1
|
Garcia CC, Venkat A, McQuaid DC, Agabiti S, Tong A, Cardone RL, Starble R, Sogunro A, Jacox JB, Ruiz CF, Kibbey RG, Krishnaswamy S, Muzumdar MD. Beta cells are essential drivers of pancreatic ductal adenocarcinoma development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626079. [PMID: 39677599 PMCID: PMC11642786 DOI: 10.1101/2024.11.29.626079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pancreatic endocrine-exocrine crosstalk plays a key role in normal physiology and disease. For instance, endocrine islet beta (β) cell secretion of insulin or cholecystokinin (CCK) promotes progression of pancreatic adenocarcinoma (PDAC), an exocrine cell-derived tumor. However, the cellular and molecular mechanisms that govern endocrine-exocrine signaling in tumorigenesis remain incompletely understood. We find that β cell ablation impedes PDAC development in mice, arguing that the endocrine pancreas is critical for exocrine tumorigenesis. Conversely, obesity induces β cell hormone dysregulation, alters CCK-dependent peri-islet exocrine cell transcriptional states, and enhances islet proximal tumor formation. Single-cell RNA-sequencing, in silico latent-space archetypal and trajectory analysis, and genetic lineage tracing in vivo reveal that obesity stimulates postnatal immature β cell expansion and adaptation towards a pro-tumorigenic CCK+ state via JNK/cJun stress-responsive signaling. These results define endocrine-exocrine signaling as a driver of PDAC development and uncover new avenues to target the endocrine pancreas to subvert exocrine tumorigenesis.
Collapse
|
2
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Arefanian H, Al Madhoun A, Al-Rashed F, Alzaid F, Bahman F, Nizam R, Alhusayan M, John S, Jacob S, Williams MR, Abukhalaf N, Shenouda S, Joseph S, AlSaeed H, Kochumon S, Mohammad A, Koti L, Sindhu S, Abu-Farha M, Abubaker J, Thanaraj TA, Ahmad R, Al-Mulla F. Unraveling Verapamil's Multidimensional Role in Diabetes Therapy: From β-Cell Regeneration to Cholecystokinin Induction in Zebrafish and MIN6 Cell-Line Models. Cells 2024; 13:949. [PMID: 38891081 PMCID: PMC11171639 DOI: 10.3390/cells13110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study unveils verapamil's compelling cytoprotective and proliferative effects on pancreatic β-cells amidst diabetic stressors, spotlighting its unforeseen role in augmenting cholecystokinin (CCK) expression. Through rigorous investigations employing MIN6 β-cells and zebrafish models under type 1 and type 2 diabetic conditions, we demonstrate verapamil's capacity to significantly boost β-cell proliferation, enhance glucose-stimulated insulin secretion, and fortify cellular resilience. A pivotal revelation of our research is verapamil's induction of CCK, a peptide hormone known for its role in nutrient digestion and insulin secretion, which signifies a novel pathway through which verapamil exerts its therapeutic effects. Furthermore, our mechanistic insights reveal that verapamil orchestrates a broad spectrum of gene and protein expressions pivotal for β-cell survival and adaptation to immune-metabolic challenges. In vivo validation in a zebrafish larvae model confirms verapamil's efficacy in fostering β-cell recovery post-metronidazole infliction. Collectively, our findings advocate for verapamil's reevaluation as a multifaceted agent in diabetes therapy, highlighting its novel function in CCK upregulation alongside enhancing β-cell proliferation, glucose sensing, and oxidative respiration. This research enriches the therapeutic landscape, proposing verapamil not only as a cytoprotector but also as a promoter of β-cell regeneration, thereby offering fresh avenues for diabetes management strategies aimed at preserving and augmenting β-cell functionality.
Collapse
Affiliation(s)
- Hossein Arefanian
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Fawaz Alzaid
- Department of Bioenergetics & Neurometabolism, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.A.); (M.A.); (M.R.W.)
- Institut Necker Enfants Malades (INEM), French Institute of Health and Medical Research (INSERM), Immunity & Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, 75014 Paris, France
| | - Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Mohammed Alhusayan
- Department of Bioenergetics & Neurometabolism, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.A.); (M.A.); (M.R.W.)
| | - Sumi John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Michayla R. Williams
- Department of Bioenergetics & Neurometabolism, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.A.); (M.A.); (M.R.W.)
| | - Nermeen Abukhalaf
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Steve Shenouda
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Shibu Joseph
- Special Services Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Halemah AlSaeed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Shihab Kochumon
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.M.); (M.A.-F.); (J.A.)
| | - Lubaina Koti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.M.); (M.A.-F.); (J.A.)
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.M.); (M.A.-F.); (J.A.)
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| |
Collapse
|
4
|
Bailey CJ, Flatt PR. Duodenal enteroendocrine cells and GIP as treatment targets for obesity and type 2 diabetes. Peptides 2024; 174:171168. [PMID: 38320643 DOI: 10.1016/j.peptides.2024.171168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.
