kinase, AMPK, is regulated, as it is a potential therapeutic target for several diseases. AMPK is activated by liver kinase B1, LKB1, and calcium/calmodulin-dependent kinase kinase 2, CaMKKβ. In cultured cells, AMPK activation correlates with LKB1 expression. In contrast, we show that AMPK-activation was higher in oxidative than glycolytic muscle, without correlating with LKB1 or CaMKKβ expression. Thus, AMPK regulation is more complex in highly compartmentalized muscle cells.
Collapse
Affiliation(s)
- Romain Bernasconi
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Kärol Soodla
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Alex Sirp
- Laboratory of Molecular Neurobiology, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kairit Zovo
- Laboratory of Wood Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Maria Kuhtinskaja
- Laboratory of Analytical Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tiit Lukk
- Laboratory of Wood Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
2
|
Molaei A, Molaei E, Sadeghnia H, Hayes AW, Karimi G. LKB1: An emerging therapeutic target for cardiovascular diseases. Life Sci 2022; 306:120844. [PMID: 35907495 DOI: 10.1016/j.lfs.2022.120844] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Cardiovascular diseases (CVDs) are currently the most common cause of morbidity and mortality worldwide. Experimental studies suggest that liver kinase B1 (LKB1) plays an important role in the heart. Several studies have shown that cardiomyocyte-specific LKB1 deletion leads to hypertrophic cardiomyopathy, left ventricular contractile dysfunction, and an increased risk of atrial fibrillation. In addition, the cardioprotective effects of several medicines and natural compounds, including metformin, empagliflozin, bexarotene, and resveratrol, have been reported to be associated with LKB1 activity. LKB1 limits the size of the damaged myocardial area by modifying cellular metabolism, enhancing the antioxidant system, suppressing hypertrophic signals, and inducing mild autophagy, which are all primarily mediated by the AMP-activated protein kinase (AMPK) energy sensor. LKB1 also improves myocardial efficiency by modulating the function of contractile proteins, regulating the expression of electrical channels, and increasing vascular dilatation. Considering these properties, stimulation of LKB1 signaling offers a promising approach in the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamidreza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
3
|
Fadó R, Rodríguez-Rodríguez R, Casals N. The return of malonyl-CoA to the brain: Cognition and other stories. Prog Lipid Res 2020; 81:101071. [PMID: 33186641 DOI: 10.1016/j.plipres.2020.101071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Nutrients, hormones and the energy sensor AMP-activated protein kinase (AMPK) tightly regulate the intracellular levels of the metabolic intermediary malonyl-CoA, which is a precursor of fatty acid synthesis and a negative regulator of fatty acid oxidation. In the brain, the involvement of malonyl-CoA in the control of food intake and energy homeostasis has been known for decades. However, recent data uncover a new role in cognition and brain development. The sensing of malonyl-CoA by carnitine palmitoyltransferase 1 (CPT1) proteins regulates a variety of functions, such as the fate of neuronal stem cell precursors, the motility of lysosomes in developing axons, the trafficking of glutamate receptors to the neuron surface (necessary for proper synaptic function) and the metabolic coupling between astrocytes and neurons. We discuss the relevance of those recent findings evidencing how nutrients and metabolic disorders impact cognition. We also enumerate all nutritional and hormonal conditions that are known to regulate malonyl-CoA levels in the brain, reflect on protein malonylation as a new post-translational modification, and give a reasoned vision of the opportunities and challenges that future research in the field could address.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain.
