1
|
Wadaan MA, Baabbad A, Farooq Khan M. Assessment of antidiabetic, anti-inflammatory, antioxidant and anticancer activity competence of methonolic extracts of Trianthema ortulacastrum and Andrographis paniculata. ENVIRONMENTAL RESEARCH 2024; 242:117764. [PMID: 38029820 DOI: 10.1016/j.envres.2023.117764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
An in-vitro investigation was performed to evaluate and compare the phytochemical, antioxidant, antidiabetic, anti-inflammatory, and anti-lung cancer activities of methanol extracts of aerial parts of Andrographis paniculata and Trianthema portulacastrum. Furthermore studied major functional groups of phytochemicals present in the methanol extracts of these plants through Fourier transform infrared (FTIR) analysis. The results showed that the methanol extract of A. paniculata contain more number of pharmaceutically valuable phytochemicals such as alkaloids, flavonoids, terpenoids, saponin, glycoside, phytosterol, and tannin than T. portulacastrum. Similar way the methanol extract of A. paniculata showed considerable dose dependent antioxidant (DPPH: 63%), antidiabetic (α-amylase: 82.31% and α-glucosidase inhibitions: 72.34%), and anti-inflammatory (albumin-denaturation inhibition: 76.3% and anti-lipoxygenase: 61.2%) activities (at 900 μg mL-1 concentration) than T. portulacastrum. However, the anti-lung cancer activities of these test plants against A549 cells were not considerable. According to FTIR analysis, the A. paniculata methanol extract has a larger number of characteristic peaks attributed to the active functional groups of pharmaceutically valuable bioactive components that belong to different types of phytochemicals. These findings imply that A. paniculata methanol extracts can be used for additional research, such as bioactive compound screening and purification, as well as assessing their potential biomedical uses in various in-vitro and in-research settings.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad Baabbad
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. S100 proteins in obesity: liaisons dangereuses. Cell Mol Life Sci 2020; 77:129-147. [PMID: 31363816 PMCID: PMC11104817 DOI: 10.1007/s00018-019-03257-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Obesity is an endemic pathophysiological condition and a comorbidity associated with hypercholesterolemia, hypertension, cardiovascular disease, type 2 diabetes mellitus, and cancer. The adipose tissue of obese subjects shows hypertrophic adipocytes, adipocyte hyperplasia, and chronic low-grade inflammation. S100 proteins are Ca2+-binding proteins exclusively expressed in vertebrates in a cell-specific manner. They have been implicated in the regulation of a variety of functions acting as intracellular Ca2+ sensors transducing the Ca2+ signal and extracellular factors affecting cellular activity via ligation of a battery of membrane receptors. Certain S100 proteins, namely S100A4, the S100A8/S100A9 heterodimer and S100B, have been implicated in the pathophysiology of obesity-promoting macrophage-based inflammation via toll-like receptor 4 and/or receptor for advanced glycation end-products ligation. Also, serum levels of S100A4, S100A8/S100A9, S100A12, and S100B correlate with insulin resistance/type 2 diabetes, metabolic risk score, and fat cell size. Yet, secreted S100B appears to exert neurotrophic effects on sympathetic fibers in brown adipose tissue contributing to the larger sympathetic innervation of this latter relative to white adipose tissue. In the present review we first briefly introduce S100 proteins and then critically examine their role(s) in adipose tissue and obesity.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
| |
Collapse
|
3
|
Riuzzi F, Sorci G, Arcuri C, Giambanco I, Bellezza I, Minelli A, Donato R. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle 2018; 9:1255-1268. [PMID: 30499235 PMCID: PMC6351675 DOI: 10.1002/jcsm.12363] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Primary sarcopenia is a condition of reduced skeletal muscle mass and strength, reduced agility, and increased fatigability and risk of bone fractures characteristic of aged, otherwise healthy people. The pathogenesis of primary sarcopenia is not completely understood. Herein, we review the essentials of the cellular and molecular mechanisms of skeletal mass maintenance; the alterations of myofiber metabolism and deranged properties of muscle satellite cells (the adult stem cells of skeletal muscles) that underpin the pathophysiology of primary sarcopenia; the role of the Ca2+ -sensor protein, S100B, as an intracellular factor and an extracellular signal regulating cell functions; and the functional role of S100B in muscle tissue. Lastly, building on recent results pointing to S100B as to a molecular determinant of myoblast-brown adipocyte transition, we propose S100B as a transducer of the deleterious effects of accumulation of reactive oxygen species in myoblasts and, potentially, myofibers concurring to the pathophysiology of sarcopenia.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Ileana Giambanco
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Alba Minelli
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, 06132, Italy
| |
Collapse
|
4
|
D'Cunha NM, McKune AJ, Panagiotakos DB, Georgousopoulou EN, Thomas J, Mellor DD, Naumovski N. Evaluation of dietary and lifestyle changes as modifiers of S100β levels in Alzheimer's disease. Nutr Neurosci 2017; 22:1-18. [PMID: 28696163 DOI: 10.1080/1028415x.2017.1349032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a significant body of research undertaken in order to elucidate the mechanisms underlying the pathology of Alzheimer's disease (AD), as well as to discover early detection biomarkers and potential therapeutic strategies. One such proposed biomarker is the calcium binding protein S100β, which, depending on its local concentration, is known to exhibit both neurotrophic and neuroinflammatory properties in the central nervous system. At present, relatively little is known regarding the effect of chronic S100β disruption in AD. Dietary intake has been identified as a modifiable risk factor for AD. Preliminary in vitro and animal studies have demonstrated an association between S100β expression and dietary intake which links to AD pathophysiology. This review describes the association of S100β to fatty acids, ketone bodies, insulin, and botanicals as well as the potential impact of physical activity as a lifestyle factor. We also discuss the prospective implications of these findings, including support of the use of a Mediterranean dietary pattern and/or the ketogenic diet as an approach to modify AD risk.
Collapse
Affiliation(s)
- Nathan M D'Cunha
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Andrew J McKune
- b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,c University of Canberra, Research Institute for Sport and Exercise , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,d Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences , University of KwaZulu-Natal , Durban 4041 , South Africa
| | - Demosthenes B Panagiotakos
- e Department of Nutrition-Dietetics, School of Health and Education , Harokopio University , Athens 176 71 , Greece
| | - Ekavi N Georgousopoulou
- b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,e Department of Nutrition-Dietetics, School of Health and Education , Harokopio University , Athens 176 71 , Greece
| | - Jackson Thomas
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Duane D Mellor
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Nenad Naumovski
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| |
Collapse
|