1
|
Bindellini D, Michelet R, Aulin LBS, Melin J, Neumann U, Blankenstein O, Huisinga W, Whitaker MJ, Ross R, Kloft C. A quantitative modeling framework to understand the physiology of the hypothalamic-pituitary-adrenal axis and interaction with cortisol replacement therapy. J Pharmacokinet Pharmacodyn 2024; 51:809-824. [PMID: 38977635 PMCID: PMC11579075 DOI: 10.1007/s10928-024-09934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Congenital adrenal hyperplasia (CAH) is characterized by impaired adrenal cortisol production. Hydrocortisone (synthetic cortisol) is the drug-of-choice for cortisol replacement therapy, aiming to mimic physiological cortisol circadian rhythm. The hypothalamic-pituitary-adrenal (HPA) axis controls cortisol production through the pituitary adrenocorticotropic hormone (ACTH) and feedback mechanisms. The aim of this study was to quantify key mechanisms involved in the HPA axis activity regulation and their interaction with hydrocortisone therapy. Data from 30 healthy volunteers was leveraged: Endogenous ACTH and cortisol concentrations without any intervention as well as cortisol concentrations measured after dexamethasone suppression and single dose administration of (i) 0.5-10 mg hydrocortisone as granules, (ii) 20 mg hydrocortisone as granules and intravenous bolus. A stepwise model development workflow was used: A newly developed model for endogenous ACTH and cortisol was merged with a refined hydrocortisone pharmacokinetic model. The joint model was used to simulate ACTH and cortisol trajectories in CAH patients with varying degrees of enzyme deficiency, with or without hydrocortisone administration, and healthy individuals. Time-dependent ACTH-driven endogenous cortisol production and cortisol-mediated feedback inhibition of ACTH secretion processes were quantified and implemented in the model. Comparison of simulated ACTH and cortisol trajectories between CAH patients and healthy individuals showed the importance of administering hydrocortisone before morning ACTH secretion peak time to suppress ACTH overproduction observed in untreated CAH patients. The developed framework allowed to gain insights on the physiological mechanisms of the HPA axis regulation, its perturbations in CAH and interaction with hydrocortisone administration, paving the way towards cortisol replacement therapy optimization.
Collapse
Affiliation(s)
- Davide Bindellini
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training program PharMetrX, Berlin, Germany
| | - Robin Michelet
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| | - Linda B S Aulin
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Johanna Melin
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training program PharMetrX, Berlin, Germany
| | - Uta Neumann
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Blankenstein
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | | | | | - Charlotte Kloft
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
2
|
Pala ÖO, Çıtaker S, Güney E, Sepici A, Güveli GM, Arslan B, Gürü M. Effectiveness of osteopathic manipulative applications on hypothalamic-pituitary-adrenal (HPA) axis in youth with major depressive disorder: a randomized double-blind, placebo-controlled trial. J Osteopath Med 2024; 124:267-275. [PMID: 38414339 DOI: 10.1515/jom-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
CONTEXT Osteopathic treatments regulate the neurovegetative system through joint mobilizations and manipulations, and myofascial and craniosacral techniques. Despite the growing body of research, the precise impact of osteopathic medicine on the autonomic nervous system (ANS) is not yet fully elucidated. As to Kuchera's techniques, the stimulation of the sympathetic trunk and prevertebral ganglia contributed to harmonization of the sympathetic activity. However, potential relationships between the harmonization of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis largely remain uncertain and warrant further exploration. OBJECTIVES This study was designed to evaluate the effectiveness of the osteopathic sympathetic harmonization (OSH) on the SNS and the HPA axis in youth with major depressive disorder (MDD). METHODS The study included 39 youths aged 15-21 years and diagnosed with MDD. The participants were randomly assigned into either the OSH or the placebo group. Stimulation was performed on the sympathetic truncus and prevertebral ganglia in the OSH group. The stimulation of the placebo group was performed with a lighter touch and a shorter duration in similar areas. Each participant completed the Beck Depression Inventory (BDI) and the State and Trait Anxiety Inventory (SAI and TAI) before the application. Blood pressure (BP) and pulse measurements were made, and saliva samples were taken before, immediately after, and 20 min after application. RESULTS The baseline BDI (p=0.617) and TAI (p=0.322) scores were similar in both groups. Although the SAI scores decreased in both groups postintervention, no statistically significant difference was found between the two groups. Subjects who received OSH had a decrease in α-amylase level (p=0.028) and an increase in cortisol level (p=0.009) 20 min after the procedure. CONCLUSIONS Following OSH application in depressed youth, SNS activity may decrease, whereas HPA axis activity may increase. Future studies may examine the therapeutic efficacy of repeated OSH applications in depressed individuals.
Collapse
Affiliation(s)
- Ömer O Pala
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, 52942 Bolu Abant İzzet Baysal University , Bolu, Türkiye
| | - Seyit Çıtaker
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, 37511 Gazi University , Ankara, Türkiye
| | - Esra Güney
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, 64001 Gazi University , Ankara, Türkiye
| | - Aylin Sepici
- Department of Medical Biochemistry, Faculty of Medicine, 64001 Gazi University , Ankara, Türkiye
| | - Güner M Güveli
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, 64001 Gazi University , Ankara, Türkiye
| | - Burak Arslan
- Department of Medical Biochemistry, Faculty of Medicine, 64001 Gazi University , Ankara, Türkiye
| | - Meltem Gürü
- Medico-Social Center, 37511 Gazi University , Ankara, Türkiye
| |
Collapse
|
3
|
Munteanu C, Turti S, Achim L, Muresan R, Souca M, Prifti E, Mârza SM, Papuc I. The Relationship between Circadian Rhythm and Cancer Disease. Int J Mol Sci 2024; 25:5846. [PMID: 38892035 PMCID: PMC11172077 DOI: 10.3390/ijms25115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The circadian clock regulates biological cycles across species and is crucial for physiological activities and biochemical reactions, including cancer onset and development. The interplay between the circadian rhythm and cancer involves regulating cell division, DNA repair, immune function, hormonal balance, and the potential for chronotherapy. This highlights the importance of maintaining a healthy circadian rhythm for cancer prevention and treatment. This article investigates the complex relationship between the circadian rhythm and cancer, exploring how disruptions to the internal clock may contribute to tumorigenesis and influence cancer progression. Numerous databases are utilized to conduct searches for articles, such as NCBI, MEDLINE, and Scopus. The keywords used throughout the academic archives are "circadian rhythm", "cancer", and "circadian clock". Maintaining a healthy circadian cycle involves prioritizing healthy sleep habits and minimizing disruptions, such as consistent sleep schedules, reduced artificial light exposure, and meal timing adjustments. Dysregulation of the circadian clock gene and cell cycle can cause tumor growth, leading to the need to regulate the circadian cycle for better treatment outcomes. The circadian clock components significantly impact cellular responses to DNA damage, influencing cancer development. Understanding the circadian rhythm's role in tumor diseases and their therapeutic targets is essential for treating and preventing cancer. Disruptions to the circadian rhythm can promote abnormal cell development and tumor metastasis, potentially due to immune system imbalances and hormonal fluctuations.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sabina Turti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Larisa Achim
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Raluca Muresan
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Marius Souca
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Eftimia Prifti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
4
|
Reddy R, Guo Y, Raju V, Faghih RT. Characterization of Leptin Secretion in Premenopausal Obese Women Treated with Bromocriptine. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38082631 DOI: 10.1109/embc40787.2023.10340951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Leptin, a hormone secreted by adipose tissue, is primarily responsible for inhibiting hunger and maintaining energy balance. Improper leptin secretion may result in hyperleptinemia (excess secretion of leptin) or leptin resistance, both of which contribute to obesity. Diagnosing abnormal leptin secretion may help treat this underlying cause of obesity. Therefore, continuous monitoring of the level of leptin may help characterize its secretion dynamics and also help devise an appropriate treatment. In this research, we consider leptin hormone concentration data taken over a 24 hour time period from eighteen healthy premenopausal obese women before and after treatment with a dopamine agonist, bromocriptine, and deconvolve the observed leptin hormone levels to estimate the number, timing, and magnitude of the underlying leptin secretory pulses. We find that there is an overall decrease in leptin secretion, particularly during sleep, but the changes in the secretory and clearance rates, and the number of pulses underlying the secretion process are not statistically significant.Clinical relevance- This work seeks to understand the effect of bromocriptine on leptin secretory dynamics and will help further current understanding of the effect of bromocriptine in relation to obesity.
Collapse
|
5
|
McDougle JM, Mangine GT, Townsend JR, Jajtner AR, Feito Y. Acute physiological outcomes of high-intensity functional training: a scoping review. PeerJ 2023; 11:e14493. [PMID: 36620744 PMCID: PMC9817969 DOI: 10.7717/peerj.14493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Background Systematic reviews and meta-analyses related to high-intensity functional training (HIFT) have been conducted. However, due to a restricted pool of available research, these investigations are often limited in scope. As such, a scoping review investigating the present literature surrounding the acute physiological response to HIFT-based exercise was chosen as a more appropriate structured review. Methodology A scoping review was conducted following Arksey and O'Malley's framework. Three large scale databases were searched to reveal any article pertaining to HIFT and related exercise terminology. Results A total of 2,241 articles were found during the initial search. Following this, titles, then abstracts, and full-texts were reviewed to determine inclusion eligibility. A total of 60 articles which investigated a combined total of 35 unique HIFT workouts were included within this review. Conclusions A variety of physiological parameters and HIFT workouts have been examined. Markers of intensity (e.g., blood lactate concentrations, heart rate) have been most consistently assessed across all studies, and these support the idea that HIFT workouts are typically performed at high-intensity. In contrast, the inclusion of most other measures (e.g., hormonal, markers of inflammation and damage, energy expenditure, performance) has been inconsistent and has thus, limited the possibility for making generalized conclusions. Differences in study methodologies have further impacted conclusions, as different studies have varied in sample population characteristics, workouts assessed, and time points. Though it may be impossible to comprehensively research all possible HIFT workouts, consistent adoption of population definitions and workload quantification may overcome this challenge and assist with future comparisons.
Collapse
Affiliation(s)
- Jacob M. McDougle
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Gerald T. Mangine
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
| | - Jeremy R. Townsend
- Exercise and Nutrition Science, Lipscomb University, Nashville, TN, United States
| | - Adam R. Jajtner
- Exercise Physiology, Kent State University, Kent, OH, United States
| | - Yuri Feito
- Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, United States
- American College of Sports Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Parker C, Nelson E, Zhang T. VeVaPy, a Python Platform for Efficient Verification and Validation of Systems Biology Models with Demonstrations Using Hypothalamic-Pituitary-Adrenal Axis Models. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1747. [PMID: 36554152 PMCID: PMC9777964 DOI: 10.3390/e24121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
In order for mathematical models to make credible contributions, it is essential for them to be verified and validated. Currently, verification and validation (V&V) of these models does not meet the expectations of the system biology and systems pharmacology communities. Partially as a result of this shortfall, systemic V&V of existing models currently requires a lot of time and effort. In order to facilitate systemic V&V of chosen hypothalamic-pituitary-adrenal (HPA) axis models, we have developed a computational framework named VeVaPy-taking care to follow the recommended best practices regarding the development of mathematical models. VeVaPy includes four functional modules coded in Python, and the source code is publicly available. We demonstrate that VeVaPy can help us efficiently verify and validate the five HPA axis models we have chosen. Supplied with new and independent data, VeVaPy outputs objective V&V benchmarks for each model. We believe that VeVaPy will help future researchers with basic modeling and programming experience to efficiently verify and validate mathematical models from the fields of systems biology and systems pharmacology.
