1
|
Millward DJ. Post-prandial tracer studies of protein and amino acid utilisation: what can they tell us about human amino acid and protein requirements? Br J Nutr 2024; 131:2005-2030. [PMID: 38606599 PMCID: PMC11361918 DOI: 10.1017/s0007114524000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Nitrogen balance (NB), the principal methodology used to derive recommendations for human protein and amino acid requirements, has been widely criticised, and calls for increased protein and amino acid requirement recommendations have been made, often on the basis of post-prandial amino acid tracer kinetic studies of muscle protein synthesis, or of amino acid oxidation. This narrative review considers our knowledge of the homeostatic regulation of the FFM throughout the diurnal cycle of feeding and fasting and what can and has been learnt from post-prandial amino acid tracer studies, about amino acid and protein requirements. Within the FFM, muscle mass in well fed weight-stable adults with healthy lifestyles appears fixed at a phenotypic level within a wide range of habitual protein intakes. However homoeostatic regulation occurs in response to variation in habitual protein intake, with adaptive changes in amino acid oxidation which influence the magnitude of diurnal losses and gains of body protein. Post-prandial indicator amino acid oxidation (IAAO) studies have been introduced as an alternative to NB and to the logistically complex 24 h [13C-1] amino acid balance studies, for assessment of protein and amino acid requirements. However, a detailed examination of IAAO studies shows both a lack of concern for homeostatic regulation of amino acid oxidation and major flaws in their design and analytical interpretation, which seriously constrain their ability to provide reliable values. New ideas and a much more critical approach to existing work is needed if real progress is to be made in the area.
Collapse
Affiliation(s)
- D. Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Mazzulla M, Hodson N, Lees M, Scaife PJ, Smith K, Atherton PJ, Kumbhare D, Moore DR. LAT1 and SNAT2 Protein Expression and Membrane Localization of LAT1 Are Not Acutely Altered by Dietary Amino Acids or Resistance Exercise Nor Positively Associated with Leucine or Phenylalanine Incorporation in Human Skeletal Muscle. Nutrients 2021; 13:nu13113906. [PMID: 34836160 PMCID: PMC8624011 DOI: 10.3390/nu13113906] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
The influx of essential amino acids into skeletal muscle is primarily mediated by the large neutral amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated by the sodium-dependent neutral amino acid transporter 2 (SNAT2). The protein expression and membrane localization of LAT1 may be influenced by amino acid ingestion and/or resistance exercise, although its acute influence on dietary amino acid incorporation into skeletal muscle protein has not been investigated. In a group design, healthy males consumed a mixed carbohydrate (0.75 g·kg-1) crystalline amino acid (0.25 g·kg-1) beverage enriched to 25% and 30% with LAT1 substrates L-[1-13C]leucine (LEU) and L-[ring-2H5]phenylalanine (PHE), respectively, at rest (FED: n = 7, 23 ± 5 y, 77 ± 4 kg) or after a bout of resistance exercise (EXFED: n = 7, 22 ± 2 y, 78 ± 11 kg). Postprandial muscle biopsies were collected at 0, 120, and 300 min to measure transporter protein expression (immunoblot), LAT1 membrane localization (immunofluorescence), and dietary amino acid incorporation into myofibrillar protein (ΔLEU and ΔPHE). Basal LAT1 and SNAT2 protein contents were correlated with each other (r = 0.55, p = 0.04) but their expression did not change across time in FED or EXFED (all, p > 0.05). Membrane localization of LAT1 did not change across time in FED or EXFED whether measured as outer 1.5 µm intensity or membrane-to-fiber ratio (all, p > 0.05). Basal SNAT2 protein expression was not correlated with ΔLEU or ΔPHE (all, p ≥ 0.05) whereas basal LAT1 expression was negatively correlated with ΔPHE in FED (r = -0.76, p = 0.04) and EXFED (r = -0.81, p = 0.03) but not ΔLEU (p > 0.05). Basal LAT1 membrane localization was not correlated with ΔLEU or ΔPHE (all, p > 0.05). Our results suggest that LAT1/SNAT2 protein expression and LAT1 membrane localization are not influenced by acute anabolic stimuli and do not positively influence the incorporation of dietary amino acids for de novo myofibrillar protein synthesis in healthy young males.
Collapse
Affiliation(s)
- Michael Mazzulla
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Nathan Hodson
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Matthew Lees
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Paula J. Scaife
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Dinesh Kumbhare
- Department of Medicine, University of Toronto, Toronto, ON M5S 2C9, Canada;
| | - Daniel R. Moore
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
- Correspondence: ; Tel.: +1-(416)-946-4088
| |
Collapse
|
3
|
Tinline-Goodfellow CT, West DWD, Malowany JM, Gillen JB, Moore DR. An Acute Reduction in Habitual Protein Intake Attenuates Post Exercise Anabolism and May Bias Oxidation-Derived Protein Requirements in Resistance Trained Men. Front Nutr 2020; 7:55. [PMID: 32391374 PMCID: PMC7188927 DOI: 10.3389/fnut.2020.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Protein recommendations for resistance-trained athletes are generally lower than their habitual intakes. Excess protein consumption increases the capacity to oxidize amino acids, which can attenuate post-exercise anabolism and may impact protein requirements determined by stable isotope techniques predicated on amino acid tracer oxidation. We aimed to determine the impact of an acute (5d) reduction in dietary protein intake on post-exercise anabolism in high habitual consumers using the indicator amino acid oxidation (IAAO) technique. Resistance trained men [n = 5; 25 ± 7 y; 73.0 ± 5.7 kg; 9.9 ± 2.9% body fat; 2.69 ± 0.38 g·kg−1·d−1 habitual protein intake) consumed a high (H; 2.2 g·kg−1·d−1) and moderate (M; 1.2 g·kg−1·d−1) protein diet while training every other day. During the High protein phase, participants consumed a 2d controlled diet prior to determining whole body phenylalanine turnover, net balance (NB), and 13CO2 excretion (F13CO2) after exercise via oral [13C]phenylalanine. During the Moderate phase, participants consumed 2.2 g protein·kg−1·d−1 for 2d prior to consuming 1.2 g protein·kg−1·d−1 for 5d. Phenylalanine metabolism was measured on days 1, 3, and 5 (M1, M3, and M5, respectively) of the moderate intake. F13CO2, the primary outcome for IAAO, was ~72 and ~55% greater on the 1st day (M1, P < 0.05) and the third day of the moderate protein diet (M3, P = 0.07), respectively, compared to the High protein trial. Compared to the High protein trial, NB was ~25% lower on the 1st day (M1, P < 0.01) and 15% lower on the third day of the moderate protein diet (M3, P = 0.09). High habitual protein consumption may bias protein requirements determined by traditional IAAO methods that use only a 2d pre-trial controlled diet. Post-exercise whole body anabolism is attenuated following a reduction in protein intake in resistance trained men and may require ~3–5d to adapt. This trial is registered at clinicaltrials.gov as NCT03845569.
