1
|
Wu B, Weng X, Pan Y, Tian Z, Wu P, Shao J, Liu Y, Huang R, Xu T, Zhou K. Genetic inhibition of nicotinamide N-methyltransferase and prevention of alcohol-associated fatty liver in humans. J Hum Genet 2025; 70:141-146. [PMID: 39695269 DOI: 10.1038/s10038-024-01313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Recent studies of animal models reported Nicotinamide N-methyltransferase (NNMT) as a potential therapeutic target for preventing alcohol-associated fatty liver (AFL), yet its efficacy and safety in humans remain unknown. We aim to estimate the effectiveness and safety of inhibiting NNMT in humans. We leveraged Electronic Medical Records (EMRs) data coupled with genetic information to perform a retrospective drug target validation study. We examined longitudinal clinical data from 612 individuals with excessive alcohol consumption. Two variants lowering NNMT protein levels were combined to calculate a weighted NNMT genetic score that could mimic mild inhibition of NNMT. Participants with an NNMT score above the median were classified as genetically inhibited, while others were considered non-inhibited. We then evaluated whether genetic inhibition of NNMT would affect the incidence of AFL or the risk of liver injury, to illuminate the effectiveness and safety of genetic inhibition of NNMT respectively. NNMT genetic inhibition correlated with a reduced AFL risk (hazard ratio [HR] 0.67, 95% confidence interval [CI] 0.49-0.90, P = 0.009) without a significant increase in serum aminotransferase levels (P > 0.10). Notably, elevated ALT and AST levels were observed (P < 0.05) in the genetically inhibited group prior to alcohol exposure. These findings suggest NNMT inhibition is a promising avenue for AFL prevention among individuals with excessive alcohol intake. They also underscore the need for precise target population identification to mitigate potential adverse effects.
Collapse
Affiliation(s)
- Benrui Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Weng
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ying Pan
- Department of general practice, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Zijian Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Jian Shao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Yiying Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Huang
- Medical Science and Technology Innovation Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Kaixin Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
- College of Public Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Sun YQ, Wu Y, Li MR, Wei YY, Guo M, Zhang ZL. Elafibranor alleviates alcohol-related liver fibrosis by restoring intestinal barrier function. World J Gastroenterol 2024; 30:4660-4668. [PMID: 39575408 PMCID: PMC11572637 DOI: 10.3748/wjg.v30.i43.4660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/31/2024] Open
Abstract
We discuss the article by Koizumi et al published in the World Journal of Gastroenterology. Our focus is on the therapeutic targets for fibrosis associated with alcohol-related liver disease (ALD) and the mechanism of action of elafibranor (EFN), a dual agonist of peroxisome proliferator-activated receptor α (PPARα) and peroxisome PPAR δ (PPARδ). EFN is currently in phase III clinical trials for the treatment of metabolic dysfunction-associated fatty liver disease and primary biliary cholangitis. ALD progresses from alcoholic fatty liver to alcoholic steatohepatitis (ASH), with chronic ASH eventually leading to fibrosis, cirrhosis, and, in some cases, hepatocellular carcinoma. The pathogenesis of ALD is driven by hepatic steatosis, oxidative stress, and acetaldehyde toxicity. Alcohol consumption disrupts lipid metabolism by inactivating PPARα, exacerbating the progression of ALD. EFN primarily activates PPARα, promoting lipolysis and β-oxidation in ethanol-stimulated HepG2 cells, which significantly reduces hepatic steatosis, apoptosis, and fibrosis in an ALD mouse model. Additionally, alcohol disrupts the gut-liver axis at several interconnected levels, contributing to a proinflammatory environment in the liver. EFN helps alleviate intestinal hyperpermeability by restoring tight junction protein expression and autophagy, inhibiting apoptosis and inflammatory responses, and enhancing intestinal barrier function through PPARδ activation.
Collapse
Affiliation(s)
- Yu-Qi Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yang Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Meng-Ran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yu-Yao Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zi-Li Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
3
|
Motuziuk O, Nozdrenko D, Prylutska S, Vareniuk I, Cherepanov V, Bogutska K, Rudenko S, Prylutskyy Y, Piosik J, Ritter U. C 60 Fullerene Reduces the Level of Liver Damage in Chronic Alcohol Intoxication of Rats. Molecules 2024; 29:2951. [PMID: 38998903 PMCID: PMC11242988 DOI: 10.3390/molecules29132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The liver is the main organ responsible for the metabolism of ethanol, which suffers significantly as a result of tissue damage due to oxidative stress. It is known that C60 fullerenes are able to efficiently capture and inactivate reactive oxygen species in in vivo and in vitro systems. Therefore, the purpose of this study is to determine whether water-soluble C60 fullerene reduces the level of pathological process development in the liver of rats induced by chronic alcohol intoxication for 3, 6, and 9 months, depending on the daily dose (oral administration; 0.5, 1, and 2 mg/kg) of C60 fullerene throughout the experiment. In this context, the morphology of the C60 fullerene nanoparticles in aqueous solution was studied using atomic force microscopy. Such biochemical parameters of experimental animal blood as ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma-glutamyl transferase) and ALP (alkaline phosphatase) enzyme activities, CDT (carbohydrate-deficient transferrin) level, values of pro-antioxidant balance indicators (concentrations of H2O2 (hydrogen peroxide) and GSH (reduced glutathione), activities of CAT (catalase), SOD (superoxide dismutase) and GPx (selenium-dependent glutathione peroxidase)), and pathohistological and morphometric features of liver damage were analyzed. The most significant positive change in the studied biochemical parameters (up to 29 ± 2% relative to the control), as markers of liver damage, was recorded at the combined administration of alcohol (40% ethanol in drinking water) and water-soluble C60 fullerenes in the optimal dose of 1 mg/kg, which was confirmed by small histopathological changes in the liver of rats. The obtained results prove the prospective use of C60 fullerenes as powerful antioxidants for the mitigation of pathological conditions of the liver arising under prolonged alcohol intoxication.
