1
|
Drzymała-Czyż S, Walkowiak J, Colombo C, Alicandro G, Storrösten OT, Kolsgaard M, Bakkeheim E, Strandvik B. Fatty acid abnormalities in cystic fibrosis-the missing link for a cure? iScience 2024; 27:111153. [PMID: 39620135 PMCID: PMC11607544 DOI: 10.1016/j.isci.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The care for cystic fibrosis (CF) has dramatically changed with the development of modulators, correctors, and potentiators of the CFTR molecule, which lead to improved clinical status of most people with CF (pwCF). The modulators influence phospholipids and ceramides, but not linoleic acid (LA) deficiency, associated with more severe phenotypes of CF. The LA deficiency is associated with upregulation of its transfer to arachidonic acid (AA). The AA release from membranes is increased and associated with increase of pro-inflammatory prostanoids and the characteristic inflammation is present before birth and bacterial infections. Docosahexaenoic acid is often decreased, especially in associated liver disease Some endogenously synthesized fatty acids are increased. Cholesterol and ceramide metabolisms are disturbed. The lipid abnormalities are present at birth, and before feeding in transgenic pigs and ferrets. This review focus on the lipid abnormalities and their associations to clinical symptoms in CF, based on clinical studies and experimental research.
Collapse
Affiliation(s)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Olav Trond Storrösten
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Magnhild Kolsgaard
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Egil Bakkeheim
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
Gookin JL, Holmes J, Clarke LL, Stauffer SH, Meredith B, Vandewege MW, Torres-Machado N, Friedenberg SG, Seiler GS, Mathews KG, Meurs K. Acquired dysfunction of CFTR underlies cystic fibrosis-like disease of the canine gallbladder. Am J Physiol Gastrointest Liver Physiol 2024; 327:G513-G530. [PMID: 39041675 PMCID: PMC11482251 DOI: 10.1152/ajpgi.00145.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Mucocele formation in dogs is a unique and enigmatic muco-obstructive disease of the gallbladder caused by the amassment of abnormal mucus that bears striking pathological similarity to cystic fibrosis. We investigated the role of cystic fibrosis transmembrane conductance regulatory protein (CFTR) in the pathogenesis of this disease. The location and frequency of disease-associated variants in the coding region of CFTR were compared using whole genome sequence data from 2,642 dogs representing breeds at low-risk, high-risk, or with confirmed disease. Expression, localization, and ion transport activity of CFTR were quantified in control and mucocele gallbladders by NanoString, Western blotting, immunofluorescence imaging, and studies in Ussing chambers. Our results establish a significant loss of CFTR-dependent anion secretion by mucocele gallbladder mucosa. A significantly lower quantity of CFTR protein was demonstrated relative to E-cadherin in mucocele compared with control gallbladder mucosa. Immunofluorescence identified CFTR along the apical membrane of epithelial cells in control gallbladders but not in mucocele gallbladder epithelium. Decreases in mRNA copy number for CFTR were accompanied by decreases in mRNA for the Cl-/[Formula: see text] exchanger SLC26A3, K+ channels (KCNQ1, KCNN4), and vasoactive intestinal polypeptide receptor (VIPR1), which suggest a driving force for change in secretory function of gallbladder epithelial cells in the pathogenesis of mucocele formation. There were no significant differences in CFTR gene variant frequency, type, or predicted impact comparing low-risk, high-risk, and definitively diagnosed groups of dogs. This study describes a unique, naturally occurring muco-obstructive disease of the canine gallbladder, with uncanny similarity to cystic fibrosis, and driven by the underlying failure of CFTR function.NEW & NOTEWORTHY Cystic fibrosis transmembrane conductance regulatory protein (CFTR) genomic variants and expression of mRNA, protein, and electrogenic anion secretory activity of CFTR were characterized in dog gallbladder. Acquired inhibition of CFTR expression by gallbladder epithelium was identified as underpinning a naturally occurring muco-obstructive disease of the dog gallbladder that bears striking pathological similarity to animal models of cystic fibrosis.