Collapse
Affiliation(s)
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Mazzulla M, Abou Sawan S, Williamson E, Hannaian SJ, Volterman KA, West DWD, Moore DR. Protein Intake to Maximize Whole-Body Anabolism during Postexercise Recovery in Resistance-Trained Men with High Habitual Intakes is Severalfold Greater than the Current Recommended Dietary Allowance. J Nutr 2020; 150:505-511. [PMID: 31618421 DOI: 10.1093/jn/nxz249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 09/13/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Dietary protein supports resistance exercise-induced anabolism primarily via the stimulation of protein synthesis rates. The indicator amino acid oxidation (IAAO) technique provides a noninvasive estimate of the protein intake that maximizes whole-body protein synthesis rates and net protein balance. OBJECTIVE We utilized IAAO to determine the maximal anabolic response to postexercise protein ingestion in resistance-trained men. METHODS Seven resistance-trained men (mean ± SD age 24 ± 3 y; weight 80 ± 9 kg; 11 ± 5% body fat; habitual protein intake 2.3 ± 0.6 g·kg-1·d-1) performed a bout of whole-body resistance exercise prior to ingesting hourly mixed meals, which provided a variable amount of protein (0.20-3.00 g·kg-1·d-1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled with oral l-[1-13C]-phenylalanine. Breath and urine samples were taken at isotopic steady state to determine phenylalanine flux (PheRa), phenylalanine excretion (F13CO2; reciprocal of protein synthesis), and net balance (protein synthesis - PheRa). Total amino acid oxidation was estimated from the ratio of urinary urea and creatinine. RESULTS Mixed model biphasic linear regression revealed a plateau in F13CO2 (mean: 2.00; 95% CI: 1.62, 2.38 g protein·kg-1·d-1) (r2 = 0.64; P ˂ 0.01) and in net balance (mean: 2.01; 95% CI: 1.44, 2.57 g protein·kg-1·d-1) (r2 = 0.63; P ˂ 0.01). Ratios of urinary urea and creatinine concentrations increased linearly (r = 0.84; P ˂ 0.01) across the range of protein intakes. CONCLUSIONS A breakpoint protein intake of ∼2.0 g·kg-1·d-1, which maximized whole-body anabolism in resistance-trained men after exercise, is greater than previous IAAO-derived estimates for nonexercising men and is at the upper range of current general protein recommendations for athletes. The capacity to enhance whole-body net balance may be greater than previously suggested to maximize muscle protein synthesis in resistance-trained athletes accustomed to a high habitual protein intake. This trial was registered at clinicaltrials.gov as NCT03696264.
Collapse
Affiliation(s)
- Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Sarkis J Hannaian
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly A Volterman
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Templeman JR, Mansilla WD, Fortener L, Shoveller AK. Tryptophan requirements in small, medium, and large breed adult dogs using the indicator amino acid oxidation technique1. J Anim Sci 2019; 97:3274-3285. [PMID: 31363781 PMCID: PMC6667247 DOI: 10.1093/jas/skz142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/22/2019] [Indexed: 02/02/2023] Open
Abstract
Tryptophan (Trp) is an indispensable amino acid (AA) for dogs of all life stages; however, although Trp requirements for growing dogs are derived from 3 dose-response studies, there are no empirical data on Trp requirements for adult dogs at maintenance. The study objective was to determine Trp requirements of adult dogs of 3 different breeds using the indicator amino acid oxidation (IAAO) technique. Four spayed or neutered Miniature Dachshunds (5.28 ± 0.29 kg BW), 4 spayed Beagles (9.32 ± 0.41 kg BW), and 5 neutered Labrador Retrievers (30.51 ± 2.09 kg BW) were used. After a 14-d adaptation to a Trp-adequate basal diet (Trp = 0.482% dry matter), all dogs were fed a mildly Trp-deficient diet for 2 d (Trp = 0.092% dry matter) before being randomly allocated to receiving 1 of 7 concentrations of Trp supplementation (final Trp content in experimental diets was 0.092, 0.126, 0.148, 0.182, 0.216, 0.249, and 0.283% dry matter) and all dogs received all Trp treatments. After 2-d adaptation to the experimental diets, dogs underwent individual IAAO studies. Total feed was divided in 13 equal meals; at the sixth meal, dogs were fed a bolus of L-[1-13C]-Phenylalanine (Phe) (9.40 mg/kg BW), and thereafter, L-[1-13C]-Phe was supplied (2.4 mg/kg BW) with every meal. Total production of 13CO2 during isotopic steady state was determined by enrichment of 13CO2 in breath samples and total production of CO2 measured using indirect calorimetry. The maintenance requirement for Trp and the 95% confidence interval (CI) were determined using a 2-phase linear regression model. Mean Trp requirements were estimated at 0.154, 0.218, and 0.157% (dry-matter) for Dachshunds, Beagles, and Labradors, respectively. The upper 95% CI were 0.187, 0.269, and 0.204% (dry-matter) for Dachshunds, Beagles, and Labradors. In conclusion, estimated Trp requirements are higher for Beagles compared with Labradors or Dachshunds, and all estimated requirements are higher than those currently recommended by the NRC and AAFCO.
Collapse
Affiliation(s)
- James R Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Wilfredo D Mansilla
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
- Procter & Gamble Co., Mason, OH
| |
Collapse
|
6
|
Capillary Electrophoresis of Free Amino Acids in Physiological Fluids Without Derivatization Employing Direct or Indirect Absorbance Detection. Methods Mol Biol 2019; 2030:315-326. [PMID: 31347128 DOI: 10.1007/978-1-4939-9639-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Whole blood and/or plasma amino acids are useful for monitoring whole-body protein and amino acid metabolism in an organism under various physiological and pathophysiological conditions. Various methodological procedures are in use for their measurement in biological fluids. From the time when capillary electrophoresis was introduced as a technology offering rapid separation of various ionic and/or ionizable compounds with low sample and solvent consumption, there were many attempts to use it for the measurement of amino acids present in physiological fluids. As a rule, these methods require derivatization procedures for detection purposes.Here, we present two protocols for the analysis of free amino acids employing free zone capillary electrophoresis. Main advantage of both methods is an absence of any derivatization procedures that permits the analysis of free amino acid in physiological fluids. The method using direct detection and carrier electrolyte consisting of disodium monophosphate (10 mM at pH 2.90) permits determination of compounds that absorb in UV region (aromatic and sulfur containing amino acids, as well as some peptides such as carnosine, reduced, and oxidized glutathione). The other method use indirect absorbance detection, employing 8 mM p-amino salicylic acid buffered with sodium carbonate at pH 10.2 as running electrolyte. It permits quantification of 30 underivatized physiological amino acids and peptides. In our experience factorial design represents a useful tool for final optimization of the electrophoretic conditions if it is necessary.