Collapse
Affiliation(s)
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA Northern Ireland, UK
| |
Collapse
|
5
|
Turbitt J, Moffett RC, Brennan L, Johnson PRV, Flatt PR, McClenaghan NH, Tarasov AI. Molecular determinants and intracellular targets of taurine signalling in pancreatic islet β-cells. Acta Physiol (Oxf) 2024; 240:e14101. [PMID: 38243723 DOI: 10.1111/apha.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
AIM Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet β-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into β-cells and its acute and chronic intracellular interactions. METHODS The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 β-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals. RESULTS Taurine transporter TauT was expressed in the islet β-cells, with the transport of taurine and homologs having a weak sulfonate specificity but significant sensitivity to the molecular weight of the transporter. Taurine, hypotaurine, homotaurine, and β-alanine enhanced insulin secretion in a glucose-dependent manner, an action potentiated by cytosolic Ca2+ and cAMP. Acute and chronic β-cell insulinotropic effects of taurine were highly sensitive to co-agonism with GLP-1, forskolin, tolbutamide, and membrane depolarization, with an unanticipated indifference to the activation of PKC and CCK8 receptors. Pre-culturing with GLP-1 or KATP channel inhibitors sensitized or, respectively, desensitized β-cells to the acute taurine stimulus. CONCLUSION Together, these data demonstrate the pathways whereby taurine exhibits a range of beneficial effects on insulin secretion and β-cell function, consistent with the antidiabetic potential of its dietary low-dose supplementation.
Collapse
Affiliation(s)
- Julie Turbitt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Lorraine Brennan
- UCD Institute of Food and Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Republic of Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Republic of Ireland
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Oxford Biomedical Research Centre (OxBRC), Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Republic of Ireland
| | | |
Collapse
|
6
|
Arefanian H, Koti L, Sindhu S, Ahmad R, Al Madhoun A, Al-Mulla F. Verapamil chronicles: advances from cardiovascular to pancreatic β-cell protection. Front Pharmacol 2023; 14:1322148. [PMID: 38089047 PMCID: PMC10711102 DOI: 10.3389/fphar.2023.1322148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2024] Open
Abstract
Verapamil is a well-known drug used for treating angina and hypertension. Emerging data from current clinical trials suggest that this calcium channel blocker has a potential benefit for pancreatic β-cells through the elevation and sustenance of C-peptide levels in patients with diabetes mellitus (DM). This is intriguing, given the fact that the current therapeutic options for DM are still limited to using insulin and incretins which, in fact, fail to address the underlying pathology of β-cell destruction and loss. Moreover, verapamil is widely available as an FDA-approved, cost-effective drug, supported also by its substantial efficacy and safety. However, the molecular mechanisms underlying the β-cell protective potentials of verapamil are yet to be fully elucidated. Although, verapamil reduces the expression of thioredoxin-interacting protein (TXNIP), a molecule which is involved in β-cell apoptosis and glucotoxicity-induced β-cell death, other signaling pathways are also modulated by verapamil. In this review, we revisit the historical avenues that lead to verapamil as a potential therapeutic agent for DM. Importantly, this review provides an update on the current known mechanisms of action of verapamil and also allude to the plausible mechanisms that could be implicated in its β-cell protective effects, based on our own research findings.
Collapse
Affiliation(s)
- Hossein Arefanian
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Lubaina Koti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
7
|
Zhang ZH, Yang CT, Su XR, Li YP, Zhang XJ, Wang SJ, Cong B. CCK1R2R -/- ameliorates myocardial damage caused by unpredictable stress via altering fatty acid metabolism. Stress 2023; 26:2254566. [PMID: 37665601 DOI: 10.1080/10253890.2023.2254566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023] Open
Abstract
The heart is the main organ of the circulatory system and requires fatty acids to maintain its activity. Stress is a contributor to aggravating cardiovascular diseases and even death, and exacerbates the abnormal lipid metabolism. The cardiac metabolism may be disturbed by stress. Cholecystokinin (CCK), which is a classical peptide hormone, and its receptor (CCKR) are expressed in myocardial cells and affect cardiovascular function. Nevertheless, under stress, the exact role of CCKR on cardiac function and cardiac metabolism is unknown and the mechanism is worth exploring. After unpredictable stress, a common stress-inducing model that induces the development of mood disorders such as anxiety and reduces motivated behavior, we found that the abnormal contraction and diastole of the heart, myocardial injury, oxidative stress and inflammation of mice were aggravated. Cholecystokinin A receptor and cholecystokinin B receptor knockout (CCK1R2R-/-) significantly reversed these changes. Mechanistically, fatty acid metabolism was found to be altered in CCK1R2R-/- mice. Differential metabolites, especially L-tryptophan, L-aspartic acid, cholesterol, taurocholic acid, ADP, oxoglutaric acid, arachidonic acid and 17-Hydroxyprogesterone, influenced cardiac function after CCK1R2R knockout and unpredictable stress. We conclude that CCK1R2R-/- ameliorated myocardial damage caused by unpredictable stress via altering fatty acid metabolism.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
- Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Hebei, P.R. China
| | - Chen-Teng Yang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Xiao-Rui Su
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Ya-Ping Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Xiao-Jing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Song-Jun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, Hainan, P.R. China
| |
Collapse
|
8
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
9
|
Mao Y, Schoenborn J, Wang Z, Chen X, Matson K, Mohan R, Zhang S, Tang X, Arunagiri A, Arvan P, Tang X. Transgenic overexpression of microRNA-30d in pancreatic beta-cells progressively regulates beta-cell function and identity. Sci Rep 2022; 12:11969. [PMID: 35831364 PMCID: PMC9279310 DOI: 10.1038/s41598-022-16174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/06/2022] [Indexed: 11/15/2022] Open
Abstract
Abnormal microRNA functions are closely associated with pancreatic β-cell loss and dysfunction in type 2 diabetes. Dysregulation of miR-30d has been reported in the individuals with diabetes. To study how miR-30d affects pancreatic β-cell functions, we generated two transgenic mouse lines that specifically overexpressed miR-30d in β-cells at distinct low and high levels. Transgenic overexpressed miR-30d systemically affected β-cell function. Elevated miR-30d at low-level (TgL, 2-fold) had mild effects on signaling pathways and displayed no significant changes to metabolic homeostasis. In contrast, transgenic mice with high-level of miR-30d expression (TgH, 12-fold) exhibited significant diet-induced hyperglycemia and β-cell dysfunction. In addition, loss of β-cell identity was invariably accompanied with increased insulin/glucagon-double positive bihormonal cells and excess plasma glucagon levels. The transcriptomic analysis revealed that miR-30d overexpression inhibited β-cell-enriched gene expression and induced α-cell-enriched gene expression. These findings implicate that an appropriate miR-30d level is essential in maintaining normal β-cell identity and function.
