1
|
Plasma amylin concentration in suckling goat neonates and its relationship with C-reactive protein, selected biochemical and hormonal indicators. ACTA VET BRNO 2015. [DOI: 10.2754/avb201584030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Amylin is a recently discovered neuropeptide hormone that belongs to the calcitonin gene-related peptide family. It is co-secreted with insulin in response to feed intake. In goat kids, neonatal mortality and morbidity seems to be relatively higher than in other farm species. This high mortality and morbidity in goat kids may be associated with underdeveloped metabolism and immune system during the first week of life. The main objectives of this study were to determine amylin concentration and its relationship with some hormones, biochemical indicators and with a general inflammatory marker, CRP (C-reactive protein) in goat neonates. Blood samples were collected from 30 Saanen goat neonates at 20–35 days of age. Plasma amylin and other hormone concentrations were measured by ELISA, whereas serum biochemical indices were analysed by spectrophotometry. The mean values of plasma amylin concentrations were 9.07 ± 0.25 pmol/l. Plasma amylin concentrations were positively correlated with plasma non-esterified fatty acids, CRP, prolactin, cortisol, insulin; however, a negative correlation was determined between plasma amylin and serum triglyceride concentrations. The current study suggests that amylin contents are strongly associated with circulating concentrations of some hormones and with those of CRP in Saanen goat kids.
Collapse
|
2
|
DiStefano JK, Kingsley C, Wood GC, Chu X, Argyropoulos G, Still CD, Doné SC, Legendre C, Tembe W, Gerhard GS. Genome-wide analysis of hepatic lipid content in extreme obesity. Acta Diabetol 2015; 52:373-82. [PMID: 25246029 PMCID: PMC4370808 DOI: 10.1007/s00592-014-0654-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
AIMS Individuals with type 2 diabetes have an increased risk of developing non-alcoholic fatty liver disease (NAFLD), and NAFLD patients are also at greater risk for developing type 2 diabetes. Although the relationship between type 2 diabetes and NAFLD is highly interconnected, the pathogenic mechanisms linking the two diseases are poorly understood. The goal of this study was to identify genetic determinants of hepatic lipid accumulation through association analysis using histological phenotypes in obese individuals. METHODS Using the Illumina HumanOmniExpress BeadChip assay, we genotyped 2,300 individuals on whom liver biopsy data were available. RESULTS We analyzed total bilirubin levels, which are linked to fatty liver in severe obesity, and observed the strongest evidence for association with rs4148325 in UGT1A (P < 5.0 × 10(-93)), replicating previous findings. We assessed hepatic fat level and found strong evidence for association with rs4823173, rs2896019, and rs2281135, all located in PNPLA3 and rs10401969 in SUGP1. Analysis of liver transcript levels of 20 genes residing at the SUGP1/NCAN locus identified a 1.6-fold change in the expression of the LPAR2 gene in fatty liver. We also observed suggestive evidence for association between low-grade fat accumulation and rs10859525 and rs1294908, located upstream from SOCS2 and RAMP3, respectively. SOCS2 was differentially expressed between fatty and normal liver. CONCLUSIONS These results replicate findings for several hepatic phenotypes in the setting of extreme obesity and implicate new loci that may play a role in the pathophysiology of hepatic lipid accumulation.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
- Corresponding author: Please send all correspondence to: Johanna K. DiStefano, Ph.D., Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, AZ 85004, Tel: 602.343.8812, FAX: 602.343.8844,
| | - Christopher Kingsley
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
| | - G. Craig Wood
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
| | - Xin Chu
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
| | - George Argyropoulos
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
| | - Christopher D. Still
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
| | - Stefania Cotta Doné
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
| | - Christophe Legendre
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
| | - Waibhav Tembe
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
| | - Glenn S. Gerhard