Collapse
Affiliation(s)
- Olexandr Motuziuk
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Str. Volodymyrska 64/13, 01601 Kyiv, Ukraine
- Faculty of Biology and Forestry, Lesya Ukrainka Volyn National University, Av. Voli 13, 43025 Lutsk, Ukraine
| | - Dmytro Nozdrenko
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Str. Volodymyrska 64/13, 01601 Kyiv, Ukraine
| | - Svitlana Prylutska
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, Str. Heroiv Oborony 13, 03041 Kyiv, Ukraine
| | - Igor Vareniuk
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Str. Volodymyrska 64/13, 01601 Kyiv, Ukraine
| | | | - Kateryna Bogutska
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Str. Volodymyrska 64/13, 01601 Kyiv, Ukraine
| | - Sergii Rudenko
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Str. Volodymyrska 64/13, 01601 Kyiv, Ukraine
| | - Yuriy Prylutskyy
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Str. Volodymyrska 64/13, 01601 Kyiv, Ukraine
| | - Jacek Piosik
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Str. Abrahama 58, 80-307 Gdańsk, Poland
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Str. Weimarer 23, 98693 Ilmenau, Germany
| |
Collapse
|
4
|
Niemelä O, Bloigu A, Bloigu R, Nivukoski U, Kultti J, Pohjasniemi H. Patterns of IgA Autoantibody Generation, Inflammatory Responses and Extracellular Matrix Metabolism in Patients with Alcohol Use Disorder. Int J Mol Sci 2023; 24:13124. [PMID: 37685930 PMCID: PMC10487441 DOI: 10.3390/ijms241713124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Recent data have emphasized the role of inflammation and intestinal immunoglobulin A (IgA) responses in the pathogenesis of alcoholic liver disease (ALD). In order to further explore such associations, we compared IgA titers against antigens targeted to ethanol metabolites and tissue transglutaminase with pro- and anti-inflammatory mediators of inflammation, markers of liver status, transferrin protein desialylation and extracellular matrix metabolism in alcohol-dependent patients with or without liver disease and in healthy controls. Serum IgAs against protein adducts with acetaldehyde (HbAch-IgA), the first metabolite of ethanol, and tissue transglutaminase (tTG-IgA), desialylated transferrin (CDT), pro- and anti-inflammatory cytokines, markers of liver status (GT, ALP) and extracellular matrix metabolism (PIIINP, PINP, hyaluronic acid, ICTP and CTx) were measured in alcohol-dependent patients with (n = 83) or without (n = 105) liver disease and 88 healthy controls representing either moderate drinkers or abstainers. In ALD patients, both tTG-IgA and HbAch-IgA titers were significantly higher than those in the alcoholics without liver disease (p < 0.0005 for tTG-IgA, p = 0.006 for Hb-Ach-IgA) or in healthy controls (p < 0.0005 for both comparisons). The HbAch-IgA levels in the alcoholics without liver disease also exceeded those found in healthy controls (p = 0.0008). In ROC analyses, anti-tTG-antibodies showed an excellent discriminative value in differentiating between ALD patients and healthy controls (AUC = 0.95, p < 0.0005). Significant correlations emerged between tTG-IgAs and HbAch-IgAs (rs = 0.462, p < 0.0005), CDT (rs = 0.413, p < 0.0001), GT (rs = 0.487, p < 0.0001), alkaline phosphatase (rs = 0.466, p < 0.0001), serum markers of fibrogenesis: PIIINP (rs = 0.634, p < 0.0001), hyaluronic acid (rs = 0.575, p < 0.0001), ICTP (rs = 0.482, p < 0.0001), pro-inflammatory cytokines IL-6 (rs = 0.581, p < 0.0001), IL-8 (rs = 0.535, p < 0.0001) and TNF-α (rs = 0.591, p < 0.0001), whereas significant inverse correlations were observed with serum TGF-β (rs = -0.366, p < 0.0001) and CTx, a marker of collagen degradation (rs = -0.495, p < 0.0001). The data indicate that the induction of IgA immune responses toward ethanol metabolites and tissue transglutaminaseis a characteristic feature of patients with AUD and coincides with the activation of inflammation, extracellular matrix remodeling and the generation of aberrantly glycosylated proteins. These processes appear to work in concert in the sequence of events leading from heavy drinking to ALD.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Aini Bloigu
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Risto Bloigu
- Infrastructure of Population Studies, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland;
| | - Ulla Nivukoski
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Johanna Kultti
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Heidi Pohjasniemi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland; (U.N.); (J.K.); (H.P.)
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
5
|
Guo W, Chen S, Li C, Xu J, Wang L. Application of Disulfiram and its Metabolites in Treatment of Inflammatory Disorders. Front Pharmacol 2022; 12:795078. [PMID: 35185542 PMCID: PMC8848744 DOI: 10.3389/fphar.2021.795078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Disulfiram has been used clinically for decades as an anti-alcoholic drug. Recently, several studies have demonstrated the anti-inflammatory effects of disulfiram and its metabolism, which can alleviate the progression of inflammation in vivo and in vitro. In the current study, we summarize the anti-inflammatory mechanisms of disulfiram and its metabolism, including inhibition of pyroptosis by either covalently modifying gasdermin D or inactivating nod-like receptor protein 3 inflammasome, dual effects of intracellular reactive oxygen species production, and inhibition of angiogenesis. Furthermore, we review the potential application of disulfiram and its metabolism in treatment of inflammatory disorders, such as inflammatory bowel disease, inflammatory injury of kidney and liver, type 2 diabetes mellitus, sepsis, uveitis, and osteoarthritis.