Collapse
Affiliation(s)
- Yiping Mao
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Jacob Schoenborn
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Zhihong Wang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Xinqian Chen
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Katy Matson
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ramkumar Mohan
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Shungang Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Xiaohu Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Anoop Arunagiri
- Department of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Arvan
- Department of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
10
|
Pan X, Tao S, Tong N. Potential Therapeutic Targeting Neurotransmitter Receptors in Diabetes. Front Endocrinol (Lausanne) 2022; 13:884549. [PMID: 35669692 PMCID: PMC9163348 DOI: 10.3389/fendo.2022.884549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Neurotransmitters are signaling molecules secreted by neurons to coordinate communication and proper function among different sections in the central neural system (CNS) by binding with different receptors. Some neurotransmitters as well as their receptors are found in pancreatic islets and are involved in the regulation of glucose homeostasis. Neurotransmitters can act with their receptors in pancreatic islets to stimulate or inhibit the secretion of insulin (β cell), glucagon (α cell) or somatostatin (δ cell). Neurotransmitter receptors are either G-protein coupled receptors or ligand-gated channels, their effects on blood glucose are mainly decided by the number and location of them in islets. Dysfunction of neurotransmitters receptors in islets is involved in the development of β cell dysfunction and type 2 diabetes (T2D).Therapies targeting different transmitter systems have great potential in the prevention and treatment of T2D and other metabolic diseases.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shibing Tao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology, Ziyang First People’s Hospital, Ziyang, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Xu J, Wijesekara N, Regeenes R, Rijjal DA, Piro AL, Song Y, Wu A, Bhattacharjee A, Liu Y, Marzban L, Rocheleau JV, Fraser PE, Dai FF, Hu C, Wheeler MB. Pancreatic β cell-selective zinc transporter 8 insufficiency accelerates diabetes associated with islet amyloidosis. JCI Insight 2021; 6:143037. [PMID: 34027899 PMCID: PMC8262350 DOI: 10.1172/jci.insight.143037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/21/2021] [Indexed: 01/25/2023] Open
Abstract
GWAS have shown that the common R325W variant of SLC30A8 (ZnT8) increases the risk of type 2 diabetes (T2D). However, ZnT8 haploinsufficiency is protective against T2D in humans, counterintuitive to earlier work in humans and mouse models. Therefore, whether decreasing ZnT8 activity is beneficial or detrimental to β cell function, especially under conditions of metabolic stress, remains unknown. In order to examine whether the existence of human islet amyloid polypeptide (hIAPP), a coresident of the insulin granule, affects the role of ZnT8 in regulating β cell function, hIAPP-expressing transgenics were generated with reduced ZnT8 (ZnT8B+/– hIAPP) or null ZnT8 (ZnT8B–/– hIAPP) expression specifically in β cells. We showed that ZnT8B–/– hIAPP mice on a high-fat diet had intensified amyloid deposition and further impaired glucose tolerance and insulin secretion compared with control, ZnT8B–/–, and hIAPP mice. This can in part be attributed to impaired glucose sensing and islet cell synchronicity. Importantly, ZnT8B+/– hIAPP mice were also glucose intolerant and had reduced insulin secretion and increased amyloid aggregation compared with controls. These data suggest that loss of or reduced ZnT8 activity in β cells heightened the toxicity induced by hIAPP, leading to impaired β cell function and glucose homeostasis associated with metabolic stress.