Collapse
|
7
|
Bandegan A, Courtney-Martin G, Rafii M, Pencharz PB, Lemon PWR. Indicator amino acid oxidation protein requirement estimate in endurance-trained men 24 h postexercise exceeds both the EAR and current athlete guidelines. Am J Physiol Endocrinol Metab 2019; 316:E741-E748. [PMID: 30779631 DOI: 10.1152/ajpendo.00174.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite studies indicating increased protein requirements in strength-trained or endurance-trained (ET) individuals, the Institute of Medicine has concluded that "no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise," and the controversy regarding exercise effects on protein requirements continues. The objective of this study was to determine the dietary protein requirement of healthy young ET men (≥1 yr training experience) 24 h post exercise (to minimize any acute effects of the previous training session) by measuring the oxidation of ingested l-[1-13C]phenylalanine to 13CO2 in response to graded intakes of protein (indicator amino acid oxidation technique). Eight men [maximal oxygen consumption 64.1 ml·kg-1·min-1 (SD 3.7)] were each studied 24 h postexercise repeatedly with protein intakes ranging from 0.3 to 3.5 g·kg-1·day-1. Protein was fed as an amino acid mixture based on the protein pattern in egg, except for phenylalanine and tyrosine, which were maintained at constant amounts across all protein intakes. For 2 days before the study day, all participants consumed 1.6 g protein·kg-1·day-1. The estimated average requirement (EAR) for protein was determined by applying a nonlinear mixed-effects change-point regression analysis to F13CO2 (label tracer oxidation in 13CO2 breath), which identified a breakpoint in the F13CO2 in response to the graded amounts of protein. The EAR for protein and the upper 95% confidence interval were 2.1 and 2.6 g·kg-1·day-1, respectively. These data suggest that the protein EAR for ET men 24 h postexercise exceeds the Institute of Medicine EAR and established athlete guidelines by ~3.5- and 1.3-fold, respectively.
Collapse
Affiliation(s)
- Arash Bandegan
- Exercise Nutrition Research Laboratory, School of Kinesiology, Western University , London, Ontario , Canada
| | - Glenda Courtney-Martin
- Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada
- Faculty of Kinesiology & Physical Education, University of Toronto , Toronto, Ontario , Canada
- Department of Nutritional Sciences, University of Toronto , Toronto, Ontario , Canada
| | - Mahroukh Rafii
- Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children , Toronto, Ontario , Canada
- Department of Nutritional Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Paediatrics and Nutrition Science, University of Toronto , Toronto, Ontario , Canada
| | - Peter W R Lemon
- Exercise Nutrition Research Laboratory, School of Kinesiology, Western University , London, Ontario , Canada
| |
Collapse
|
8
|
Kato H, Suzuki K, Bannai M, Moore DR. Branched-Chain Amino Acids Are the Primary Limiting Amino Acids in the Diets of Endurance-Trained Men after a Bout of Prolonged Exercise. J Nutr 2018; 148:925-931. [PMID: 29746639 DOI: 10.1093/jn/nxy048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background The indicator amino acid oxidation (IAAO) method estimates the protein intake required to maximize whole-body protein synthesis and identify the daily protein requirement in a variety of populations. However, it is unclear whether the greater requirements for endurance athletes previously determined by the IAAO reflect an increased demand for all or only some amino acids. Objective The aim of this study was to determine the primary rate-limiting amino acids in endurance-trained athletes after prolonged exercise, by measuring the oxidation of ingested [1-13C]phenylalanine in response to variable amino acid intake. Methods Five endurance-trained men (means ± SDs: age, 26 ± 7 y; body weight, 66.9 ± 9.5 kg; maximal oxygen consumption, 63.3 ± 4.3 mL · kg-1 · min-1) performed 5 trials that involved 2 d of controlled diet (1.4 g protein · kg-1 · d-1) and running (10 km on day 1 and 5 km on day 2) prior to performing an acute bout of endurance exercise (20-km treadmill run) on day 3. During recovery on day 3, participants consumed test diets as 8 isocaloric hourly meals providing sufficient energy and carbohydrate but a variable amino acid intake. The test diets, consumed in random order, were deficient (BASE: 0.8 g · kg-1 · d-1) and sufficient (SUF; 1.75 g · kg-1 · d-1) amino acid diets modeled after egg protein, and BASE supplemented with branched-chain amino acids (BCAA diet; 1.03 g · kg-1 · d-1), essential amino acids (EAA diet; 1.23 g · kg-1 · d-1), or nonessential amino acids (NEAA diet; 1.75 g · kg-1 · d-1). Whole-body phenylalanine flux (Q), 13CO2 excretion (F13CO2), and phenylalanine oxidation (OX) were determined according to standard IAAO methodology. Results There was no effect of amino acid intake on Q (P = 0.43). F13CO2 was significantly (all P < 0.01) lower than BASE for the BCAA (∼32%), EAA (∼31%), and SUF (∼36%) diet treatments. F13CO2 for the NEAA diet was ∼18% lower than for BASE (P < 0.05) but ∼28% greater than for SUF (P < 0.05). OX was similarly decreased (∼24-41%) in all conditions compared with BASE (all P < 0.05). Conclusion Our results suggest that the BCAAs may be the primary rate-liming amino acids in the greater daily protein requirement of endurance trained men. This trial was registered at clinicaltrials.gov as NCT02628249.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Makoto Bannai
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Crompton LA, McKnight LL, Reynolds CK, Mills JAN, Ellis JL, Hanigan MD, Dijkstra J, Bequette BJ, Bannink A, France J. An isotope dilution model for partitioning of phenylalanine and tyrosine uptake by the liver of lactating dairy cows. J Theor Biol 2018; 444:100-107. [PMID: 29277601 DOI: 10.1016/j.jtbi.2017.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
Abstract
An isotope dilution model to describe the partitioning of phenylalanine and tyrosine in the bovine liver was developed. The model comprises four intracellular and six extracellular pools and various flows connecting these pools and external blood. Conservation of mass principles were applied to generate the fundamental equations describing the behaviour of the system in the steady state. The model was applied to datasets from multi-catheterised dairy cattle during a constant infusion of [1-13C]phenylalanine and [2,3,5,6-2H]tyrosine tracers. Model solutions described the extraction of phenylalanine and tyrosine from the liver via the portal vein and hepatic artery. In addition, the exchange of free phenylalanine and tyrosine between extracellular and intracellular pools was explained and the hydroxylation of phenylalanine to tyrosine was estimated. The model was effective in providing information about the fates of phenylalanine and tyrosine in the liver and could be used as part of a more complex system describing amino acid metabolism in the whole animal.