Collapse
Affiliation(s)
- Wenyi Guo
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Chen
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengqing Li
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Shandong University, China
| |
Collapse
|
6
|
Zhang XN, Zhao N, Guo FF, Wang YR, Liu SX, Zeng T. Diallyl disulfide suppresses the lipopolysaccharide-driven inflammatory response of macrophages by activating the Nrf2 pathway. Food Chem Toxicol 2021; 159:112760. [PMID: 34896185 DOI: 10.1016/j.fct.2021.112760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/07/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide (LPS)-driven activation of Kupffer cells plays critical roles in the development of alcoholic liver disease (ALD). Accumulating evidence has revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) can modulate the polarization of macrophages. The current study aimed to investigate the roles of diallyl disulfide (DADS) in LPS-driven inflammation in vitro and in vivo. We found that DADS significantly increased the nuclear translocation of Nrf2 and the transcription of Nrf2 targets, including HO1, NQO1, and γ-GCSc, and suppressed degradation of Nrf2 protein. Besides, DADS significantly inhibited LPS-induced activation of NF-κB and MAPK, secretion of NO and TNF-α, and production of reactive oxygen species (ROS) in LPS-exposed RAW264.7 cells. In vivo study demonstrated that DADS significantly ameliorated liver damage in mice challenged with LPS, as shown by the inhibition of increases in serum aminotransferase activities, neutrophil infiltration, and NF-κB and NLRP3 inflammasome activation. Finally, knockout of Nrf2 abrogated the suppression of DADS on macrophage polarization and on liver injury induced by LPS. These findings reveal that DADS suppresses LPS-driven inflammatory response in the liver by activating Nrf2, which suggests that the protective effects of DADS against ALD may be attributed to the modulation of Kupffer cell polarization in the liver.
Collapse
Affiliation(s)
- Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi-Ran Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
7
|
Nawroth JC, Petropolis DB, Manatakis DV, Maulana TI, Burchett G, Schlünder K, Witt A, Shukla A, Kodella K, Ronxhi J, Kulkarni G, Hamilton G, Seki E, Lu S, Karalis KC. Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Rep 2021; 36:109393. [PMID: 34289365 PMCID: PMC8342038 DOI: 10.1016/j.celrep.2021.109393] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/03/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a global health issue and leads to progressive liver injury, comorbidities, and increased mortality. Human-relevant preclinical models of ALD are urgently needed. Here, we leverage a triculture human Liver-Chip with biomimetic hepatic sinusoids and bile canaliculi to model ALD employing human-relevant blood alcohol concentrations (BACs) and multimodal profiling of clinically relevant endpoints. Our Liver-Chip recapitulates established ALD markers in response to 48 h of exposure to ethanol, including lipid accumulation and oxidative stress, in a concentration-dependent manner and supports the study of secondary insults, such as high blood endotoxin levels. We show that remodeling of the bile canalicular network can provide an in vitro quantitative readout of alcoholic liver toxicity. In summary, we report the development of a human ALD Liver-Chip as a powerful platform for modeling alcohol-induced liver injury with the potential for direct translation to clinical research and evaluation of patient-specific responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anke Witt
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Janey Ronxhi
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
8
|
Santiesteban-Lores LE, Carneiro MC, Isaac L, Bavia L. Complement System in Alcohol-Associated Liver Disease. Immunol Lett 2021; 236:37-50. [PMID: 34111475 DOI: 10.1016/j.imlet.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
Innate immunity contributes effectively to the development of Alcohol-Associated liver disease (ALD). Particularly, human studies and murine models of ALD have shown that Complement activation plays an important role during the initial and later stages of ALD. The Complement System may contribute to the pathogenesis of this disease since it has been shown that ethanol-derived metabolic products activate the Complement cascade on liver membranes, leading to hepatocellular damage. However, studies evaluating the plasma levels of Complement proteins in ALD patients present contradictory results in some cases, and do not establish a well-marked role for each Complement component. The impairment of leukocyte chemoattractant activity observed in these patients may contribute to the susceptibility to bacterial infections in the latter stages of the disease. On the other hand, murine models of ALD have provided more detailed insights into the mechanisms that link the Complement System to the pathogenesis of the disease. It has been observed that Classical pathway can be activated via C1q binding to apoptotic cells in the liver and contributes to the development of hepatic inflammation. C3 contributes to the accumulation of triglycerides in the liver and in adipose tissue, while C5 seems to be involved with inflammation and liver injury after chronic ethanol consumption. In this review, we present a compendium of studies evaluating the role of Complement in human and murine models of ALD. We also discuss potential therapies to human ALD, highlighting the use of Complement inhibitors.
Collapse
Affiliation(s)
| | | | - Lourdes Isaac
- Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Lorena Bavia
- Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
9
|
Gu Z, Wu Y, Wang Y, Sun H, You Y, Piao C, Liu J, Wang Y. Lactobacillus rhamnosus Granules Dose-Dependently Balance Intestinal Microbiome Disorders and Ameliorate Chronic Alcohol-Induced Liver Injury. J Med Food 2019; 23:114-124. [PMID: 31747353 DOI: 10.1089/jmf.2018.4357] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the functions of Lactobacilli become better understood, there are increasing numbers of applications for Lactobacillus products. Previously, we have demonstrated that Lactobacillus rhamnosus GG (LGG) can prevent alcoholic liver injury. LGG granules were produced by fluid bed granulation with a media composed of starch, skimmed milk powder, whey powder, microcrystalline cellulose and maltose, and LGG fermented liquid that comprised 30-50% of the total weight. We found LGG granules dose-dependently protected against chronic alcoholic liver disease. When alcohol was consumed for 8 weeks with LGG treatment during the last 2 weeks, we demonstrated that the dose dependence of LGG granules can improve alcohol-induced liver injury through decreasing the levels of lipopolysaccharide and tumor necrosis factor-α in serum and prevent liver steatosis by suppressing triglyceride, free fatty acid, and malondialdehyde production in liver. Alcohol feeding caused a decline in the number of both Lactobacillus and Bifidobacterium, with a proportional increase in the number of Clostridium perfringens in ileum, and expansion of the Gram-negative bacteria Proteobacteria, Campylobacterales, and Helicobacter in cecum. However, LGG granule treatment restored the content of these microorganisms. In conclusion, LGG granule supplementation can improve the intestinal microbiota, reduce the number of gram-negative bacteria, and ameliorate alcoholic liver injury.