Collapse
Affiliation(s)
- Jody L Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Jenny Holmes
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Lane L Clarke
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Stephen H Stauffer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Bryanna Meredith
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Michael W Vandewege
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Nicole Torres-Machado
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States
| | - Gabriela S Seiler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Kyle G Mathews
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Kathryn Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
3
|
Xu C, Fang X, Xu X, Wei X. Genetic engineering drives the breakthrough of pig models in liver disease research. LIVER RESEARCH 2024; 8:131-140. [PMID: 39957748 PMCID: PMC11771255 DOI: 10.1016/j.livres.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025]
Abstract
Compared with the widely used rodents, pigs are anatomically, physiologically, and genetically more similar to humans, making them high-quality models for the study of liver diseases. Here, we review the latest research progress on pigs as a model of human liver disease, including methods for establishing them and their advantages in studying cystic fibrosis liver disease, acute liver failure, liver regeneration, non-alcoholic fatty liver disease, liver tumors, and xenotransplantation. We also emphasize the importance of genetic engineering techniques, mainly the CRISPR/Cas9 system, which has greatly enhanced the utility of porcine models as a tool for substantially advancing liver disease research. Genetic engineering is expected to propel the pig as one of the irreplaceable animal models for future biomedical research.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
5
|
Villaca CBP, Mastracci TL. Pancreatic Crosstalk in the Disease Setting: Understanding the Impact of Exocrine Disease on Endocrine Function. Compr Physiol 2024; 14:5371-5387. [PMID: 39109973 PMCID: PMC11425433 DOI: 10.1002/cphy.c230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The exocrine and endocrine are functionally distinct compartments of the pancreas that have traditionally been studied as separate entities. However, studies of embryonic development, adult physiology, and disease pathogenesis suggest there may be critical communication between exocrine and endocrine cells. In fact, the incidence of the endocrine disease diabetes secondary to exocrine disease/dysfunction ranges from 25% to 80%, depending on the type and severity of the exocrine pathology. Therefore, it is necessary to investigate how exocrine-endocrine "crosstalk" may impact pancreatic function. In this article, we discuss common exocrine diseases, including cystic fibrosis, acute, hereditary, and chronic pancreatitis, and the impact of these exocrine diseases on endocrine function. Additionally, we review how obesity and fatty pancreas influence exocrine function and the impact on cellular communication between the exocrine and endocrine compartments. Interestingly, in all pathologies, there is evidence that signals from the exocrine disease contribute to endocrine dysfunction and the progression to diabetes. Continued research efforts to identify the mechanisms that underlie the crosstalk between various cell types in the pancreas are critical to understanding normal pancreatic physiology as well as disease states. © 2024 American Physiological Society. Compr Physiol 14:5371-5387, 2024.
Collapse
Affiliation(s)
| | - Teresa L Mastracci
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Uc A, Strandvik B, Yao J, Liu X, Yi Y, Sun X, Welti R, Engelhardt J, Norris A. The fatty acid imbalance of cystic fibrosis exists at birth independent of feeding in pig and ferret models. Clin Sci (Lond) 2022; 136:1773-1791. [PMID: 36416119 PMCID: PMC9747517 DOI: 10.1042/cs20220450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Persons with cystic fibrosis (CF) exhibit a unique alteration of fatty acid composition, marked especially among polyunsaturates by relative deficiency of linoleic acid and excess of Mead acid. Relative deficiency of docosahexaenoic acid is variably found. However, the initial development of these abnormalities is not understood. We examined fatty acid composition in young CF ferrets and pigs, finding abnormalities from the day of birth onward including relative deficiency of linoleic acid in both species. Fatty acid composition abnormalities were present in both liver and serum phospholipids of newborn CF piglets even prior to feeding, including reduced linoleic acid and increased Mead acid. Serum fatty acid composition evolved over the first weeks of life in both non-CF and CF ferrets, though differences between CF and non-CF persisted. Although red blood cell phospholipid fatty acid composition was normal in newborn animals, it became perturbed in juvenile CF ferrets including relative deficiencies of linoleic and docosahexaenoic acids and excess of Mead acid. In summary, fatty acid composition abnormalities in CF pigs and ferrets exist from a young age including at birth independent of feeding and overlap extensively with the abnormalities found in humans with CF. That the abnormalities exist prior to feeding implies that dietary measures alone will not address the mechanisms of imbalance.
Collapse
Affiliation(s)
- Aliye Uc
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Flemingsberg, Stockholm 14183, Sweden
| | - Jianrong Yao
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Yaling Yi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Ruth Welti
- Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, U.S.A
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, U.S.A
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
7
|
Wei J, Zhang W, Li J, Jin Y, Qiu Z. Application of the transgenic pig model in biomedical research: A review. Front Cell Dev Biol 2022; 10:1031812. [PMID: 36325365 PMCID: PMC9618879 DOI: 10.3389/fcell.2022.1031812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The large animal model has gradually become an essential part of preclinical research studies, relating to exploring the disease pathological mechanism, genic function, pharmacy, and other subjects. Although the mouse model has already been widely accepted in clinical experiments, the need for finding an animal model with high similarity compared with a human model is urgent due to the different body functions and systems between mice and humans. The pig is an optimal choice for replacement. Therefore, enhancing the production of pigs used for models is an important part of the large animal model as well. Transgenic pigs show superiority in pig model creation because of the progress in genetic engineering. Successful cases of transgenic pig models occur in the clinical field of metabolic diseases, neurodegenerative diseases, and genetic diseases. In addition, the choice of pig breed influences the effort and efficiency of reproduction, and the mini pig has relative obvious advantages in pig model production. Indeed, pig models in these diseases provide great value in studies of their causes and treatments, especially at the genetic level. This review briefly outlines the method used to create transgenic pigs and species of producing transgenic pigs and provides an overview of their applications on different diseases and limitations for present pig model developments.
Collapse
Affiliation(s)
| | | | | | - Ye Jin
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | | |
Collapse
|
8
|
Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med 2022; 5:141-152. [PMID: 35343091 PMCID: PMC9043727 DOI: 10.1002/ame2.12223] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
Animal models of human diseases play a critical role in medical research. Pigs are anatomically and physiologically more like humans than are small rodents such as mice, making pigs an attractive option for modeling human diseases. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, and various genetic diseases. We also discuss areas that need to be improved. Animal models of human diseases play a critical role in medical research. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and xenotransplantation.