Collapse
Affiliation(s)
- L A Crompton
- Sustainable Agriculture and Food Systems Research Division, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK.
| | - L L McKnight
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| | - C K Reynolds
- Sustainable Agriculture and Food Systems Research Division, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK
| | - J A N Mills
- Sustainable Agriculture and Food Systems Research Division, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK
| | - J L Ellis
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada; Animal Nutrition Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, 2080 Litton Reaves, Blacksburg, VA 24061, USA
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
| | - B J Bequette
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - A Bannink
- Animal Nutrition, Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, The Netherlands
| | - J France
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Wooding DJ, Packer JE, Kato H, West DWD, Courtney-Martin G, Pencharz PB, Moore DR. Increased Protein Requirements in Female Athletes after Variable-Intensity Exercise. Med Sci Sports Exerc 2018; 49:2297-2304. [PMID: 28692631 DOI: 10.1249/mss.0000000000001366] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Protein requirements are primarily studied in the context of resistance or endurance exercise with little research devoted to variable-intensity intermittent exercise characteristic of many team sports. Further, female populations are underrepresented in dietary sports science studies. We aimed to determine a dietary protein requirement in active females performing variable-intensity intermittent exercise using the indicator amino acid oxidation (IAAO) method. We hypothesized that these requirements would be greater than current IAAO-derived estimates in nonactive adult males. METHODS Six females (21.2 ± 0.8 yr, 68.8 ± 4.1 kg, 47.1 ± 1.2 mL O2·kg·min; mean ± SE) completed five to seven metabolic trials during the luteal phase of the menstrual cycle. Participants performed a modified Loughborough Intermittent Shuttle Test before consuming eight hourly mixed meals providing the test protein intake (0.2-2.66 g·kg·d), 6 g·kg·d CHO and sufficient energy for resting and exercise-induced energy expenditure. Protein was provided as crystalline amino acid modeling egg protein with [C]phenylalanine as the indicator amino acid. Phenylalanine turnover (Q) was determined from urinary [C]phenylalanine enrichment. Breath CO2 excretion (FCO2) was analyzed using mixed effects biphase linear regression with the breakpoint and upper 95% confidence interval approximating the estimated average requirement and recommended dietary allowance, respectively. RESULTS Protein intake had no effect on Q (68.7 ± 7.3 μmol·kg·h; mean ± SE). FCO2 displayed a robust biphase response (R = 0.66) with an estimated average requirement of 1.41 g·kg·d and recommended dietary allowance of 1.71 g·kg·d. CONCLUSIONS The protein requirement estimate of 1.41 and 1.71 g·kg·d for females performing variable-intensity intermittent exercise is greater than the IAAO-derived estimates of adult males (0.93 and 1.2 g·kg·d) and at the upper range of the American College of Sports Medicine athlete recommendations (1.2-2.0 g·kg·d).
Collapse
Affiliation(s)
- Denise J Wooding
- 1Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA; 2Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, JAPAN; 3Research Institute, Hospital for Sick Children, Toronto, ON, CANADA; 4Department of Nutritional Sciences, University of Toronto, Toronto, ON, CANADA; and 5Department of Pediatrics, University of Toronto, Toronto, ON, CANADA
| | | | | | | | | | | | | |
Collapse
|
11
|
Packer JE, Wooding DJ, Kato H, Courtney-Martin G, Pencharz PB, Moore DR. Variable-Intensity Simulated Team-Sport Exercise Increases Daily Protein Requirements in Active Males. Front Nutr 2017; 4:64. [PMID: 29312948 PMCID: PMC5742662 DOI: 10.3389/fnut.2017.00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022] Open
Abstract
Protein requirements are generally increased in strength and endurance trained athletes relative to their sedentary peers. However, less is known about the daily requirement for this important macronutrient in individuals performing variable intensity, stop-and-go type exercise that is typical for team sport athletes. The objective of the present study was to determine protein requirements in active, trained adult males performing a simulated soccer match using the minimally invasive indicator amino acid oxidation (IAAO) method. After 2 days of controlled diet (1.2 g⋅kg−1⋅day−1 protein), seven trained males (23 ± 1 years; 177.5 ± 6.7 cm; 82.3 ± 6.1 kg; 13.5% ± 4.7% body fat; 52.3 ± 5.9 ml O2⋅kg−1⋅min-1; mean ± SD) performed an acute bout of variable intensity exercise in the form of a modified Loughborough Intermittent Shuttle Test (4 × 15 min of exercise over 75 min). Immediately after exercise, hourly meals were consumed providing a variable amount of protein (0.2–2.6 g⋅kg−1⋅day−1) and sufficient energy and carbohydrate (6 g⋅kg−1⋅day−1). Protein was provided as a crystalline amino acids modeled after egg protein with the exception of phenylalanine and tyrosine, which were provided in excess to ensure the metabolic partitioning of the indicator amino acid (i.e., [1-13C]phenylalanine included within the phenylalanine intake) was directed toward oxidation when protein intake was limiting. Whole body phenylalanine flux and 13CO2 excretion (F13CO2) were determined at metabolic and isotopic steady state from urine and breath samples, respectively. Biphasic linear regression analysis was performed on F13CO2 to determine the estimated average requirement (EAR) for protein with a safe intake defined as the upper 95% confidence interval. Phenylalanine flux was not impacted by protein intake (P = 0.45). Bi-phase linear regression (R2 = 0.64) of F13CO2 resulted in an EAR and safe intake of 1.20 and 1.40 g⋅kg−1⋅day−1, respectively. Variable intensity exercise increases daily protein requirements compared to the safe intake determined by nitrogen balance (0.83 g⋅kg−1⋅day−1) and IAAO (1.24 g⋅kg−1⋅day−1) but is within the range (i.e., 1.2–2.0 g⋅kg−1⋅day−1) of current consensus statements on general recommendations for athletes.
