1
|
Shamshirgaran A, Mohammadi A, Zahmatkesh P, Mesbah G, Guitynavard F, Saffarian Z, Khajavi A, Oliveira Reis L, Aghamir SMK. The Use of Autologous Omentum Transposition as a Therapeutic Intervention to Reduce the Complication of Ischemia/Reperfusion Injuries in a Rat Model. Can J Kidney Health Dis 2024; 11:20543581241300773. [PMID: 39610662 PMCID: PMC11603481 DOI: 10.1177/20543581241300773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024] Open
Abstract
Background Ischemia/reperfusion injury (IRI) causes cellular dysfunction and death in organs like the kidney, heart, and brain. It involves energy depletion during ischemia and oxidative stress, inflammation, and apoptosis during reperfusion. Kidney IRI often leads to acute kidney injury (AKI) in various clinical scenarios. The omentum, an adipose tissue with healing properties, has been used to treat injuries in different organs. Objective This study aimed to assess the omentum's healing effects on reducing IRI's adverse effects after renal ischemia in Wistar rats. Method A total number of 36 male Wistar rats were used in a study on IRI-induced AKI. Rats were divided into 6 groups of normal kidneys wrapped with omentum "Sham-1" and "Sham-2," ischemic kidney wrapped with omentum as "OMT-1" and "OMT-2," and ischemic kidney without omentum as "Control-1" and "Control-2." Ischemia was induced by clamping the left renal artery for 45 minutes. The omentum was transposed onto the injured kidney in "OMT" group. After sacrifice at weeks 4 and 8, kidney histology and blood samples were analyzed for kidney function markers. Results On the first day after surgery, there was an immediate increase in creatinine and blood urea nitrogen (BUN) levels, which then decreased by day 28. Both OMT groups showed significantly lower levels of creatinine and BUN compared to Control groups on day 1, but after 28 days differences were not statistically significant. Histological analysis using H&E and Masson's trichrome staining revealed significantly higher levels of inflammatory cell infiltration and hyperemia in the OMT groups. However, fibrosis and glomerular shrinkage were higher in the Control groups. Conclusion Using an omental flap significantly prevented fibrosis within the renal parenchyma, slow down the AKI progression, and potentially serving as a promising therapeutic strategy for kidney dysfunction.
Collapse
Affiliation(s)
| | | | - Parisa Zahmatkesh
- Urology Research Center, Tehran University of Medical Sciences, Iran
| | - Gholamreza Mesbah
- Urology Research Center, Tehran University of Medical Sciences, Iran
| | | | - Zahra Saffarian
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Alireza Khajavi
- Urology Research Center, Tehran University of Medical Sciences, Iran
- Student Research Committee, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leonardo Oliveira Reis
- UroScience, State University of Campinas, Unicamp, São Paulo, Brazil
- ImmunOncology, Pontifical Catholic University of Campinas, São Paulo, Brazil
| | | |
Collapse
|
2
|
LC-QTOF-MS and 1H NMR Metabolomics Verifies Potential Use of Greater Omentum for Klebsiella pneumoniae Biofilm Eradication in Rats. Pathogens 2020; 9:pathogens9050399. [PMID: 32455691 PMCID: PMC7281169 DOI: 10.3390/pathogens9050399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Bacterial wound infections are a common problem associated with surgical interventions. In particular, biofilm-forming bacteria are hard to eradicate, and alternative methods of treatment based on covering wounds with vascularized flaps of tissue are being developed. The greater omentum is a complex organ covering the intestines in the abdomen, which support wound recovery following surgical procedures and exhibit natural antimicrobial activity that could improve biofilm eradication. We investigated changes in rats’ metabolome following Klebsiella pneumoniae infections, as well as the greater omentum’s ability for Klebsiella pneumoniae biofilm eradication. Rats received either sterile implants or implants covered with Klebsiella pneumoniae biofilm (placed in the peritoneum or greater omentum). Metabolic profiles were monitored at days 0, 2, and 5 after surgery using combined proton nuclear magnetic resonance (1H NMR) and high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC–QTOF-MS) measurements of urine samples followed by chemometric analysis. Obtained results indicated that grafting of the sterile implant to the greater omentum did not cause major disturbances in rats’ metabolism, whereas the sterile implant located in the peritoneum triggered metabolic perturbations related to tricarboxylic acid (TCA) cycle, as well as choline, tryptophan, and hippurate metabolism. Presence of implants colonized with Klebsiella pneumoniae biofilm resulted in similar levels of metabolic perturbations in both locations. Our findings confirmed that surgical procedures utilizing the greater omentum may have a practical use in wound healing and tissue regeneration in the future.