Collapse
Affiliation(s)
- Naipeng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1517-1529. [PMID: 34329764 PMCID: PMC8529398 DOI: 10.1016/j.jcmgh.2021.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). Severe disease occurs in perinates. Those who survive the neonatal period face a myriad of comorbidities, including systemic and portal hypertension, liver fibrosis, and hepatosplenomegaly. The goal here was to uncover therapeutic strategies for ARPKD. METHODS We used wild-type and an FPC-mutant cholangiocyte cell line in 3-dimenional cysts and in confluent monolayers to evaluate protein expression using western blotting and protein trafficking using confocal microscopy. RESULTS We found that the protein level of the cystic fibrosis transmembrane conductance regulator (CFTR) was downregulated. The levels of heat shock proteins (HSPs) were altered in the FPC-mutant cholangiocytes, with HSP27 being downregulated and HSP90 and HSP70 upregulated. FPC-mutant cholangiocytes formed cysts, but normal cells did not. Cyst growth could be reduced by increasing HSP27 protein levels, by HSP90 and HSP70 inhibitor treatments, by silencing HSP90 through messenger RNA inhibition, or by the novel approach of treating the cysts with the CFTR corrector VX-809. In wild-type cholangiocytes, CFTR is present in both apical and basolateral membranes. FPC malfunction resulted in altered colocalization of CFTR with both apical and basolateral membranes. Whereas, treatment with VX-809, increasing HSP27 or inhibiting HSP70 or HSP90 restored CFTR localization toward normal values. CONCLUSIONS FPC malfunction induces the formation of cysts, which are fueled by alterations in HSPs and in CFTR protein levels and miss-localization. We suggest that CFTR correctors, already in clinical use to treat cystic fibrosis, could also be used as a treatment for ARPKD.
Collapse
|
11
|
Zarei K, Meyerholz DK, Stoltz DA. Early intrahepatic duct defects in a cystic fibrosis porcine model. Physiol Rep 2021; 9:e14978. [PMID: 34288572 PMCID: PMC8290831 DOI: 10.14814/phy2.14978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Hepatobiliary disease causes significant morbidity and mortality in people with cystic fibrosis (CF), yet this problem remains understudied. Previous studies in the newborn CF pig demonstrated decreased bile flow into the small intestine and a microgallbladder with increased luminal mucus and fluid secretion defects. In this study, we examined the intrahepatic bile ducts of the newborn CF pig. We assessed whether our findings from the gallbladder are present elsewhere in the porcine biliary tract and if CF pig cholangiocytes have fluid secretion defects. Immunohistochemistry demonstrated apical CFTR expression in non-CF pig intrahepatic bile ducts of a variety of sizes; CF pig intrahepatic bile ducts lacked CFTR expression. Assessment of serum markers did not reveal significant signs of hepatobiliary disease except for an elevation in direct bilirubin. Quantitative histology demonstrated that CF pigs had smaller bile ducts that more frequently contained luminal mucus. CF intrahepatic cholangiocyte organoids were smaller and lacked cAMP-mediated fluid secretion. Together these data suggest that cholangiocyte fluid secretion is decreased in the CF pig, contributing to structural changes in bile ducts and decreased biliary flow.
Collapse
Affiliation(s)
- Keyan Zarei
- Department of Internal MedicineRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Biomedical EngineeringRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - David K. Meyerholz
- Department of PathologyRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - David A. Stoltz
- Department of Internal MedicineRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Biomedical EngineeringRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Molecular Physiology and BiophysicsRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Pappajohn Biomedical InstituteUniversity of IowaIowa CityIAUSA
| |
Collapse
|
12
|
Gibson-Corley KN, Engelhardt JF. Animal Models and Their Role in Understanding the Pathophysiology of Cystic Fibrosis-Associated Gastrointestinal Lesions. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:51-67. [PMID: 33497264 DOI: 10.1146/annurev-pathol-022420-105133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The life expectancy of cystic fibrosis (CF) patients has greatly increased over the past decade, and researchers and clinicians must now navigate complex disease manifestations that were not a concern prior to the development of modern therapies. Explosive growth in the number of CF animal models has also occurred over this time span, clarifying CF disease pathophysiology and creating opportunities to understand more complex disease processes associated with an aging CF population. This review focuses on the CF-associated pathologies of the gastrointestinal system and how animal models have increased our understanding of this complex multisystemic disease. Although CF is primarily recognized as a pulmonary disease, gastrointestinal pathology occurs very commonly and can affect the quality of life for these patients. Furthermore, we discuss how next-generation genetic engineering of larger animal models will impact the field's understanding of CF disease pathophysiology and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katherine N Gibson-Corley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.,Current affiliation: Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA;
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA;
| |
Collapse
|
13
|
Zarei K, Stroik MR, Gansemer ND, Thurman AL, Ostedgaard LS, Ernst SE, Thornell IM, Powers LS, Pezzulo AA, Meyerholz DK, Stoltz DA. Early pathogenesis of cystic fibrosis gallbladder disease in a porcine model. J Transl Med 2020; 100:1388-1399. [PMID: 32719544 PMCID: PMC7578062 DOI: 10.1038/s41374-020-0474-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatobiliary disease causes significant morbidity in people with cystic fibrosis (CF), yet this problem remains understudied. We previously found that newborn CF pigs have microgallbladders with significant luminal obstruction in the absence of infection and consistent inflammation. In this study, we sought to better understand the early pathogenesis of CF pig gallbladder disease. We hypothesized that loss of CFTR would impair gallbladder epithelium anion/liquid secretion and increase mucin production. CFTR was expressed apically in non-CF pig gallbladder epithelium but was absent in CF. CF pig gallbladders lacked cAMP-stimulated anion transport. Using a novel gallbladder epithelial organoid model, we found that Cl- or HCO3- was sufficient for non-CF organoid swelling. This response was absent for non-CF organoids in Cl-/HCO3--free conditions and in CF. Single-cell RNA-sequencing revealed a single epithelial cell type in non-CF gallbladders that coexpressed CFTR, MUC5AC, and MUC5B. Despite CF gallbladders having increased luminal MUC5AC and MUC5B accumulation, there was no significant difference in the epithelial expression of gel-forming mucins between non-CF and CF pig gallbladders. In conclusion, these data suggest that loss of CFTR-mediated anion transport and fluid secretion contribute to microgallbladder development and luminal mucus accumulation in CF.