Collapse
Affiliation(s)
- Christopher Parker
- Department of Pharmacology & Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Erik Nelson
- Department of Psychiatry & Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Tongli Zhang
- Department of Pharmacology & Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
7
|
Helvacı BC, Başer H, Çakır B. Mini-review: pump therapy in endocrinology & metabolism beyond diabetes. Endocrine 2022; 76:245-252. [PMID: 35169961 DOI: 10.1007/s12020-022-03007-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/01/2022] [Indexed: 02/05/2023]
Abstract
The first pump developed by Dr. Kadish and his team in 1963 aimed to "continue subcutaneous insulin infusion". The number of patients using insulin pumps has increased since the 1980s. This historical perspective has labeled pump therapy in endocrinology and metabolism synonymous with insulin pumps. However, certain other hormonal disorders might also benefit from this kind of treatment. Pump therapy is currently the best approach to achieve physiological mimicry. Furthermore, it may help in overcoming pharmacokinetic issues or allergies. Until now, hormone replacement via pumps has been a salvage method for complex cases at the expense of increased costs. However, it is believed that applications of pump treatment will widen in the future owing to the rapidly evolving technology. In this mini review, data on pump use for patients with adrenal insufficiency, hypogonadism, hypoparathyroidism, congenital adrenal hyperplasia, and congenital hyperinsulinism have been briefly summarized. The study has aimed at covering all the relevant clinical studies and important case reports/series. METHODS: A systematic literature search has been conducted on PubMed database seeking articles published until May 2021 using a combination of the following Medical Subject Headings terms and keywords: pump "OR" continue infusion "AND" (adrenal insufficiency "OR" Addison "OR" hydrocortisone "OR" hypoparathyroidism "OR teriparatide" "OR" somatostatin "OR" hypogonadism "OR" hypoglycemia "OR" endocrinology "OR" hormone replacement). In addition, the reference publications in the identified articles have also been reviewed.
Collapse
Affiliation(s)
| | - Hüsniye Başer
- Ankara City Hospital, Department of Endocrinology & Metabolism, Ankara, Turkey and Yıldırım Beyazıt University Faculty of Medicine Department of Endocrinology & Metabolism, Ankara, Turkey
| | - Bekir Çakır
- Ankara City Hospital, Department of Endocrinology & Metabolism, Ankara, Turkey and Yıldırım Beyazıt University Faculty of Medicine Department of Endocrinology & Metabolism, Ankara, Turkey
| |
Collapse
|
8
|
Capelle CM, Chen A, Zeng N, Baron A, Grzyb K, Arns T, Skupin A, Ollert M, Hefeng FQ. Stress hormone signaling inhibits Th1 polarization in a CD4 T-cell-intrinsic manner via mTORC1 and the circadian gene PER1. Immunology 2022; 165:428-444. [PMID: 35143696 PMCID: PMC9426625 DOI: 10.1111/imm.13448] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Stress hormones are believed to skew the CD4 T‐cell differentiation towards a Th2 response via a T‐cell‐extrinsic mechanism. Using isolated primary human naïve and memory CD4 T cells, here we show that both adrenergic‐ and glucocorticoid‐mediated stress signalling pathways play a CD4 naïve T‐cell‐intrinsic role in regulating the Th1/Th2 differentiation balance. Both stress hormones reduced the Th1 programme and cytokine production by inhibiting mTORC1 signalling via two parallel mechanisms. Stress hormone signalling inhibited mTORC1 in naïve CD4 T cells (1) by affecting the PI3K/AKT pathway and (2) by regulating the expression of the circadian rhythm gene, period circadian regulator 1 (PER1). Both stress hormones induced the expression of PER1, which inhibited mTORC1 signalling, thus reducing Th1 differentiation. This previously unrecognized cell‐autonomous mechanism connects stress hormone signalling with CD4 T‐cell differentiation via mTORC1 and a specific circadian clock gene, namely PER1.
Collapse
Affiliation(s)
- Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, 2, avenue de Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Anna Chen
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, 2, avenue de Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Thais Arns
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, 5000 C, Denmark
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, D-45122, Essen, Germany
| |
Collapse
|
9
|
Gans IM, Coffman JA. Glucocorticoid-Mediated Developmental Programming of Vertebrate Stress Responsivity. Front Physiol 2021; 12:812195. [PMID: 34992551 PMCID: PMC8724051 DOI: 10.3389/fphys.2021.812195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids, vertebrate steroid hormones produced by cells of the adrenal cortex or interrenal tissue, function dynamically to maintain homeostasis under constantly changing and occasionally stressful environmental conditions. They do so by binding and thereby activating nuclear receptor transcription factors, the Glucocorticoid and Mineralocorticoid Receptors (MR and GR, respectively). The GR, by virtue of its lower affinity for endogenous glucocorticoids (cortisol or corticosterone), is primarily responsible for transducing the dynamic signals conveyed by circadian and ultradian glucocorticoid oscillations as well as transient pulses produced in response to acute stress. These dynamics are important determinants of stress responsivity, and at the systemic level are produced by feedforward and feedback signaling along the hypothalamus-pituitary-adrenal/interrenal axis. Within receiving cells, GR signaling dynamics are controlled by the GR target gene and negative feedback regulator fkpb5. Chronic stress can alter signaling dynamics via imperfect physiological adaptation that changes systemic and/or cellular set points, resulting in chronically elevated cortisol levels and increased allostatic load, which undermines health and promotes development of disease. When this occurs during early development it can "program" the responsivity of the stress system, with persistent effects on allostatic load and disease susceptibility. An important question concerns the glucocorticoid-responsive gene regulatory network that contributes to such programming. Recent studies show that klf9, a ubiquitously expressed GR target gene that encodes a Krüppel-like transcription factor important for metabolic plasticity and neuronal differentiation, is a feedforward regulator of GR signaling impacting cellular glucocorticoid responsivity, suggesting that it may be a critical node in that regulatory network.
Collapse
Affiliation(s)
- Ian M. Gans
- MDI Biological Laboratory, Salisbury Cove, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - James A. Coffman
- MDI Biological Laboratory, Salisbury Cove, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
10
|
Gans IM, Grendler J, Babich R, Jayasundara N, Coffman JA. Glucocorticoid-Responsive Transcription Factor Krüppel-Like Factor 9 Regulates fkbp5 and Metabolism. Front Cell Dev Biol 2021; 9:727037. [PMID: 34692682 PMCID: PMC8526736 DOI: 10.3389/fcell.2021.727037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Krüppel-like factor 9 (Klf9) is a feedforward regulator of glucocorticoid receptor (GR) signaling. Here we show that in zebrafish klf9 is expressed with GR-dependent oscillatory dynamics in synchrony with fkbp5, a GR target that encodes a negative feedback regulator of GR signaling. We found that fkbp5 transcript levels are elevated in klf9 -/- mutants and that Klf9 associates with chromatin at the fkbp5 promoter, which becomes hyperacetylated in klf9 -/ - mutants, suggesting that the GR regulates fkbp5 via an incoherent feedforward loop with klf9. As both the GR and Fkbp5 are known to regulate metabolism, we asked how loss of Klf9 affects metabolic rate and gene expression. We found that klf9 -/- mutants have a decreased oxygen consumption rate (OCR) and upregulate glycolytic genes, the promoter regions of which are enriched for potential Klf9 binding motifs. Our results suggest that Klf9 functions downstream of the GR to regulate cellular glucocorticoid responsivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Ian M. Gans
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | | | - Remy Babich
- The School of Marine Sciences, University of Maine, Orono, ME, United States
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - James A. Coffman
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
11
|
O'Byrne NA, Yuen F, Butt WZ, Liu PY. Sleep and Circadian Regulation of Cortisol: A Short Review. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 18:178-186. [PMID: 35128146 DOI: 10.1016/j.coemr.2021.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The central circadian pacemaker (CCP) located in the suprachiasmatic nucleus (SCN) of the hypothalamus drives the 24-hour pattern in cortisol, which functions as the main central synchronizing signal that coordinates peripheral clocks in organs that control whole body metabolism. A superimposed pulsatile pattern of cortisol allows rapid responses that fine tune the body's reaction to changes in the environment. In addition to coordinating metabolic processes to predictable environmental events, cortisol is the main catabolic signal which acts with testosterone, the quintessential male anabolic hormone, to maintain catabolic-anabolic homeostasis in men. Sleep restriction, when sufficiently substantial, increases late afternoon/early evening cortisol, but does not alter 24-hour cortisol; whereas even maximal acute circadian misalignment only slightly delays the cortisol rhythm. Prolonged circadian misalignment decreases overall cortisol exposure. The implications of these regulatory changes on health and disease requires further evaluation.
Collapse
Affiliation(s)
- Nora A O'Byrne
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Fiona Yuen
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Waleed Z Butt
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Peter Y Liu
- The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA.,Department of Medicine, Division of Endocrinology, David Geffen School of Medicine at UCLA
| |
Collapse
|
12
|
Applications of cosinor rhythmometry in pharmacology. J Pharmacokinet Pharmacodyn 2021; 48:339-359. [PMID: 33755872 DOI: 10.1007/s10928-021-09748-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Study design and data analysis are two important aspects relevant to chronopharmacometrics. Blunders can be avoided by recognizing that most physiological variables are circadian periodic. Both ill health and treatment can affect the amplitude, phase, and/or period of circadian (and other) rhythms, in addition to their mean. The involvement of clock genes in molecular pathways related to important physiological systems underlies the bidirectional relationship often seen between circadian rhythm disruption and disease risk. Circadian rhythm characteristics of marker rhythms interpreted in the light of chronobiologic reference values represent important diagnostic tools. A set of cosinor-related programs is presented. They include the least squares fit of multiple-frequency cosine functions to model the time structure of individual records; a cosinor-based spectral analysis to detect periodic signals; the population-mean cosinor to generalize inferences; the chronobiologic serial section to follow the time course of changing rhythm parameters over time; and parameter tests to assess differences among populations. Relative merits of other available cosinor and non-parametric algorithms are reviewed. Parameter tests to compare individual records and a self-starting cumulative sum (CUSUM) make personalized chronotherapy possible, where the treatment of each patient relies on an N-of-1 design. Methods are illustrated in a few examples relevant to endocrinology, cancer and cardiology. New sensing technology yielding large personal data sets is likely to change the healthcare system. Chronobiologic concepts and methods should become an integral part of these evolving systems.
Collapse
|
13
|
Gheller BJF, Li AC, Gheller ME, Armstrong T, Vandenboer E, Bellissimo N, Anini Y, Hamilton J, Nunes F, Mollard RC, Anderson GH, Luhovyy BL. The effect of dairy products and non-dairy snacks on food intake, subjective appetite and cortisol levels in children: a randomized control study. Appl Physiol Nutr Metab 2021; 46:1097-1104. [PMID: 33725464 DOI: 10.1139/apnm-2020-0909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dairy snacks are available in various physical forms and their consumption is linked to improved metabolic health. The objective of this study was to determine the effect of dairy snacks of different physical forms on short-term food intake (FI), subjective appetite, and the stress hormone, cortisol, in children. Following a repeated-measures crossover design, 40 children aged 9-14 years randomly consumed 1 of 5 isoenergetic (180 kcal) snacks per study session. These snacks included solid (potato chips, cookies, and cheese), semi-solid (Greek yogurt), and fluid (2% fat milk) snacks. FI was measured 120 min after snack consumption. Subjective appetite was measured at 0 (immediately before the snack), 15, 30, 45, 60, 90, and 120 min. Salivary cortisol (n = 18) was measured after the Greek yogurt and cookie snacks at 0, 30, 60, 90, and 120 min. FI did not differ between snacks (P = 0.15). The Greek yogurt (P < 0.0001) and cheese (P = 0.0009) snacks reduced average appetite compared with the 2% fat milk snack. Salivary cortisol levels were not affected by snack (P = 0.84). This study demonstrates that dairy snacks are as effective as other popular snacks at influencing subsequent FI. However, solid and semi-solid dairy snacks are more effective at repressing subjective appetite than a fluid dairy snack. Registered at ClinicalTrials.gov (NCT02484625). Novelty: Milk, Greek yogurt and cheese have a similar effect on short-term food intake in children as popular potato chips and cookie snacks. Solid, semi-solid and liquid snacks have a similar effect on short-term food intake in children.