Collapse
Affiliation(s)
- Jeffrey E Packer
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Denise J Wooding
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Hiroyuki Kato
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.,Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Glenda Courtney-Martin
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.,Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Paul B Pencharz
- Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Kato H, Nakano S, Inoue Y, Takeda T, Miura K, Nakamura T, Suzuki K, Bannai M. Greater Amino Acid Intake Is Required to Maximize Whole-Body Protein Synthesis Immediately after Endurance Exercise Than at Rest in Endurance-Trained Rats, as Determined by an Indicator Amino Acid Oxidation Method. J Nutr 2016; 146:1546-51. [PMID: 27358420 DOI: 10.3945/jn.115.226373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/20/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The indicator amino acid oxidation (IAAO) method has contributed to establishing protein and amino acid (AA) requirements by determining the optimal protein and AA intake that maximizes whole-body protein synthesis. However, it has not been used with endurance-trained subjects. OBJECTIVE This study aimed to determine the optimal AA intake immediately after endurance exercise and at rest in endurance-trained rats by using the IAAO method. METHODS Four-week-old male Fischer rats were divided into a sedentary (SED) group and a trained (TR) group, which underwent treadmill training 5 d/wk for 6 wk at 26 m/min for 60 min/d. On the metabolic trial day, half of the TR group was provided with test diets after daily treadmill running (TR-PostEx). The other half of the TR group (TR-Rest) and all of the SED group were provided with test diets while at rest. The test diets contained different amounts of AAs (3.3-37.3 g ⋅ kg(-1) ⋅ d(-1)). Phenylalanine in the test diet was replaced with L-[1-(13)C]phenylalanine. The phenylalanine oxidation rate (PheOx) was determined with (13)CO2 enrichment in breath, CO2 excretion rate, and enrichment of phenylalanine in blood during the feeding period. The optimal AA intake was determined with biphasic mixed linear regression crossover analysis for PheOx, which identified a breakpoint at the minimal PheOx in response to graded amounts of AA intake. RESULTS The optimal AA intake in the TR-PostEx group (26.8 g ⋅ kg(-1) ⋅ d(-1); 95% CI: 21.5, 32.1 g ⋅ kg(-1) ⋅ d(-1)) was significantly higher than in the SED (15.1 g ⋅ kg(-1) ⋅ d(-1); 95% CI: 11.1, 19.1 g ⋅ kg(-1) ⋅ d(-1)) and TR-Rest (13.3 g ⋅ kg(-1) ⋅ d(-1); 95% CI: 10.9, 15.7 g ⋅ kg(-1) ⋅ d(-1)) groups, which did not differ. CONCLUSIONS Greater AA intake is required to maximize whole-body protein synthesis immediately after endurance exercise than at rest, but not at rest in endurance-trained rats.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Sayako Nakano
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Yoshiko Inoue
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Tomoko Takeda
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Kyoko Miura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Taro Nakamura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Makoto Bannai
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| |
Collapse
|
13
|
Protein Requirements Are Elevated in Endurance Athletes after Exercise as Determined by the Indicator Amino Acid Oxidation Method. PLoS One 2016; 11:e0157406. [PMID: 27322029 PMCID: PMC4913918 DOI: 10.1371/journal.pone.0157406] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022] Open
Abstract
A higher protein intake has been recommended for endurance athletes compared with healthy non-exercising individuals based primarily on nitrogen balance methodology. The aim of this study was to determine the estimated average protein requirement and recommended protein intake in endurance athletes during an acute 3-d controlled training period using the indicator amino acid oxidation method. After 2-d of controlled diet (1.4 g protein/kg/d) and training (10 and 5km/d, respectively), six male endurance-trained adults (28±4 y of age; Body weight, 64.5±10.0 kg; VO2peak, 60.3±6.7 ml·kg-1·min-1; means±SD) performed an acute bout of endurance exercise (20 km treadmill run) prior to consuming test diets providing variable amounts of protein (0.2–2.8 g·kg-1·d-1) and sufficient energy. Protein was provided as a crystalline amino acid mixture based on the composition of egg protein with [1-13C]phenylalanine provided to determine whole body phenylalanine flux, 13CO2 excretion, and phenylalanine oxidation. The estimated average protein requirement was determined as the breakpoint after biphasic linear regression analysis with a recommended protein intake defined as the upper 95% confidence interval. Phenylalanine flux (68.8±8.5 μmol·kg-1·h-1) was not affected by protein intake. 13CO2 excretion displayed a robust bi-phase linear relationship (R2 = 0.86) that resulted in an estimated average requirement and a recommended protein intake of 1.65 and 1.83 g protein·kg-1·d-1, respectively, which was similar to values based on phenylalanine oxidation (1.53 and 1.70 g·kg-1·d-1, respectively). We report a recommended protein intake that is greater than the RDA (0.8 g·kg-1·d-1) and current recommendations for endurance athletes (1.2–1.4 g·kg-1·d-1). Our results suggest that the metabolic demand for protein in endurance-trained adults on a higher volume training day is greater than their sedentary peers and current recommendations for athletes based primarily on nitrogen balance methodology. Trial Registration: ClinicalTrial.gov NCT02478801
Collapse
|
14
|
Tang M, McCabe GP, Elango R, Pencharz PB, Ball RO, Campbell WW. Assessment of protein requirement in octogenarian women with use of the indicator amino acid oxidation technique. Am J Clin Nutr 2014; 99:891-8. [PMID: 24429540 PMCID: PMC3953883 DOI: 10.3945/ajcn.112.042325] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Data on the protein requirements of elderly adults are limited, because it is impractical to conduct repeated nitrogen balance protocols in these vulnerable humans. OBJECTIVE This study was designed to determine the dietary protein requirement of elderly women by using the recently developed minimally invasive indicator amino acid oxidation (IAAO) technique. DESIGN Six white women aged 80-87 y [mean ± SEM: 82 ± 1 y and body mass index (in kg/m²) 26 ± 2] completed a 3-d protocol 7 times. Each woman consumed an adaptation diet for 2 d and on day 3 consumed a complete test diet with a crystalline amino acid mixture containing 1 of 7 protein intakes (0.1, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8 g · kg⁻¹ · d⁻¹) tested randomly. A group-based protein requirement was assessed by using a nonlinear mixed model of protein intake and L-[1-¹³C]phenylalanine oxidation. The breakpoint, at which there was no further decline in the rate of appearance of ¹³C in the breath, was used as an index of the mean protein requirement. RESULTS The mean protein requirement (95% CI) was 0.85 (0.60, 1.09) g · kg⁻¹ · d⁻¹. This requirement is 29% higher than the current Estimated Average Requirement (EAR) for adults of 0.66 g · kg⁻¹ · d⁻¹ based on the nitrogen balance technique, although the 95% CI includes the current EAR. The corresponding adequate protein allowance of 1.15 (0.77, 1.54) g · kg⁻¹ · d⁻¹ is 44% higher, although the 95% CI includes the Recommended Dietary Allowance (RDA) of 0.80 g · kg⁻¹ · d⁻¹. CONCLUSIONS Notwithstanding uncertainty about the validity of the use of the IAAO technique to assess protein requirements, the results of this study with octogenarian women suggest that the current EAR and RDA for elderly women may be underestimated. The limitations of this short-term, noninvasive method underscore the need for new research that uses alternative experimental designs and measuring physiologic, morphologic, and health-related outcomes.