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Room C5750, 500 University Drive, MC - H171, Hershey, PA 17033
| |
Collapse
|
3
|
Guzel S, Gunes N. Correlations between endogen amylin hormone and some hormonal, biochemical and bone parameters in pullets. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2014. [DOI: 10.1590/1516-635x1604375-380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S Guzel
- University of Uludag, TURKEY
| | - N Gunes
- University of Uludag, TURKEY
| |
Collapse
|
4
|
Wang R, Ross CA, Cai H, Cong WN, Daimon CM, Carlson OD, Egan JM, Siddiqui S, Maudsley S, Martin B. Metabolic and hormonal signatures in pre-manifest and manifest Huntington's disease patients. Front Physiol 2014; 5:231. [PMID: 25002850 PMCID: PMC4066441 DOI: 10.3389/fphys.2014.00231] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder typified by involuntary body movements, and psychiatric and cognitive abnormalities. Many HD patients also exhibit metabolic changes including progressive weight loss and appetite dysfunction. Here we have investigated metabolic function in pre-manifest and manifest HD subjects to establish an HD subject metabolic hormonal plasma signature. Individuals at risk for HD who have had predictive genetic testing showing the cytosine-adenine-guanine (CAG) expansion causative of HD, but who do not yet present signs and symptoms sufficient for the diagnosis of manifest HD are said to be “pre-manifest.” Pre-manifest and manifest HD patients, as well as both familial and non-familial controls, were evaluated for multiple peripheral metabolism signals including circulating levels of hormones, growth factors, lipids, and cytokines. Both pre-manifest and manifest HD subjects exhibited significantly reduced levels of circulating growth factors, including growth hormone and prolactin. HD-related changes in the levels of metabolic hormones such as ghrelin, glucagon, and amylin were also observed. Total cholesterol, HDL-C, and LDL-C were significantly decreased in HD subjects. C-reactive protein was significantly elevated in pre-manifest HD subjects. The observation of metabolic alterations, even in subjects considered to be in the pre-manifest stage of HD, suggests that in addition, and prior, to overt neuronal damage, HD affects metabolic hormone secretion and energy regulation, which may shed light on pathogenesis, and provide opportunities for biomarker development.
Collapse
Affiliation(s)
- Rui Wang
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Departments of Neuroscience and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Huan Cai
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Wei-Na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Caitlin M Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Olga D Carlson
- Diabetes Section, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Josephine M Egan
- Diabetes Section, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Stuart Maudsley
- VIB Department of Molecular Genetics, University of Antwerp Antwerpen, Belgium
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
5
|
Yang J, Guan Y. Family with sequence similarity 3 gene family and nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2013; 28 Suppl 1:105-11. [PMID: 23855304 DOI: 10.1111/jgh.12033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2013] [Indexed: 01/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises a disease spectrum ranging from simple steatosis (fatty liver) and nonalcoholic steatohepatitis to fibrosis and cirrhosis. NAFLD has become the leading cause of chronic liver diseases as well as liver-related morbidity and mortality worldwide. NAFLD is also associated with increased risk of cardiovascular diseases, hyperlipidemia, and type 2 diabetes. Insulin resistance in adipose tissues and the liver plays crucial roles in the progression of NAFLD. The family with sequence similarity 3 (FAM3) gene family is a cytokine-like gene family with four members designated FAM3A, FAM3B, FAM3C, and FAM3D, respectively. Increasing evidence suggests that the FAM3 gene family members are involved in the pathogenesis of NAFLD. In particular, FAM3B, also called pancreatic-derived factor, is an important regulator of glucose and lipid metabolism. In obesity status, increased expression and secretion of FAM3B in pancreatic islets and liver may induce lipid accumulation in the liver via the induction of hepatic insulin resistance and lipogenesis. FAM3A and FAM3D may also participate in the regulation of lipid and energy metabolism. In this brief review, we discussed the latest findings regarding the role of FAM3 gene family members, in particular FAM3B, in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Beijing, China