Collapse
Affiliation(s)
- Jie Xu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto Western Hospital, Toronto, Ontario Canada
| | - Romario Regeenes
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dana Al Rijjal
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony L Piro
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Youchen Song
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Anne Wu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alpana Bhattacharjee
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ying Liu
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - Lucy Marzban
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jonathan V Rocheleau
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto Western Hospital, Toronto, Ontario Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Feihan F Dai
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Wang Z, Mohan R, Chen X, Matson K, Waugh J, Mao Y, Zhang S, Li W, Tang X, Satin LS, Tang X. microRNA-483 Protects Pancreatic β-Cells by Targeting ALDH1A3. Endocrinology 2021; 162:6132087. [PMID: 33564883 PMCID: PMC7951052 DOI: 10.1210/endocr/bqab031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic β-cell dysfunction is central to the development and progression of type 2 diabetes. Dysregulation of microRNAs (miRNAs) has been associated with pancreatic islet dysfunction in type 2 diabetes. Previous study has shown that miR-483 is expressed relatively higher in β-cells than in α-cells. To explore the physiological function of miR-483, we generated a β-cell-specific knockout mouse model of miR-483. Loss of miR-483 enhances high-fat diet-induced hyperglycemia and glucose intolerance by the attenuation of diet-induced insulin release. Intriguingly, mice with miR-483 deletion exhibited loss of β-cell features, as indicated by elevated expression of aldehyde dehydrogenase family 1, subfamily A3 (Aldh1a3), a marker of β-cell dedifferentiation. Moreover, Aldh1a3 was validated as a direct target of miR-483 and overexpression of miR-483 repressed Aldh1a3 expression. Genetic ablation of miR-483 also induced alterations in blood lipid profile. Collectively, these data suggest that miR-483 is critical in protecting β-cell function by repressing the β-cell disallowed gene Aldh1a3. The dysregulated miR-483 may impair insulin secretion and initiate β-cell dedifferentiation during the development of type 2 diabetes.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Ramkumar Mohan
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Xinqian Chen
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Katy Matson
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Jackson Waugh
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Yiping Mao
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Shungang Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Wanzhen Li
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Xiaohu Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Leslie S Satin
- Department of Pharmacology, Brehm Center for Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
- Correspondence: Xiaoqing Tang, PhD, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA.
| |
Collapse
|
13
|
Tanday N, English A, Lafferty RA, Flatt PR, Irwin N. Benefits of Sustained Upregulated Unimolecular GLP-1 and CCK Receptor Signalling in Obesity-Diabetes. Front Endocrinol (Lausanne) 2021; 12:674704. [PMID: 34054734 PMCID: PMC8160446 DOI: 10.3389/fendo.2021.674704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Combined activation of GLP-1 and CCK1 receptors has potential to synergistically augment the appetite-suppressive and glucose homeostatic actions of the individual parent peptides. In the current study, pancreatic beta-cell benefits of combined GLP-1 and CCK1 receptor upregulation were established, before characterising bioactivity and antidiabetic efficacy of an acylated dual-acting GLP-1/CCK hybrid peptide, namely [Lys12Pal]Ex-4/CCK. Both exendin-4 and CCK exhibited (p<0.001) proliferative and anti-apoptotic effects in BRIN BD11 beta-cells. Proliferative benefits were significantly (p<0.01) augmented by combined peptide treatment when compared to either parent peptide alone. These effects were linked to increases (p<0.001) in GLUT2 and glucokinase beta-cell gene expression, with decreased (p<0.05-p<0.001) expression of NFκB and BAX. [Lys12Pal]Ex-4/CCK exhibited prominent insulinotropic actions in vitro, coupled with beneficial (p<0.001) satiety and glucose homeostatic effects in the mice, with bioactivity evident 24 h after administration. Following twice daily injection of [Lys12Pal]Ex-4/CCK for 28 days in diabetic high fat fed (HFF) mice with streptozotocin (STZ)-induced compromised beta-cells, there were clear reductions (p<0.05-p<0.001) in energy intake and body weight. Circulating glucose was returned to lean control concentrations, with associated increases (p<0.001) in plasma and pancreatic insulin levels. Glucose tolerance and insulin secretory responsiveness were significantly (p<0.05-p<0.001) improved by hybrid peptide therapy. In keeping with this, evaluation of pancreatic histology revealed restoration of normal islet alpha- to beta-cell ratios and reduction (p<0.01) in centralised islet glucagon staining. Improvements in pancreatic islet morphology were associated with increased (p<0.05) proliferation and reduced (p<0.001) apoptosis of beta-cells. Together, these data highlight the effectiveness of sustained dual GLP-1 and CCK1 receptor activation by [Lys12Pal]Ex-4/CCK for the treatment of obesity-related diabetes.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Blood Glucose/analysis
- Body Weight
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat
- Exenatide/pharmacology
- Glucagon-Like Peptide 1/genetics
- Glucagon-Like Peptide 1/metabolism
- Hypoglycemic Agents/pharmacology
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/physiopathology
- Peptide Fragments/pharmacology