Collapse
Affiliation(s)
- Minghua Tang
- Departments of Nutrition Science (MT and WWC) and Statistics (GPM), Purdue University, West Lafayette, IN; the Department of Pediatrics, University of British Columbia, Vancouver, Canada (RE); the Department of Paediatrics and Nutrition Science, University of Toronto, Toronto, Canada (PBP); and the Department of Agricultural, Food and Nutrition Science, University of Alberta, Edmonton, Canada (ROB)
| | | | | | | | | | | |
Collapse
|
15
|
Žunić G, Tomić A, Spasić S. Unilateral nephrectomy causes an early abrupt decrease in plasma arginine and simultaneous reduction in glomerular filtration rate in living kidney donors. Clin Biochem 2013; 46:1394-8. [DOI: 10.1016/j.clinbiochem.2013.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 12/21/2022]
|
16
|
Urschel KL, Geor RJ, Hanigan MD, Harris PA. Amino acid supplementation does not alter whole-body phenylalanine kinetics in Arabian geldings. J Nutr 2012; 142:461-9. [PMID: 22259192 DOI: 10.3945/jn.111.149906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stable isotope infusion methods have not been extensively used in horses to study protein metabolism. The objectives were to develop infusion and sampling methodologies for [1-(13)C] phenylalanine and apply these methods to determine whether the addition of supplemental amino acids to a control diet affected whole-body phenylalanine kinetics in mature horses. Arabian geldings were studied using a 6-h primed (9 μmol/kg), constant (6 μmol · kg(-1) · h(-1)) i.v. infusion of L-[1-(13)C] phenylalanine, with blood and breath sampled every 30 min, to measure whole-body phenylalanine kinetics in response to receiving the control diet (n = 12) or the control diet supplemented with equimolar amounts of glutamate (+Glu; 55 mg · kg(-1) · d(-1); n = 5), leucine (+Leu; 49 mg · kg(-1) · d(-1); n = 5), lysine (+Lys; 55 mg · kg(-1) · d(-1); n = 5), or phenylalanine (+Phe; 62 mg · kg(-1) · d(-1); n = 6). The plasma concentrations of the supplemented amino acid in horses receiving the +Leu, +Lys, and +Phe diets were 58, 53, and 36% greater, respectively, than for the control treatment (P < 0.05). Isotopic plateau was attained in blood [1-(13)C] phenylalanine and breath (13)CO(2) enrichments by 60 and 270 min, respectively. Phenylalanine flux (+20%) and oxidation (+110%) were greater (P < 0.05) in horses receiving the +Phe treatment than in those fed the control diet. There was no effect of treatment diet on nonoxidative phenylalanine disposal or phenylalanine release from protein breakdown. The developed methods are a valuable way to study protein metabolism and assess dietary amino acid adequacy in horses and will provide a useful tool for studying amino acid requirements in the future.
Collapse
Affiliation(s)
- Kristine L Urschel
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
17
|
Zunić GD, Spasić S, Jelić-Ivanović Z. Capillary electrophoresis of free amino acids in physiological fluids without derivatization employing direct or indirect absorbance detection. Methods Mol Biol 2012; 828:243-254. [PMID: 22125149 DOI: 10.1007/978-1-61779-445-2_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Whole blood and/or plasma amino acids are useful for monitoring whole body protein and amino acid metabolism in an organism under various physiological and pathophysiological conditions. Various methodological procedures are in use for their measurement in biological fluids. From the time when capillary electrophoresis was introduced as a technology offering rapid separation of various ionic and/or ionizable compounds with low sample and solvent consumption, there were many attempts to use it for the measurement of amino acids present in physiological fluids. As a rule, these methods require derivatization procedures for detection purposes.Here, we present two protocols for the analysis of free amino acids employing free zone capillary electrophoresis. Main advantage of both methods is an absence of any derivatization procedures that permits the analysis of free amino acid in physiological fluids. The method using direct detection and carrier electrolyte consisting of disodium monophosphate (10 mM at pH 2.90) permits determination of compounds that absorb in UV region (aromatic and sulfur containing amino acids, as well as some peptides, such as carnosine, reduced and oxidized glutathione). The other method uses indirect absorbance detection, employing 8 mM p-amino salicylic acid buffered with sodium carbonate at pH 10.2 as running electrolyte. It permits quantification of 30 underivatized physiological amino acids and peptides. In our experience, factorial design represents a useful tool for final optimization of the electrophoretic conditions if it is necessary.
Collapse
Affiliation(s)
- Gordana D Zunić
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia.
| | | | | |
Collapse
|
18
|
Huang L, Hogewind-Schoonenboom JE, de Groof F, Twisk JWR, Voortman GJ, Dorst K, Schierbeek H, Boehm G, Huang Y, Chen C, van Goudoever JB. Lysine requirement of the enterally fed term infant in the first month of life. Am J Clin Nutr 2011; 94:1496-503. [PMID: 22049162 DOI: 10.3945/ajcn.111.024166] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Infant nutrition has a major impact on child growth and functional development. Low and high intakes of protein or amino acids could have a detrimental effect. OBJECTIVE The objective of the study was to determine the lysine requirement of enterally fed term neonates by using the indicator amino acid oxidation (IAAO) method. L-[1-(13)C]phenylalanine was used as an indicator amino acid. DESIGN Twenty-one neonates were randomly assigned to lysine intakes that ranged from 15 to 240 mg · kg(-1) · d(-1). Breath, urine, and blood samples were collected at baseline and during the plateau. The mean lysine requirement was determined by using biphasic linear regression crossover analysis on the fraction of (13)CO(2) recovery from L-[1-(13)C]phenylalanine oxidation (F(13)CO(2)) and phenylalanine oxidation rates calculated from the L-[1-(13)C]phenylalanine enrichment of urine and plasma. RESULTS The mean (±SD) phenylalanine flux calculated from urine and plasma L-[1-(13)C]phenylalanine enrichment data were 88.3 ± 6.9 and 84.5 ± 7.4 μmol · kg(-1) · h(-1), respectively. Graded intakes of lysine had no effect on phenylalanine fluxes. The mean lysine requirement determined by F(13)CO(2) was 130 mg · kg(-1) · d(-1) (upper and lower CIs: 183.7 and 76.3 mg · kg(-1) · d(-1), respectively). The mean requirement was identical to the requirement determined by using phenylalanine oxidation rates in urine and plasma. CONCLUSIONS The mean lysine requirement of enterally fed term neonates was determined by using F(13)CO(2) and phenylalanine oxidation rates calculated from the L-[1-(13)C]phenylalanine enrichment of urine and plasma. These methods yielded a similar result of 130 mg lysine · kg(-1) · d(-1). This study demonstrates that sampling of (13)CO(2) in expired air is sufficient to estimate the lysine requirement by using the IAAO method in infants. This trial was registered at www.trialregister.nl as NTR1610.