Collapse
Affiliation(s)
- Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nick D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarah E Ernst
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ian M Thornell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Hepatobiliary Involvement in Cystic Fibrosis. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Serova OV, Orsa AN, Chachina NA, Petrenko AG, Deyev IE. с-Met receptor can be activated by extracellular alkaline medium. J Recept Signal Transduct Res 2019; 39:67-72. [DOI: 10.1080/10799893.2019.1620775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Oxana V. Serova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander N. Orsa
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia A. Chachina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Petrenko
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E. Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Fiorotto R, Strazzabosco M. Pathophysiology of Cystic Fibrosis Liver Disease: A Channelopathy Leading to Alterations in Innate Immunity and in Microbiota. Cell Mol Gastroenterol Hepatol 2019; 8:197-207. [PMID: 31075352 PMCID: PMC6664222 DOI: 10.1016/j.jcmgh.2019.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutation of Cftr. CF-associated liver disease (CFLD) is a common nonpulmonary cause of mortality in CF and accounts for approximately 2.5%-5% of overall CF mortality. The peak of the disease is in the pediatric population, but a second wave of liver disease in CF adults has been reported in the past decade in association with an increase in the life expectancy of these patients. New drugs are available to correct the basic defect in CF but their efficacy in CFLD is not known. The cystic fibrosis transmembrane conductance regulator, expressed in the apical membrane of cholangiocytes, is a major determinant for bile secretion and CFLD classically has been considered a channelopathy. However, the recent findings of the cystic fibrosis transmembrane conductance regulator as a regulator of epithelial innate immunity and the possible influence of the intestinal disease with an altered microbiota on the liver complication have opened new mechanistic insights on the pathogenesis of CFLD. This review provides an overview of the current understanding of the pathophysiology of the disease and discusses a potential target for intervention.
Collapse
Affiliation(s)
- Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
17
|
Investigation of adrenal and thyroid gland dysfunction in dogs with ultrasonographic diagnosis of gallbladder mucocele formation. PLoS One 2019; 14:e0212638. [PMID: 30811473 PMCID: PMC6392329 DOI: 10.1371/journal.pone.0212638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
Gallbladder mucocele formation is an emerging disease in dogs characterized by increased secretion of condensed granules of gel-forming mucin by the gallbladder epithelium and formation of an abnormally thick mucus that can culminate in obstruction of the bile duct or rupture of the gallbladder. The disease is associated with a high morbidity and mortality and its pathogenesis is unknown. Affected dogs have a significantly increased likelihood of concurrent diagnosis of hyperadrenocorticism, hypothyroidism, and hyperlipidemia. Whether these endocrinopathies represent coincidental primary disease processes that exacerbate gallbladder mucocele formation in predisposed dogs or reflect a concurrent disruption of endocrine and lipid metabolism is unclear. In this study, we investigated a hypothesis that dogs with gallbladder mucocele formation would have a high prevalence of occult and atypical abnormalities in adrenal cortical and thyroid gland function that would suggest the presence of endocrine disruption and provide deeper insight into disease pathogenesis. We performed a case-control study of dogs with and without ultrasonographic diagnosis of gallbladder mucocele formation and profiled adrenal cortical function using a quantitative mass spectrometry-based assay of serum adrenal-origin steroids before and after administration of synthetic cosyntropin. We simultaneously profiled serum thyroid hormone concentrations and evaluated iodine sufficiency by measurement of urine iodine:creatinine ratios (UICR). The studies were complemented by histological examination of archival thyroid tissue and measurements of thyroid gland organic iodine from dogs with gallbladder mucocele formation and control dogs. Dogs with gallbladder mucocele formation demonstrated an exaggerated cortisol response to adrenal stimulation with cosyntropin. A prevalence of 10% of dogs with gallbladder mucocele formation met laboratory-based criteria for suspect or definitive diagnosis of hyperadrenocorticism. A significantly greater number of dogs with gallbladder mucocele formation had basal serum dehydroepiandrosterone (DHEAS) increases compared to control dogs. A high percentage of dogs with gallbladder mucocele formation (26%) met laboratory-based criteria for diagnosis of hypothyroidism, but lacked detection of anti-thyroglobulin antibodies. Dogs with gallbladder mucocele formation had significantly higher UICRs than control dogs. Examination of thyroid tissue from an unrelated group of dogs with gallbladder mucocele formation did not demonstrate histological evidence of thyroiditis or significant differences in content of organic iodine. These findings suggest that dogs with gallbladder mucocele formation have a greater capacity for cortisol synthesis and pinpoint DHEAS elevations as a potential clue to the underlying pathogenesis of the disease. A high prevalence of thyroid dysfunction with absent evidence for autoimmune thyroiditis suggest a disrupted thyroid hormone metabolism in dogs with gallbladder mucocele formation although an influence of non-thyroidal illness cannot be excluded. High UICR in dogs with gallbladder mucocele formation is of undetermined significance, but of interest for further study.