Collapse
|
3
|
Di Nicola V. Omentum a powerful biological source in regenerative surgery. Regen Ther 2019; 11:182-191. [PMID: 31453273 PMCID: PMC6700267 DOI: 10.1016/j.reth.2019.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
The Omentum is a large flat adipose tissue layer nestling on the surface of the intra-peritoneal organs. Besides fat storage, omentum has key biological functions in immune-regulation and tissue regeneration. Omentum biological properties include neovascularization, haemostasis, tissue healing and regeneration and as an in vivo incubator for cells and tissue cultivation. Some of these properties have long been noted in surgical practice and used empirically in several procedures. In this review article, the author tries to highlight the omentum biological properties and their application in regenerative surgery procedures. Further, he has started a process of standardisation of basic biological principles to pave the way for future surgical practice.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Here, we review the rationale for the use of organs from embryonic donors, antecedent investigations and recent work from our own laboratory, exploring the utility for transplantation of embryonic kidney and pancreas as an organ replacement therapy. RECENT FINDINGS Ultrastructurally precise kidneys differentiate in situ in rats following xenotransplantation in mesentery of embryonic pig renal primordia. The developing organ attracts its blood supply from the host. Engraftment of pig renal primordia requires host immune suppression. However, beta cells originating from embryonic pig pancreas obtained very early following initiation of organogenesis [embryonic day 28 (E28)] engraft long term in nonimmune-suppressed diabetic rats or rhesus macaques. Engraftment of morphologically similar cells originating from adult porcine islets of Langerhans occurs in animals previously transplanted with E28 pig pancreatic primordia. SUMMARY Organ primordia engraft, attract a host vasculature and differentiate following transplantation to ectopic sites. Attempts have been made to exploit these characteristics to achieve clinically relevant endpoints for end-stage renal disease and diabetes mellitus using animal models. We and others have focused on use of the embryonic pig as a donor.
Collapse
|
5
|
Hammerman MR. Xenotransplantation of embryonic pig pancreas for treatment of diabetes mellitus in non-human primates. ACTA ACUST UNITED AC 2013; 6. [PMID: 24312695 DOI: 10.4236/jbise.2013.65a002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transplantation therapy for diabetes in humans is limited by the low availability of human donor whole pancreas or islets. Outcomes are complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Pig insulin is biologically active in humans. In that regard the pig is an appropriate xenogeneic organ donor. Insulin-producing cells originating from embryonic pig pancreas obtained very early following pancreatic primordium formation [embryonic day 28 (E28)] engraft long-term in rhesus macaques. Endocrine cells originating from embryonic pig pancreas transplanted in host mesentery migrate to mesenteric lymph nodes, engraft, differentiate and improve glucose tolerance in rhesus macaques without the need for immune suppression. Transplantation of embryonic pig pancreas is a novel approach towards beta cell replacement therapy that could be applicable to humans.
Collapse
Affiliation(s)
- Marc R Hammerman
- George M. O'Brien Center for Kidney Disease Research, Renal Division, Departments of Medicine and Cell Biology and Physiology, Washington University School of Medicine, St. Louis MO 63110
| |
Collapse
|
6
|
Hammerman MR. Pancreas and kidney transplantation using embryonic donor organs. Organogenesis 2012; 1:3-13. [PMID: 19521554 DOI: 10.4161/org.1.1.1008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 06/01/2004] [Indexed: 01/09/2023] Open
Abstract
One novel solution to the shortage of human organs available for transplantation envisions 'growing' new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. We and others have shown that renal anlagen (metanephroi) transplanted into animal hosts undergo differentiation and growth, become vascularized by blood vessels of host origin and exhibit excretory function. Metanephroi can be stored for up to 3 days in vitro prior to transplantation with no impairment in growth or function post-implantation. Metanephroi can be transplanted across both concordant (rat to mouse) and highly disparate (pig to rodent) xenogeneic barriers. Similarly, pancreatic anlagen can be transplanted across concordant and highly disparate barriers, and undergo growth, differentiation and secrete insulin in a physiological manner following intra-peritoneal placement. Implantation of the embryonic pancreas, is followed by selective differentiation of islet components. Here we review studies exploring the potential therapeutic applicability for organogenesis of the kidney or endocrine pancreas.
Collapse
|
7
|
Rogers SA, Hammerman MR. Normalization of glucose post-transplantation into diabetic rats of pig pancreatic primordia preserved in vitro. Organogenesis 2012; 4:48-51. [PMID: 19279715 DOI: 10.4161/org.5747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 01/04/2008] [Indexed: 11/19/2022] Open
Abstract
Embryonic day (E) 28 (E28) pig pancreatic primordia transplanted into the mesentery of non-immunosuppresed steptozotocin (STZ)-diabetic Lewis rats normalize levels of circulating glucose within 2-4 weeks. Exocrine tissue does not differentiate after transplantation of pancreatic primordia. Rather individual endocrine (beta) cells engraft within the mesentery.To determine whether transplanted pig pancreatic primordia engraft, differentiate and function in rat hosts after preservation in vitro, we implanted pig pancreatic primordia into STZ-diabetic rats either directly or after 24 hours of suspension in ice-cold University of Wisconsin (UW) preservation solution with added growth factors. Here we show engraftment in mesentery and mesenteric lymph nodes and normalization of glucose levels in STZ-diabetic rat hosts following transplantation of preserved E28 pig pancreatic primordia comparable to glucose normalization after transplantation of non-preserved E28 pancreatic primordia.