Collapse
Affiliation(s)
- Brandon J F Gheller
- Department of Applied Human Nutrition, Mount Saint Vincent University, 166 Bedford, Hwy, Halifax, NS B3M 2J6, Canada
| | - Athena C Li
- Department of Applied Human Nutrition, Mount Saint Vincent University, 166 Bedford, Hwy, Halifax, NS B3M 2J6, Canada
| | - Mary E Gheller
- Department of Applied Human Nutrition, Mount Saint Vincent University, 166 Bedford, Hwy, Halifax, NS B3M 2J6, Canada
| | - Tove Armstrong
- Department of Applied Human Nutrition, Mount Saint Vincent University, 166 Bedford, Hwy, Halifax, NS B3M 2J6, Canada
| | - Erik Vandenboer
- Department of Applied Human Nutrition, Mount Saint Vincent University, 166 Bedford, Hwy, Halifax, NS B3M 2J6, Canada
| | - Nick Bellissimo
- School of Nutrition, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3, Canada
| | - Younes Anini
- Department of Obstetrics and Gynaecology, Department of Physiology and Biophysics, Dalhousie University, 6299 South St., Halifax, NS B3H 4R2, Canada
| | - Jill Hamilton
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada.,Department of Paediatrics, University of Toronto, 27 King's College Cir, Toronto, ON M5S 3K1, Canada
| | - Fernando Nunes
- Department of Child and Youth Studies, Mount Saint Vincent University, Halifax, NS B3M 2J6, Canada
| | - Rebecca C Mollard
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, 27 King's College Cir, Toronto, ON M5S 3K1, Canada
| | - Bohdan L Luhovyy
- Department of Applied Human Nutrition, Mount Saint Vincent University, 166 Bedford, Hwy, Halifax, NS B3M 2J6, Canada.,Department of Physiology and Biophysics, Dalhousie University, 6299 South St., Halifax, NS B3H 4R2, Canada
| |
Collapse
|
14
|
Cheng X, D'Orsogna MR, Chou T. Mathematical modeling of depressive disorders: Circadian driving, bistability and dynamical transitions. Comput Struct Biotechnol J 2020; 19:664-690. [PMID: 33510869 PMCID: PMC7815682 DOI: 10.1016/j.csbj.2020.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is a key neuroendocrine system implicated in stress response, major depression disorder, and post-traumatic stress disorder. We present a new, compact dynamical systems model for the response of the HPA axis to external stimuli, representing stressors or therapeutic intervention, in the presence of a circadian input. Our work builds upon previous HPA axis models where hormonal dynamics are separated into slow and fast components. Several simplifications allow us to derive an effective model of two equations, similar to a multiplicative-input FitzHugh-Nagumo system, where two stable states, a healthy and a diseased one, arise. We analyze the effective model in the context of state transitions driven by external shocks to the hypothalamus, but also modulated by circadian rhythms. Our analyses provide mechanistic insight into the effects of the circadian cycle on input driven transitions of the HPA axis and suggest a circadian influence on exposure or cognitive behavioral therapy in depression, or post-traumatic stress disorder treatment.
Collapse
Affiliation(s)
- Xiaoou Cheng
- School of Mathematical Sciences, Peking University, Haidian District, Beijing 100871, China
| | - Maria R D'Orsogna
- Dept. of Mathematics, California State University, Northridge, CA 91330, United States
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095, United States
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095, United States
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|
15
|
Woldeamanuel YW, Sanjanwala BM, Cowan RP. Endogenous glucocorticoids may serve as biomarkers for migraine chronification. Ther Adv Chronic Dis 2020; 11:2040622320939793. [PMID: 32973989 PMCID: PMC7495027 DOI: 10.1177/2040622320939793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023] Open
Abstract
Aims: The aims of this study were to: (a) identify differences in serum and cerebrospinal fluid (CSF) glucocorticoids among episodic migraine (EM) and chronic migraine (CM) patients compared with controls; (b) determine longitudinal changes in serum glucocorticoids in CM patients; and (c) determine migraine-related clinical features contributing to glucocorticoid levels. Methods: Serum and CSF levels of cortisol and corticosterone were measured using liquid chromatography-mass spectrometry among adult patients with EM, CM, and controls. Serum and CSF samples were collected from 26 and four participants in each group, respectively. Serum glucocorticoids were measured at a second timepoint after 2 years among 10 of the CM patients, six of whom reverted to EM while four persisted as CM. Receiver operating characteristic (ROC) analysis was made to assess the migraine diagnostic performance of glucocorticoids. Regression analysis was conducted to determine the link between glucocorticoid levels and migraine-related clinical variables. Results: CM patients exhibited significantly elevated serum and CSF levels of cortisol and corticosterone compared with controls and EM patients (age, sex, body mass index adjusted; Kruskal–Wallis p < 0.05). ROC showed area-under-curve of 0.89 to differentiate CM from EM. CM patients with remission had their serum glucocorticoids return to control or near EM levels (p < 0.05). Persistent CM showed unremitting serum glucocorticoids. Migraine frequency and disability contributed to increased cortisol, while pain self-efficacy predicted lower cortisol levels (p < 0.005). Conclusion: Endogenous glucocorticoids may be biomarkers for migraine progression and for monitoring treatment response. Improving pain self-efficacy skills may help optimize endogenous glucocorticoid levels, which in turn may prevent migraine attacks.
Collapse
Affiliation(s)
- Yohannes W Woldeamanuel
- Department of Neurology and Neurological Sciences, Division of Headache, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Bharati M Sanjanwala
- Department of Neurology and Neurological Sciences, Division of Headache, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert P Cowan
- Department of Neurology and Neurological Sciences, Division of Headache, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr Rev 2020; 41:bnaa002. [PMID: 32060528 PMCID: PMC7240781 DOI: 10.1210/endrev/bnaa002] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
The past decade has seen several critical advances in our understanding of hypothalamic-pituitary-adrenal (HPA) axis regulation. Homeostatic physiological circuits need to integrate multiple internal and external stimuli and provide a dynamic output appropriate for the response parameters of their target tissues. The HPA axis is an example of such a homeostatic system. Recent studies have shown that circadian rhythmicity of the major output of this system-the adrenal glucocorticoid hormones corticosterone in rodent and predominately cortisol in man-comprises varying amplitude pulses that exist due to a subhypothalamic pulse generator. Oscillating endogenous glucocorticoid signals interact with regulatory systems within individual parts of the axis including the adrenal gland itself, where a regulatory network can further modify the pulsatile release of hormone. The HPA axis output is in the form of a dynamic oscillating glucocorticoid signal that needs to be decoded at the cellular level. If the pulsatile signal is abolished by the administration of a long-acting synthetic glucocorticoid, the resulting disruption in physiological regulation has the potential to negatively impact many glucocorticoid-dependent bodily systems. Even subtle alterations to the dynamics of the system, during chronic stress or certain disease states, can potentially result in changes in functional output of multiple cells and tissues throughout the body, altering metabolic processes, behavior, affective state, and cognitive function in susceptible individuals. The recent development of a novel chronotherapy, which can deliver both circadian and ultradian patterns, provides great promise for patients on glucocorticoid treatment.
Collapse
Affiliation(s)
- Stafford L Lightman
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew T Birnie
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | |
Collapse
|
17
|
Gibbison B, Keenan DM, Roelfsema F, Evans J, Phillips K, Rogers CA, Angelini GD, Lightman SL. Dynamic Pituitary-Adrenal Interactions in the Critically Ill after Cardiac Surgery. J Clin Endocrinol Metab 2020; 105:dgz206. [PMID: 31738827 PMCID: PMC7089849 DOI: 10.1210/clinem/dgz206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/15/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Patients with critical illness are thought to be at risk of adrenal insufficiency. There are no models of dynamic hypothalamic-pituitary-adrenal (HPA) axis function in this group of patients and thus current methods of diagnosis are based on aggregated, static models. OBJECTIVE To characterize the secretory dynamics of the HPA axis in the critically ill (CI) after cardiac surgery. DESIGN Mathematical modeling of cohorts. SETTING Cardiac critical care unit. PATIENTS 20 male patients CI at least 48 hours after cardiac surgery and 19 healthy (H) male volunteers. INTERVENTIONS None. MAIN OUTCOME MEASURES Measures of hormone secretory dynamics were generated from serum adrenocorticotrophic hormone (ACTH) sampled every hour and total cortisol every 10 min for 24 h. RESULTS All CI patients had pulsatile ACTH and cortisol profiles. CI patients had similar ACTH secretion (1036.4 [737.6] pg/mL/24 h) compared to the H volunteers (1502.3 [1152.2] pg/mL/24 h; P = .20), but increased cortisol secretion (CI: 14 447.0 [5709.3] vs H: 5915.5 [1686.7)] nmol/L/24 h; P < .0001). This increase in cortisol was due to nonpulsatile (CI: 9253.4 [3348.8] vs H: 960 [589.0] nmol/L/24 h, P < .0001), rather than pulsatile cortisol secretion (CI: 5193.1 [3018.5] vs H: 4955.1 [1753.6] nmol/L/24 h; P = .43). Seven (35%) of the 20 CI patients had cortisol pulse nadirs below the current international guideline threshold for critical illness-related corticosteroid insufficiency, but an overall secretion that would not be considered deficient. CONCLUSIONS This study supports the premise that current tests of HPA axis function are unhelpful in the diagnosis of adrenal insufficiency in the CI. The reduced ACTH and increase in nonpulsatile cortisol secretion imply that the secretion of cortisol is driven by factors outside the HPA axis in critical illness.
Collapse
Affiliation(s)
- Ben Gibbison
- Department of Anaesthesia, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniel M Keenan
- Department of Statistics, University of Virginia, Charlottesville, VA, US
| | - Ferdinand Roelfsema
- Department of Internal Medicine, Section Endocrinology, University of Leiden, Leiden, The Netherlands
| | - Jon Evans
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Kirsty Phillips
- Department of Pathology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Chris A Rogers
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Department of Cardiac Surgery, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Bhake R, Russell GM, Kershaw Y, Stevens K, Zaccardi F, Warburton VEC, Linthorst ACE, Lightman SL. Continuous Free Cortisol Profiles in Healthy Men. J Clin Endocrinol Metab 2020; 105:5570194. [PMID: 31529059 DOI: 10.1210/clinem/dgz002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/08/2019] [Indexed: 12/26/2022]
Abstract
CONTEXT In humans, approximately 95% of circulating cortisol is bound to corticosteroid-binding globulin and albumin. It is only the free fraction that is biologically active and can activate signaling pathways via glucocorticoid hormone receptors in cells. Microdialysis is a well-established technique that enables the sampling of molecules in different compartments of the body, including extracellular fluid. This is the first study validating a rapid sampling microdialysis method measuring free cortisol in the subcutaneous and blood compartments of healthy volunteers. METHODS Healthy nonsmoking volunteers (42 men, aged 18-24 years; body mass index 18-25 kg/m2) received placebo (saline), 250 μg Synacthen, or 1 mg dexamethasone with 10-minute sampling to measure total and free cortisol (subcutaneous, intravenous, and saliva) for an hour before and 4 hours after administration. RESULTS Following stimulation by Synacthen, total serum cortisol and free cortisol in both compartments rose significantly, achieving and maintaining maximum levels between 2 and 3 hours following the stimulus. A decline in cortisol levels was evident after the administration of dexamethasone or placebo, but there was a clear pulsatile activity around lunchtime in the latter group, which was prominent in the blood compartment (total and free cortisol). There was good correlation between serum total and free cortisol (subcutaneous and intravenous) in the Synacthen and dexamethasone groups with no significant delay (less than 5 minutes) between total and free cortisol. CONCLUSIONS This seminal study demonstrated the dynamic responses of total blood cortisol and microdialysis derived free cortisol in blood, subcutaneous tissue, and saliva in men.
Collapse
Affiliation(s)
- Ragini Bhake
- University Hospitals Leicester NHS Trust, Leicester, UK
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yvonne Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kara Stevens
- Medical Statistics, Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Francesco Zaccardi
- Leicester Real World Evidence Unit, Leicester Diabetes Centre, University of Leicester, Leicester, UK
| | | | - Astrid C E Linthorst
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
19
|
Pednekar DD, Amin MR, Azgomi HF, Aschbacher K, Crofford LJ, Faghih RT. Characterization of Cortisol Dysregulation in Fibromyalgia and Chronic Fatigue Syndromes: A State-Space Approach. IEEE Trans Biomed Eng 2020; 67:3163-3172. [PMID: 32149617 DOI: 10.1109/tbme.2020.2978801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) are complicated medical disorders, with little known etiologies. The purpose of this research is to characterize FMS and CFS by studying the variations in cortisol secretion patterns, timings, amplitudes, the number of underlying pulses, as well as infusion and clearance rates of cortisol. METHODS Using a physiological state-space model with plausible constraints, we estimate the hormonal secretory events and the physiological system parameters (i.e., infusion and clearance rates). RESULTS Our results show that the clearance rate of cortisol is lower in FMS patients as compared to their matched healthy individuals based on a simplified cortisol secretion model. Moreover, the number, magnitude, and energy of hormonal secretory events are lower in FMS patients. During early morning hours, the magnitude and energy of the hormonal secretory events are higher in CFS patients. CONCLUSION Due to lower cortisol clearance rate, there is a higher accumulation of cortisol in FMS patients as compared to their matched healthy subjects. As the FMS patient accumulates higher cortisol residues, internal inhibitory feedback regulates the hormonal secretory events. Therefore, the FMS patients show a lower number, magnitude, and energy of hormonal secretory events. Though CFS patients have the same number of secretory events, they secrete lower quantities during early morning hours. When we compare the results for CFS patients against FMS patients, we observe different cortisol alteration patterns. SIGNIFICANCE Characterizing CFS and FMS based on the cortisol alteration will help us to develop novel methods for treating these disorders.