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
4
|
Chen T, Hill JT, Moore TM, Cheung ECK, Olsen ZE, Piorczynski TB, Marriott TD, Tessem JS, Walton CM, Bikman BT, Hansen JM, Thomson DM. Lack of skeletal muscle liver kinase B1 alters gene expression, mitochondrial content, inflammation and oxidative stress without affecting high-fat diet-induced obesity or insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165805. [PMID: 32339642 DOI: 10.1016/j.bbadis.2020.165805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
Abstract
Ad libitum high-fat diet (HFD) induces obesity and skeletal muscle metabolic dysfunction. Liver kinase B1 (LKB1) regulates skeletal muscle metabolism by controlling the AMP-activated protein kinase family, but its importance in regulating muscle gene expression and glucose tolerance in obese mice has not been established. The purpose of this study was to determine how the lack of LKB1 in skeletal muscle (KO) affects gene expression and glucose tolerance in HFD-fed, obese mice. KO and littermate control wild-type (WT) mice were fed a standard diet or HFD for 14 weeks. RNA sequencing, and subsequent analysis were performed to assess mitochondrial content and respiration, inflammatory status, glucose and insulin tolerance, and muscle anabolic signaling. KO did not affect body weight gain on HFD, but heavily impacted mitochondria-, oxidative stress-, and inflammation-related gene expression. Accordingly, mitochondrial protein content and respiration were suppressed while inflammatory signaling and markers of oxidative stress were elevated in obese KO muscles. KO did not affect glucose or insulin tolerance. However, fasting serum insulin and skeletal muscle insulin signaling were higher in the KO mice. Furthermore, decreased muscle fiber size in skmLKB1-KO mice was associated with increased general protein ubiquitination and increased expression of several ubiquitin ligases, but not muscle ring finger 1 or atrogin-1. Taken together, these data suggest that the lack of LKB1 in skeletal muscle does not exacerbate obesity or insulin resistance in mice on a HFD, despite impaired mitochondrial content and function and elevated inflammatory signaling and oxidative stress.
Collapse
Affiliation(s)
- Ting Chen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Eric C K Cheung
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Zachary E Olsen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Tanner D Marriott
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Chase M Walton
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA; Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
5
|
Chohnan S, Matsuno S, Shimizu K, Tokutake Y, Kohari D, Toyoda A. Coenzyme A and Its Thioester Pools in Obese Zucker and Zucker Diabetic Fatty Rats. Nutrients 2020; 12:E417. [PMID: 32041091 PMCID: PMC7071249 DOI: 10.3390/nu12020417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Feeding behavior is closely related to hypothalamic malonyl-CoA level in the brain and diet-induced obesity affects total CoA pools in liver. Herein, we performed a comprehensive analysis of the CoA pools formed in thirteen tissues of Zucker and Zucker diabetic fatty (ZDF) rats. Hypothalamic malonyl-CoA levels in obese rats remained low and were almost the same as those of lean rats, despite obese rats having much higher content of leptin, insulin, and glucose in their sera. Regardless of the fa-genotypes, larger total CoA pools were formed in the livers of ZDF rats and the size of hepatic total CoA pools in Zucker rats showed almost one tenth of the size of ZDF rats. The decreased total CoA pool sizes in Zucker rats was observed in the brown adipose tissues, while ZDF-fatty rats possessed 6% of total CoA pool in the lean rats in response to fa deficiency. This substantially lower CoA content in the obese rats would be disadvantageous to non-shivering thermogenesis. Thus, comparing the intracellular CoA behaviors between Zucker and ZDF rats, as well as the lean and fatty rats of each strain would help to elucidate features of obesity and type 2 diabetes in combination with result (s) of differential gene expression analysis and/or comparative genomics.
Collapse
Affiliation(s)
- Shigeru Chohnan
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Shiori Matsuno
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Kei Shimizu
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Yuka Tokutake
- Department of Applied Life Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan;
| | - Daisuke Kohari
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| | - Atsushi Toyoda
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan; (S.M.); (K.S.); (D.K.); (A.T.)