- Receptors, Cholecystokinin/genetics
- Receptors, Cholecystokinin/metabolism
- Up-Regulation
Collapse
|
14
|
Wang C, Yu H, Wei L, Zhang J, Hong M, Chen L, Dong X, Fu L. Protective effect of cholecystokinin octapeptide on angiotensin II-induced apoptosis in H9c2 cardiomyoblast cells. J Cell Biochem 2020; 121:3560-3569. [PMID: 31886572 DOI: 10.1002/jcb.29639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
Cholecystokinin (CCK) and its receptors are expressed in mammalian cardiomyocytes and are involved in cardiovascular system regulation; however, the exact effect and underlying mechanism of CCK in cardiomyocyte apoptosis remain to be elucidated. We examined whether sulfated CCK octapeptide (CCK-8) protects H9c2 cardiomyoblast cells against angiotensin II (Ang II)-induced apoptosis. The H9c2 cardiomyoblasts were subjected to Ang II with or without CCK-8 and the viability and apoptotic rate were detected using a Cell Counting Kit-8 assay, Hoechst 33342 staining, terminal deoxyribonucleotide transferase-mediated nick-end labeling assays, and flow cytometry. In addition, specific antiapoptotic mechanisms of CCK-8 were investigated using specific CCK1 (Devazepide) or CCK2 (L365260) receptor antagonists, or the PI3K inhibitor LY294002. The expression of CCK, CCK1 receptor, CCK2 receptor, Akt, p-Akt, Bad, p-Bad, Bax, Bcl-2, and caspase-3 were detected by Western blot analysis and real-time polymerase chain reaction. We found that CCK and its receptor messenger RNA (mRNA) and protein are expressed in H9c2 cardiomyoblasts. Ang II-induced increased levels of CCK mRNA and protein expression and decreased levels of CCK1 receptor protein and mRNA. Pretreatment of CCK-8 attenuated Ang II-induced cell toxicity and apoptosis. In addition, pretreatment of H9c2 cells with CCK-8 markedly induced expression of p-Akt, p-bad, and Bcl-2 and decreased the expression levels of Bax and caspase-3. The protective effects of CCK-8 were partly abolished by Devazepide or LY294002. Our results suggest that CCK-8 protects H9c2 cardiomyoblasts from Ang II-induced apoptosis partly via activation of the CCK1 receptor and the phosphatidyqinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway.
Collapse
Affiliation(s)
- Can Wang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huan Yu
- Department of Anesthesiology, The Fifth Hospital of Harbin City, Harbin, China
| | - Limu Wei
- Department of Internal Medicine, The First People's Hospital of Nanning, Nanning, China
| | - Jingqi Zhang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyang Hong
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Chen
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoying Dong
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu Fu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Chung KM, Singh J, Lawres L, Dorans KJ, Garcia C, Burkhardt DB, Robbins R, Bhutkar A, Cardone R, Zhao X, Babic A, Vayrynen SA, Dias Costa A, Nowak JA, Chang DT, Dunne RF, Hezel AF, Koong AC, Wilhelm JJ, Bellin MD, Nylander V, Gloyn AL, McCarthy MI, Kibbey RG, Krishnaswamy S, Wolpin BM, Jacks T, Fuchs CS, Muzumdar MD. Endocrine-Exocrine Signaling Drives Obesity-Associated Pancreatic Ductal Adenocarcinoma. Cell 2020; 181:832-847.e18. [PMID: 32304665 PMCID: PMC7266008 DOI: 10.1016/j.cell.2020.03.062] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Abstract
Obesity is a major modifiable risk factor for pancreatic ductal adenocarcinoma (PDAC), yet how and when obesity contributes to PDAC progression is not well understood. Leveraging an autochthonous mouse model, we demonstrate a causal and reversible role for obesity in early PDAC progression, showing that obesity markedly enhances tumorigenesis, while genetic or dietary induction of weight loss intercepts cancer development. Molecular analyses of human and murine samples define microenvironmental consequences of obesity that foster tumorigenesis rather than new driver gene mutations, including significant pancreatic islet cell adaptation in obesity-associated tumors. Specifically, we identify aberrant beta cell expression of the peptide hormone cholecystokinin (Cck) in response to obesity and show that islet Cck promotes oncogenic Kras-driven pancreatic ductal tumorigenesis. Our studies argue that PDAC progression is driven by local obesity-associated changes in the tumor microenvironment and implicate endocrine-exocrine signaling beyond insulin in PDAC development.
Collapse
Affiliation(s)
| | - Jaffarguriqbal Singh
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lauren Lawres
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | | | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Daniel B Burkhardt
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rebecca Robbins
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA
| | - Rebecca Cardone
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaojian Zhao
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Sara A Vayrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA 94305, USA
| | - Richard F Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Aram F Hezel
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joshua J Wilhelm
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota Medical Center, Minneapolis, MN 55454, USA
| | - Melena D Bellin
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota Medical Center, Minneapolis, MN 55454, USA; Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN 55454, USA
| | - Vibe Nylander
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Anna L Gloyn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford OX3 7LE, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford OX3 7LE, UK
| | - Richard G Kibbey
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles S Fuchs
- Yale Cancer Center, Smilow Cancer Hospital, New Haven, CT 06511, USA
| | - Mandar Deepak Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Yale Cancer Center, Smilow Cancer Hospital, New Haven, CT 06511, USA.