Collapse
Affiliation(s)
- Zelin Gu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yanfeng Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Ying You
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Jilin Agricultural University, Changchun, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Argemi J, Latasa MU, Atkinson SR, Blokhin IO, Massey V, Gue JP, Cabezas J, Lozano JJ, Van Booven D, Bell A, Cao S, Vernetti LA, Arab JP, Ventura-Cots M, Edmunds LR, Fondevila C, Stärkel P, Dubuquoy L, Louvet A, Odena G, Gomez JL, Aragon T, Altamirano J, Caballeria J, Jurczak MJ, Taylor DL, Berasain C, Wahlestedt C, Monga SP, Morgan MY, Sancho-Bru P, Mathurin P, Furuya S, Lackner C, Rusyn I, Shah VH, Thursz MR, Mann J, Avila MA, Bataller R. Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nat Commun 2019; 10:3126. [PMID: 31311938 PMCID: PMC6635373 DOI: 10.1038/s41467-019-11004-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGFβ1 is a key upstream transcriptome regulator in AH and induces the use of HNF4α P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4α are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4α-dependent gene expression. We conclude that targeting TGFβ1 and epigenetic drivers that modulate HNF4α-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH.
Collapse
Affiliation(s)
- Josepmaria Argemi
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15261, USA
- Liver Unit, Clínica Universidad de Navarra, University of Navarra, Pamplona, 31008, Spain
| | - Maria U Latasa
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
| | - Stephen R Atkinson
- Division of Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Ilya O Blokhin
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Veronica Massey
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Joel P Gue
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15261, USA
| | - Joaquin Cabezas
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
- Departament of Hepatology, Marqués de Valdecilla University Hospital, Santander, 39008, Spain
| | - Juan J Lozano
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, 28029, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Derek Van Booven
- John P. Hussman Institute of Human Genomics. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Aaron Bell
- Departments of Pathology and Medicine, Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lawrence A Vernetti
- University of Pittsburgh Drug Discovery Institute, Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Juan P Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Meritxell Ventura-Cots
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15261, USA
| | - Lia R Edmunds
- Department of Medicine, Division of Endocrinology and Metabolism, Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Constantino Fondevila
- Liver Transplant Unit, Department of Surgery, Hospital Clinic, University of Barcelona, Barcelona, 08036, Spain
| | - Peter Stärkel
- Service d'Hépato-gastroentérologie, Cliniques Universitaires Saint-Luc and Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Laurent Dubuquoy
- Service des Maladies de l'appareil digestif, CHU Lille. Inserm LIRIC - UMR995, University of Lille, Lille, 59000, France
| | - Alexandre Louvet
- Service des Maladies de l'appareil digestif, CHU Lille. Inserm LIRIC - UMR995, University of Lille, Lille, 59000, France
| | - Gemma Odena
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Juan L Gomez
- Departments of Pathology and Medicine, Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Tomas Aragon
- Department of Gene Therapy and Regulation, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Jose Altamirano
- Liver Unit, Department of Internal Medicine, Vall d'Hebron Institut de Recerca. Internal Medicine Department, Hospital Quiron Salud, Barcelona, 08035, Spain
| | - Juan Caballeria
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, 28029, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carmen Berasain
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, 28029, Spain
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Satdarshan P Monga
- Departments of Pathology and Medicine, Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Marsha Y Morgan
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, WC1E 6BT, UK
| | - Pau Sancho-Bru
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, 28029, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Philippe Mathurin
- Service des Maladies de l'appareil digestif, CHU Lille. Inserm LIRIC - UMR995, University of Lille, Lille, 59000, France
| | - Shinji Furuya
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - Carolin Lackner
- Medical University of Graz, Institute of Pathology, Graz, 8036, Austria
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mark R Thursz
- Division of Digestive Diseases, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matias A Avila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, 28029, Spain
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15261, USA.
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA.
| |
Collapse
|
11
|
Li K, Wang L, Zhou R, Fan H, Sui J. Amelioration of alcohol-induced liver injury in mice by ginsenosides in ginseng wine. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Radic I, Mijovic M, Tatalovic N, Mitic M, Lukic V, Joksimovic B, Petrovic Z, Ristic S, Velickovic S, Nestorovic V, Corac A, Miric M, Adzic M, Blagojevic DP, Popovic L, Hudomal SJ. Protective effects of whey on rat liver damage induced by chronic alcohol intake. Hum Exp Toxicol 2019; 38:632-645. [PMID: 30784321 DOI: 10.1177/0960327119829518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In 2012, alcohol liver disease resulted in 3.3 million-5.9% of global deaths. This study introduced whey protection capacity against chronic alcohol-induced liver injury. Rats were orally administered to 12% ethanol solution in water (ad libitum, average 8.14 g of ethanol/kg body weight (b.w.)/day) alone or combined with whey ( per os, 2 g/kg b.w./day). After 6-week treatment, chronic ethanol consumption induced significant histopathological liver changes: congestion, central vein dilation, hepatic portal vein branch dilation, Kupffer cells hyperplasia, fatty liver changes, and hepatocytes focal necrosis. Ethanol significantly increased liver catalase activity and glutathione reductase protein expression without significant effects on antioxidative enzymes: glutathione peroxidase (GPx), copper-zinc-containing superoxide dismutase (CuZnSOD) and manganese-containing superoxide dismutase (MnSOD). Co-treatment with whey significantly attenuated pathohistological changes induced by ethanol ingestion and increased GSH-Px and nuclear factor kappa B (NF-κB) protein expression. Our results showed positive effects of whey on liver chronically exposed to ethanol, which seem to be associated with NF-κB-GPx signaling.