| | | |
Collapse
|
6
|
Izadpanah A, Barnard RJ, Almeda AJE, Baldwin GC, Bridges SA, Shellman ER, Burant CF, Roberts CK. A short-term diet and exercise intervention ameliorates inflammation and markers of metabolic health in overweight/obese children. Am J Physiol Endocrinol Metab 2012; 303:E542-50. [PMID: 22713506 PMCID: PMC3423103 DOI: 10.1152/ajpendo.00190.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study was designed to examine the effects of short-term diet and exercise on markers of metabolic health, serum-stimulated production of inflammatory biomarkers from cultured monocytes and adipocytes, and serum lipomics. Twenty-one overweight/obese children (9 boys and 12 girls, age 13.0 ± 0.5 yr, BMI 33.0 ± 1.8 kg/m(2)) were placed on a 2-wk ad libitum, high-fiber, low-fat diet and daily exercise regimen. Fasting serum samples were taken pre- and postintervention for determination of cytokines, metabolic risk markers, and lipomics. Monocytes and adipocytes were incubated with pre- and postintervention serum to investigate changes in cytokine secretion. Correlative associations were calculated, followed by hierarchical clustering to determine relationships between fatty acid (FA) species and clinical biomarkers. Despite remaining overweight/obese, interleukin (IL)-6, IL-8, TNFα, PAI-1, resistin, amylin, leptin, insulin, and IL-1ra decreased and adiponectin increased. Culture studies indicated decreases in monocyte secretion of IL-6, TNFα, and IL-1β and adipocyte secretion of IL-6. Lipomic analysis revealed a decrease in total lipids and decreases in saturated FAs and an increase in 18:1/18:0. In general, Pearson's correlations revealed that inflammatory markers are negatively associated with a cluster of polyunsaturated FAs and positively correlated with several saturated FAs. These results indicate significant modification of multiple indices of metabolic health with short-term rigorous lifestyle modification in overweight/obese children prior to obesity reversal.
Collapse
Affiliation(s)
- Ali Izadpanah
- Department of Integrative Biology and Physiology, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bailey RJ, Walker CS, Ferner AH, Loomes KM, Prijic G, Halim A, Whiting L, Phillips ARJ, Hay DL. Pharmacological characterization of rat amylin receptors: implications for the identification of amylin receptor subtypes. Br J Pharmacol 2012; 166:151-67. [PMID: 22014233 DOI: 10.1111/j.1476-5381.2011.01717.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Amylin (Amy) is an important glucoregulatory peptide and AMY receptors are clinical targets for diabetes and obesity. Human (h) AMY receptor subtypes are complexes of the calcitonin (CT) receptor with receptor activity-modifying proteins (RAMPs); their rodent counterparts have not been characterized. To allow identification of the most clinically relevant receptor subtype, the elucidation of rat (r) AMY receptor pharmacology is necessary. EXPERIMENTAL APPROACH Receptors were transiently transfected into COS-7 cells and cAMP responses measured in response to different agonists, with or without antagonists. Competition binding experiments were performed to determine rAmy affinity. KEY RESULTS rCT was the most potent agonist of rCT((a)) receptors, whereas rAmy was most potent at rAMY(1(a)) and rAMY(3(a)) receptors. rAmy bound to these receptors with high affinity. Rat α-calcitonin gene-related peptide (CGRP) was equipotent to rAmy at both AMY receptors. Rat adrenomedullin (AM) and rAM2/intermedin activated all three receptors but were most effective at rAMY(3(a)) . AC187, AC413 and sCT(8-32) were potent antagonists at all three receptors. rαCGRP(8-37) displayed selectivity for rAMY receptors over rCT((a)) receptors. rAMY(8-37) was a weak antagonist but was more effective at rAMY(1(a)) than rAMY(3(a)) . CONCLUSIONS AND IMPLICATIONS AMY receptors were generated by co-expression of rCT((a)) with rRAMP1 or 3, forming rAMY(1(a)) and rAMY(3(a)) receptors, respectively. CGRP was more potent at rAMY than at hAMY receptors. No antagonist tested was able to differentiate the rAMY receptor subtypes. The data emphasize the need for and provide a useful resource for developing new CT or AMY receptor ligands as pharmacological tools or potential clinical candidates.