Collapse
|
20
|
Taghvafard H, Cao M, Kawano Y, Faghih RT. Design of Intermittent Control for Cortisol Secretion Under Time-Varying Demand and Holding Cost Constraints. IEEE Trans Biomed Eng 2020; 67:556-564. [DOI: 10.1109/tbme.2019.2918432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Pednekar DD, Amin MR, Azgomi HF, Aschbacher K, Crofford LJ, Faghih RT. A System Theoretic Investigation of Cortisol Dysregulation in Fibromyalgia Patients with Chronic Fatigue. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6896-6901. [PMID: 31947425 DOI: 10.1109/embc.2019.8857427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fibromyalgia Syndrome (FMS) and Chronic Fatigue Syndrome (CFS) are complex medical conditions with similar symptoms such as anxiety, fatigue, depression, headaches, muscle aches and joint pain. The etiology of both these syndromes is unknown. The objective of this study is to characterize FMS, both in the presence and in the absence of CFS, by analyzing variations in cortisol secretion patterns, timings, amplitudes, and the number of the underlying pulses as well as infusion and clearance rates. The comparison is performed against matched healthy control subjects. We estimate the hormonal secretory events by deconvolving cortisol data using a two-step coordinate descent approach. The first step implements a sparse recovery approach to infer the amplitudes and the timings of the cortisol secretion events from limited cortisol hormone data. The main advantage of this method is estimating the cortisol secretory events using a system theoretic approach. The second step is to estimate the physiological system parameters (i.e. infusion and clearance rates). This approach has been verified on healthy individuals previously. Our results show that the clearance rate of cortisol by the liver is relatively lower in patients as compared to the matched healthy individuals. This suggests that there is a relatively higher accumulation of serum cortisol in patients when compared to matched healthy subjects.
Collapse
|
22
|
Stavreva DA, Garcia DA, Fettweis G, Gudla PR, Zaki GF, Soni V, McGowan A, Williams G, Huynh A, Palangat M, Schiltz RL, Johnson TA, Presman DM, Ferguson ML, Pegoraro G, Upadhyaya A, Hager GL. Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Mol Cell 2019; 75:1161-1177.e11. [PMID: 31421980 PMCID: PMC6754282 DOI: 10.1016/j.molcel.2019.06.042] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA; Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Prabhakar R Gudla
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - George F Zaki
- High Performance Computing Group, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vikas Soni
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Andrew McGowan
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Geneva Williams
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Anh Huynh
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Murali Palangat
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Matthew L Ferguson
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Arpita Upadhyaya
- Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| |
Collapse
|
23
|
Dourida M, Tzanela M, Asimakopoulou A, Botoula E, Koutsilieris M, Philippou A. Endocrine responses after a single bout of moderate aerobic exercise in healthy adult humans. J Appl Biomed 2019; 17:46. [PMID: 34907745 DOI: 10.32725/jab.2018.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/01/2018] [Indexed: 11/05/2022] Open
Abstract
Exercise is a stress stimulus for the human organism affecting the homeostatic mechanisms of the body, depending on the type, duration, intensity and frequency of exercise. The aim of this study was to determine the effects of a moderate aerobic exercise bout on the Hypothalamo-Pituitary-Adrenal (HPA) axis acute hormonal responses in healthy adult humans. Twelve healthy male and female volunteers (age: 30.6 ± 4.4 years), performed a single bout of a 30-minute aerobic exercise at 70% of VO2max on a treadmill, following standard diet. Blood samples were collected before (t0), at the end of the exercise bout (t30), and 30 min after the completion of exercise (t60). Serum adrenocorticotropic hormone (ACTH), cortisol (COR), aldosterone (ALDO) and renin (REN) were measured. One-way ANOVA was used for statistics. ACTH and COR decreased after exercise, reaching significance (p < 0.01) 30 min after the completion of the exercise bout. ALDO increased at the end of exercise and remained elevated 30 min after its completion. REN significantly increased at the end of exercise (p < 0.05) and remained elevated. The exercise regimen used in this study had beneficial effects on the stress axis, suggesting that specific exercise protocols can be characterised by mild physiological stress-inducing effects hence be prescribed for special diseased populations.
Collapse
Affiliation(s)
- Maria Dourida
- National and Kapodistrian University of Athens, Medical School, Department of Physiology, Athens, Greece
| | - Marinella Tzanela
- Evagelismos Hospital, Department of Endocrinology-Diabetes Centre, Athens, Greece
| | - Athina Asimakopoulou
- Evagelismos Hospital, Department of Endocrinology-Diabetes Centre, Athens, Greece
| | - Efi Botoula
- Evagelismos Hospital, Department of Endocrinology-Diabetes Centre, Athens, Greece
| | - Michael Koutsilieris
- National and Kapodistrian University of Athens, Medical School, Department of Physiology, Athens, Greece
| | - Anastassios Philippou
- National and Kapodistrian University of Athens, Medical School, Department of Physiology, Athens, Greece
| |
Collapse
|
24
|
Vargas I, Vgontzas AN, Abelson JL, Faghih RT, Morales KH, Perlis ML. Altered ultradian cortisol rhythmicity as a potential neurobiologic substrate for chronic insomnia. Sleep Med Rev 2018; 41:234-243. [PMID: 29678398 PMCID: PMC6524148 DOI: 10.1016/j.smrv.2018.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 11/19/2022]
Abstract
Chronic insomnia is highly prevalent and associated with significant morbidity (i.e., confers risk for multiple psychiatric and medical disorders, such as depression and hypertension). Therefore, it is essential to identify factors that perpetuate this disorder. One candidate factor in the neurobiology of chronic insomnia is hypothalamic-pituitary-adrenal-axis dysregulation, and in particular, alterations in circadian cortisol rhythmicity. Cortisol secretory patterns, however, fluctuate with both a circadian and an ultradian rhythm (i.e., pulses every 60-120 min). Ultradian cortisol pulses are thought to be involved in the maintenance of wakefulness during the day and their relative absence at night may allow for the consolidation of sleep and/or shorter nocturnal awakenings. It is possible that the wakefulness that occurs in chronic insomnia may be associated with the aberrant occurrence of cortisol pulses at night. While cortisol pulses naturally occur with transient awakenings, it may also be the case that cortisol pulsatility becomes a conditioned phenomenon that predisposes one to awaken and/or experience prolonged nocturnal awakenings. The current review summarizes the literature on cortisol rhythmicity in subjects with chronic insomnia, and proffers the suggestion that it may be abnormalities in the ultradian rather than circadian cortisol that is associated with the pathophysiology of insomnia.
Collapse
Affiliation(s)
- Ivan Vargas
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Behavioral Sleep Medicine Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alexandros N Vgontzas
- Sleep Research and Treatment Center, Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James L Abelson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI, USA
| | - Rose T Faghih
- Computational Medicine Laboratory, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Knashawn H Morales
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Perlis
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Behavioral Sleep Medicine Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Gagnon SS, Nindl BC, Vaara JP, Santtila M, Häkkinen K, Kyröläinen H. Basal Endogenous Steroid Hormones, Sex Hormone-Binding Globulin, Physical Fitness, and Health Risk Factors in Young Adult Men. Front Physiol 2018; 9:1005. [PMID: 30100880 PMCID: PMC6072857 DOI: 10.3389/fphys.2018.01005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose: Few large-scale population-based studies have adequately examined the relationships between steroid hormones, health status and physical fitness. The purpose of the study was to describe the relationship of serum basal endogenous steroid hormones (testosterone, TES; empirical free testosterone, EFT; cortisol, COR) and sex hormone-binding globulin (SHBG) to body composition, cardiovascular risk factors, and physical fitness in young healthy men. Methods: Male reservists (25 ± 4 years, N = 846) participated in the study. Basal TES, EFT, COR, and SHBG were measured in morning fasted blood. Stepwise regression analyses were used to examine associations between individual hormones to four separate categories: (1) body composition; (2) cardiovascular risk factors; (3) relative, and (4) absolute physical fitness. Results: Higher TES, EFT, and SHBG were associated with lower waist circumference (TES: β = -0.239, p < 0.001; EFT: β = -0.385, p < 0.001), % body fat (TES: β = -0.163, p = 0.003), and body mass index (SHBG: β = -0.435, p < 0.001). Lower cardiovascular risk factors were associated with higher TES, EFT and SHBG concentrations, especially between SHBG and triglycerides (β = -0.277, p < 0.001) and HDL (β = 0.154, p < 0.001). Greater maximal relative aerobic capacity was concurrent with higher TES, EFT, and SHBG (β = 0.171, 0.113, 0.263, p < 0.001, =0.005, <0.001, respectively). Conclusion: Higher basal concentrations of TES, EFT, and SHBG were weakly associated with healthier body composition, fewer cardiovascular risk factors and greater relative aerobic capacity in healthy young men. It would be interesting to investigate whether these relationships are still evident after a few decades, and how different training modes (endurance, strength or their combination) positively affect physical fitness, body composition and their regulatory mechanisms over the decades.
Collapse
Affiliation(s)
- Sheila S Gagnon
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Wolf Orthopaedic Biomechanics Laboratory, Department of Health and Rehabilitation Sciences, The University of Western Ontario, London, ON, Canada
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jani P Vaara
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Leadership and Military Pedagogy, National Defence University, Helsinki, Finland
| | - Matti Santtila
- Personnel Division, Defence Command, Finnish Defence Forces, Helsinki, Finland
| | - Keijo Häkkinen
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Kyröläinen
- Neuromuscular Research Center, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Leadership and Military Pedagogy, National Defence University, Helsinki, Finland
| |
Collapse
|
26
|
Testosterone and Cortisol Responses to Five High-Intensity Functional Training Competition Workouts in Recreationally Active Adults. Sports (Basel) 2018; 6:sports6030062. [PMID: 30011910 PMCID: PMC6162535 DOI: 10.3390/sports6030062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
To determine the salivary steroid response to high-intensity functional training (HIFT) competition workouts, saliva samples were collected from ten recreationally trained male and female competitors during a 5-week (WK1–WK5) international competition. Competitors arrived at their local affiliate and provided samples prior to (PRE) their warm-up, immediately (IP), 30-min (30P), and 60-min (60P) post-exercise. Samples were analyzed for concentrations of testosterone (T), cortisol (C), and their ratio (TC). Generalized linear mixed models with repeated measures revealed significant main effects for time (p < 0.001) for T, C, and TC. Compared to PRE-concentrations, elevated (p < 0.05) T was observed at IP on WK2–WK5 (mean difference: 135–511 pg·mL−1), at 30P on WK3 (mean difference: 81.0 ± 30.1 pg·mL−1) and WK5 (mean difference: 56.6 ± 22.7 pg·mL−1), and at 60P on WK3 (mean difference: 73.5 ± 29.7 pg·mL−1) and WK5 (mean difference: 74.3 ± 28.4 pg·mL−1). Compared to PRE-concentrations, elevated (p < 0.05) C was noted on all weeks at IP (mean difference: 9.3–15.9 ng·mL−1) and 30P (mean difference: 6.0–19.9 ng·mL−1); significant (p < 0.006) elevations were noted at 60P on WK1 (mean difference: 9.1 ± 3.0 ng·mL−1) and WK5 (mean difference: 12.8 ± 2.9 ng·mL−1). Additionally, TC was significantly reduced from PRE-values by 61% on WK1 at 60P (p = 0.040) and by 80% on WK5 at 30P (p = 0.023). Differences in T, C, and TC were also observed between weeks at specific time points. Although each workout affected concentrations in T, C, and/or the TC ratio, changes appeared to be modulated by the presence of overload and workout duration. During periods of elevated training or competition, athletes and coaches may consider monitoring these hormones for consistency and as a means of assessing workout difficulty.