Collapse
Affiliation(s)
- I Radic
- 1 Institute of Pathological Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - M Mijovic
- 2 Institute of Pathology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - N Tatalovic
- 3 Department of Physiology, Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| | - M Mitic
- 4 Laboratory of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - V Lukic
- 5 Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - B Joksimovic
- 6 Department of Preclinical sciences, Faculty of Medicine in Foča, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Z Petrovic
- 4 Laboratory of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - S Ristic
- 6 Department of Preclinical sciences, Faculty of Medicine in Foča, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - S Velickovic
- 1 Institute of Pathological Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - V Nestorovic
- 7 Institute of Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - A Corac
- 8 Institute of Hygiene, University of Priština, City of Kosovska Mitrovica, Serbia
| | - M Miric
- 1 Institute of Pathological Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - M Adzic
- 4 Laboratory of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - D P Blagojevic
- 3 Department of Physiology, Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| | - L Popovic
- 1 Institute of Pathological Physiology, Faculty of Medical Science, University of Priština, City of Kosovska Mitrovica, Serbia
| | - S J Hudomal
- 9 Institute of Pharmacology and toxicology, University of Priština, City of Kosovska Mitrovica, Serbia
| |
Collapse
|
13
|
Moral-Sanz J, Lewis SA, MacMillan S, Ross FA, Thomson A, Viollet B, Foretz M, Moran C, Hardie DG, Evans AM. The LKB1-AMPK-α1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria. Sci Signal 2018; 11:11/550/eaau0296. [PMID: 30279167 DOI: 10.1126/scisignal.aau0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), which aids ventilation-perfusion matching in the lungs, is triggered by mechanisms intrinsic to pulmonary arterial smooth muscles. The unique sensitivity of these muscles to hypoxia is conferred by mitochondrial cytochrome c oxidase subunit 4 isoform 2, the inhibition of which has been proposed to trigger HPV through increased generation of mitochondrial reactive oxygen species. Contrary to this model, we have shown that the LKB1-AMPK-α1 signaling pathway is critical to HPV. Spectral Doppler ultrasound revealed that deletion of the AMPK-α1 catalytic subunit blocked HPV in mice during mild (8% O2) and severe (5% O2) hypoxia, whereas AMPK-α2 deletion attenuated HPV only during severe hypoxia. By contrast, neither of these genetic manipulations affected serotonin-induced reductions in pulmonary vascular flow. HPV was also attenuated by reduced expression of LKB1, a kinase that activates AMPK during energy stress, but not after deletion of CaMKK2, a kinase that activates AMPK in response to increases in cytoplasmic Ca2+ Fluorescence imaging of acutely isolated pulmonary arterial myocytes revealed that AMPK-α1 or AMPK-α2 deletion did not affect mitochondrial membrane potential during normoxia or hypoxia. However, deletion of AMPK-α1, but not of AMPK-α2, blocked hypoxia from inhibiting KV1.5, the classical "oxygen-sensing" K+ channel in pulmonary arterial myocytes. We conclude that LKB1-AMPK-α1 signaling pathways downstream of mitochondria are critical for the induction of HPV, in a manner also supported by AMPK-α2 during severe hypoxia.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sophronia A Lewis
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sandy MacMillan
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Fiona A Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Adrian Thomson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, Sorbonne Paris cité, 75014 Paris, France.,CNRS UMR 8104, Sorbonne Paris cité, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 75014 Paris, France
| | - Marc Foretz
- Institut Cochin, INSERM U1016, Sorbonne Paris cité, 75014 Paris, France.,CNRS UMR 8104, Sorbonne Paris cité, 75014 Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 75014 Paris, France
| | - Carmel Moran
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - A Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
14
|
In vitro suppression of inflammatory cytokine response by methionine sulfoximine. JOURNAL OF INFLAMMATION-LONDON 2018; 15:17. [PMID: 30214381 PMCID: PMC6131744 DOI: 10.1186/s12950-018-0193-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Background The glutamine synthetase inhibitor methionine sulfoximine (MSO), shown previously to prevent death caused by an inflammatory liver response in mice, was tested on in vitro production of cytokines by mouse peritoneal macrophages triggered with lipopolysaccharide (LPS). Results MSO significantly reduced the production of Interleukin 6 (IL-6) and Tumor Necrosis Factor Alpha (TNFα) at 4 and 6 h after LPS-treatment. This reduction did not result from decreased transcription of IL-6 and TNFα genes, and therefore appeared to result from post-transcriptional inhibition of synthesis of these cytokines. MSO treatment did not inhibit total protein synthesis and did not reduce the production of a third LPS-triggered cytokine CXCL1, so the effect was not a toxic or global downregulation of the LPS response. The anti-inflammatory effects of a glutamine synthetase inhibitor were seen even though the medium contained abundant (2 mM) glutamine, suggesting that the target for this activity was not glutamine synthetase. In agreement with this hypothesis, the L,R isomer of MSO, which does not inhibit glutamine synthetase and was previously thought to be inert, both significantly reduced IL-6 secretion in isolated macrophages and increased survival in a mouse model for inflammatory liver failure. Conclusions Our findings provide evidence for a novel target of MSO. Future attempts to identify the additional target would therefore also provide a target for therapies to treat diseases involving damaging cytokine responses.