Collapse
Affiliation(s)
- Sharon A Rogers
- George M. O'Brien Center for Kidney Disease Research; Renal Division; Departments of Medicine and Cell Biology and Physiology; Washington University School of Medicine; St. Louis, Missouri USA
| | | |
Collapse
|
8
|
Hammerman MR. Organogenesis of kidney and endocrine pancreas: the window opens. Organogenesis 2012; 3:59-66. [PMID: 19279701 DOI: 10.4161/org.3.2.5382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/04/2007] [Indexed: 01/18/2023] Open
Abstract
Growing new organs in situ by implanting developing animal organ primordia (organogenesis) represents a novel solution to the problem of limited supply for human donor organs that offers advantages relative to transplanting embryonic stem (ES) cells or xenotransplantation of developed organs. Successful transplantation of organ primordia depends on obtaining them at defined windows during embryonic development within which the risk of teratogenicity is eliminated, growth potential is maximized, and immunogenicity is reduced. We and others have shown that renal primordia transplanted into the mesentery undergo differentiation and growth, become vascularized by blood vessels of host origin, exhibit excretory function and support life in otherwise anephric hosts. Renal primordia can be transplanted across isogeneic, allogeneic or xenogeneic barriers. Pancreatic primordia can be transplanted across the same barriers undergo growth, and differentiation of endocrine components only and secrete insulin in a physiological manner following mesenteric placement. Insulin-secreting cells originating from embryonic day (E) 28 (E28) pig pancreatic primordia transplanted into the mesentery of streptozotocin-diabetic (type 1) Lewis rats or ZDF diabetic (type 2) rats or STZ-diabetic rhesus macaques engraft without the need for host immune-suppression. Our findings in diabetic macaques represent the first steps in the opening of a window for a novel treatment of diabetes in humans.
Collapse
|
9
|
Shah S, Lowery E, Braun RK, Martin A, Huang N, Medina M, Sethupathi P, Seki Y, Takami M, Byrne K, Wigfield C, Love RB, Iwashima M. Cellular basis of tissue regeneration by omentum. PLoS One 2012; 7:e38368. [PMID: 22701632 PMCID: PMC3368844 DOI: 10.1371/journal.pone.0038368] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/03/2012] [Indexed: 01/01/2023] Open
Abstract
The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells. Omentum consists of a variety of phenotypically and functionally distinctive cells. To understand the mechanism of tissue repair support by the omentum in more detail, we analyzed the cell subsets derived from the omentum on immune and inflammatory responses. Our data demonstrate that the omentum contains at least two groups of cells that support tissue repair, immunomodulatory myeloid derived suppressor cells and omnipotent stem cells that are indistinguishable from mesenchymal stem cells. Based on these data, we propose that the omentum is a designated organ for tissue repair and healing in response to foreign invasion and tissue damage.
Collapse
Affiliation(s)
- Shivanee Shah
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Erin Lowery
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Rudolf K. Braun
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Alicia Martin
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Nick Huang
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Melissa Medina
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Periannan Sethupathi
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Yoichi Seki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Mariko Takami
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kathryn Byrne
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Christopher Wigfield
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Robert B. Love
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hammerman MR. Development of a novel xenotransplantation strategy for treatment of diabetes mellitus in rat hosts and translation to non-human primates. Organogenesis 2012; 8:41-8. [PMID: 22699748 DOI: 10.4161/org.20930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transplantation therapy for diabetes is limited by unavailability of donor organs and outcomes complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Insulin-producing cells originating from embryonic pig pancreas obtained very early following pancreatic primordium formation [embryonic day 28 (E28)] engraft long-term in inbred diabetic Lewis or Zucker Diabetic Fatty (ZDF) rats or rhesus macaques. Endocrine cells originating from embryonic pig pancreas transplanted in host mesentery migrate to mesenteric lymph nodes, engraft, normalize glucose tolerance in rats and improve glucose tolerance in rhesus macaques without the need for immune suppression. Engraftment of primordia is permissive for engraftment of an insulin-expressing cell component from porcine islets implanted subsequently without immune suppression. Similarities between findings in inbred rat and non-human primate hosts bode well for successful translation to humans of what could be a novel xenotransplantation strategy for the treatment of diabetes.
Collapse
Affiliation(s)
- Marc R Hammerman
- George M. O'Brien Center for Kidney Disease Research, Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO USA.
| |
Collapse
|
11
|
Hammerman MR. Engraftment of insulin-producing cells from porcine islets in non-immune-suppressed rats or nonhuman primates transplanted previously with embryonic pig pancreas. J Transplant 2011; 2011:261352. [PMID: 21969909 PMCID: PMC3182564 DOI: 10.1155/2011/261352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/02/2011] [Accepted: 07/02/2011] [Indexed: 11/30/2022] Open
Abstract
Transplantation therapy for diabetes is limited by unavailability of donor organs and outcomes complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Insulin-producing cells originating from embryonic pig pancreas obtained very early following pancreatic primordium formation (embryonic day 28 (E28)) engraft long-term in non-immune, suppressed diabetic rats or rhesus macaques. Morphologically, similar cells originating from adult porcine islets of Langerhans (islets) engraft in non-immune-suppressed rats or rhesus macaques previously transplanted with E28 pig pancreatic primordia. Our data are consistent with induction of tolerance to an endocrine cell component of porcine islets induced by previous transplantation of embryonic pig pancreas, a novel finding we designate organogenetic tolerance. The potential exists for its use to enable the use of pigs as islet cell donors for humans with no immune suppression requirement.