Collapse
|
27
|
Gudmand-Hoeyer J, Ottesen JT. Analysis and validation of a new extended method for estimating plasma free cortisol including neutrophil elastase and competition from other steroids. J Steroid Biochem Mol Biol 2018; 181:109-124. [PMID: 29678493 DOI: 10.1016/j.jsbmb.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
A non-linear mechanistic model for the distribution of cortisol in plasma on free and bound forms is proposed. The influence of progesterone, testosterone and neutrophil elastase on the cortisol distribution in the blood is investigated. The activity of neutrophil elastase is directly included in the model with the concentration of elastase and the kinetic constants describing the activity of elastase collected in one single input variable. The model is very sensitive towards this input variable and fits data excellently, when it is allowed to be subject specific. The analysis shows that steroids such as testosterone with low affinity for corticosteroid-binding globulin (CBG) do not significantly influence the concentration of free cortisol. Progesterone has a high affinity for CBG, but low plasma concentrations compared to cortisol. Contrary to expectations, progesterone is shown to impact the distribution of cortisol in plasma both under circumstances with high levels as seen in pregnancy and during the normal menstrual cycle of women. Comparing the predictions of our model with predictions made with the equilibrium models by Coolens et al. [1], Dorin et al. [2] and Nguyen et al. [3] shows that the models differ considerably not only in their predictions for free cortisol, but also for cortisol on bound forms; i.e. bound to albumin, intact CBG and elastase-cleaved CBG. Disregarding some of the smallest terms of the model equations a reduced version of the model in form of a fourth order polynomial equation is obtained. The reduced version of the model performs almost identically to the full version and serves as a new formula for calculating the plasma free cortisol concentration.
Collapse
Affiliation(s)
| | - Johnny T Ottesen
- Department of Science and Environment, Roskilde University, Denmark.
| |
Collapse
|
28
|
Stirrat LI, Walker JJ, Stryjakowska K, Jones N, Homer NZM, Andrew R, Norman JE, Lightman SL, Reynolds RM. Pulsatility of glucocorticoid hormones in pregnancy: Changes with gestation and obesity. Clin Endocrinol (Oxf) 2018; 88:592-600. [PMID: 29314170 PMCID: PMC5887976 DOI: 10.1111/cen.13548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Hypothalamic-pituitary-adrenal axis (HPA) activity is decreased in obese pregnancy and associates with increased foetal size. Pulsatile release of glucocorticoid hormones regulates their action in target tissues. Glucocorticoids are essential for normal foetal growth, but little is known about glucocorticoid pulsatility in pregnancy. We aimed to investigate the ultradian rhythm of glucocorticoid secretion during obese and lean pregnancy and nonpregnancy. DESIGN Serum cortisol, cortisone, corticosterone and 11-dehydrocorticosterone were measured by LC-MS/MS from samples obtained at 10-minute intervals between 08.00-11.00 hours and 16.00-19.00 hours, from 8 lean (BMI <25 kg/m2 ) and 7 obese (BMI > 35 kg/m2 ) pregnant women between 16-24 weeks gestation and again at 30-36 weeks), and nonpregnant controls (lean n = 3, obese n = 4) during the luteal phase of their menstrual cycle. Interstitial fluid cortisol was measured by ELISA, from samples obtained using a portable microdialysis and automated collection device at 20-minute intervals over 24 hours. RESULTS Serum cortisol AUC, highest peak and lowest trough increased significantly with gestation in lean and obese pregnant compared with nonpregnant subjects. Pulsatility of cortisol was detected in interstitial fluid. In pregnant subjects, interstitial fluid pulse frequency was significantly lower with advancing gestation in obese, but not in lean. CONCLUSIONS We demonstrate cortisol pulsatility in interstitial fluid. Pulse frequency is altered with increased gestation and BMI. This may be a novel mechanism to explain decreased HPA activity in obese pregnancy.
Collapse
Affiliation(s)
- Laura I. Stirrat
- Tommy's Centre for Maternal and Fetal HealthMedical Research Council Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Jamie J. Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of BristolBristolUK
- Wellcome Trust Centre for Biomedical Modelling and AnalysisUniversity of ExeterExeterUK
- EPSRC Centre for Predictive Modelling in HealthcareUniversity of ExeterExeterUK
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Ksenia Stryjakowska
- Tommy's Centre for Maternal and Fetal HealthMedical Research Council Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Natalie Jones
- University/BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Natalie Z. M. Homer
- Mass Spectrometry CoreEdinburgh Clinical Research FacilityUniversity of EdinburghEdinburghUK
| | - Ruth Andrew
- University/BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Jane E. Norman
- Tommy's Centre for Maternal and Fetal HealthMedical Research Council Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of BristolBristolUK
| | - Rebecca M. Reynolds
- Tommy's Centre for Maternal and Fetal HealthMedical Research Council Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- University/BHF Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| |
Collapse
|
29
|
Petrescu AD, Kain J, Liere V, Heavener T, DeMorrow S. Hypothalamus-Pituitary-Adrenal Dysfunction in Cholestatic Liver Disease. Front Endocrinol (Lausanne) 2018; 9:660. [PMID: 30483216 PMCID: PMC6240761 DOI: 10.3389/fendo.2018.00660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
The Hypothalamic-Pituitary-Adrenal (HPA) axis has an important role in maintaining the physiological homeostasis in relation to external and internal stimuli. The HPA axis dysfunctions were extensively studied in neuroendocrine disorders such as depression and chronic fatigue syndrome but less so in hepatic cholestasis, cirrhosis or other liver diseases. The HPA axis controls many functions of the liver through neuroendocrine forward signaling pathways as well as negative feedback mechanisms, in health and disease. This review describes cell and molecular mechanisms of liver and HPA axis physiology and pathology. Evidence is presented from clinical and experimental model studies, demonstrating that dysfunctions of HPA axis are correlated with liver cholestatic disorders. The functional interactions of HPA axis with the liver and immune system in cases of bacterial and viral infections are also discussed. Proinflammatory cytokines stimulate glucocorticoid (GC) release by adrenals but they also inhibit bile acid (BA) efflux from liver. Chronic hepatic inflammation leads to cholestasis and impaired GC metabolism in the liver, so that HPA axis becomes depressed. Recently discovered interactions of GC with self-oscillating transcription factors that generate circadian rhythms of gene expression in brain and liver, in the context of GC replacement therapies, are also outlined.
Collapse
Affiliation(s)
- Anca D. Petrescu
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Jessica Kain
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Victoria Liere
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Trace Heavener
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
| | - Sharon DeMorrow
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Temple, TX, United States
- Department of Research Services, Central Texas Veterans Health Care System, Temple, TX, United States
- *Correspondence: Sharon DeMorrow
| |
Collapse
|
30
|
Bourguignon C, Storch KF. Control of Rest:Activity by a Dopaminergic Ultradian Oscillator and the Circadian Clock. Front Neurol 2017; 8:614. [PMID: 29230188 PMCID: PMC5711773 DOI: 10.3389/fneur.2017.00614] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/03/2017] [Indexed: 11/23/2022] Open
Abstract
There is long-standing evidence for rhythms in locomotor activity, as well as various other aspects of physiology, with periods substantially shorter than 24 h in organisms ranging from fruit flies to humans. These ultradian oscillations, whose periods frequently fall between 2 and 6 h, are normally well integrated with circadian rhythms; however, they often lack the period stability and expression robustness of the latter. An adaptive advantage of ultradian rhythms has been clearly demonstrated for the common vole, suggesting that they may have evolved to confer social synchrony. The cellular substrate and mechanism of ultradian rhythm generation have remained elusive so far, however recent findings—the subject of this review—now indicate that ultradian locomotor rhythms rely on an oscillator based on dopamine, dubbed the dopaminergic ultradian oscillator (DUO). These findings also reveal that the DUO period can be lengthened from <4 to >48 h by methamphetamine treatment, suggesting that the previously described methamphetamine-sensitive (circadian) oscillator represents a long-period manifestation of the DUO.
Collapse
Affiliation(s)
- Clément Bourguignon
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Kai-Florian Storch
- Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Lai Y, Zhang Z, Li P, Liu X, Liu Y, Xin Y, Gu W. Investigation of glucose fluctuations by approaches of multi-scale analysis. Med Biol Eng Comput 2017; 56:505-514. [PMID: 28825208 DOI: 10.1007/s11517-017-1692-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 07/18/2017] [Indexed: 01/16/2023]
Abstract
Glucose variability provides detailed information on glucose control and fluctuation. The aim of this study is to investigate the glucose variability by multi-scale analysis approach on 72-h glucose series captured by continuous glucose monitoring system (CGMS), gaining insights into the variability and complexity of the glucose time series data. Ninety-eight type 2 DM patients participated in this study, and 72-h glucose series from each subject were recorded by CGMS. Subjects were divided into two subgroups according to the mean amplitude of glycemic excursions (MAGE) value threshold at 3.9 based on Chinese standard. In this study, we applied two types of multiple scales analysis methods on glucose time series: ensemble empirical mode decomposition (EEMD) and refined composite multi-scale entropy (RCMSE). With EEMD, glucose series was decomposed into several intrinsic mode function (IMF), and glucose variability was examined on multiple time scales with periods ranging from 0.5 to 12 h. With RCMSE, complexity of the structure of glucose series was quantified at each time scale ranging from 5 to 30 min. Subgroup with higher MAGE value (>3.9) presented higher glycemic baseline and variability. There were significant differences in glycemic variability on IMFs3-5 between subgroups with MAGE>3.9 and MAGE < = 3.9 (p<0.001), but no significant differences in variability on IMFs1-2. The complexity of glucose series quantified by RCMSE showed statistically difference on each time scale from 5 to 30 min between subgroups (p<0.05). Glucose series from subjects with higher MAGE value represented higher variability but lower complexity on multiple time scales. Compared with traditional matrices measuring the glucose variability, approaches of EEMD and RCMSE can quantify the dynamic glycemic fluctuation in multiple time scales and provide us more detailed information on glycemic variability and complexity.
Collapse
Affiliation(s)
- Yunyun Lai
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengbo Zhang
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peiyao Li
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoli Liu
- School of Biological Science and Medical Engineering, Beijing University of Areonautics and Astronautics, Beijing, 100191, China
| | - YiXin Liu
- Human Centrifuge Medical Training Base of Chinese, Air Force, Beijing, 100089, China
| | - Yi Xin
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Weijun Gu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
32
|
Bangsgaard EO, Ottesen JT. Patient specific modeling of the HPA axis related to clinical diagnosis of depression. Math Biosci 2017; 287:24-35. [DOI: 10.1016/j.mbs.2016.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/15/2022]
|
33
|
Porter J, Blair J, Ross RJ. Is physiological glucocorticoid replacement important in children? Arch Dis Child 2017; 102:199-205. [PMID: 27582458 PMCID: PMC5284474 DOI: 10.1136/archdischild-2015-309538] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
Cortisol has a distinct circadian rhythm with low concentrations at night, rising in the early hours of the morning, peaking on waking and declining over the day to low concentrations in the evening. Loss of this circadian rhythm, as seen in jetlag and shift work, is associated with fatigue in the short term and diabetes and obesity in the medium to long term. Patients with adrenal insufficiency on current glucocorticoid replacement with hydrocortisone have unphysiological cortisol concentrations being low on waking and high after each dose of hydrocortisone. Patients with adrenal insufficiency complain of fatigue, a poor quality of life and there is evidence of poor health outcomes including obesity potentially related to glucocorticoid replacement. New technologies are being developed that deliver more physiological glucocorticoid replacement including hydrocortisone by subcutaneous pump, Plenadren, a once-daily modified-release hydrocortisone and Chronocort, a delayed and sustained absorption hydrocortisone formulation that replicates the overnight profile of cortisol. In this review, we summarise the evidence regarding physiological glucocorticoid replacement with a focus on relevance to paediatrics.