| |
Collapse
|
6
|
Balnis J, Korponay TC, Jaitovich A. AMP-Activated Protein Kinase (AMPK) at the Crossroads Between CO 2 Retention and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease (COPD). Int J Mol Sci 2020; 21:E955. [PMID: 32023946 PMCID: PMC7037951 DOI: 10.3390/ijms21030955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle dysfunction is a major comorbidity in chronic obstructive pulmonary disease (COPD) and other pulmonary conditions. Chronic CO2 retention, or hypercapnia, also occur in some of these patients. Both muscle dysfunction and hypercapnia associate with higher mortality in these populations. Over the last years, we have established a mechanistic link between hypercapnia and skeletal muscle dysfunction, which is regulated by AMPK and causes depressed anabolism via reduced ribosomal biogenesis and accelerated catabolism via proteasomal degradation. In this review, we discuss the main findings linking AMPK with hypercapnic pulmonary disease both in the lungs and skeletal muscles, and also outline potential avenues for future research in the area based on knowledge gaps and opportunities to expand mechanistic research with translational implications.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Tanner C. Korponay
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
7
|
Radhakrishnan J, Baetiong A, Kaufman H, Huynh M, Leschinsky A, Fresquez A, White C, DiMario JX, Gazmuri RJ. Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake via AMPK-TBC1D1 signaling nexus. FASEB J 2019; 33:11443-11457. [PMID: 31339770 DOI: 10.1096/fj.201802238r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously reported in HEK 293T cells that silencing the mitochondrial peptidyl prolyl isomerase cyclophilin-D (Cyp-D) reduces Vo2. We now report that in vivo Cyp-D ablation using constitutive Cyp-D knockout (KO) mice also reduces Vo2 both at rest (∼15%) and during treadmill exercise (∼12%). Yet, despite Vo2 reduction, these Cyp-D KO mice ran longer (1071 ± 77 vs. 785 ± 79 m; P = 0.002), for longer time (43 ± 3 vs. 34 ± 3 min; P = 0.004), and at higher speed (34 ± 1 vs. 29 ± 1 m/s; P ≤ 0.001), resulting in increased work (87 ± 6 vs. 58 ± 6 J; P ≤ 0.001). There were parallel reductions in carbon dioxide production, but of lesser magnitude, yielding a 2.3% increase in the respiratory exchange ratio consistent with increased glucose utilization as respiratory substrate. In addition, primary skeletal muscle cells of Cyp-D KO mice subjected to electrical stimulation exhibited higher glucose uptake (4.4 ± 0.55 vs. 2.6 ± 0.04 pmol/mg/min; P ≤ 0.001) with enhanced AMPK activation (0.58 ± 0.06 vs. 0.38 ± 0.03 pAMPK/β-tubulin ratio; P ≤ 0.01) and TBC1 (Tre-2/USP6, BUB2, Cdc16) domain family, member 1 (TBC1D1) inactivation. Likewise, pharmacological activation of AMPK also increased glucose uptake (3.2 ± 0.3 vs. 2.3 ± 0.2 pmol/mg/min; P ≤ 0.001). Moreover, lactate and ATP levels were increased in these cells. Taken together, Cyp-D ablation triggered an adaptive response resulting in increased exercise capacity despite less oxygen utilization associated with increased glucose uptake and utilization involving AMPK-TBC1D1 signaling nexus.-Radhakrishnan, J., Baetiong, A., Kaufman, H., Huynh, M., Leschinsky, A., Fresquez, A., White, C., DiMario, J. X., Gazmuri, R. J. Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake via AMPK-TBC1D1 signaling nexus.