Collapse
|
15
|
Duryee MJ, Wiese BM, Bowman JR, Vanlandingham JD, Klassen LW, Thiele GE, Hunter CD, Anderson DR, Mikuls TR, Thiele GM. Liver tissue metabolically transformed by alcohol induces immune recognition of liver self-proteins but not in vivo inflammation. Am J Physiol Gastrointest Liver Physiol 2018; 314:G418-G430. [PMID: 29351393 PMCID: PMC5899239 DOI: 10.1152/ajpgi.00183.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Precision-cut liver slices (PCLSs) provide a novel model for studies of alcoholic liver disease (ALD). This is relevant, as in vivo ethanol exposure does not appear to generate significant liver damage in ethanol-fed mice, except in the National Institute on Alcohol Abuse and Alcoholism binge model of ALD. Previous studies have shown that the two metabolites of ethanol consumption, malondialdhyde (MDA) and acetaldehyde (AA), combine to form MDA-AA (MAA) adducts, which have been correlated with the development and progression of ALD. In this study, murine PCLSs were incubated with ethanol and examined for the production of MAA adducts. PCLSs were homogenized, and homogenates were injected into C57BL/6 mice. PCLSs from control-, pair-, and ethanol-fed animals served as targets in in situ cytotoxic assays using primed T cells from mice hyperimmunized with control or ethanol-exposed PCLS homogenates. A CD45.1/CD45.2 passive-transfer model was used to determine whether T cells from the spleens of mice hyperimmunized with PCLS ethanol-exposed homogenates trafficked to the liver. PCLSs incubated with ethanol generated MAA-modified proteins in situ. Cytotoxic (CD8+) T cells from immunized mice killed naïve PCLSs from control- and pair-fed mice in vitro, a response that was blunted in PCLSs from ethanol-fed mice. Furthermore, CD45.1 CD8+ T cells from hyperimmunized mice trafficked to the liver but did not initiate liver damage. This study demonstrates that exposure to liver tissue damaged by ethanol mediates robust immune responses to well-characterized alcohol metabolites and native liver proteins in vitro. Moreover, although these proinflammatory T cells traffic to the liver, these responses appear to be dampened in vivo by locally acting pathways. NEW & NOTEWORTHY This study shows that the metabolites of ethanol and lipid breakdown produce malondialdehyde-acetaldehyde adducts in the precision-cut liver slice model system. Additionally, precision-cut liver slices exposed to ethanol and harboring malondialdehyde-acetaldehyde adducts generate liver-specific antibody and T cell responses in the spleens of naïve mice that could traffic to the liver.
Collapse
Affiliation(s)
- Michael J. Duryee
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska,2Experimental Immunology Laboratory, Omaha Veterans Affairs Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Benjamin M. Wiese
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jordan R. Bowman
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jared D. Vanlandingham
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lynell W. Klassen
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska,2Experimental Immunology Laboratory, Omaha Veterans Affairs Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Geoffrey E. Thiele
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carlos D. Hunter
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska,2Experimental Immunology Laboratory, Omaha Veterans Affairs Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Daniel R. Anderson
- 3Experimental Immunology, Division of Cardiology, Department of Internal Medicine, Research in Cardiovascular Disease Laboratory at the University of Nebraska Medical Center, Omaha, Nebraska
| | - Ted R. Mikuls
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska,2Experimental Immunology Laboratory, Omaha Veterans Affairs Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Geoffrey M. Thiele
- 1Experimental Immunology Laboratory, Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska,2Experimental Immunology Laboratory, Omaha Veterans Affairs Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska,4Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
16
|
Cordero-Espinoza L, Huch M. The balancing act of the liver: tissue regeneration versus fibrosis. J Clin Invest 2018; 128:85-96. [PMID: 29293095 PMCID: PMC5749503 DOI: 10.1172/jci93562] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial cell loss alters a tissue's optimal function and awakens evolutionarily adapted healing mechanisms to reestablish homeostasis. Although adult mammalian organs have a limited regeneration potential, the liver stands out as one remarkable exception. Following injury, the liver mounts a dynamic multicellular response wherein stromal cells are activated in situ and/or recruited from the bloodstream, the extracellular matrix (ECM) is remodeled, and epithelial cells expand to replenish their lost numbers. Chronic damage makes this response persistent instead of transient, tipping the system into an abnormal steady state known as fibrosis, in which ECM accumulates excessively and tissue function degenerates. Here we explore the cellular and molecular switches that balance hepatic regeneration and fibrosis, with a focus on uncovering avenues of disease modeling and therapeutic intervention.
Collapse
|
17
|
Sandri PF, Portocarrero AR, Ciupa L, Ferraz FN, Falkowski-Temporini GJ, Rodrigues WN, Ferreira ÉC, Aleixo DL, de Araújo SM. Dynamized ethyl alcohol improves immune response and behavior in murine infection with Trypanosoma cruzi. Cytokine 2017; 99:240-248. [DOI: 10.1016/j.cyto.2017.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022]
|
18
|
Qi B, Zhang S, Guo D, Guo S, Jiang X, Zhu X. Protective effect and mechanism of ginsenoside Rg1 on carbon tetrachloride‑induced acute liver injury. Mol Med Rep 2017; 16:2814-2822. [PMID: 28677756 DOI: 10.3892/mmr.2017.6920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/10/2017] [Indexed: 11/05/2022] Open
Abstract
Liver injury is a common pathological state in various types of liver disease; severe or persistent liver damage is the basis of hepatic failure. Ginsenoside Rg1 (Rg1), one of the primary active ingredients of ginseng, has been reported to reduce concanalin A‑induced hepatitis and protect against lipopolysaccharide‑ and galactosamine‑induced liver injury. However, the underlying protective mechanism of Rg1 in acute liver injury remains unclear. In the present study, a carbon tetrachloride (CCl4)‑induced acute liver injury model was established, and the protective effect of Rg1 on CCl4‑induced acute liver injury was demonstrated in cell culture and animal experimental systems. Further investigation of the mechanisms demonstrated that pretreatment with Rg1 reduced elevated levels of alanine aminotransferase and aspartate aminotransferase, enhanced the antioxidant activity of superoxide dismutase (SOD) and decreased malondialdehyde (MDA) content. Experiments in vitro demonstrated that Rg1 decreased p65 expression and inhibited nuclear factor (NF)‑κB activity. In addition to the effect of Rg1, an NF‑κB inhibitor promoted cell survival, enhanced SOD activity and reduced MDA level. It was observed through in vivo experiments that pretreatment with Rg1 inhibited NF‑κB expression and activity in Kupffer cells and reduced the serum levels of tumor necrosis factor‑α and interleukin‑6. In conclusion, the results of the present study indicated that pretreatment with Rg1 may rescue CCl4‑induced acute liver injury in vivo and in vitro through inhibition of NF‑κB activity, to restore the anti‑oxidative defense system and down‑regulate pro‑inflammatory signaling pathways. The present observations provide a theoretical foundation for the clinical application of Rg1 therapy in acute liver injury.