Collapse
Affiliation(s)
| | - Joanne Blair
- Department of Endocrinology, AlderHey Children's Hospital, Liverpool, UK
| | - Richard J Ross
- Diurnal Ltd, Cardiff, UK,Department of Endocrinology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
34
|
George CL, Birnie MT, Flynn BP, Kershaw YM, Lightman SL, Conway-Campbell BL. Ultradian glucocorticoid exposure directs gene-dependent and tissue-specific mRNA expression patterns in vivo. Mol Cell Endocrinol 2017; 439:46-53. [PMID: 27769714 PMCID: PMC5131830 DOI: 10.1016/j.mce.2016.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 10/28/2022]
Abstract
In this paper we report differential decoding of the ultradian corticosterone signal by glucocorticoid target tissues. Pulsatile corticosterone replacement in adrenalectomised rats resulted in different dynamics of Sgk1 mRNA production, with a distinct pulsatile mRNA induction profile observed in the pituitary in contrast to a non-pulsatile induction in the prefrontal cortex (PFC). We further report the first evidence for pulsatile transcriptional repression of a glucocorticoid-target gene in vivo, with pulsatile regulation of Pomc transcription in pituitary. We have explored a potential mechanism for differences in the induction dynamics of the same transcript (Sgk1) between the PFC and pituitary. Glucocorticoid receptor (GR) activation profiles were strikingly different in pituitary and prefrontal cortex, with a significantly greater dynamic range and shorter duration of GR activity detected in the pituitary, consistent with the more pronounced gene pulsing effect observed. In the prefrontal cortex, expression of Gilz mRNA was also non-pulsatile and exhibited a significantly delayed timecourse of increase and decrease when compared to Sgk1, additionally highlighting gene-specific regulatory dynamics during ultradian glucocorticoid treatment.
Collapse
Affiliation(s)
- Charlotte L George
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK; CGAT, MRC Weatherall Institute of Molecular Medicine Centre for Computational Biology, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| | - Matthew T Birnie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| | - Benjamin P Flynn
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| | - Yvonne M Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| | - Becky L Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
35
|
Roelfsema F, Aoun P, Veldhuis JD. Pulsatile Cortisol Feedback on ACTH Secretion Is Mediated by the Glucocorticoid Receptor and Modulated by Gender. J Clin Endocrinol Metab 2016; 101:4094-4102. [PMID: 27548106 PMCID: PMC5095237 DOI: 10.1210/jc.2016-2405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT Factors that regulate physiological feedback by pulses of glucocorticoids on the hypothalamic-pituitary unit are sparsely defined in humans in relation to gluco- or mineralocorticoid receptor pathways, gender, age, and the sex steroid milieu. OBJECTIVE The objective of the study was to test (the clinical hypothesis) that glucocorticoid (GR) and mineralocorticoid (MR) receptor-selective mechanisms differentially govern pulsatile cortisol-dependent negative feedback on ACTH output (by the hypothalamo-pituitary unit) in men and women studied under experimentally defined T and estradiol depletion and repletion, respectively. SETTING The study was conducted at the Mayo Center for Translational Science Activities. SUBJECTS Healthy middle-aged men (n = 16) and women (n = 25) participated in the study. INTERVENTIONS This was a randomized, prospective, double-blind, placebo- and saline-controlled study of pulsatile cortisol infusions in low cortisol-clamped volunteers with and without eplerenone (MR blocker) and mifepristone (GR blocker) administration under a low and normal T and estradiol clamp. During frequent sampling, a bolus of CRH-arginine vasopressin was infused to assess corticotrope responsiveness. Analytical Methods and Outcomes: Deconvolution and approximate entropy of ACTH profiles were measured. RESULTS Infusion of cortisol (but not saline) pulses diminished ACTH secretion. The GR antagonist, mifepristone, interfered with negative feedback on both ACTH burst mass and secretion regularity. Eplerenone, an MR antagonist, exerted no detectable effect on the same parameters. Despite feedback imposition, CRH-arginine vasopressin-stimulated ACTH secretion was also increased by mifepristone and not by eplerenone. Withdrawal vs addback of sex steroids had no effect on ACTH secretion parameters. Nonetheless, ACTH secretion was greater (P = .006) and more regular (P = .004) in men than women. CONCLUSION Pulsatile cortisol feedback on ACTH secretion in this paradigm is mediated by the glucocorticoid receptor, in part acting at the level of the pituitary, and influenced by sex.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Endocrinology and Metabolism (F.R.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; and Endocrine Research Unit (P.A., J.D.V.), Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905
| | - Paul Aoun
- Department of Endocrinology and Metabolism (F.R.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; and Endocrine Research Unit (P.A., J.D.V.), Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905
| | - Johannes D Veldhuis
- Department of Endocrinology and Metabolism (F.R.), Leiden University Medical Center, 2300 RC Leiden, The Netherlands; and Endocrine Research Unit (P.A., J.D.V.), Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
36
|
Faghih RT, Dahleh MA, Brown EN. An optimization formulation for characterization of pulsatile cortisol secretion. Front Neurosci 2015; 9:228. [PMID: 26321898 PMCID: PMC4531247 DOI: 10.3389/fnins.2015.00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller, which leads to impulse control as opposed to continuous control. We postulate that this controller is minimizing the number of secretory events that result in cortisol secretion, which is a way of minimizing the energy required for cortisol secretion; this controller maintains the blood cortisol levels within a specific circadian range while complying with the first order dynamics underlying cortisol secretion. We use an ℓ0-norm cost function for this controller, and solve a reweighed ℓ1-norm minimization algorithm for obtaining the solution to this optimization problem. We use four examples to illustrate the performance of this approach: (i) a toy problem that achieves impulse control, (ii) two examples that achieve physiologically plausible pulsatile cortisol release, (iii) an example where the number of pulses is not within the physiologically plausible range for healthy subjects while the cortisol levels are within the desired range. This novel approach results in impulse control where the impulses and the obtained blood cortisol levels have a circadian rhythm and an ultradian rhythm that are in agreement with the known physiology of cortisol secretion. The proposed formulation is a first step in developing intermittent controllers for curing cortisol deficiency. This type of bio-inspired pulse controllers can be employed for designing non-continuous controllers in brain-machine interface design for neuroscience applications.
Collapse
Affiliation(s)
- Rose T Faghih
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Boston, MA, USA ; Laboratory for Information and Decision Systems, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Munther A Dahleh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge, MA, USA ; Laboratory for Information and Decision Systems, Massachusetts Institute of Technology Cambridge, MA, USA ; Engineering Systems Division, Massachusetts Institute of Technology Cambridge, MA, USA ; Institute for Data, Systems, and Society, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Boston, MA, USA ; Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Anesthesia, Harvard Medical School Boston, MA, USA
| |
Collapse
|
37
|
Liu Z, Guo W. Modeling diurnal hormone profiles by hierarchical state space models. Stat Med 2015; 34:3223-34. [PMID: 26152819 DOI: 10.1002/sim.6579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022]
Abstract
Adrenocorticotropic hormone (ACTH) diurnal patterns contain both smooth circadian rhythms and pulsatile activities. How to evaluate and compare them between different groups is a challenging statistical task. In particular, we are interested in testing (1) whether the smooth ACTH circadian rhythms in chronic fatigue syndrome and fibromyalgia patients differ from those in healthy controls and (2) whether the patterns of pulsatile activities are different. In this paper, a hierarchical state space model is proposed to extract these signals from noisy observations. The smooth circadian rhythms shared by a group of subjects are modeled by periodic smoothing splines. The subject level pulsatile activities are modeled by autoregressive processes. A functional random effect is adopted at the pair level to account for the matched pair design. Parameters are estimated by maximizing the marginal likelihood. Signals are extracted as posterior means. Computationally efficient Kalman filter algorithms are adopted for implementation. Application of the proposed model reveals that the smooth circadian rhythms are similar in the two groups but the pulsatile activities in patients are weaker than those in the healthy controls.
Collapse
Affiliation(s)
- Ziyue Liu
- Department of Biostatistics, Indiana University, Schools of Public Health and Medicine, Indianapolis, IN, 46202, U.S.A
| | - Wensheng Guo
- Department of Biostatistics & Epidemiology, University of Pennsylvania, School of Medicine, Philadelphia, 19104, PA, U.S.A
| |
Collapse
|
38
|
Russell GM, Kalafatakis K, Lightman SL. The importance of biological oscillators for hypothalamic-pituitary-adrenal activity and tissue glucocorticoid response: coordinating stress and neurobehavioural adaptation. J Neuroendocrinol 2015; 27:378-88. [PMID: 25494867 PMCID: PMC4539599 DOI: 10.1111/jne.12247] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/26/2014] [Accepted: 12/10/2014] [Indexed: 12/28/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is critical for life. It has a circadian rhythm that anticipates the metabolic, immunoregulatory and cognitive needs of the active portion of the day, and retains an ability to react rapidly to perceived stressful stimuli. The circadian variation in glucocorticoids is very 'noisy' because it is made up from an underlying approximately hourly ultradian rhythm of glucocorticoid pulses, which increase in amplitude at the peak of circadian secretion. We have shown that these pulses emerge as a consequence of the feedforward-feedback relationship between the actions of corticotrophin hormone (ACTH) on the adrenal cortex and of endogenous glucocorticoids on pituitary corticotrophs. The adrenal gland itself has adapted to respond preferentially to a digital signal of ACTH and has its own feedforward-feedback system that effectively amplifies the pulsatile characteristics of the incoming signal. Glucocorticoid receptor signalling in the body is also adapted to respond in a tissue-specific manner to oscillating signals of glucocorticoids, and gene transcriptional and behavioural responses depend on the pattern (i.e. constant or pulsatile) of glucocorticoid presentation. During major stressful activation of the HPA, there is a marked remodelling of the pituitary-adrenal interaction. The link between ACTH and glucocorticoid pulses is maintained, although there is a massive increase in the adrenal responsiveness to the ACTH signals.
Collapse
Affiliation(s)
- G M Russell
- Henry Wellcome Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - K Kalafatakis
- Henry Wellcome Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - S L Lightman
- Henry Wellcome Laboratories of Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Faghih RT, Dahleh MA, Adler GK, Klerman EB, Brown EN. Quantifying Pituitary-Adrenal Dynamics and Deconvolution of Concurrent Cortisol and Adrenocorticotropic Hormone Data by Compressed Sensing. IEEE Trans Biomed Eng 2015; 62:2379-88. [PMID: 25935025 DOI: 10.1109/tbme.2015.2427745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pulsatile release of cortisol from the adrenal glands is governed by pulsatile release of adrenocorticotropic hormone (ACTH) from the anterior pituitary. In return, cortisol has a negative feedback effect on ACTH release. Simultaneous recording of ACTH and cortisol is not typical, and determining the number, timing, and amplitudes of pulsatile events from simultaneously recorded data is challenging because of several factors: 1) stimulator ACTH pulse activity, 2) kinematics of ACTH and cortisol, 3) the sampling interval, and 4) the measurement error. We model ACTH and cortisol secretion simultaneously using a linear differential equations model with Gaussian errors and sparse pulsatile events as inputs to the model. We propose a novel framework for recovering pulses and parameters underlying the interactions between ACTH and cortisol. We recover the timing and amplitudes of pulses using compressed sensing and employ generalized cross validation for determining the number of pulses. We analyze serum ACTH and cortisol levels sampled at 10-min intervals over 24 h from ten healthy women. We recover physiologically plausible timing and amplitudes for these pulses and model the feedback effect of cortisol. We recover 15 to 18 pulses over 24 h, which is highly consistent with the results of another cortisol data analysis approach. Modeling the interactions between ACTH and cortisol allows for accurate quantification of pulsatile events, and normal and pathological states. This could lay the basis for a more physiologically-based approach for administering cortisol therapeutically. The proposed approach can be adapted to deconvolve other pairs of hormones with similar interactions.