Collapse
Affiliation(s)
- Jeejabai Radhakrishnan
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Department of Clinical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Alvin Baetiong
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Harrison Kaufman
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Michelle Huynh
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Angela Leschinsky
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Adriana Fresquez
- Discipline of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Carl White
- Discipline of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Joseph X DiMario
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Department of Biomedical Research, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Raúl J Gazmuri
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Department of Clinical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Captain James A. Lovell Federal Health Care Center, North Chicago, Illinois, USA
| |
Collapse
|
8
|
Vaz Fragoso CA, Manini TM, Kairalla JA, Buford TW, Hsu FC, Gill TM, Kritchevsky SB, McDermott MM, Sanders JL, Cummings SR, Tranah GJ. Mitochondrial DNA variants and pulmonary function in older persons. Exp Gerontol 2018; 115:96-103. [PMID: 30508565 DOI: 10.1016/j.exger.2018.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/01/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND We provide the first examination of mitochondrial DNA (mtDNA) variants and pulmonary function in older persons. METHODS Cross-sectional associations between mtDNA variants and pulmonary function were evaluated as a combined p-values meta-analysis, using data from two independent cohorts of older persons. The latter included white and black participants, aged ≥70 years, from the Lifestyle Interventions and Independence for Elders study (LIFE) (N = 1247) and the Health, Aging and Body Composition study (Health ABC) (N = 731), respectively. Pulmonary function included the forced expiratory volume in one-second as a Z-score (FEV1z) and the maximal inspiratory pressure (MIP) in cm of water. RESULTS In black participants, significant associations were found between mtDNA variants and MIP: m.7146A > G, COI (p = 3E-5); m.7389 T > C, COI (p = 2E-4); m.15301G > A, CYB (p = 9E-5); m.16265A > G, HV1 (p = 9E-5); meta-analytical p-values <0.0002. Importantly, these mtDNA variants were unique to black participants and were not present in white participants. Moreover, in black participants, aggregate genetic effects on MIP were observed across mutations in oxidative phosphorylation complex IV (p = 0.004), complex V (p = 0.0007), and hypervariable (p = 0.003) regions. The individual and aggregate variant results were significant after adjustment for multiple comparisons. Otherwise, no significant associations were detected for MIP in whites or for FEV1z in whites or blacks. CONCLUSIONS We have shown that mtDNA variants of African origin are cross-sectionally associated with MIP, a measure of respiratory muscle strength. Thus, our results establish the rationale for longitudinal studies to evaluate whether mtDNA variants of African origin identify those at risk of subsequently developing a respiratory muscle impairment (lower MIP values).
Collapse
Affiliation(s)
- Carlos A Vaz Fragoso
- Yale School of Medicine, Department of Medicine, New Haven, CT, United States of America; Veterans Affairs Connecticut Healthcare System, Department of Medicine, West Haven, CT, United States of America.
| | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, Gainesville, FL, United States of America
| | - John A Kairalla
- University of Florida, Department of Biostatistics, Gainesville, FL, United States of America
| | - Thomas W Buford
- University of Alabama at Birmingham, Department of Medicine, Birmingham, AL, United States of America
| | - Fang-Chi Hsu
- Wake Forest School of Medicine, Department of Biostatistical Sciences, Winston-Salem, NC, United States of America
| | - Thomas M Gill
- Yale School of Medicine, Department of Medicine, New Haven, CT, United States of America
| | - Stephen B Kritchevsky
- Wake Forest School of Medicine, Sticht Center for Healthy Aging and Alzheimer's Prevention, Winston-Salem, NC, United States of America
| | - Mary M McDermott
- Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jason L Sanders
- Massachusetts General Hospital, Department of Medicine, Boston, MA, United States of America
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| |
Collapse
|
9
|
The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration. Int J Mol Sci 2018; 19:ijms19103125. [PMID: 30314396 PMCID: PMC6212977 DOI: 10.3390/ijms19103125] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
AMPK (5’-adenosine monophosphate-activated protein kinase) is heavily involved in skeletal muscle metabolic control through its regulation of many downstream targets. Because of their effects on anabolic and catabolic cellular processes, AMPK plays an important role in the control of skeletal muscle development and growth. In this review, the effects of AMPK signaling, and those of its upstream activator, liver kinase B1 (LKB1), on skeletal muscle growth and atrophy are reviewed. The effect of AMPK activity on satellite cell-mediated muscle growth and regeneration after injury is also reviewed. Together, the current data indicate that AMPK does play an important role in regulating muscle mass and regeneration, with AMPKα1 playing a prominent role in stimulating anabolism and in regulating satellite cell dynamics during regeneration, and AMPKα2 playing a potentially more important role in regulating muscle degradation during atrophy.