Collapse
Affiliation(s)
- Benquan Qi
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Suzhi Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Daohua Guo
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Sanxing Guo
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, D‑68167 Mannheim, Germany
| | - Xiaodong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xiling Zhu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
19
|
Boule LA, Kovacs EJ. Alcohol, aging, and innate immunity. J Leukoc Biol 2017; 102:41-55. [PMID: 28522597 DOI: 10.1189/jlb.4ru1016-450r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and.,The Immunology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
20
|
Streltsova MA, Klinkova AV, Kuchukova AA, Kadin AY, Kanevskiy LM, Kovalenko EI. Ethanol-dependent expression of the NKG2D ligands MICA/B in human cell lines and leukocytes. Biochem Cell Biol 2017; 95:280-288. [PMID: 28177768 DOI: 10.1139/bcb-2016-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption affects the human immune system, causing a variety of disorders. However, the mechanisms of development of these changes are not fully understood. We hypothesized that ethanol may influence the expression of MICA and MICB, stress-induced molecules capable of regulating the activity of cytotoxic lymphocytes through the interaction with receptor NKG2D, which substantially affects the functionality of cellular immunity. We analyzed the effects of ethanol on MICA/B expression in tumor cell lines and human leukocytes. In the cell line models, ethanol caused different changes in the surface expression of MICA/B; in particular, it induced the translocation of intracellular proteins MICA/B to the cell surface and shedding of MICA (in soluble and microparticle-associated forms) from the plasma membrane. The observed results are not linked with cell death in cultures, taking place only under higher doses of ethanol. Ethanol at physiologically relevant concentrations (and higher) stimulated expression of MICA/B genes in different cell types. The effect of ethanol was more pronounced in hepatocyte line HepG2 compared with hematopoietic cell lines K562, Jurkat, and THP-1. Among the tested leukocytes, the most sensitive to ethanol action were T cells activated ex vivo with IL-2, in which the increase of MICA/B mRNA expression was registered with the smallest dose of ethanol (0.125%). In human monocytes, ethanol may lead to elevations in surface MICA/B levels. Presumably, changes in MICA/B expression caused by ethanol can affect the functions of NKG2D-positive cytotoxic lymphocytes, modulating immune reactions at excessive alcohol consumption.
Collapse
Affiliation(s)
- Maria A Streltsova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Anna V Klinkova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Anastasia A Kuchukova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Andrey Y Kadin
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Leonid M Kanevskiy
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation.,Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russian Federation
| |
Collapse
|
21
|
Mazzolini G, Sowa JP, Canbay A. Cell death mechanisms in human chronic liver diseases: a far cry from clinical applicability. Clin Sci (Lond) 2016; 130:2121-2138. [DOI: 10.1042/cs20160035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The liver is constantly exposed to a host of injurious stimuli. This results in hepatocellular death mainly by apoptosis and necrosis, but also due to autophagy, necroptosis, pyroptosis and in some cases by an intricately balanced combination thereof. Overwhelming and continuous cell death in the liver leads to inflammation, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Although data from various disease models may suggest a specific (predominant) cell death mode for different aetiologies, the clinical reality is not as clear cut. Reliable and non-invasive cell death markers are not available in general practice and assessment of cell death mode to absolute certainty from liver biopsies does not seem feasible, yet. Various aetiologies probably induce different predominant cell death modes within the liver, although the death modes involved may change during disease progression. Moreover, current methods applicable in patients are limited to surrogate markers for apoptosis (M30), and possibly for pyroptosis (IL-1 family) and necro(pto)sis (HMGB1). Although markers for some death modes are not available at all (autophagy), others may not be specific for a cell death mode or might not always definitely indicate dying cells. Physicians need to take care in asserting the presence of cell death. Still the serum-derived markers are valuable tools to assess severity of chronic liver diseases. This review gives a short overview of known hepatocellular cell death modes in various aetiologies of chronic liver disease. Also the limitations of current knowledge in human settings and utilization of surrogate markers for disease assessment are summarized.
Collapse
Affiliation(s)
- Guillermo Mazzolini
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
- Gene Therapy Laboratory, Instituto de Investigaciones Medicas Aplicadas, Universidad Austral-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Pilar Centro, Buenos Aires, Argentina
| | - Jan-Peter Sowa
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Ali Canbay
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
22
|
Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo. Molecules 2016; 21:molecules21111456. [PMID: 27809254 PMCID: PMC6274176 DOI: 10.3390/molecules21111456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.
Collapse
|
23
|
Choi JW, Kim IH, Kim YM, Lee MK, Choi YH, Nam TJ. Protective effect of Pyropia yezoensis glycoprotein on chronic ethanol consumption-induced hepatotoxicity in rats. Mol Med Rep 2016; 14:4881-4886. [PMID: 27748873 DOI: 10.3892/mmr.2016.5820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/20/2016] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the protective effect of Pyropia yezoensis glycoprotein (PYGP) against chronic ethanol consumption‑mediated hepatotoxicity in rats. Male Sprague-Dawley rats (n=20; 6 weeks old) were randomly divided into four groups. The rats in each group were treated for 30 days with the following: i) CON group, distilled water only; ii) EtOH group, 20% ethanol 3.7 g/kg/BW; iii) EtOH+150 group, 20% ethanol 3.7 g/kg/BW+PYGP 150 mg/kg/BW; iv) EtOH+300 group, 20% ethanol 3.7 g/kg/BW+PYGP 300 mg/kg/BW. EtOH, PYGP and water were orally administered. The rats were sacrificed after 30 days, and blood and liver samples were collected for analysis. Treatment with ethanol caused significant elevation of serum levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT). Furthermore, inhibition of the antioxidant defense system in the liver, including glutathione (GSH), glutathione peroxidase (GSH‑px) and catalase (CAT) was observed. However, co‑administration with PYGP recovered the antioxidant defense system, and the serum levels of GOT and GPT. PYGP was shown to attenuate ethanol toxicity via the inactivation of mitogen‑activated protein kinases (MAKPs). PYGP suppressed the overexpression of cytochrome P450 2E1 (CYP2E1), inducible nitric oxide synthase and cyclooxygenase‑2. These results suggested that the protective effect of PYGP was associated with antioxidant activities, MAPKs and the CYP2E1 signaling pathway.