Collapse
|
40
|
Herrero MT, Estrada C, Maatouk L, Vyas S. Inflammation in Parkinson's disease: role of glucocorticoids. Front Neuroanat 2015; 9:32. [PMID: 25883554 PMCID: PMC4382972 DOI: 10.3389/fnana.2015.00032] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/28/2015] [Indexed: 01/08/2023] Open
Abstract
Chronic inflammation is a major characteristic feature of Parkinson's disease (PD). Studies in PD patients show evidence of augmented levels of potent pro-inflammatory molecules e.g., TNF-α, iNOS, IL-1β whereas in experimental Parkinsonism it has been consistently demonstrated that dopaminergic neurons are particularly vulnerable to activated glia releasing these toxic factors. Recent genetic studies point to the role of immune system in the etiology of PD, thus in combination with environmental factors, both peripheral and CNS-mediated immune responses could play important roles in onset and progression of PD. Whereas microglia, astrocytes and infiltrating T cells are known to mediate chronic inflammation, the roles of other immune-competent cells are less well understood. Inflammation is a tightly controlled process. One major effector system of regulation is HPA axis. Glucocorticoids (GCs) released from adrenal glands upon stimulation of HPA axis, in response to either cell injury or presence of pathogen, activate their receptor, GR. GR regulates inflammation both through direct transcriptional action on target genes and by indirectly inhibiting transcriptional activities of transcriptional factors such as NF-κB, AP-1 or interferon regulatory factors. In PD patients, the HPA axis is unbalanced and the cortisol levels are significantly increased, implying a deregulation of GR function in immune cells. In experimental Parkinsonism, the activation of microglial GR has a crucial effect in diminishing microglial cell activation and reducing dopaminergic degeneration. Moreover, GCs are also known to regulate human brain vasculature as well as blood brain barrier (BBB) permeability, any dysfunction in their actions may influence infiltration of cytotoxic molecules resulting in increased vulnerability of dopamine neurons in PD. Overall, deregulation of glucocorticoid receptor actions is likely important in dopamine neuron degeneration through establishment of chronic inflammation.
Collapse
Affiliation(s)
- María-Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE-IMIB), Institute for Bio-Health Research of Murcia, School of Medicine, Campus Mare Nostrum, University of Murcia Murcia, Spain
| | - Cristina Estrada
- Clinical and Experimental Neuroscience (NiCE-IMIB), Institute for Bio-Health Research of Murcia, School of Medicine, Campus Mare Nostrum, University of Murcia Murcia, Spain
| | - Layal Maatouk
- Laboratory of Gene Regulation and Adaptive Behaviors, Department of Neuroscience Paris Seine, INSERM U 1130, CNRS UMR 8246, UPMC UM 119, Université Pierre et Marie Curie Paris, France
| | - Sheela Vyas
- Laboratory of Gene Regulation and Adaptive Behaviors, Department of Neuroscience Paris Seine, INSERM U 1130, CNRS UMR 8246, UPMC UM 119, Université Pierre et Marie Curie Paris, France
| |
Collapse
|
41
|
Gibbison B, Spiga F, Walker JJ, Russell GM, Stevenson K, Kershaw Y, Zhao Z, Henley D, Angelini GD, Lightman SL. Dynamic pituitary-adrenal interactions in response to cardiac surgery. Crit Care Med 2015; 43:791-800. [PMID: 25517478 PMCID: PMC4359905 DOI: 10.1097/ccm.0000000000000773] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To characterize the dynamics of the pituitary-adrenal interaction during the course of coronary artery bypass grafting both on and off pump. Since our data pointed to a major change in adrenal responsiveness to adrenocorticotropic hormone, we used a reverse translation approach to investigate the molecular mechanisms underlying this change in a rat model of critical illness. DESIGN CLINICAL STUDIES Prospective observational study. ANIMAL STUDIES Controlled experimental study. SETTING CLINICAL STUDIES Cardiac surgery operating rooms and critical care units. ANIMAL STUDIES University research laboratory. SUBJECTS CLINICAL STUDIES Twenty, male patients. ANIMAL STUDIES Adult, male Sprague-Dawley rats. INTERVENTIONS CLINICAL STUDIES Coronary artery bypass graft-both on and off pump. ANIMAL STUDIES Injection of either lipopolysaccharide or saline (controls) via a jugular vein cannula. MEASUREMENTS AND MAIN RESULTS CLINICAL STUDIES Blood samples were taken for 24 hours from placement of the first venous access. Cortisol and adrenocorticotropic hormone were measured every 10 and 60 minutes, respectively, and corticosteroid-binding globulin was measured at the beginning and end of the 24-hour period and at the end of operation. There was an initial rise in both levels of adrenocorticotropic hormone and cortisol to supranormal values at around the end of surgery. Adrenocorticotropic hormone levels then returned toward preoperative values. Ultradian pulsatility of both adrenocorticotropic hormone and cortisol was maintained throughout the perioperative period in all individuals. The sensitivity of the adrenal gland to adrenocorticotropic hormone increased markedly at around 8 hours after surgery maintaining very high levels of cortisol in the face of "basal" levels of adrenocorticotropic hormone. This sensitivity began to return toward preoperative values at the end of the 24-hour sampling period. ANIMAL STUDIES Adult, male Sprague-Dawley rats were given either lipopolysaccharide or sterile saline via a jugular vein cannula. Hourly blood samples were subsequently collected for adrenocorticotropic hormone and corticosterone measurement. Rats were killed 6 hours after the injection, and the adrenal glands were collected for measurement of steroidogenic acute regulatory protein, steroidogenic factor 1, and dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 messenger RNAs and protein using real-time quantitative polymerase chain reaction and Western immunoblotting, respectively. Adrenal levels of the adrenocorticotropic hormone receptor (melanocortin type 2 receptor) messenger RNA and its accessory protein (melanocortin type 2 receptor accessory protein) were also measured by real-time quantitative polymerase chain reaction. In response to lipopolysaccharide, rats showed a pattern of adrenocorticotropic hormone and corticosterone that was similar to patients undergoing coronary artery bypass grafting. We were also able to demonstrate increased intra-adrenal corticosterone levels and an increase in steroidogenic acute regulatory protein, steroidogenic factor 1, and melanocortin type 2 receptor accessory protein messenger RNAs and steroidogenic acute regulatory protein, and a reduction in dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 and melanocortin type 2 receptor messenger RNAs, 6 hours after lipopolysaccharide injection. CONCLUSIONS Severe inflammatory stimuli activate the hypothalamic-pituitary-adrenal axis resulting in increased steroidogenic activity in the adrenal cortex and an elevation of cortisol levels in the blood. Following coronary artery bypass grafting, there is a massive increase in both adrenocorticotropic hormone and cortisol secretion. Despite a subsequent fall of adrenocorticotropic hormone to basal levels, cortisol remains elevated and coordinated adrenocorticotropic hormone-cortisol pulsatility is maintained. This suggested that there is an increase in adrenal sensitivity to adrenocorticotropic hormone, which we confirmed in our animal model of immune activation of the hypothalamic-pituitary-adrenal axis. Using this model, we were able to show that this increased adrenal sensitivity results from changes in the regulation of both stimulatory and inhibitory intra-adrenal signaling pathways. Increased understanding of the dynamics of normal hypothalamic-pituitary-adrenal responses to major surgery will provide us with a more rational approach to glucocorticoid therapy in critically ill patients.
Collapse
Affiliation(s)
- Ben Gibbison
- Department of Cardiac Anesthesia, Bristol Heart Institute, Bristol, UK
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Jamie J Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Kirsty Stevenson
- Department of Clinical Biochemistry, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Yvonne Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Zidong Zhao
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - David Henley
- Department of Endocrinology, Sir Charles Gairdner Hospital. Perth, WA. Australia
- Faculty of Medicine, Dentistry and Health Sciences. University of Western Australia, Crawley, WA, Australia
| | - Gianni D Angelini
- Department of Cardiac Surgery, Bristol Heart Institute, Bristol, UK
- National Heart and Lung Institute, Imperial College, London. UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| |
Collapse
|
42
|
Gudmand-Hoeyer J, Timmermann S, Ottesen JT. Patient-specific modeling of the neuroendocrine HPA-axis and its relation to depression: Ultradian and circadian oscillations. Math Biosci 2014; 257:23-32. [DOI: 10.1016/j.mbs.2014.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/26/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
|
43
|
Russell GM, Durant C, Ataya A, Papastathi C, Bhake R, Woltersdorf W, Lightman S. Subcutaneous pulsatile glucocorticoid replacement therapy. Clin Endocrinol (Oxf) 2014; 81:289-93. [PMID: 24735400 PMCID: PMC4231230 DOI: 10.1111/cen.12470] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/05/2014] [Accepted: 04/11/2014] [Indexed: 11/29/2022]
Abstract
The glucocorticoid hormone cortisol is released in pulses resulting in a complex and dynamic ultradian rhythm of plasma cortisol that underlies the classical circadian rhythm. These oscillating levels are also seen at the level of tissues such as the brain and trigger pulses of gene activation and downstream signalling. Different patterns of glucocorticoid presentation (constant vs pulsatile) result not only in different patterns of gene regulation but also in different neuroendocrine and behavioural responses. Current 'optimal' glucocorticoid replacement therapy results in smooth hormone blood levels and does not replicate physiological pulsatile cortisol secretion. Validation of a novel portable pulsatile continuous subcutaneous delivery system in healthy volunteers under dexamethasone and metyrapone suppression. Pulsatile subcutaneous hydrocortisone more closely replicates physiological circadian and ultradian rhythmicity.
Collapse
Affiliation(s)
- Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, University of BristolBristol, UK
| | - Claire Durant
- Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, University of BristolBristol, UK
| | - Alia Ataya
- School of experimental psychology, University of BristolBristol, UK
| | - Chrysoula Papastathi
- Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, University of BristolBristol, UK
| | - Ragini Bhake
- Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, University of BristolBristol, UK
| | | | - Stafford Lightman
- Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, University of BristolBristol, UK
| |
Collapse
|
44
|
Sharma AN, Aoun P, Wigham JR, Weist SM, Veldhuis JD. Estradiol, but not testosterone, heightens cortisol-mediated negative feedback on pulsatile ACTH secretion and ACTH approximate entropy in unstressed older men and women. Am J Physiol Regul Integr Comp Physiol 2014; 306:R627-35. [PMID: 24573184 DOI: 10.1152/ajpregu.00551.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How sex steroids modulate glucocorticoid feedback on the hypothalamic-pituitary-corticotrope (HPC) unit is controversial in humans. We postulated that testosterone (T) in men and estradiol (E2) in women govern unstressed cortisol-mediated negative feedback on ACTH secretion. To test this hypothesis, 24 men and 24 women age 58 ± 2.4 yr were pretreated with leuprolide and either sex steroid (E2 in women, T in men) or placebo addback. Placebo or ketoconazole (KTCZ) was administered overnight to inhibit adrenal steroidogenesis during overnight 14-h intravenous infusions of saline or cortisol in a continuous versus pulsatile manner to test for feedback differences. ACTH was measured every 10 min during the last 8 h of the infusions. The main outcome measures were mean ACTH concentrations, pulsatile ACTH secretion, and ACTH approximate entropy (ApEn). ACTH concentrations were lower in women than men (P < 0.01), and in women in the E2+ compared with E2- group under both continuous (P = 0.01) and pulsatile (P = 0.006) cortisol feedback, despite higher cortisol binding globulin and lower free cortisol levels in women than men (P < 0.01). In the combined groups, under both modes of cortisol addback, ACTH concentrations, pulsatile ACTH secretion, and ACTH secretory-burst mass correlated negatively and univariately with E2 levels (each P < 0.005). E2 also suppressed ACTH ApEn (process randomness) during continuous cortisol feedback (P = 0.004). T had no univariate effect but was a positive correlate of ACTH when assessed jointly with E2 (negative) under cortisol pulses. In conclusion, sex steroids modulate selective gender-related hypothalamic-pituitary adrenal-axis adaptations to cortisol feedback in unstressed humans.