| |
Collapse
|
16
|
Intra-islet GLP-1, but not CCK, is necessary for β-cell function in mouse and human islets. Sci Rep 2020; 10:2823. [PMID: 32071395 PMCID: PMC7028949 DOI: 10.1038/s41598-020-59799-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK) are gut-derived peptide hormones known to play important roles in the regulation of gastrointestinal motility and secretion, appetite, and food intake. We have previously demonstrated that both GLP-1 and CCK are produced in the endocrine pancreas of obese mice. Interestingly, while GLP-1 is well known to stimulate insulin secretion by the pancreatic β-cells, direct evidence of CCK promoting insulin release in human islets remains to be determined. Here, we tested whether islet-derived GLP-1 or CCK is necessary for the full stimulation of insulin secretion. We confirm that mouse pancreatic islets secrete GLP-1 and CCK, but only GLP-1 acts locally within the islet to promote insulin release ex vivo. GLP-1 is exclusively produced in approximately 50% of α-cells in lean mouse islets and 70% of α-cells in human islets, suggesting a paracrine α to β-cell signaling through the β-cell GLP-1 receptor. Additionally, we provide evidence that islet CCK expression is regulated by glucose, but its receptor signaling is not required during glucose-stimulated insulin secretion (GSIS). We also see no increase in GSIS in response to CCK peptides. Importantly, all these findings were confirmed in islets from non-diabetic human donors. In summary, our data suggest no direct role for CCK in stimulating insulin secretion and highlight the critical role of intra-islet GLP-1 signaling in the regulation of human β-cell function.
Collapse
|
17
|
Zeng Q, Ou L, Wang W, Guo DY. Gastrin, Cholecystokinin, Signaling, and Biological Activities in Cellular Processes. Front Endocrinol (Lausanne) 2020; 11:112. [PMID: 32210918 PMCID: PMC7067705 DOI: 10.3389/fendo.2020.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
The structurally-related peptides, gastrin and cholecystokinin (CCK), were originally discovered as humoral stimulants of gastric acid secretion and pancreatic enzyme release, respectively. With the aid of methodological advances in biochemistry, immunochemistry, and molecular biology in the past several decades, our concept of gastrin and CCK as simple gastrointestinal hormones has changed considerably. Extensive in vitro and in vivo studies have shown that gastrin and CCK play important roles in several cellular processes including maintenance of gastric mucosa and pancreatic islet integrity, neurogenesis, and neoplastic transformation. Indeed, gastrin and CCK, as well as their receptors, are expressed in a variety of tumor cell lines, animal models, and human samples, and might contribute to certain carcinogenesis. In this review, we will briefly introduce the gastrin and CCK system and highlight the effects of gastrin and CCK in the regulation of cell proliferation and apoptosis in both normal and abnormal conditions. The potential imaging and therapeutic use of these peptides and their derivatives are also summarized.
Collapse
Affiliation(s)
- Qiang Zeng
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Lei Ou
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Wei Wang
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- Dong-Yu Guo
| |
Collapse
|
18
|
Rehfeld JF. Premises for Cholecystokinin and Gastrin Peptides in Diabetes Therapy. Clin Med Insights Endocrinol Diabetes 2019; 12:1179551419883608. [PMID: 31853211 PMCID: PMC6909273 DOI: 10.1177/1179551419883608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Gastrin and cholecystokinin (CCK) are classical gastrointestinal peptide hormones. Their biogenesis, structures, and intestinal secretory patterns are well-known with the striking feature that their receptor-bound 'active sites' are highly homologous and that this structure is conserved for more than 500 million years during evolution. Consequently, gastrin and CCK are agonists for the same receptor (the CCK2 receptor). But in addition, tyrosyl O-sulphated CCK are also bound to the specific CCK1 receptor. The receptors are widely expressed in the body, including pancreatic islet-cell membranes. Moreover, CCK and gastrin peptides are at various developmental stages and diseases expressed in pancreatic islets; also in human islets. Accordingly, bioactive gastrin and CCK peptides stimulate islet-cell growth as well as insulin and glucagon secretion. In view of their insulinotropic effects, gastrin and CCK peptides have come into focus as drug targets, either alone or in combination with other insulinotropic gut hormones or growth factors. So far, modified CCK and gastrin peptides are being examined as potential drugs for therapy of type 1 as well as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Parks CA, Pak K, Pinal-Fernandez I, Huang W, Derfoul A, Mammen AL. Trim33 (Tif1γ) is not required for skeletal muscle development or regeneration but suppresses cholecystokinin expression. Sci Rep 2019; 9:18507. [PMID: 31811178 PMCID: PMC6898130 DOI: 10.1038/s41598-019-54651-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022] Open
Abstract
The expression of Trim33 (Tif1γ) increases in skeletal muscles during regeneration and decreases upon maturation. Although Trim33 is required for the normal development of other tissues, its role in skeletal muscle is unknown. The current study aimed to define the role of Trim33 in muscle development and regeneration. We generated mice with muscle-specific conditional knockout of Trim33 by combining floxed Trim33 and Cre recombinase under the Pax7 promoter. Muscle regeneration was induced by injuring mouse muscles with cardiotoxin. We studied the consequences of Trim33 knockdown on viability, body weight, skeletal muscle histology, muscle regeneration, and gene expression. We also studied the effect of Trim33 silencing in satellite cells and the C2C12 mouse muscle cell line. Although Trim33 knockdown mice weighed less than control mice, their skeletal muscles were histologically unremarkable and regenerated normally following injury. Unexpectedly, RNAseq analysis revealed dramatically increased expression of cholecystokinin (CCK) in regenerating muscle from Trim33 knockout mice, satellite cells from Trim33 knockout mice, and C2C12 cells treated with Trim33 siRNA. Trim33 knockdown had no demonstrable effect on muscle differentiation or regeneration. However, Trim33 knockdown induced CCK expression in muscle, suggesting that suppression of CCK expression requires Trim33.