Collapse
|
18
|
Fiorotto R, Amenduni M, Mariotti V, Cadamuro M, Fabris L, Spirli C, Strazzabosco M. Animal models for cystic fibrosis liver disease (CFLD). Biochim Biophys Acta Mol Basis Dis 2018; 1865:965-969. [PMID: 30071276 DOI: 10.1016/j.bbadis.2018.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Liver disease is a severe complication in patients with Cystic Fibrosis (CF), a genetic disease caused by mutations in the gene encoding for cystic fibrosis transmembrane conductance regulator (CFTR) channel. The sequence of events leading to CFLD is still unclear and has limited the development of more specific treatments other than the bile acid UDCA. However, in the last twenty years, several gaps have been filled, which have mainly been possible due to the availability of different animal models that mimic CF. CF mice, although they lack a spontaneous liver manifestation, have been essential to better understand the multiple functions of CFTR expression on the apical membrane of cholangiocytes, from chloride channel to regulator of epithelial innate immunity. Additionally, we have learned that the gut microbiota might be a pathogenetic factor for the development of liver disease. The recent creation of novel CF animal models (i.e. pig and ferret) that better reproduce the human disease, will allow for comparative studies with species that spontaneously develop the liver disease and will hopefully lead to novel therapeutic treatments. In this review, we have compared and summarized the main features of the current available CF animal models and their applicability for the study of the liver phenotype.
Collapse
Affiliation(s)
- Romina Fiorotto
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Mariangela Amenduni
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Luca Fabris
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Carlo Spirli
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Mario Strazzabosco
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
O'Malley Y, Rotti PG, Thornell IM, Vanegas Calderón OG, Febres-Aldana C, Durham K, Yao J, Li X, Zhu Z, Norris AW, Zabner J, Engelhardt JF, Uc A. Development of a polarized pancreatic ductular cell epithelium for physiological studies. J Appl Physiol (1985) 2018; 125:97-106. [PMID: 29517421 PMCID: PMC6086968 DOI: 10.1152/japplphysiol.00043.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023] Open
Abstract
Pancreatic ductular epithelial cells comprise the majority of duct cells in pancreas, control cystic fibrosis transmembrane conductance regulator (CFTR)-dependent bicarbonate ([Formula: see text]) secretion, but are difficult to grow as a polarized monolayer. Using NIH-3T3-J2 fibroblast feeder cells and a Rho-associated kinase inhibitor, we produced well-differentiated and polarized porcine pancreatic ductular epithelial cells. Cells grown on semipermeable filters at the air-liquid interface developed typical epithelial cell morphology and stable transepithelial resistance and expressed epithelial cell markers (zona occludens-1 and β-catenin), duct cell markers (SOX-9 and CFTR), but no acinar (amylase) or islet cell (chromogranin) markers. Polarized cells were studied in Ussing chambers bathed in Krebs-Ringer [Formula: see text] solution at 37°C gassed with 5% CO2 to measure short-circuit currents ( Isc). Ratiometric measurement of extracellular pH was performed with fluorescent SNARF-conjugated dextran at 5% CO2. Cells demonstrated a baseline Isc (12.2 ± 3.2 μA/cm2) that increased significantly in response to apical forskolin-IBMX (∆ Isc: 35.4 ± 3.8 μA/cm2, P < 0.001) or basolateral secretin (∆ Isc: 31.4 ± 2.5 μA/cm2, P < 0.001), both of which increase cellular levels of cAMP. Subsequent addition of apical GlyH-101, a CFTR inhibitor, decreased the current (∆ Isc: 20.4 ± 3.8 μA/cm2, P < 0.01). Extracellular pH and [Formula: see text] concentration increased significantly after forskolin-IBMX (pH: 7.18 ± 0.23 vs. 7.53 ± 0.19; [Formula: see text] concentration, 14.5 ± 5.9 vs. 31.8 ± 13.4 mM; P < 0.05 for both). We demonstrate the development of a polarized pancreatic ductular epithelial cell epithelium with CFTR-dependent [Formula: see text] secretion in response to secretin and cAMP. This model is highly relevant, as porcine pancreas physiology is very similar to humans and pancreatic damage in the cystic fibrosis pig model recapitulates that of humans. NEW & NOTEWORTHY Pancreas ductular epithelial cells control cystic fibrosis transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion. Their function is critical because when CFTR is deficient in cystic fibrosis bicarbonate secretion is lost and the pancreas is damaged. Mechanisms that control pancreatic bicarbonate secretion are incompletely understood. We generated well-differentiated and polarized porcine pancreatic ductular epithelial cells and demonstrated feasibility of bicarbonate secretion. This novel method will advance our understanding of pancreas physiology and mechanisms of bicarbonate secretion.