Collapse
Affiliation(s)
- Marc R. Hammerman
- George M. O'Brien Center for Kidney Disease Research, Departments of Medicine, and Cell Biology and Physiology, The Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Rogers SA, Tripathi P, Mohanakumar T, Liapis H, Chen F, Talcott MR, Faulkner C, Hammerman MR. Engraftment of cells from porcine islets of Langerhans following transplantation of pig pancreatic primordia in non-immunosuppressed diabetic rhesus macaques. Organogenesis 2011; 7:154-62. [PMID: 21654197 PMCID: PMC3243028 DOI: 10.4161/org.7.3.16522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/12/2011] [Accepted: 05/17/2011] [Indexed: 12/15/2022] Open
Abstract
Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. If toxicity can be minimized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets is a strategy to overcome supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] is a way to obviate the need for immunosuppression in rats or rhesus macaques and to enable engraftment of a cell component originating from porcine islets implanted beneath the renal capsule of rats. Here, we show engraftment in the kidney of insulin and porcine proinsulin mRNA-expressing cells following implantation of porcine islets beneath the renal capsule of diabetic rhesus macaques transplanted previously with E28 pig pancreatic primordia in mesentery. Donor cell engraftment is confirmed using fluorescent in situ hybridization (FISH) for the porcine X chromosome and is supported by glucose-stimulated insulin release in vitro. Cells from islets do not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in mesentery. This is the first report of engraftment following transplantation of porcine islets in non-immunosuppressed, immune-competent non-human primates. The data are consistent with tolerance to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.
Collapse
Affiliation(s)
- Sharon A Rogers
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Transplantation therapy for humans is limited by insufficient availability of donor organs and outcomes are complicated by the toxicity of immunosuppressive drugs. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce immunogenicity of transplants. Insulin-producing cells originating from embryonic pig pancreas obtained very early following initiation of organogenesis [embryonic day 28 (E28)] engraft long-term in non-immune suppressed diabetic rats or rhesus macaques. Recently, we demonstrated engraftment of morphologically similar cells originating from adult porcine islets of Langerhans (islets) in rats previously transplanted with E28 pig pancreatic primordia. Our findings are consistent with induction of tolerance to a cell component of porcine islets induced by previous transplantation of embryonic pig pancreas, a phenomenon we designate organogenetic tolerance. Induction of organogenetic tolerance to porcine islets in humans with diabetes mellitus would enable the use of pigs as islet donors with no host immune suppression requirement. Adaptation of methodology for transplanting embryonic organs other than pancreas so as to induce organogenetic tolerance would revolutionize transplantation therapy.
Collapse
Affiliation(s)
- Marc R Hammerman
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Xenotransplantation of embryonic pig kidney or pancreas to replace the function of mature organs. J Transplant 2010; 2011:501749. [PMID: 21234246 PMCID: PMC3018651 DOI: 10.1155/2011/501749] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/04/2010] [Indexed: 12/05/2022] Open
Abstract
Lack of donor availability limits the number of human donor organs. The need for host immunosuppression complicates transplantation procedures. Ultrastructurally precise kidneys differentiate in situ following xenotransplantation in mesentery of embryonic pig renal primordia. The developing organ attracts its blood supply from the host, obviating humoral rejection. Engraftment of pig renal primordia transplanted directly into rats requires host immune suppression. However, insulin-producing cells originating from embryonic pig pancreas obtained very early following initiation of organogenesis [embryonic day 28 (E28)] engraft long term in nonimmune-suppressed diabetic rats or rhesus macaques. Engraftment of morphologically similar cells originating from adult porcine islets of Langerhans (islets) occurs in rats previously transplanted with E28 pig pancreatic primordia. Here, we review recent findings germane to xenotransplantation of pig renal or pancreatic primordia as a novel organ replacement strategy.
Collapse
|
15
|
Rogers SA, Mohanakumar T, Liapis H, Hammerman MR. Engraftment of cells from porcine islets of Langerhans and normalization of glucose tolerance following transplantation of pig pancreatic primordia in nonimmune-suppressed diabetic rats. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:854-64. [PMID: 20581052 DOI: 10.2353/ajpath.2010.091193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. However, even if toxicity can be minimalized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets may be a strategy to overcome these supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] can obviate the need for immune suppression in rats or rhesus macaques. Here, in rats transplanted previously with E28 pig pancreatic primordia in the mesentery, we show normalization of glucose tolerance in nonimmune-suppressed streptozotocin-diabetic LEW rats and insulin and porcine proinsulin mRNA-expressing cell engraftment in the kidney following implantation of porcine islets beneath the renal capsule. Donor cell engraftment was confirmed using fluorescent in situ hybridization for the porcine X chromosome and electron microscopy. In contrast, cells from islets did not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in the mesentery. This is the first report of prolonged engraftment and sustained normalization of glucose tolerance following transplantation of porcine islets in nonimmune-suppressed, immune-competent rodents. The data are consistent with tolerance induction to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.