Collapse
Affiliation(s)
- Animesh N Sharma
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | |
Collapse
|
45
|
Faghih RT, Dahleh MA, Adler GK, Klerman EB, Brown EN. Deconvolution of serum cortisol levels by using compressed sensing. PLoS One 2014; 9:e85204. [PMID: 24489656 PMCID: PMC3904842 DOI: 10.1371/journal.pone.0085204] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022] Open
Abstract
The pulsatile release of cortisol from the adrenal glands is controlled by a hierarchical system that involves corticotropin releasing hormone (CRH) from the hypothalamus, adrenocorticotropin hormone (ACTH) from the pituitary, and cortisol from the adrenal glands. Determining the number, timing, and amplitude of the cortisol secretory events and recovering the infusion and clearance rates from serial measurements of serum cortisol levels is a challenging problem. Despite many years of work on this problem, a complete satisfactory solution has been elusive. We formulate this question as a non-convex optimization problem, and solve it using a coordinate descent algorithm that has a principled combination of (i) compressed sensing for recovering the amplitude and timing of the secretory events, and (ii) generalized cross validation for choosing the regularization parameter. Using only the observed serum cortisol levels, we model cortisol secretion from the adrenal glands using a second-order linear differential equation with pulsatile inputs that represent cortisol pulses released in response to pulses of ACTH. Using our algorithm and the assumption that the number of pulses is between 15 to 22 pulses over 24 hours, we successfully deconvolve both simulated datasets and actual 24-hr serum cortisol datasets sampled every 10 minutes from 10 healthy women. Assuming a one-minute resolution for the secretory events, we obtain physiologically plausible timings and amplitudes of each cortisol secretory event with R2 above 0.92. Identification of the amplitude and timing of pulsatile hormone release allows (i) quantifying of normal and abnormal secretion patterns towards the goal of understanding pathological neuroendocrine states, and (ii) potentially designing optimal approaches for treating hormonal disorders.
Collapse
Affiliation(s)
- Rose T Faghih
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America ; Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America ; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Munther A Dahleh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America ; Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gail K Adler
- Harvard Medical School, Boston, Massachusetts, United States of America ; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Elizabeth B Klerman
- Harvard Medical School, Boston, Massachusetts, United States of America ; Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America ; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America ; Harvard Medical School, Boston, Massachusetts, United States of America ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
46
|
Cui X, Abduljalil A, Manor BD, Peng CK, Novak V. Multi-scale glycemic variability: a link to gray matter atrophy and cognitive decline in type 2 diabetes. PLoS One 2014; 9:e86284. [PMID: 24475100 PMCID: PMC3901681 DOI: 10.1371/journal.pone.0086284] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/11/2013] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (DM) accelerates brain aging and cognitive decline. Complex interactions between hyperglycemia, glycemic variability and brain aging remain unresolved. This study investigated the relationship between glycemic variability at multiple time scales, brain volumes and cognition in type 2 DM. RESEARCH DESIGN AND METHODS Forty-three older adults with and 26 without type 2 DM completed 72-hour continuous glucose monitoring, cognitive tests and anatomical MRI. We described a new analysis of continuous glucose monitoring, termed Multi-Scale glycemic variability (Multi-Scale GV), to examine glycemic variability at multiple time scales. Specifically, Ensemble Empirical Mode Decomposition was used to identify five unique ultradian glycemic variability cycles (GVC1-5) that modulate serum glucose with periods ranging from 0.5-12 hrs. RESULTS Type 2 DM subjects demonstrated greater variability in GVC3-5 (period 2.0-12 hrs) than controls (P<0.0001), during the day as well as during the night. Multi-Scale GV was related to conventional markers of glycemic variability (e.g. standard deviation and mean glycemic excursions), but demonstrated greater sensitivity and specificity to conventional markers, and was associated with worse long-term glycemic control (e.g. fasting glucose and HbA1c). Across all subjects, those with greater glycemic variability within higher frequency cycles (GVC1-3; 0.5-2.0 hrs) had less gray matter within the limbic system and temporo-parietal lobes (e.g. cingulum, insular, hippocampus), and exhibited worse cognitive performance. Specifically within those with type 2 DM, greater glycemic variability in GVC2-3 was associated with worse learning and memory scores. Greater variability in GVC5 was associated with longer DM duration and more depression. These relationships were independent of HbA1c and hypoglycemic episodes. CONCLUSIONS Type 2 DM is associated with dysregulation of glycemic variability over multiple scales of time. These time-scale-dependent glycemic fluctuations might contribute to brain atrophy and cognitive outcomes within this vulnerable population.
Collapse
Affiliation(s)
- Xingran Cui
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amir Abduljalil
- Wright Center of Innovation, Dept. of Radiology, The Ohio State University, Columbus Ohio, United States of America
| | - Brad D. Manor
- Institute for Aging Research, Hebrew SeniorLife, Roslindale, Massachusetts, United States of America
- Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chung-Li, Taiwan
| | - Vera Novak
- Division of Stroke, Dept. of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
47
|
Hameed N, Yedinak CG, Brzana J, Gultekin SH, Coppa ND, Dogan A, Delashaw JB, Fleseriu M. Remission rate after transsphenoidal surgery in patients with pathologically confirmed Cushing's disease, the role of cortisol, ACTH assessment and immediate reoperation: a large single center experience. Pituitary 2013; 16:452-8. [PMID: 23242860 DOI: 10.1007/s11102-012-0455-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Postoperative serum cortisol is used as an indicator of Cushing's disease (CD) remission following transsphenoidal surgery (TSS) and guides (controversially) the need for immediate adjuvant treatment for CD. We investigated postoperative cortisol and adrenocorticotropic hormone (ACTH) levels as predictors of remission/recurrence in CD in a large retrospective cohort of patients with pathologically confirmed CD, over 6 years at a single institution. Midnight and morning cortisol, and ACTH at 24-48 h postoperatively (>24 h after last hydrocortisone dose) were measured. Remission was defined as normal 24-h urine free cortisol, normal midnight salivary cortisol, a normal dexamethasone-corticotropin releasing hormone (CRH) test or continued need for hydrocortisone, assessed periodically. Statistical analysis was performed using PASW 18. Follow up data was available for 52 patients (38 females and 14 males), median follow up was 16.5 month (range 2-143 months), median age was 45 years (range 21-72 years), 28 tumors were microadenomas and 16 were macroadenomas, and in eight cases no tumor was observed on magnetic resonance imaging. No patient with postoperative cortisol levels >10 mcg/dl were found to be in remission. Ten of the 52 patients with cortisol >10 mcg/dl by postoperative day 1-2 underwent a second TSS within 7 days. Forty-three patients (82.7%) achieved CD remission (36 after one TSS and 7 after a second early TSS) and six patients suffered disease recurrence (mean 39.2 ± 52.4 months). An immediate second TSS induced additional hormonal deficiencies (diabetes insipidus) in three patients with no surgical complications. Persistent disease was noted in nine patients despite three patients having an immediate second TSS. Positive predictive value for remission of cortisol <2 mcg/dl and ACTH <5 pg/ml was 100%. Cortisol and ACTH levels (at all postoperative time points and at 2 months) were correlated (r = 0.37, P < 0.001). Nadir serum cortisol of ≤2 mcg/dl and ACTH <5 pg/ml predicted remission (P < 0.005), but no level predicted lack of recurrence. Immediate postoperative ACTH/cortisol did not predict length of remission. No patients with postoperative cortisol >10 mcg/dl were observed to have delayed remission; all required additional treatment. There was no significant difference in age, body mass index, tumor size and length of follow-up between postoperative cortisol groups: cortisol ≤2 mcg/dl, cortisol >5 mcg/dl and cortisol >10 mcg/dl. Immediate postoperative cortisol levels should routinely be obtained in CD patients post TSS, until better tools to identify early remission are available. Immediate repeat TSS could be beneficial in patients with cortisol >10 mcg/dl and positive CD pathology: our combined (micro- and macroadenomas) remission rate with this approach was 82.7%. ACTH measurements correlate well with cortisol. However, because no single cortisol or ACTH cutoff value excludes all recurrences, patients require long-term clinical and biochemical follow-up. Further research is needed in this area.
Collapse
Affiliation(s)
- Nadia Hameed
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Classification criteria for distinguishing cortisol responders from nonresponders to psychosocial stress: evaluation of salivary cortisol pulse detection in panel designs. Psychosom Med 2013; 75:832-40. [PMID: 24184845 DOI: 10.1097/psy.0000000000000002] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Hypothalamic-pituitary-adrenal axis reactivity to acute stimulation is frequently assessed by repeated sampling of salivary cortisol. Researchers often strive to distinguish between individuals who show (responders) and those do not show (nonresponders) cortisol responses. For this, fixed threshold classification criteria, such as a 2.5-nmol/l baseline-to-peak increase, are frequently used. However, the performance of such criteria has not been systematically evaluated. METHODS Repeated salivary cortisol data from 504 participants exposed to either the Trier Social Stress Test (TSST; n = 309) or a placebo protocol (n = 195) were used for analyses. To obtain appropriate classifications of cortisol responders versus nonresponders, a physiologically plausible, autoregressive latent trajectory (ALT) mixture model was fitted to these data. Response classifications according to the ALT model and information on the experimental protocol (TSST versus placebo TSST) were then used to evaluate the performance of different proposed classifier proxies by receiver operating characteristics. RESULTS Moment structure of cortisol time series was adequately accounted for by the proposed ALT model. The commonly used 2.5-nmol/l criterion was found to be overly conservative, resulting in a high rate of 16.5% false-negative classifications. Lowering this criterion to 1.5 nmol/l or using a percentage baseline-to-peak increase of 15.5% as a threshold yielded improved performance (39.3% and 26.7% less misclassifications, respectively). CONCLUSIONS Alternative classification proxies (1.5 nmol/l or 15.5% increase) are able to effectively distinguish between cortisol responders and nonresponders and should be used in future research, whenever statistical response class allocation is not feasible.
Collapse
|
49
|
Andersen M, Vinther F, Ottesen JT. Mathematical modeling of the hypothalamic-pituitary-adrenal gland (HPA) axis, including hippocampal mechanisms. Math Biosci 2013; 246:122-38. [PMID: 24012602 DOI: 10.1016/j.mbs.2013.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 07/06/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
This paper presents a mathematical model of the HPA axis. The HPA axis consists of the hypothalamus, the pituitary and the adrenal glands in which the three hormones CRH, ACTH and cortisol interact through receptor dynamics. Furthermore, it has been suggested that receptors in the hippocampus have an influence on the axis. A model is presented with three coupled, non-linear differential equations, with the hormones CRH, ACTH and cortisol as variables. The model includes the known features of the HPA axis, and includes the effects from the hippocampus through its impact on CRH in the hypothalamus. The model is investigated both analytically and numerically for oscillating solutions, related to the ultradian rhythm seen in data, and for multiple fixed points related to hypercortisolemic and hypocortisolemic depression. The existence of an attracting trapping region guarantees that solution curves stay non-negative and bounded, which can be interpreted as a mathematical formulation of homeostasis. No oscillating solutions are present when using physiologically reasonable parameter values. This indicates that the ultradian rhythm originate from different mechanisms. Using physiologically reasonable parameters, the system has a unique fixed point, and the system is globally stable. Therefore, solutions converge to the fixed point for all initial conditions. This is in agreement with cortisol levels returning to normal, after periods of mild stress, in healthy individuals. Perturbing parameters lead to a bifurcation, where two additional fixed points emerge. Thus, the system changes from having a unique stable fixed point into having three fixed points. Of the three fixed points, two are stable and one is unstable. Further investigations show that solutions converge to one of the two stable fixed points depending on the initial conditions. This could explain why healthy people becoming depressed usually fall into one of two groups: a hypercortisolemic depressive group or a hypocortisolemic depressive group.
Collapse
Affiliation(s)
- Morten Andersen
- Technical University of Denmark, DTU Compute, Matematiktorvet 303B, 2800 Kongens Lyngby, Denmark; Roskilde University, Building 27.1, NSM, IMFUFA, 4000 Roskilde, Denmark
| | | | | |
Collapse
|
50
|
Veldhuis JD, Sharma A, Roelfsema F. Age-dependent and gender-dependent regulation of hypothalamic-adrenocorticotropic-adrenal axis. Endocrinol Metab Clin North Am 2013; 42:201-25. [PMID: 23702398 PMCID: PMC3675779 DOI: 10.1016/j.ecl.2013.02.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tightly regulated output of glucocorticoids is critical to maintaining immune competence, the structure of neurons, muscle, and bone, blood pressure, glucose homeostasis, work capacity, and vitality in the human and experimental animal. Age, sex steroids, gender, stress, body composition, and disease govern glucocorticoid availability through incompletely understood mechanisms. According to an ensemble concept of neuroendocrine regulation, successful stress adaptations require repeated incremental signaling adjustments among hypothalamic corticotropin-releasing hormone and arginine vasopressin, pituitary adrenocorticotropic hormone, and adrenal corticosteroids. Signals are transduced via (positive) feedforward and (negative) feedback effects. Age and gonadal steroids strongly modulate stress-adaptive glucocorticoid secretion by such interlinked pathways.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|