Collapse
Affiliation(s)
- Cassie A Parks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Pak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iago Pinal-Fernandez
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA. .,Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| | - Wilson Huang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Assia Derfoul
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Mammen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA. .,Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Koltes JE, Arora I, Gupta R, Nguyen DC, Schaid M, Kim JA, Kimple ME, Bhatnagar S. A gene expression network analysis of the pancreatic islets from lean and obese mice identifies complement 1q like-3 secreted protein as a regulator of β-cell function. Sci Rep 2019; 9:10119. [PMID: 31300714 PMCID: PMC6626003 DOI: 10.1038/s41598-019-46219-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Secreted proteins are important metabolic regulators. Identifying and characterizing the role of secreted proteins from small tissue depots such as islets of Langerhans, which are required for the proper control of whole-body energy metabolism, remains challenging. Our objective was to identify islet-derived secreted proteins that affect islet function in obesity. Lean and obese mouse islet expression data were analyzed by weighted gene co-expression network analysis (WGCNA) to identify trait-associated modules. Subsequently, genes within these modules were filtered for transcripts that encode for secreted proteins based on intramodular connectivity, module membership, and differential expression. Complement 1q like-3 (C1ql3) secreted protein was identified as a hub gene affecting islet function in obesity. Co-expression network, hierarchal clustering, and gene-ontology based approaches identified a putative role for C1ql3 in regulating β-cell insulin secretion. Biological validation shows that C1ql3 is expressed in β-cells, it inhibits insulin secretion and key genes that are involved in β-cell function. Moreover, the increased expression of C1ql3 is correlated with the reduced insulin secretion in islets of obese mice. Herein, we demonstrate a streamlined approach to effectively screen and determine the function of secreted proteins in islets, and identified C1ql3 as a putative contributor to reduced insulin secretion in obesity, linking C1ql3 to an increased susceptibility to type 2 diabetes.
Collapse
Affiliation(s)
- James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Itika Arora
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Rajesh Gupta
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Dan C Nguyen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Michael Schaid
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison College of Agriculture and Life Sciences, Madison, WI, 53706, USA.,Research Service, William S Middleton Memorial VA Hospital, Madison, WI, 53705, USA
| | - Jeong-A Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA
| | - Michelle E Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison College of Agriculture and Life Sciences, Madison, WI, 53706, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Academic Affairs, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, USA.,Research Service, William S Middleton Memorial VA Hospital, Madison, WI, 53705, USA
| | - Sushant Bhatnagar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294, USA.
| |
Collapse
|
21
|
Sensfuss U, Kruse T, Skyggebjerg RB, Uldam HK, Vestergaard B, Huus K, Vinther TN, Reinau ME, Schéele S, Clausen TR. Structure–Activity Relationships and Characterization of Highly Selective, Long-Acting, Peptide-Based Cholecystokinin 1 Receptor Agonists. J Med Chem 2019; 62:1407-1419. [DOI: 10.1021/acs.jmedchem.8b01558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
de Faudeur G, Brouwers B, Schuit F, Creemers JWM, Ramos-Molina B. Transgenic Artifacts Caused by Passenger Human Growth Hormone. Trends Endocrinol Metab 2018; 29:670-674. [PMID: 29921469 DOI: 10.1016/j.tem.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
The minigene encoding human growth hormone (hGH) has been incorporated into over 300 transgenic mouse lines to improve transgene expression. However, unexpected and functional hGH expression can drastically alter physiology. We list here the mouse lines in which ectopic hGH has been confirmed, and we provide a wiki for lines awaiting analysis.
Collapse
Affiliation(s)
- Geoffroy de Faudeur
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; These authors contributed equally
| | - Bas Brouwers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium; Metabolic Research Laboratories, Wellcome Trust Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK; These authors contributed equally
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium; Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, Malaga, Spain; Centro de Investigación Biomédica en Red (CIBER) Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Abstract
OBJECTIVES Modulation of cholecystokinin (CCK) receptors has been shown to influence pancreatic endocrine function. METHODS We assessed the impact of the CCKA and CCKB receptor modulators, (pGlu-Gln)-CCK-8 and gastrin-17, respectively, on β-cell secretory function, proliferation and apoptosis and glucose tolerance, and investigating alterations of CCK and gastrin islet expression in diabetes. RESULTS Initially, the presence of CCK and gastrin, and expression of their receptors were evidenced in β-cell lines and mouse islets. (pGlu-Gln)-CCK-8 and gastrin-17 stimulated insulin secretion from BRIN-BD11 and 1.1B4 β-cells, associated with no effect on membrane potential or [Ca]i. Only (pGlu-Gln)-CCK-8 possessed insulin secretory actions in isolated islets. In agreement, (pGlu-Gln)-CCK-8 improved glucose disposal and glucose-induced insulin release in mice. In addition, (pGlu-Gln)-CCK-8 evoked clear satiety effects. Interestingly, islet colocalization of CCK with glucagon was elevated in streptozotocin- and hydrocortisone-induced diabetic mice, whereas gastrin coexpression in α cells was reduced. In contrast, gastrin colocalization within β-cells was higher in diabetic mice, while CCK coexpression with insulin was decreased in insulin-deficient mice. (pGlu-Gln)-CCK-8 and gastrin-17 also augmented human and rodent β-cell proliferation and offered protection against streptozotocin-induced β-cell cytotoxicity. CONCLUSIONS We highlight the direct involvement of CCKA and CCKB receptors in pancreatic β-cell function and survival.