Collapse
Affiliation(s)
- Yunxia O'Malley
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Pavana G Rotti
- Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Ian M Thornell
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | | | - Christopher Febres-Aldana
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center , Miami Beach, Florida
| | - Katelin Durham
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Jianrong Yao
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Xiaopeng Li
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | - Zheng Zhu
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| | - Andrew W Norris
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa , Iowa City, Iowa
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa , Iowa City, Iowa
| |
Collapse
|
20
|
Animal and model systems for studying cystic fibrosis. J Cyst Fibros 2017; 17:S28-S34. [PMID: 28939349 DOI: 10.1016/j.jcf.2017.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
The cystic fibrosis (CF) field is the beneficiary of five species of animal models that lack functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. These models are rapidly informing mechanisms of disease pathogenesis and CFTR function regardless of how faithfully a given organ reproduces the human CF phenotype. New approaches of genetic engineering with RNA-guided nucleases are rapidly expanding both the potential types of models available and the approaches to correct the CFTR defect. The application of new CRISPR/Cas9 genome editing techniques are similarly increasing capabilities for in vitro modeling of CFTR functions in cell lines and primary cells using air-liquid interface cultures and organoids. Gene editing of CFTR mutations in somatic stem cells and induced pluripotent stem cells is also transforming gene therapy approaches for CF. This short review evaluates several areas that are key to building animal and cell systems capable of modeling CF disease and testing potential treatments.
Collapse
|
21
|
Hohwieler M, Perkhofer L, Liebau S, Seufferlein T, Müller M, Illing A, Kleger A. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterol J 2017; 5:609-624. [PMID: 28815024 PMCID: PMC5548342 DOI: 10.1177/2050640616670565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is one of the most frequently occurring inherited human diseases caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which lead to ample defects in anion transport and epithelial fluid secretion. Existing models lack both access to early stages of CF development and a coeval focus on the gastrointestinal CF phenotypes, which become increasingly important due increased life span of the affected individuals. Here, we provide a comprehensive overview of gastrointestinal facets of CF and the opportunity to model these in various systems in an attempt to understand and treat CF. A particular focus is given on forward-leading organoid cultures, which may circumvent current limitations of existing models and thereby provide a platform for drug testing and understanding of disease pathophysiology in gastrointestinal organs.
Collapse
Affiliation(s)
- Meike Hohwieler
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Oesterbergstr. 3, 72074 Tuebingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Martin Müller
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Anett Illing
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| |
Collapse
|
22
|
Müller PC, Steinemann DC, Nickel F, Chinczewski L, Müller-Stich BP, Linke GR, Z'graggen K. Transduodenal-transpapillary endopancreatic surgery with a rigid resectoscope: experiments on ex vivo, in vivo animal models and human cadavers. Surg Endosc 2017; 31:4131-4135. [PMID: 28281120 DOI: 10.1007/s00464-017-5465-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/13/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND Surgery for chronic pancreatitis is afflicted with high morbidity. A novel transduodenal-transpapillary endopancreatic resection (EPR) may provide a less invasive alternative approach. MATERIALS AND METHODS After laparoscopic duodenotomy the papilla was dilated and accessed with a rigid resectoscope. A resection of pancreatic head tissue was performed from inside the organ. First, the feasibility and resection volume were assessed in bovine pancreas. Bleeding and intraoperative complications were evaluated in an acute in vivo pig model. Finally, the total laparoscopic approach was tested in human cadavers. RESULTS EPR was feasible in 6/6 bovine and 5/6 porcine pancreases; in one case the papilla could not be located. The resected surface accounted for 30 (23-39)% of the total pancreatic surface and the resection volume was 14.2 (9-25) cm3. In vivo blood loss was minimal [10 (5-20) ml]. The operating time for EPR was 84 (75-110) min in all cadavers. CONCLUSION The EPR technique is feasible and provides a resection comparable with duodenum-preserving pancreatic head resection (DPPHR). Given the reduced surgical trauma, EPR may emerge as a minimally invasive alternative to DPPHR.