Collapse
Affiliation(s)
- Sharon A Rogers
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
16
|
Mendelsohn A, Desai T. Inorganic nanoporous membranes for immunoisolated cell-based drug delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:104-25. [PMID: 20384222 DOI: 10.1007/978-1-4419-5786-3_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Materials advances enabled by nanotecbnology have brought about promising approaches to improve the encapsulation mechanism for immunoisolated cell-based drug delivery. Cell-based drug delivery is a promising treatment for many diseases but has thus far achieved only limited clinical success. Treatment of insulin dependent diabetes mellitus (IDDM) by transplantation of pancreatic beta-cells represents the most anticipated application ofcell-based drug delivery technology. This review outlines the challenges involved with maintaining transplanted cell viability and discusses how inorganic nanoporous membranes may be useful in achieving clinical success.
Collapse
Affiliation(s)
- Adam Mendelsohn
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California, San Francisco, University of California, Berkeley, USA
| | | |
Collapse
|
17
|
Langlois A, Bietiger W, Sencier MC, Maillard E, Pinget M, Kessler L, Sigrist S. Adenoviral infection or deferoxamine? Two approaches to overexpress VEGF in beta-cell lines. J Drug Target 2009; 17:415-22. [PMID: 19527112 DOI: 10.1080/10611860902929832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Rapid and adequate revascularization of transplanted islets is important for their survival and function during transplantation. Vascular endothelial growth factor (VEGF) could play a critical role with respect to islet revascularization. The aim of this study was to compare two strategies that are used to overexpress VEGF in beta-cells: (1) gene therapy through adenoviral infection and (2) a pharmacological approach using deferoxamine (DFO). beta-Cell lines from rat insulinoma (RINm5F) were either infected using an adenovirus encoding the gene of human VEGF 165 or incubated with DFO. One day after treatment, the viability of RINm5F cells was preserved with 10 micromol/L of DFO (103.95 +/- 5.66% toward control; n = 4). In addition, adenoviral infection maintained the viability of cells for all the concentrations used. In both treatments, overexpression of VEGF was in a comparable level. Finally, the ratio of Bax/Bcl-2 indicated that the apoptosis increased in infected beta-cells whereas treatment with DFO seems to be antiapoptotic. Our results suggest that the use of DFO could be a realistic approach to improve the vascularization of islets during transplantation.
Collapse
Affiliation(s)
- Allan Langlois
- Centre européen d'étude du Diabète, Boulevard René Leriche, BP 30029, 67033 Strasbourg Cedex 2, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Tchorsh-Yutsis D, Hecht G, Aronovich A, Shezen E, Klionsky Y, Rosen C, Bitcover R, Eventov-Friedman S, Katchman H, Cohen S, Tal O, Milstein O, Yagita H, Blazar BR, Reisner Y. Pig embryonic pancreatic tissue as a source for transplantation in diabetes: transient treatment with anti-LFA1, anti-CD48, and FTY720 enables long-term graft maintenance in mice with only mild ongoing immunosuppression. Diabetes 2009; 58:1585-94. [PMID: 19401429 PMCID: PMC2699862 DOI: 10.2337/db09-0112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/15/2009] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Defining an optimal costimulatory blockade-based immune suppression protocol enabling engraftment and functional development of E42 pig embryonic pancreatic tissue in mice. RESEARCH DESIGN AND METHODS Considering that anti-CD40L was found to be thrombotic in humans, we sought to test alternative costimulatory blockade agents already in clinical use, including CTLA4-Ig, anti-LFA1, and anti-CD48. These agents were tested in conjunction with T-cell debulking by anti-CD4 and anti-CD8 antibodies or with conventional immunosuppressive drugs. Engraftment and functional development of E42 pig pancreatic tissue was monitored by immunohistology and by measuring pig insulin blood levels. RESULTS Fetal pig pancreatic tissue harvested at E42, or even as early as at E28, was fiercely rejected in C57BL/6 mice and in Lewis rats. A novel immune suppression comprising anti-LFA1, anti-CD48, and FTY720 afforded optimal growth and functional development. Cessation of treatment with anti-LFA1 and anti-CD48 at 3 months posttransplant did not lead to graft rejection, and graft maintenance could be achieved for >8 months with twice-weekly low-dose FTY720 treatment. These grafts exhibited normal morphology and were functional, as revealed by the high pig insulin blood levels in the transplanted mice and by the ability of the recipients to resist alloxan induced diabetes. CONCLUSIONS This novel protocol, comprising agents that simulate those approved for clinical use, offer an attractive approach for embryonic xenogeneic transplantation. Further studies in nonhuman primates are warranted.