Collapse
Affiliation(s)
- Lisha Huang
- Department of Pediatrics, Division of Neonatology, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Elango R, Humayun MA, Ball RO, Pencharz PB. Protein requirement of healthy school-age children determined by the indicator amino acid oxidation method. Am J Clin Nutr 2011; 94:1545-52. [PMID: 22049165 DOI: 10.3945/ajcn.111.012815] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The current Dietary Reference Intake (DRI) recommendations for protein requirements in children are based on a factorial estimate and have not been directly determined. OBJECTIVE The objective of the current study was to determine the protein requirement in healthy, school-age children by measuring the oxidation of L-[1-(13)C]-phenylalanine to (13)CO(2) [label tracer oxidation (F(13)CO(2))] in response to graded intakes of protein. DESIGN Seven healthy children (6-11 y old) each randomly received a minimum of 7 protein intakes (range: 0.1-2.56 g · kg(-1) · d(-1)) for a total of 56 studies. The diets provided energy at 1.7 times the resting energy expenditure and were made isocaloric by using carbohydrate. Protein was given as an amino acid mixture on the basis of the egg-protein pattern, except for phenylalanine and tyrosine intakes, which were maintained constant across intakes. The mean protein requirement was determined by applying a 2-phase linear regression crossover analysis on F(13)CO(2) data, which identified a breakpoint (requirement) at minimal F(13)CO(2) in response to graded amounts of protein intake. RESULTS Mean and population-safe (upper 95% CI) protein requirements were determined to be 1.3 and 1.55 g · kg(-1) · d(-1), respectively. These results are significantly higher than the mean and population-safe protein requirements currently recommended by the DRI 2005 for macronutrients (0.76 and 0.95 g · kg(-1) · d(-1), respectively). CONCLUSION To our knowledge, this study was the first to directly estimate protein requirements in children by using stable isotopes and indicated that current recommendations are severely underestimated.
Collapse
Affiliation(s)
- Rajavel Elango
- Research Institute, The Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|
20
|
Abstract
Hydroxylation of phenylalanine to tyrosine is the first and rate-limiting step in phenylalanine catabolism. Currently, there are data on the rate of phenylalanine hydroxylation in infants and adults but not in healthy children. Thus, the aim of the study reported here was to measure the rate of phenylalanine hydroxylation and oxidation in healthy school-aged children both when receiving diets with and without tyrosine. In addition, hydroxylation rates calculated from the isotopic enrichments of amino acids in plasma and in very LDL apoB-100 were compared. Eight healthy 6- to 10-y-old children were studied while receiving a control and again while receiving a tyrosine-free diet. Phenylalanine flux, hydroxylation, and oxidation were determined by a standard tracer protocol using oral administration of ¹³C-phenylalanine and ²H₂-tyrosine for 6 h. Phenylalanine hydroxylation rate of children fed a diet devoid of tyrosine was greater than that of children fed a diet containing tyrosine (40.25 ± 5.48 versus 29.55 ± 5.35 μmol · kg⁻¹ · h⁻¹; p < 0.01). Phenylalanine oxidation was not different from phenylalanine hydroxylation regardless of dietary tyrosine intake, suggesting that phenylalanine converted to tyrosine was mainly oxidized. In conclusion, healthy children are capable of converting phenylalanine to tyrosine, but the need for tyrosine cannot be met by providing extra phenylalanine.
Collapse
Affiliation(s)
- Jean W Hsu
- Department of Pediatrics, USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
21
|
Chapman KP, Courtney-Martin G, Moore AM, Langer JC, Tomlinson C, Ball RO, Pencharz PB. Lysine requirement in parenterally fed postsurgical human neonates. Am J Clin Nutr 2010; 91:958-65. [PMID: 20164307 DOI: 10.3945/ajcn.2009.28729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The lysine requirement of human neonates receiving parenteral nutrition (PN) has not been determined experimentally. OBJECTIVE The objective was to determine the parenteral lysine requirement for human neonates by using the minimally invasive indicator amino acid oxidation technique with l-[1-(13)C] phenylalanine as the indicator amino acid. DESIGN Eleven postsurgical neonates were randomly assigned to 15 lysine intakes ranging from 50 to 260 mg . kg(-1) . d(-1). Breath and urine samples were collected at baseline and at plateau for (13)CO(2) (F(13)CO(2)) and amino acid enrichment, respectively. The mean lysine requirement was determined by applying a 2-phase linear regression crossover analysis to the measured rates of F(13)CO(2) release and l-[1-(13)C]phenylalanine oxidation. RESULTS The mean parenteral lysine requirement determined by F(13)CO(2) release oxidation was 104.9 mg . kg(-1) . d(-1) (upper and lower CIs: 120.6 and 89.1 mg . kg(-1) . d(-1), respectively). The mean lysine parenteral requirement determined by phenylalanine oxidation was 117.6 mg . kg(-1) . d(-1) (upper and lower CIs: 157.5 and 77.6 mg . kg(-1) . d(-1), respectively). Graded intakes of lysine had no effect on phenylalanine flux. CONCLUSION We recommend a mean lysine requirement for the postsurgical PN-fed neonate of 104.9 mg . kg(-1) . d(-1), which is 32-43% of the lysine concentration presently found in commercial PN solutions (246-330 mg . kg(-1) . d(-1)). This trial was registered at clinicaltrials.gov as NCT00779753.
Collapse
Affiliation(s)
- Karen P Chapman
- Research Institute, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Elango R, Humayun MA, Ball RO, Pencharz PB. Indicator amino acid oxidation is not affected by period of adaptation to a wide range of lysine intake in healthy young men. J Nutr 2009; 139:1082-7. [PMID: 19369367 DOI: 10.3945/jn.108.101147] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The number of days of adaptation to a specific amino acid intake required prior to the determination of amino acid requirements using the indicator amino acid oxidation method (IAAO) is still in debate. In this study, our objective was to determine whether adaptation for 8 h, 3 d, and 7 d to a wide range of lysine intakes had any effect on the oxidation of the indicator amino acid, l-[1-(13)C]phenylalanine, to (13)CO(2) (F(13)CO(2)). Five healthy young men randomly received each of 4 levels of lysine (5, 20, 35, and 70 mg x kg(-1) x d(-1)) along with an amino acid mixture to achieve a protein intake of 1.0 g x kg(-1) x d(-1) and energy intake of 1.5x resting energy expenditure during 4 separate 7-d study periods. IAAO studies were conducted on d 1, 3, and 7. During each study day, oral consumption of l-[1-(13)C]phenylalanine was followed by collection of breath for F(13)CO(2) and plasma for measurement of phenylalanine enrichment. F(13)CO(2) was affected by lysine intake but did not differ among adaptation periods of 8 h, 3 d, or 7 d. Phenylalanine flux was not significantly affected by period of adaptation. These results suggest that the minimally invasive IAAO model, where participants are adapted prior to protein intake for 2 d followed by study day adaptation to the test amino acid intake for 8 h, may be sufficient to estimate individual amino acid requirements in healthy young men.