Collapse
|
10
|
董 合, 吴 洪, 唐 钰, 黄 银, 林 锐, 赵 军, 徐 晓. [AMPK regulates mitochondrial oxidative stress in C2C12 myotubes induced by electrical stimulations of different intensities]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:742-747. [PMID: 29997099 PMCID: PMC6765703 DOI: 10.3969/j.issn.1673-4254.2018.06.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To study effect of electrical stimulations of different intensities on mitochondrial oxidative stress in C2C12 myotubes and explore the molecular mechanisms. METHODS After 7 days of differentiation, C2C12 myotubes were subjected to electrical stimulations (15 V, 3Hz, 30 ms) for 60, 120, or 180 min, and the morphological changes of muscular tubes were observed under inverted microscope. The levels of MDA and SOD activity of the cells were detected, and flow cytometry was used to detect mitochondrial reactive oxygen species (ROS) and membrane potential. Western blotting was used to detect the expression of PGC1, AMPK-Ser485, AMPK-Thr172, and AMPK in the cells. RESULTS No significant changes occurred in the morphology of C2C12 myotubes in response to electrical stimulations. Electrical stimulation for 60 min resulted in significantly increased levels of MDA, AMPK-Ser485 and AMPK-Thr172 in the cells (P<0.05); simulations of the cells for 120 and 180 min caused significantly increased MDA, ROS, mitochondrial ROS, AMPK-Ser485 and PGC1 along with marked reduction of mitochondrial membrane potential (P<0.05). CONCLUSION Electrical stimulation significantly activates oxidative stress, and a longer stimulation time causes stronger mitochondrial oxidation. AMPK-Thr172 regulates oxidative stress induced by stimulations for a moderate time length, while AMPK-Ser485 and PGC1 function to modulate oxidative stress following prolonged stimulations.
Collapse
Affiliation(s)
- 合玲 董
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 洪渊 吴
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 钰 唐
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 银伟 黄
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 锐章 林
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 军 赵
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| | - 晓阳 徐
- 暨南大学体育学院,广东 广州 510632College of Sports Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 2015; 32:2893-907. [PMID: 25069613 DOI: 10.1002/stem.1788] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
Serine/threonine kinase 11, commonly known as liver kinase b1 (Lkb1), is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoD(Cre)/Lkb1(flox/flox) mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation, and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7(CreER) mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in noninjured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMP-activated protein kinase/mammalian target of rapamycin pathway, but facilitates differentiation through phosphorylation of GSK-3β, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development, and regeneration.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
14
|
Vogel J, Figueiredo de Rezende F, Rohrbach S, Zhang M, Schröder K. Nox4 Is Dispensable for Exercise Induced Muscle Fibre Switch. PLoS One 2015; 10:e0130769. [PMID: 26083642 PMCID: PMC4471227 DOI: 10.1371/journal.pone.0130769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/23/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction By producing H2O2, the NADPH oxidase Nox4 is involved in differentiation of mesenchymal cells. Exercise alters the composition of slow and fast twitch fibres in skeletal. Here we hypothesized that Nox4 contributes to exercise-induced adaptation such as changes in muscle metabolism or muscle fibre specification and studied this in wildtype and Nox4-/- mice. Results Exercise, as induced by voluntary running in a running wheel or forced running on a treadmill induced a switch from fast twitch to intermediate fibres. However the induced muscle fibre switch was similar between Nox4-/- and wildtype mice. The same held true for exercise-induced expression of PGC1α or AMPK activation. Both are increased in response to exercise, but with no difference was observed between wildtype and Nox4-/- mice. Conclusion Thus, exercise-induced muscle fibre switch is Nox4-independent.