Collapse
Affiliation(s)
| | - Gil Hecht
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Anna Aronovich
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Elias Shezen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Yael Klionsky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Chava Rosen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Rivka Bitcover
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Helena Katchman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Orna Tal
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Oren Milstein
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Bruce R. Blazar
- Cancer Center and Department of Pediatrics, Division of Pediatric Hematology/Oncology and Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Yair Reisner
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Hammerman MR. Xenotransplantation of pancreatic and kidney primordia-where do we stand? Transpl Immunol 2009; 21:93-100. [PMID: 18992818 PMCID: PMC2737338 DOI: 10.1016/j.trim.2008.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
Abstract
Lack of donor availability limits the number of human donor organs. The need for host immunosuppression complicates transplantation procedures. It is possible to 'grow' new pancreatic tissue or kidneys in situ via xenotransplantation of organ primordia from animal embryos (organogenesis of the endocrine pancreas or kidney). The developing organ attracts its blood supply from the host, enabling the transplantation of pancreas or kidney in 'cellular' form obviating humoral rejection. In the case of pancreas, selective development of endocrine tissue takes place in post-transplantation. In the case of kidney, an anatomically-correct functional organ differentiates in situ. Glucose intolerance can be corrected in formerly diabetic rats and ameliorated in rhesus macaques on the basis of porcine insulin secreted in a glucose-dependent manner by beta cells originating from transplants. Primordia engraft and function after being stored in vitro prior to implantation. If obtained within a 'window' early during embryonic pancreas development, pig pancreatic primordia engraft in non immune suppressed diabetic rats or rhesus macaques. Engraftment of pig renal primordia transplanted directly into rats requires host immune suppression. However, embryonic rat kidneys into which human mesenchymal cells are incorporated into nephronic elements can be transplanted into non-immune suppressed rat hosts. Here we review recent findings germane to xenotransplantation of pancreatic or renal primordia as a novel organ replacement strategy.
Collapse
Affiliation(s)
- Marc R Hammerman
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model. Proc Natl Acad Sci U S A 2009; 106:8659-64. [PMID: 19433788 DOI: 10.1073/pnas.0812253106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xenotransplantation of pig tissues has great potential to overcome the shortage of organ donors. One approach to address the vigorous immune rejection associated with xenotransplants is the use of embryonic precursor tissue, which induces and utilizes host vasculature upon its growth and development. Recently, we showed in mice that embryonic pig pancreatic tissue from embryonic day 42 (E42) exhibits optimal properties as a beta cell replacement therapy. We now demonstrate the proof of concept in 2 diabetic Cynomolgus monkeys, followed for 393 and 280 days, respectively. A marked reduction of exogenous insulin requirement was noted by the fourth month after transplantation, reaching complete independence from exogenous insulin during the fifth month after transplantation, with full physiological control of blood glucose levels. The porcine origin of insulin was documented by a radioimmunoassay specific for porcine C-peptide. Furthermore, the growing tissue was found to be predominantly vascularized with host blood vessels, thereby evading hyperacute or acute rejection, which could potentially be mediated by preexisting anti-pig antibodies. Durable graft protection was achieved, and most of the late complications could be attributed to the immunosuppressive protocol. While fine tuning of immune suppression, tissue dose, and implantation techniques are still required, our results demonstrate that porcine E-42 embryonic pancreatic tissue can normalize blood glucose levels in primates. Its long-term proliferative capacity, its revascularization by host endothelium, and its reduced immunogenicity, strongly suggest that this approach could offer an attractive replacement therapy for diabetes.
Collapse
|
21
|
Van Der Windt DJ, Echeverri GJ, Ijzermans JNM, Cooper DKC. The Choice of Anatomical Site for Islet Transplantation. Cell Transplant 2008; 17:1005-1014. [DOI: 10.3727/096368908786991515] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Islet transplantation into the portal vein is the current clinical practice. However, it has now been recognized that this implantation site has several characteristics that can hamper islet engraftment and survival, such as low oxygen tension, an active innate immune system, and the provocation of an inflammatory response (IBMIR). These factors result in the loss of many transplanted islets, mainly during the first hours or days after transplantation, which could in part explain the necessity for the transplantation of islets from multiple pancreas donors to cure type 1 diabetes. This increases the burden on the limited pool of donor organs. Therefore, an alternative anatomical site for islet transplantation that offers maximum engraftment, efficacious use of produced insulin, and maximum patient safety is urgently needed. In this review, the experience with alternative sites for islet implantation in clinical and experimental models is discussed. Subcutaneous transplantation guarantees maximum patient safety and has become clinically applicable. Future improvements could be achieved with innovative designs for devices to induce neovascularization and protect the islets from cellular rejection. However, other sites, such as the omentum, offer drainage of produced insulin into the portal vein for direct utilization in the liver. The use of pigs would not only overcome the shortage of transplantable islets, but genetic modification could result in the expression of human genes, such as complement regulatory or “anticoagulation” genes in the islets to overcome some site-specific disadvantages. Eventually, the liver will most likely be replaced by a site that allows long-term survival of islets from a single donor to reverse type 1 diabetes.