Collapse
Affiliation(s)
- Philip C Müller
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Daniel C Steinemann
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Nickel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Lukas Chinczewski
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Beat P Müller-Stich
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg R Linke
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Department of Surgery, Spital STS AG Thun, Thun, Switzerland
| | - Kaspar Z'graggen
- Berner Viszeralchirurgie, Klinik Beau-Site, Hirslanden, Bern, Switzerland
| |
Collapse
|
23
|
Jonczyk-Potoczna K, Nowak JK, Madry E, Katulska K, Stezowska-Kubiak S, Moczko J, Lisowska A, Walkowiak J. Smaller Width of the Pancreatic Duct During Secretin-Enhanced Magnetic Resonance Cholangiopancreatography in Pancreatic-Sufficient Cystic Fibrosis Patients. Pancreas 2016; 45:1175-8. [PMID: 26967454 DOI: 10.1097/mpa.0000000000000621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES New tools are needed in cystic fibrosis (CF) diagnostics in pancreatic-sufficient CF (PS-CF) patients. Secretin-enhanced magnetic resonance cholangiopancreatography (SE-MRCP) allows for improved assessment of the width of the pancreatic duct. METHODS Sixteen PS-CF patients and 17 healthy volunteers underwent SE-MRCP. The width of the pancreatic duct in the head, the body, and the tail of the pancreas was measured at the baseline and 1, 2, 3, 5, and 10 minutes after secretin administration. RESULTS The width of the pancreatic duct in the head of the pancreas did not differ between the groups at the baseline; after 10 minutes of secretin stimulation, it was smaller in PS-CF patients (median, 1.4 mm [first-third quartile, 1.3-2.0] vs 2.2 mm [1.7-2.4], P = 0.008). The area under the curve for discrimination between the 2 groups using this parameter was 0.77 (95% confidence interval, 0.60-0.93). CONCLUSIONS The SE-MRCP identified differences in the width of the pancreatic duct between PS-CF and healthy volunteers. Further improvements of the method are needed to augment its clinical utility.
Collapse
Affiliation(s)
- Katarzyna Jonczyk-Potoczna
- From the Departments of *Pediatric Radiology, †Pediatric Gastroenterology and Metabolic Diseases, ‡Physiology, §General Radiology, and ∥Department of Computer Science and Statistics, Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Schnúr A, Hegyi P, Rousseau S, Lukacs GL, Veit G. Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
Affiliation(s)
- Andrea Schnúr
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| | - Péter Hegyi
- Institute for Translational Medicine and 1st Department of Medicine, University of Pécs, Pécs 7624, Hungary
- MTA-SZTE Translational Gastroenterology Research Group, Szeged 6720, Hungary
| | - Simon Rousseau
- The Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QC, Canada H2X 2P2
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
- Department of Biochemistry, McGill University, Montréal, QC, Canada H3G 1Y6
- Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, QC, Canada H3G 1Y6
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, Canada H3G 1Y6
| |
Collapse
|
25
|
Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5258727. [PMID: 27340661 PMCID: PMC4908263 DOI: 10.1155/2016/5258727] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/08/2016] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF.
Collapse
Affiliation(s)
- Gillian M. Lavelle
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Michelle M. White
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Niall Browne
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G. McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Emer P. Reeves
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
26
|
|
27
|
Hegyi P, Wilschanski M, Muallem S, Lukacs GL, Sahin-Tóth M, Uc A, Gray MA, Rakonczay Z, Maléth J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Rev Physiol Biochem Pharmacol 2016; 170:37-66. [PMID: 26856995 PMCID: PMC5232416 DOI: 10.1007/112_2015_5002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts chloride and bicarbonate ions across epithelial cell membranes. Mutations in the CFTR gene diminish the ion channel function and lead to impaired epithelial fluid transport in multiple organs such as the lung and the pancreas resulting in cystic fibrosis. Heterozygous carriers of CFTR mutations do not develop cystic fibrosis but exhibit increased risk for pancreatitis and associated pancreatic damage characterized by elevated mucus levels, fibrosis, and cyst formation. Importantly, recent studies demonstrated that pancreatitis causing insults, such as alcohol, smoking, or bile acids, strongly inhibit CFTR function. Furthermore, human studies showed reduced levels of CFTR expression and function in all forms of pancreatitis. These findings indicate that impairment of CFTR is critical in the development of pancreatitis; therefore, correcting CFTR function could be the first specific therapy in pancreatitis. In this review, we summarize recent advances in the field and discuss new possibilities for the treatment of pancreatitis.
Collapse
Affiliation(s)
- Péter Hegyi
- Institute for Translational Medicine and 1st Department of Medicine, University of Pécs, Pécs, Hungary.
- MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary.
- First Department of Medicine, University of Szeged, Szeged, Hungary.
| | - Michael Wilschanski
- Pediatric Gastroenterology Unit, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Shmuel Muallem
- National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | | | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Aliye Uc
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael A Gray
- Institute for Cell & Molecular Biosciences, University Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary
| |
Collapse
|
28
|
Pallagi P, Hegyi P, Rakonczay Z. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians. Pancreas 2015; 44:1211-1233. [PMID: 26465950 DOI: 10.1097/mpa.0000000000000421] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
Affiliation(s)
- Petra Pallagi
- From the *First Department of Medicine, University of Szeged; and †Hungarian Academy of Sciences-University of Szeged Translational Gastroenterology Research Group, Szeged, Hungary
| | | | | |
Collapse
|
29
|
Gibson-Corley KN, Meyerholz DK, Engelhardt JF. Pancreatic pathophysiology in cystic fibrosis. J Pathol 2015; 238:311-20. [PMID: 26365583 DOI: 10.1002/path.4634] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022]
Abstract
The pancreas is one of the earliest, and most commonly affected, organs in patients with cystic fibrosis (CF). Studying the pathogenesis of pancreatic disease is limited in CF patients, due to its early clinical onset, co-morbidities and lack of tissue samples from the early phases of disease. In recent years, several new CF animal models have been developed that have advanced our understanding of both CF exocrine and endocrine pancreatic disease. Additionally, these models have helped us to better define the influence of pancreatic lesions on CF disease progression in other organs, such as the gastrointestinal tract and lung.