Collapse
Affiliation(s)
- Rajavel Elango
- The Research Institute, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | | | | | | |
Collapse
|
23
|
Zunić G, Supić G, Magić Z, Drasković B, Vasiljevska M. Increased nitric oxide formation followed by increased arginase activity induces relative lack of arginine at the wound site and alters whole nutritional status in rats almost within the early healing period. Nitric Oxide 2009; 20:253-8. [PMID: 19371593 DOI: 10.1016/j.niox.2009.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/03/2009] [Accepted: 01/31/2009] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) production and free amino acid fluxes at the wound side during the first 3 days following cutaneous wound were investigated. Experiments were performed on Albino Oxford rats (n=18) underwent cutaneous implantation of polyvinyl sponges. Intact animals (n=6) were controls. Nitrites, nitrates, free amino acids and urea were measured both in plasma and wound fluids. Inducible nitric oxide synthase (iNOS) gene expressions at wound site were analyzed, too. The highest levels of both iNOS gene expression and its activity (increased wound fluid citrulline and nitrites) were at the first day. Wound fluid nitrates were significantly above plasma levels throughout the whole period, while molar nitrate to nitrite ratio steadily increased. It was associated with gradual increase of both ornithine and urea as well as steadily decreases of arginine and increases of phenylalanine at the wound site. Gradual decrease in glycine to branched-chain molar ratio was observed both in plasma and wound fluids. In conclusion, an early locally induced alterations in Arg metabolism, due to increased NO formation followed by increased arginase activity, produces relative lack of Arg at the wound site and disturbs nutritional status of the whole body almost within early healing period following cutaneous wound in rats. It is likely that NO autoxidation at the wound side is influenced by substrate availability.
Collapse
Affiliation(s)
- Gordana Zunić
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
24
|
van den Akker CHP, Schierbeek H, Dorst KY, Schoonderwaldt EM, Vermes A, Duvekot JJ, Steegers EAP, van Goudoever JB. Human fetal amino acid metabolism at term gestation. Am J Clin Nutr 2009; 89:153-60. [PMID: 19056564 DOI: 10.3945/ajcn.2008.26553] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Knowledge on human fetal amino acid (AA) metabolism, largely lacking thus far, is pivotal in improving nutritional strategies for prematurely born infants. Phenylalanine kinetics is of special interest as is debate as to whether neonates will adequately hydroxylate phenylalanine to the semiessential AA tyrosine. OBJECTIVE Our aim was to quantify human fetal phenylalanine and tyrosine metabolism. DESIGN Eight fasted, healthy, pregnant women undergoing elective cesarean delivery at term received primed continuous stable-isotope infusions of [1-(13)C]phenylalanine and [ring-D(4)]tyrosine starting before surgery. Umbilical blood flow was measured by ultrasound. Maternal and umbilical cord blood was collected and analyzed by gas chromatography-mass spectrometry for phenylalanine and tyrosine enrichments and concentrations. Data are expressed as medians (25th-75th percentile). RESULTS Women were in a catabolic state for which net fetal AA uptake was responsible for > or = 25%. Maternal and fetal hydroxylation rates were 2.6 (2.2-2.9) and 7.5 (6.2-15.5) micromol phenylalanine/(kg . h), respectively. Fetal protein synthesis rates were higher than breakdown rates: 92 (84-116) and 73 (68-87) micromol phenylalanine/(kg . h), respectively, which indicated an anabolic state. The median metabolized fraction of available phenylalanine and tyrosine in the fetus was <20% for both AAs. CONCLUSIONS At term gestation, fetuses still show considerable net AA uptake and AA accretion [converted to tissue approximately 12 g/(kg . d)]. The low metabolic uptake (AA usage) implies a very large nutritional reserve capacity of nutrients delivered through the umbilical cord. Fetuses at term are quite capable of hydroxylating phenylalanine to tyrosine.
Collapse
Affiliation(s)
- Chris H P van den Akker
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chapman KP, Courtney-Martin G, Moore AM, Ball RO, Pencharz PB. Threonine requirement of parenterally fed postsurgical human neonates. Am J Clin Nutr 2009; 89:134-41. [PMID: 19056607 DOI: 10.3945/ajcn.2008.26654] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The threonine requirement of human neonates who receive parenteral nutrition (PN) has not been determined experimentally. OBJECTIVE The objective was to determine the parenteral threonine requirement for human neonates by using the minimally invasive indicator amino acid oxidation technique with L-[1-(13)C]phenylalanine as the indicator amino acid. DESIGN Nine postsurgical neonates were randomly assigned to 16 threonine intakes ranging from 10 to 100 mg . kg(-1) . d(-1). Breath and urine samples were collected at baseline and at plateau for (13)CO(2) and amino acid enrichment, respectively. The mean threonine requirement was determined by applying a 2-phase linear regression crossover analysis to the measured rates of (13)CO(2) release (F(13)CO(2)) and L-[1-(13)C]phenylalanine oxidation. RESULTS The mean threonine parenteral requirement determined by using phenylalanine oxidation was 37.6 mg . kg(-1) . d(-1) (upper and lower confidence limits, respectively: 29.9 and 45.2 mg . kg(-1) . d(-1)) and by using F(13)CO(2) oxidation was 32.8 mg . kg(-1) . d(-1) (upper and lower confidence limits, respectively: 29.7 and 35.9 mg . kg(-1) . d(-1)). Graded intakes of threonine had no effect on phenylalanine flux. CONCLUSION This is the first study to report on the threonine requirement for human neonates receiving PN. We found that the threonine requirement for postsurgical PN-fed neonates is 22-32% of the content of threonine that is presently found in commercial PN solutions (111-165 mg . kg(-1) . d(-1)).
Collapse
Affiliation(s)
- Karen P Chapman
- Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
26
|
Courtney-Martin G, Chapman KP, Moore AM, Kim JH, Ball RO, Pencharz PB. Total sulfur amino acid requirement and metabolism in parenterally fed postsurgical human neonates. Am J Clin Nutr 2008; 88:115-24. [PMID: 18614731 DOI: 10.1093/ajcn/88.1.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Except for tyrosine, the amino acid requirements of human neonates receiving parenteral nutrition (PN) have not been experimentally derived. OBJECTIVES The objectives were to determine the total sulfur amino acid (TSAA) requirement (methionine in the absence of cysteine) of postsurgical, PN-fed human neonates by using the indicator amino acid oxidation (IAAO) technique with L-[1-(13)C]phenylalanine as the indicator. DESIGN Fifteen postsurgical neonates were randomly assigned to receive 1 of 18 methionine intakes ranging from 10 to 120 mg x kg(-1) x d(-1), delivered in a customized, cysteine-free amino acid solution. Breath and urine samples were collected for the measurement of (13)CO(2) and amino acid enrichment. Blood samples were collected at baseline and after the test methionine infusion for the measurement of plasma methionine, homocysteine, cystathionine, and cysteine concentrations. RESULTS Breakpoint analysis determined the mean TSAA requirements to be 47.4 (95% CI: 38.7, 56.1) and 49.0 (95% CI: 39.9, 58.0) mg x kg(-1) x d(-1) with the use of oxidation and F(13)CO(2), respectively. CONCLUSIONS This is the first study to report the TSAA requirement of postsurgical, PN-fed human neonates. The estimated methionine requirement expressed as a proportion of the methionine content of current commercial pediatric PN solutions was 90% (range: 48-90%) of that found in the lowest methionine-containing PN solution.
Collapse
|