Collapse
Affiliation(s)
- R J Bailey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Satyanarayana A, Klarmann KD, Gavrilova O, Keller JR. Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis. FASEB J 2011; 26:309-23. [PMID: 21990377 DOI: 10.1096/fj.11-190892] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Obesity is a major health concern that contributes to the development of diabetes, hyperlipidemia, coronary artery disease, and cancer. Id proteins are helix-loop-helix transcription factors that regulate the proliferation and differentiation of cells from multiple tissues, including adipocytes. We screened mouse tissues for the expression of Id1 and found that Id1 protein is highly expressed in brown adipose tissue (BAT) and white adipose tissue (WAT), suggesting a role for Id1 in adipogenesis and cell metabolism. Id1(-/-) mice are viable but show a significant reduction in fat mass (P<0.005) over the life of the animal that was not due to decreased number of adipocytes. Analysis of Id1(-/-) mice revealed higher energy expenditure, increased lipolysis, and fatty acid oxidation, resulting in reduced triglyceride accumulation in WAT compared to Id1(+/+) mice. Serum levels of triglycerides (193.9±32.2 vs. 86.5±33.8, P<0.0005), cholesterol (189.4±33.8 vs. 110.6±8.23, P<0.0005) and leptin (1263±835 vs. 222±260, P<0.005) were significantly lower in aged Id1(-/-) mice compared to Id1(+/+) mice. Id1-deficient mice have higher resting (P<0.005) and total (P<0.05) O(2) consumption and lower respiratory exchange ratio (P<0.005), confirming that Id1(-/-) mice use a higher proportion of lipid as an energy source for the increased energy expenditure. The expression of PGC1α and UCP1 were 2- to 3-fold up-regulated in Id1(-/-) BAT, suggesting that loss of Id1 increases thermogenesis. As a consequence of higher energy expenditure and reduced fat mass, Id1(-/-) mice displayed enhanced insulin sensitivity. Id1 deficiency protected mice against age- and high-fat-diet-induced adiposity, insulin resistance, and hepatosteatosis. Our findings suggest that Id1 plays a critical role in the regulation of energy homeostasis and could be a potential target in the treatment of insulin resistance and fatty liver disease.
Collapse
Affiliation(s)
- Ande Satyanarayana
- Center for Cancer Research, National Cancer, Institute-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
9
|
Hou X, Sun L, Li Z, Mou H, Yu Z, Li H, Jiang P, Yu D, Wu H, Ye X, Lin X, Le Y. Associations of amylin with inflammatory markers and metabolic syndrome in apparently healthy Chinese. PLoS One 2011; 6:e24815. [PMID: 21935471 PMCID: PMC3174205 DOI: 10.1371/journal.pone.0024815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 01/21/2023] Open
Abstract
Background Cellular and animal studies implicate multiple roles of amylin in regulating insulin action, glucose and lipid metabolisms. However, the role of amylin in obesity related metabolic disorders has not been thoroughly investigated in humans. Therefore, we aimed to evaluate the distribution of circulating amylin and its association with metabolic syndrome (MetS) and explore if this association is influenced by obesity, inflammatory markers or insulin resistance in apparently healthy Chinese. Methods A population-based sample of 1,011 Chinese men and women aged 35–54 years was employed to measure plasma amylin, inflammatory markers (C-reactive protein [CRP] and interleukin-6 [IL-6]), insulin, glucose and lipid profiles. MetS was defined according to the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian-Americans. Results Plasma amylin concentrations were higher in overweight/obese participants than normal-weight counterparts (P<0.001) without sex difference. Circulating amylin was positively associated with CRP, IL-6, BMI, waist circumference, blood pressure, fasting glucose, insulin, amylin/insulin ratio, HOMA-IR, LDL cholesterol and triglycerides, while negatively associated with HDL cholesterol (all P<0.001). After multiple adjustments, the risk of MetS was significantly higher (odds ratio 3.71; 95% confidence interval: 2.53 to 5.46) comparing the highest with the lowest amylin quartile. The association remained significant even further controlling for BMI, inflammatory markers, insulin or HOMA-IR. Conclusions Our study suggests that amylin is strongly associated with inflammatory markers and MetS. The amylin-MetS association is independent of established risk factors of MetS, including obesity, inflammatory markers and insulin resistance. The causal role of hyperamylinemia in the development of MetS needs to be confirmed prospectively.