Collapse
Affiliation(s)
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Olivier AK, Gibson-Corley KN, Meyerholz DK. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2015; 308:G459-71. [PMID: 25591863 PMCID: PMC4360044 DOI: 10.1152/ajpgi.00146.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF.
Collapse
Affiliation(s)
- Alicia K. Olivier
- Department of Pathology and Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Katherine N. Gibson-Corley
- Department of Pathology and Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Pathology and Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
31
|
Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci (Lond) 2014; 128:131-42. [PMID: 25142104 DOI: 10.1042/cs20140059] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes is a common and significant co-morbidity in cystic fibrosis (CF). The pathogenesis of cystic fibrosis related diabetes (CFRD) is incompletely understood. Because exocrine pancreatic disease is similar between humans and pigs with CF, the CF pig model has the potential to contribute significantly to the understanding of CFRD pathogenesis. We determined the structure of the endocrine pancreas in fetal, newborn and older CF and non-CF pigs and assessed endocrine pancreas function by intravenous glucose tolerance test (IV-GTT). In fetal pigs, pancreatic insulin and glucagon density was similar between CF and non-CF. In newborn and older pigs, the insulin and glucagon density was unchanged between CF and non-CF per total pancreatic area, but increased per remnant lobular tissue in CF reflecting exocrine pancreatic loss. Although fasting glucose levels were not different between CF and non-CF newborns, CF newborns demonstrated impaired glucose tolerance and increased glucose area under the curve during IV-GTT. Second phase insulin secretion responsiveness was impaired in CF newborn pigs and significantly lower than that observed in non-CF newborns. Older CF pigs had elevated random blood glucose levels compared with non-CF. In summary, glycaemic abnormalities and insulin secretion defects were present in newborn CF pigs and spontaneous hyperglycaemia developed over time. Functional changes in CF pig pancreas were not associated with a decline in islet cell mass. Our results suggest that functional islet abnormalities, independent of structural islet loss, contribute to the early pathogenesis of CFRD.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The article reviews advances in gastrointestinal aspects of cystic fibrosis (CF) published in the literature over the past year, and highlights new and interesting research. RECENT FINDINGS Animal models can be used to understand the pathophysiology of gastrointestinal complications in CF. The CF mouse is useful for studying distal intestinal obstruction, dysmotility and dysbiosis, and the CF pig model has helped us better understand meconium ileus and pancreatic and hepatobiliary secretory problems. Studies in humans help elucidate the evolution of pancreatic insufficiency, how reflux may lead to lung disease, problems with intestinal dysmotility, mechanisms leading to pancreatitis and the increased prevalence of gastrointestinal cancer. Biomarkers are shedding light on CF-related liver disease. Rectal biopsies can help in diagnosis and in studying new drugs for CF. SUMMARY Gastrointestinal complications of CF are likely to be seen with increasing frequency as patients with CF lead longer lives. CF animal models and modern research techniques are providing new insights into extrapulmonary complications. CF clinicians should be familiar with diagnosis and management of common gastrointestinal complications and should build bridges with specialists so that referrals can be made when needed.
Collapse
|
33
|
Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014; 52:47-57. [PMID: 24727426 DOI: 10.1016/j.biocel.2014.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Joe A Wrennall
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Hongyu Li
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
34
|
Griffin MA, Restrepo MS, Abu-El-Haija M, Wallen T, Buchanan E, Rokhlina T, Chen YH, McCray PB, Davidson BL, Divekar A, Uc A. A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 2013; 21:123-30. [PMID: 24257348 PMCID: PMC3946305 DOI: 10.1038/gt.2013.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/17/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023]
Abstract
Gene therapy offers the possibility to treat pancreatic disease in Cystic Fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however gene transfer to the pancreas is untested in humans. The pancreatic disease phenotype is very similar between humans and pigs with CF, thus CF pigs create an excellent opportunity to study gene transfer to the pancreas. There are no studies showing efficient transduction of pig pancreas with gene transfer vectors. Our objective is to develop a safe and efficient method to transduce wild-type (WT) porcine pancreatic ducts that express CFTR. We catheterized the umbilical artery of WT newborn pigs and delivered an adeno-associated virus serotype 9 vector expressing green fluorescent protein (AAV9CMV.sceGFP) or vehicle to the celiac artery, the vessel that supplies major branches to the pancreas. This technique resulted in stable and dose-dependent transduction of pancreatic duct epithelial cells that expressed CFTR. Intravenous injection of AAV9CMV.sceGFP did not transduce the pancreas. Our technique offers an opportunity to deliver the CFTR gene to the pancreas of CF pigs. The celiac artery can be accessed via umbilical artery in newborns and via femoral artery at older ages; delivery approaches which can be translated to humans.
Collapse
Affiliation(s)
- M A Griffin
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M S Restrepo
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M Abu-El-Haija
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Wallen
- Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Buchanan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Rokhlina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Y H Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - P B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B L Davidson
- 1] Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Neurology and Physiology & Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Divekar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Uc
- 1] Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|