Collapse
Affiliation(s)
- Dirk J. Van Der Windt
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gabriel J. Echeverri
- Department of Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- Transplantation Unit, Fundacion Valle del Lili, Cali, Colombia
| | - Jan N. M. Ijzermans
- Department of Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Growing organs for transplantation from embryonic precursor tissues. Immunol Res 2007; 38:261-73. [DOI: 10.1007/s12026-007-0041-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
|
23
|
Litbarg NO, Gudehithlu KP, Sethupathi P, Arruda JAL, Dunea G, Singh AK. Activated omentum becomes rich in factors that promote healing and tissue regeneration. Cell Tissue Res 2007; 328:487-97. [PMID: 17468892 DOI: 10.1007/s00441-006-0356-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 10/20/2006] [Indexed: 02/06/2023]
Abstract
In order to study the mechanism by which an omental pedicle promotes healing when applied to an injured site, we injected a foreign body into the abdominal cavity to activate the omentum. One week after the injection, we isolated the omentum and measured blood vessel density, blood content, growth and angiogenesis factors (VEGF and others), chemotactic factors (SDF-1 alpha), and progenitor cells (CXCR-4, WT-1). We found that the native omentum, which consisted mostly of adipose tissue, expanded the mass of its non-adipose part (milky spots) 15- to 20-fold. VEGF and other growth factors increased by two- to four-fold, blood vessel density by three-fold, and blood content by two-fold. The activated omentum also showed increases in SDF-1 alpha, CXCR-4, and WT-1 cells (factors and cells positively associated with tissue regeneration). Thus, we propose that an omentum activated by a foreign body (or by injury) greatly expands its milky-spot tissue and becomes rich in growth factors and progenitor cells that facilitate the healing and regeneration of injured tissue.
Collapse
Affiliation(s)
- Natalia O Litbarg
- Department of Medicine, Stroger Hospital of Cook County, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Regenerative medicine is being heralded in a similar way as gene therapy was some 15 yr ago. It is an area of intense excitement and potential, as well as myth and disinformation. However, with the increasing rate of end-stage renal failure and limited alternatives for its treatment, we must begin to investigate seriously potential regenerative approaches for the kidney. This review defines which regenerative options there might be for renal disease, summarizes the progress that has been made to date, and investigates some of the unique obstacles to such treatments that the kidney presents. The options discussed include in situ organ repair via bone marrow recruitment or dedifferentiation; ex vivo stem cell therapies, including both autologous and nonautologous options; and bioengineering approaches for the creation of a replacement organ.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
25
|
Eventov-Friedman S, Tchorsh D, Katchman H, Shezen E, Aronovich A, Hecht G, Dekel B, Rechavi G, Blazar BR, Feine I, Tal O, Freud E, Reisner Y. Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Med 2006; 3:e215. [PMID: 16768546 PMCID: PMC1479387 DOI: 10.1371/journal.pmed.0030215] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 02/22/2006] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Transplantation of embryonic pig pancreatic tissue as a source of insulin has been suggested for the cure of diabetes. However, previous limited clinical trials failed in their attempts to treat diabetic patients by transplantation of advanced gestational age porcine embryonic pancreas. In the present study we examined growth potential, functionality, and immunogenicity of pig embryonic pancreatic tissue harvested at different gestational ages. METHODS AND FINDINGS Implantation of embryonic pig pancreatic tissues of different gestational ages in SCID mice reveals that embryonic day 42 (E42) pig pancreas can enable a massive growth of pig islets for prolonged periods and restore normoglycemia in diabetic mice. Furthermore, both direct and indirect T cell rejection responses to the xenogeneic tissue demonstrated that E42 tissue, in comparison to E56 or later embryonic tissues, exhibits markedly reduced immunogenicity. Finally, fully immunocompetent diabetic mice grafted with the E42 pig pancreatic tissue and treated with an immunosuppression protocol comprising CTLA4-Ig and anti-CD40 ligand (anti-CD40L) attained normal blood glucose levels, eliminating the need for insulin. CONCLUSIONS These results emphasize the importance of selecting embryonic tissue of the correct gestational age for optimal growth and function and for reduced immunogenicity, and provide a proof of principle for the therapeutic potential of E42 embryonic pig pancreatic tissue transplantation in diabetes.