Collapse
|
24
|
Pathak V, Flatt PR, Irwin N. Cholecystokinin (CCK) and related adjunct peptide therapies for the treatment of obesity and type 2 diabetes. Peptides 2018; 100:229-235. [PMID: 29412823 DOI: 10.1016/j.peptides.2017.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Cholecystokinin (CCK) is a hormone secreted from I-cells of the gut, as well as neurons in the enteric and central nervous system, that binds and activates CCK-1 and CCK-2 receptors to mediate its biological actions. To date knowledge relating to the physiological significance of CCK has predominantly focused around induction of short-term satiety. However, CCK has also been highlighted to possess important actions in relation to the regulation of insulin secretion, as well as overall beta-cell function and survival. Consequently, this has led to the development of enzymatically stable, biologically active, CCK peptide analogues with proposed therapeutic promise for both obesity and type 2 diabetes. In addition, several studies have demonstrated metabolic, and therapeutically relevant, complementary biological actions of CCK with those of the incretin hormones GIP and GLP-1, as well as with amylin and leptin. Thus, stable CCK derivatives not only offer promise as potential independent weight-reducing and glucose-lowering drugs, but also as effective adjunctive therapies. This review focuses on the recent and ongoing developments of CCK in the context of new therapies for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Varun Pathak
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
25
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
26
|
Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochim Biophys Acta Gen Subj 2017; 1861:749-758. [PMID: 28069397 DOI: 10.1016/j.bbagen.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND In the present study we assessed the impact of neuropeptide Y receptor (NPYR) modulators, neuropeptide Y (NPY) and pancreatic polypeptide (PP), on islet function and beta-cell survival. METHODS The effects of NPY and PP on beta-cell function were examined in BRIN BD11 and 1.1B4 beta-cells, as well as isolated mouse islets. Involvement of both peptides in pancreatic islet adaptations to streptozotocin and hydrocortisone, as well as effects on beta-cell proliferation and apoptosis was also evaluated. RESULTS Neither NPY nor PP affected in vivo glucose disposal or insulin secretion in mice. However, both peptides inhibited (p<0.05 to p<0.001) glucose stimulated insulin secretion from rat and human beta-cells. NPY exerted similar insulinostatic effects in isolated mouse islets. NPY and PP inhibited alanine-induced changes in BRIN BD11 cell membrane potential and (Ca2+)i. Streptozotocin treatment decreased and hydrocortisone treatment increased beta-cell mass in mice. In addition, streptozotocin, but not hydrocortisone, increased PP cell area. Streptozotocin also shifted the normal co-localisation of NPY with PP, towards more pronounced co-expression with somatostatin in delta-cells. Both streptozotocin and hydrocortisone increased pancreatic exocrine expression of NPY. More detailed in vitro investigations revealed that NPY, but not PP, augmented (p<0.01) BRIN BD11 beta-cell proliferation. In addition, both peptides exerted protective effects against streptozotocin-induced DNA damage in beta-cells. CONCLUSION These data emphasise the involvement of PP, and particularly NPY, in the regulation of beta-cell mass and function. GENERAL SIGNIFICANCE Modulation of PP and NPY signalling is suitable for further evaluation and possible clinical development for the treatment of diabetes.
Collapse
Affiliation(s)
- Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Srividya Vasu
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
27
|
Development of novel ligands for peptide GPCRs. Curr Opin Pharmacol 2016; 31:57-62. [DOI: 10.1016/j.coph.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/02/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
|
28
|
Linnemann AK, Davis DB. Glucagon-like peptide-1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity. J Diabetes Investig 2016; 7 Suppl 1:44-9. [PMID: 27186355 PMCID: PMC4854504 DOI: 10.1111/jdi.12465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Precise control of blood glucose is dependent on adequate β‐cell mass and function. Thus, reductions in β‐cell mass and function lead to insufficient insulin production to meet demand, and result in diabetes. Recent evidence suggests that paracrine signaling in the islet might be important in obesity, and disruption of this signaling could play a role in the pathogenesis of diabetes. For example, we recently discovered a novel islet incretin axis where glucagon‐like peptide‐1 regulates β‐cell production of another classic gut hormone, cholecystokinin. This axis is stimulated by obesity, and plays a role in enhancing β‐cell survival. In the present review, we place our observations in the wider context of the literature on incretin regulation in the islet, and discuss the potential for therapeutic targeting of these pathways.
Collapse
Affiliation(s)
- Amelia K Linnemann
- Department of Medicine Division of Endocrinology University of Wisconsin-Madison Madison Wisconsin USA
| | - Dawn Belt Davis
- Department of MedicineDivision of EndocrinologyUniversity of Wisconsin-MadisonMadisonWisconsinUSA; William S Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| |
Collapse
|