Collapse
Affiliation(s)
- Xinwei Hou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Liang Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Zongmeng Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Haiwei Mou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Zhijie Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Peizhen Jiang
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Danxia Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Hongyu Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Xingwang Ye
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: (YL); (XL)
| | - Yingying Le
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: (YL); (XL)
| |
Collapse
|
10
|
Nanga RPR, Brender JR, Xu J, Hartman K, Subramanian V, Ramamoorthy A. Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy. J Am Chem Soc 2009; 131:8252-61. [PMID: 19456151 PMCID: PMC4163022 DOI: 10.1021/ja9010095] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Islet amyloid polypeptide (IAPP or amylin) is a 37-residue peptide hormone associated with glucose metabolism that is cosecreted with insulin by beta-cells in the pancreas. Since human IAPP is a highly amyloidogenic peptide, it has been suggested that the formation of IAPP amyloid fibers is responsible for the death of beta-cells during the early stages of type II diabetes. It has been hypothesized that transient membrane-bound alpha-helical structures of human IAPP are precursors to the formation of these amyloid deposits. On the other hand, rat IAPP forms transient alpha-helical structures but does not progress further to form amyloid fibrils. To understand the nature of this intermediate state and the difference in toxicity between the rat and human versions of IAPP, we have solved the high-resolution structure of rat IAPP in the membrane-mimicking detergent micelles composed of dodecylphosphocholine. The structure is characterized by a helical region spanning the residues A5 to S23 and a disordered C-terminus. A distortion in the helix is seen at R18 and S19 that may be involved in receptor binding. Paramagnetic quenching NMR experiments indicate that rat IAPP is bound on the surface of the micelle, in agreement with other nontoxic forms of IAPP. A comparison to the detergent-bound structures of other IAPP variants indicates that the N-terminal region may play a crucial role in the self-association and toxicity of IAPP by controlling access to the putative dimerization interface on the hydrophobic face of the amphipathic helix.
Collapse
|
11
|
Danaher RN, Loomes KM, Leonard BL, Whiting L, Hay DL, Xu LY, Kraegen EW, Phillips ARJ, Cooper GJS. Evidence that alpha-calcitonin gene-related peptide is a neurohormone that controls systemic lipid availability and utilization. Endocrinology 2008; 149:154-60. [PMID: 17932220 DOI: 10.1210/en.2007-0583] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alpha-calcitonin gene-related peptide (alphaCGRP) is released mainly from sensory and motor nerves in response to physiological stimuli. Despite well-documented pharmacological effects, its primary physiological role has thus far remained obscure. Increased lipid content, particularly in skeletal muscle and liver, is strongly implicated in the pathogenesis of insulin resistance, but the physiological regulation of organ lipid is imperfectly understood. Here we report our systematic investigations of the effects of alphaCGRP on in vitro and in vivo indices of lipid metabolism. In rodents, levels of alphaCGRP similar to those in the blood markedly stimulated fatty acid beta-oxidation and evoked concomitant mobilization of muscle lipid via receptor-mediated activation of muscle lipolysis. alphaCGRP exerted potent in vivo effects on lipid metabolism in muscle, liver, and the blood via receptor-mediated pathways. Studies with receptor antagonists were consistent with tonic regulation of lipid metabolism by an endogenous CGRP agonist. These data reveal that alphaCGRP is a newly recognized regulator of lipid availability and utilization in key tissues and that it may elevate the availability of intramyocellular free fatty acids to meet muscle energy requirements generated by contraction by evoking their release from endogenous triglyceride.
Collapse
Affiliation(s)
- Rachel N Danaher
- School of Biological Sciences, University of Auckland, Private Bag 92 019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reinehr T, de Sousa G, Niklowitz P, Roth CL. Amylin and its relation to insulin and lipids in obese children before and after weight loss. Obesity (Silver Spring) 2007; 15:2006-11. [PMID: 17712118 DOI: 10.1038/oby.2007.239] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE There are limited data concerning the relationships between amylin, weight status, lipids, insulin, and insulin resistance in obese humans. Therefore, the aim was to study these relationships in cross-sectional and longitudinal analyses. RESEARCH METHODS AND PROCEDURES Fasting amylin, insulin, glucose, triglycerides, low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol, and percentage body fat based on skinfold measurements were determined in 37 obese children (median age, 11.5 years) and compared with 16 lean children of the same age and gender. Furthermore, we analyzed the changes of these variables in the obese children after participating in a one-year weight loss intervention program. RESULTS Obese children had significantly (p < 0.01) higher amylin, triglycerides, LDL-cholesterol, and insulin levels as compared with the lean children. In multiple linear regression analysis, amylin was significantly (p < 0.05) correlated to insulin and triglycerides, but not to age, gender, pubertal stage, or BMI. Changes of amylin correlated significantly (p < 0.001) to changes of insulin (r = 0.54) and triglycerides (r = 0.49), but not to changes of BMI or percentage body fat. Substantial weight loss in 17 children led to a significant (p < 0.05) decrease of amylin, triglycerides, and insulin, in contrast to the 20 children without substantial weight loss. CONCLUSION Amylin levels were related to insulin concentrations in both cross-sectional and longitudinal analyses, suggesting a relationship between amylin and insulin secretion. Amylin levels were reversibly increased in obesity and related to triglyceride concentrations.