Collapse
MESH Headings
- Abatacept
- Agammaglobulinaemia Tyrosine Kinase
- Alloxan
- Animals
- Blood Glucose/analysis
- CD40 Ligand/antagonists & inhibitors
- Diabetes Mellitus, Experimental/surgery
- Diabetes Mellitus, Type 1/surgery
- Female
- Gestational Age
- Graft Rejection/prevention & control
- Humans
- Immunocompetence
- Immunoconjugates/therapeutic use
- Immunosuppressive Agents/therapeutic use
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Islets of Langerhans/ultrastructure
- Kidney
- Leukocytes, Mononuclear/transplantation
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred NOD
- Mice, Mutant Strains
- Mice, Nude
- Mice, SCID
- Pancreas/embryology
- Pancreas Transplantation/immunology
- Pancreas, Exocrine/ultrastructure
- Pregnancy
- Protein-Tyrosine Kinases/deficiency
- Sus scrofa/embryology
- Transplantation, Heterologous/immunology
- Transplantation, Heterotopic/immunology
Collapse
Affiliation(s)
| | - Dalit Tchorsh
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Helena Katchman
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Elias Shezen
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Aronovich
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Hecht
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Dekel
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gideon Rechavi
- 2Pediatric Hemato-Oncology and Functional Genomics Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Bruce R Blazar
- 3University of Minnesota Cancer Center and Department of Pediatrics, Division of Bone Marrow Transplantation, Minneapolis, Minnesota, United States of America
| | - Ilan Feine
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Orna Tal
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Enrique Freud
- 4Department of Pediatric Surgery, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Yair Reisner
- 1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Hammerman MR. Growing new endocrine pancreas in situ. Clin Exp Nephrol 2006; 10:1-7. [PMID: 16544171 DOI: 10.1007/s10157-005-0393-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 10/17/2005] [Indexed: 10/24/2022]
Abstract
Type 1 diabetes mellitus is a major cause of endstage renal disease in young adults. Maintenance of normoglycemia in type 1 diabetics using exogenous insulin is difficult under the best of circumstances. Transplantation therapies are limited by the scarcity of human donor organs, rendering a priority the identification of an alternative source for replacing insulin-secreting cells. Embryonic pancreatic primordia transplanted into diabetic animal hosts undergo selective endocrine differentiation in situ and normalize glucose tolerance. Pancreatic primordia can be transplanted across isogeneic, allogeneic, and both concordant (rat-to-mouse) and highly disparate (pig-to-rodent) xenogeneic barriers. Successful transplantation of pancreatic primordia depends on obtaining them at defined windows during embryonic development within which the risk of teratogenicity is eliminated, growth potential is maximized, and immunogenicity is reduced. Here we review studies exploring the potential for pancreatic organogenesis post-transplantation of embryonic primordia as a therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Marc R Hammerman
- Renal Division, Box 8126, Department of Medicine, and Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Kin T, Korbutt GS, Kobayashi T, Dufour JM, Rajotte RV. Reversal of diabetes in pancreatectomized pigs after transplantation of neonatal porcine islets. Diabetes 2005; 54:1032-1039. [PMID: 15793241 DOI: 10.2337/diabetes.54.4.1032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neonatal porcine islets (NPIs) are able to grow and to reverse hyperglycemia after transplantation in immunoincompetent mice. The aim of this study was to demonstrate the feasibility of allogeneic NPI grafts to achieve normoglycemia in a pancreatectomized diabetic pig. NPIs were isolated from pancreases of 1- to 3-day-old pigs, cultured, and then transplanted via the portal vein into the liver of totally pancreatectomized pigs (mean body weight, 20.8 kg). Each pig received NPIs consisting of 3.1 +/- 0.3 x 10(6) beta-cells/kg (12,476 +/- 1,146 islet equivalent/kg). The six pigs that were given cyclosporine and sirolimus achieved normoglycemia by day 14 without insulin therapy. Three pigs died of surgical complications shortly after transplantation, whereas the other three remained insulin independent up to day 69. Of seven nonimmunosuppressed recipients, four pigs became normoglycemic by day 14 without insulin treatment, with two of the animals remaining normoglycemic long term. Well-preserved insulin-positive cells were found in the graft at the end of follow-up with a significant increase in insulin content in long-term survivors of both groups. This study demonstrates for the first time that allogeneic NPIs can reverse hyperglycemia in totally pancreatectomized diabetic pigs.
Collapse
Affiliation(s)
- Tatsuya Kin
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
28
|
Eventov-Friedman S, Katchman H, Shezen E, Aronovich A, Tchorsh D, Dekel B, Freud E, Reisner Y. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci U S A 2005; 102:2928-33. [PMID: 15710886 PMCID: PMC548800 DOI: 10.1073/pnas.0500177102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pig embryonic tissues represent an attractive option for organ transplantation. However, the achievement of optimal organogenesis after transplantation, namely, maximal organ growth and function without teratoma development, represents a major challenge. In this study, we determined distinct gestational time windows for the growth of pig embryonic liver, pancreas, and lung precursors. Transplantation of embryonic-tissue precursors at various gestational ages [from E (embryonic day) 21 to E100] revealed a unique pattern of growth and differentiation for each embryonic organ. Maximal liver growth and function were achieved at the earliest teratoma-free gestational age (E28), whereas the growth and functional potential of the pancreas gradually increased toward E42 and E56 followed by a marked decline in insulin-secreting capacity at E80 and E100. Development of mature lung tissue containing essential respiratory system elements was observed at a relatively late gestational age (E56). These findings, showing distinct, optimal gestational time windows for transplantation of embryonic pig liver, pancreas, and lung, might explain, in part, the disappointing results in previous transplantation trials and could help enhance the chances for successful implementation of embryonic pig tissue in the treatment of a wide spectrum of human diseases.
Collapse
|