Collapse
Affiliation(s)
- Juri Vogel
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | | | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität, Gießen, Germany
| | - Min Zhang
- Cardiovascular Division, King’s College London BHF Centre of Excellence, London, United Kingdom
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
15
|
Monaco C, Whitfield J, Jain SS, Spriet LL, Bonen A, Holloway GP. Activation of AMPKα2 Is Not Required for Mitochondrial FAT/CD36 Accumulation during Exercise. PLoS One 2015; 10:e0126122. [PMID: 25965390 PMCID: PMC4429092 DOI: 10.1371/journal.pone.0126122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/30/2015] [Indexed: 12/30/2022] Open
Abstract
Exercise has been shown to induce the translocation of fatty acid translocase (FAT/CD36), a fatty acid transport protein, to both plasma and mitochondrial membranes. While previous studies have examined signals involved in the induction of FAT/CD36 translocation to sarcolemmal membranes, to date the signaling events responsible for FAT/CD36 accumulation on mitochondrial membranes have not been investigated. In the current study muscle contraction rapidly increased FAT/CD36 on plasma membranes (7.5 minutes), while in contrast, FAT/CD36 only increased on mitochondrial membranes after 22.5 minutes of muscle contraction, a response that was exercise-intensity dependent. Considering that previous research has shown that AMP activated protein kinase (AMPK) α2 is not required for FAT/CD36 translocation to the plasma membrane, we investigated whether AMPK α2 signaling is necessary for mitochondrial FAT/CD36 accumulation. Administration of 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) induced AMPK phosphorylation, and resulted in FAT/CD36 accumulation on SS mitochondria, suggesting AMPK signaling may mediate this response. However, SS mitochondrial FAT/CD36 increased following acute treadmill running in both wild-type (WT) and AMPKα 2 kinase dead (KD) mice. These data suggest that AMPK signaling is not required for SS mitochondrial FAT/CD36 accumulation. The current data also implicates alternative signaling pathways that are exercise-intensity dependent, as IMF mitochondrial FAT/CD36 content only occurred at a higher power output. Taken altogether the current data suggests that activation of AMPK signaling is sufficient but not required for exercise-induced accumulation in mitochondrial FAT/CD36.
Collapse
Affiliation(s)
- Cynthia Monaco
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamie Whitfield
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Swati S. Jain
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lawrence L. Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Graham P. Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- * E-mail:
| |
Collapse
|
16
|
Sato T, Morita A, Mori N, Miura S. Glycerol 3-phosphate dehydrogenase 1 deficiency enhances exercise capacity due to increased lipid oxidation during strenuous exercise. Biochem Biophys Res Commun 2015; 457:653-8. [DOI: 10.1016/j.bbrc.2015.01.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/10/2015] [Indexed: 01/16/2023]
|
17
|
Fentz J, Kjøbsted R, Birk JB, Jordy AB, Jeppesen J, Thorsen K, Schjerling P, Kiens B, Jessen N, Viollet B, Wojtaszewski JFP. AMPKα is critical for enhancing skeletal muscle fatty acid utilization during
in vivo
exercise in mice. FASEB J 2015; 29:1725-38. [DOI: 10.1096/fj.14-266650] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Joachim Fentz
- Section of Molecular PhysiologyAugust Krogh CentreDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Rasmus Kjøbsted
- Section of Molecular PhysiologyAugust Krogh CentreDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jesper B. Birk
- Section of Molecular PhysiologyAugust Krogh CentreDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Andreas B. Jordy
- Section of Molecular PhysiologyAugust Krogh CentreDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jacob Jeppesen
- Section of Molecular PhysiologyAugust Krogh CentreDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Kasper Thorsen
- Department of Molecular MedicineAarhus University HospitalAarhusDenmark
| | - Peter Schjerling
- Institute of Sports MedicineDepartment of Orthopedic SurgeryBispebjerg Hospital and Center for Healthy AgingFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bente Kiens
- Section of Molecular PhysiologyAugust Krogh CentreDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Niels Jessen
- Department of Molecular MedicineAarhus University HospitalAarhusDenmark
| | - Benoit Viollet
- INSERM, U1016, Institute CochinParisFrance
- Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 8104ParisFrance
- Université Descartes, Sorbonne Paris CitéParisFrance
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular PhysiologyAugust Krogh CentreDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Tanner CB, Madsen SR, Hallowell DM, Goring DMJ, Moore TM, Hardman SE, Heninger MR, Atwood DR, Thomson DM. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am J Physiol Endocrinol Metab 2013; 305:E1018-29. [PMID: 23982155 PMCID: PMC3798697 DOI: 10.1152/ajpendo.00227.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Adaptation, Physiological
- Animals
- Capillaries/physiology
- Citrate (si)-Synthase/metabolism
- Citric Acid Cycle
- Female
- Gene Expression Regulation, Enzymologic
- Male
- Mice
- Mice, Knockout
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/metabolism
- Motor Activity
- Motor Skills
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- RNA, Messenger/metabolism
- Succinate Dehydrogenase/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Colby B Tanner
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | | | | | | | | | | | | | | | | |
Collapse
|