Collapse
Affiliation(s)
- Thomas Reinehr
- Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Dr. F. Steiner Str. 5, 45711 Datteln, Germany.
| | | | | | | |
Collapse
|
13
|
Isaksson B, Wang F, Permert J, Olsson M, Fruin B, Herrington MK, Enochsson L, Erlanson-Albertsson C, Arnelo U. Chronically administered islet amyloid polypeptide in rats serves as an adiposity inhibitor and regulates energy homeostasis. Pancreatology 2005; 5:29-36. [PMID: 15775697 DOI: 10.1159/000084488] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 05/19/2004] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Islet amyloid polypeptide (IAPP) reduces food intake and body weight in laboratory animals. In addition, IAPP appears to regulate nutrient metabolism. In the present studies, we investigated the effect of chronic IAPP treatment on different aspects of energy homeostasis. METHODS IAPP was infused (25 pmol/kg/min) from subcutaneous osmotic pumps for 2-7 days. Rats in 2 saline-infused control groups were fed ad libitum (AF) or pair-fed (PF) against the IAPP-treated rats. RESULTS As expected, the IAPP infusion reduced food intake and body weight gain. In addition, the IAPP treatment decreased the epididymal fat pad (vs. PF rats, p < 0.05) and lowered circulating levels of triglycerides (vs. PF rats, p < 0.05), free fatty acids (vs. PF rats, p < 0.05), leptin (vs. both AF and PF rats, p < 0.05) and insulin (vs. AF rats, p < 0.05). In contrast, glucose and protein metabolism in the IAPP-treated rats was largely unchanged, as shown in results regarding serum glucose, glucose transport in skeletal muscle, blood urea nitrogen, and glycogen and protein content in the liver and in skeletal muscle. CONCLUSION/INTERPRETATION In summary, chronic IAPP exposure led to a changed lipid metabolism, which was characterized by decreased adiposity, hypolipidemia and hypoleptinemia, and to unchanged glucose and protein homeostasis. These results were similar to those seen in rodents during chronic exposure to another satiety/adiposity regulator, leptin. In conclusion, chronically administered IAPP plays a role as a satiety and adiposity signal in rats, and helps regulate energy homeostasis.
Collapse
Affiliation(s)
- B Isaksson
- Arvid Wretlind Laboratory for Metabolic and Nutritional Research, Department of Surgery, Karolinska Institutet at Huddinge University Hospital, SE-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hayden MR, Tyagi SC. Intimal redox stress: accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy. Cardiovasc Diabetol 2002; 1:3. [PMID: 12392600 PMCID: PMC140143 DOI: 10.1186/1475-2840-1-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2002] [Accepted: 09/27/2002] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome, insulin resistance, prediabetes, and overt type 2 diabetes mellitus are associated with an accelerated atherosclerosis (atheroscleropathy). This quartet is also associated with multiple metabolic toxicities resulting in the production of reactive oxygen species. The redox stress associated with these reactive oxygen species contribute to the development, progression, and the final fate of the arterial vessel wall in prediabetic and diabetic atheroscleropathy. The prevention of morbidity and mortality of these intersecting metabolic diseases can be approached through comprehensive global risk reduction.
Collapse
Affiliation(s)
- Melvin R Hayden
- Adjunct Assistant Professor Department of Family and Community Medicine University of Missouri Columbia, Missouri, USA
| | - Suresh C Tyagi
- Assistant Professor Department of Physiology and Biophysics University of Mississippi Medical Center Jackson, Mississippi 39216-4505, USA
| |
Collapse
|