Collapse
Affiliation(s)
- Jeong-Wook Choi
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - In-Hye Kim
- Institute of Fisheries Science, Pukyong National University, Busan 619‑911, Republic of Korea
| | - Young-Min Kim
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Youn-Hee Choi
- Institute of Fisheries Science, Pukyong National University, Busan 619‑911, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food and Life Science, Pukyong National University, Busan 608‑737, Republic of Korea
| |
Collapse
|
24
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Ramírez JM, Tan DX, García JJ, Reiter RJ. Melatonin role preventing steatohepatitis and improving liver transplantation results. Cell Mol Life Sci 2016; 73:2911-2927. [PMID: 27022943 PMCID: PMC11108472 DOI: 10.1007/s00018-016-2185-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Liver steatosis is a prevalent process that is induced due to alcoholic or non-alcoholic intake. During the course of these diseases, the generation of reactive oxygen species, followed by molecular damage to lipids, protein and DMA occurs generating organ cell death. Transplantation is the last-resort treatment for the end stage of both acute and chronic hepatic diseases, but its success depends on ability to control ischemia-reperfusion injury, preservation fluids used, and graft quality. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other because of its efficacy in organs; melatonin has been investigated to improve the outcome of organ transplantation by reducing ischemia-reperfusion injury and due to its synergic effect with organ preservation fluids. Moreover, this indolamine also prevent liver steatosis. That is important because this disease may evolve leading to an organ transplantation. This review summarizes the observations related to melatonin beneficial actions in organ transplantation and ischemic-reperfusion models.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain.
| | - Francisco Agustín García-Gil
- Department of Surgery, Gynaecology and Obstetrics, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Laura López-Pingarrón
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Moisés Alejandro Alatorre-Jiménez
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - José Manuel Ramírez
- Department of Surgery, Gynaecology and Obstetrics, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - José Joaquín García
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Ju C, Liangpunsakul S. Role of hepatic macrophages in alcoholic liver disease. J Investig Med 2016; 64:1075-7. [PMID: 27382116 DOI: 10.1136/jim-2016-000210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/14/2022]
Abstract
Alcohol consumption can lead to the increase in gut permeability and cause the translocation of bacteria-derived lipopolysaccharides from the gut to the liver, which subsequently activates immune responses. In this process, macrophages play a critical role and involve in the pathogenesis of alcoholic liver disease (ALD). To define the mechanism underpinning the function of macrophages, it is important to conduct extensive studies to further explicate the phenotypic diversity of macrophages in the context of ALD. In this review, the role of hepatic macrophages in the pathogenesis of ALD is discussed.
Collapse
Affiliation(s)
- Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, Colorado, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Bavia L, de Castro ÍA, Cogliati B, Dettoni JB, Alves VAF, Isaac L. Complement C5 controls liver lipid profile, promotes liver homeostasis and inflammation in C57BL/6 genetic background. Immunobiology 2016; 221:822-32. [DOI: 10.1016/j.imbio.2016.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
|
27
|
Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding. J Microbiol 2015; 53:856-63. [DOI: 10.1007/s12275-015-5239-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
28
|
C57BL/6 and A/J Mice Have Different Inflammatory Response and Liver Lipid Profile in Experimental Alcoholic Liver Disease. Mediators Inflamm 2015; 2015:491641. [PMID: 26448681 PMCID: PMC4584053 DOI: 10.1155/2015/491641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is an important worldwide public health issue characterized by liver steatosis, inflammation, necrosis, and apoptosis of hepatocytes with eventual development of fibrosis and cirrhosis. Comparison of murine models with different inflammatory responses for ALD is important for an evaluation of the importance of genetic background in the interpretation of ethanol-induced phenotypes. Here, we investigated the role of inflammation and genetic background for the establishment of ALD using two different mouse strains: C57BL/6 (B6) and A/J. B6 and A/J mice were treated with a high fat diet containing ethanol (HFDE) and compared to the controls for 10 weeks. Hepatomegaly and steatohepatitis were similar in B6 and A/J mice, but only A/J mice were resistant to weight gain. On the other hand, HFDE-fed B6 accumulated more triglycerides (TG) and cholesterol and presented more intense cellular infiltrate in the liver when compared to HFDM-fed mice. Liver inflammatory environment was distinct in these two mouse strains. While HFDE-fed B6 produced more liver IL-12, A/J mice increased the TNF-α production. We concluded that mouse genetic background could dictate the intensity of the HFDE-induced liver injury.
Collapse
|
29
|
Wang Z, Su B, Fan S, Fei H, Zhao W. Protective effect of oligomeric proanthocyanidins against alcohol-induced liver steatosis and injury in mice. Biochem Biophys Res Commun 2015; 458:757-62. [PMID: 25680468 DOI: 10.1016/j.bbrc.2015.01.153] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 12/29/2022]
Abstract
The long-term consumption of alcohol has been associated with multiple pathologies at all levels, such as alcoholism, chronic pancreatitis, malnutrition, alcoholic liver disease (ALD) and cancer. In the current study, we investigated the protective effect of oligomeric proanthocyanidins (OPC) against alcohol-induced liver steatosis and injury and the possible mechanisms using ethanol-induced chronic liver damage mouse models. The results showed that OPC significantly improved alcohol-induced dyslipidemia and alleviated liver steatosis by reducing levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL-c) and liver malondialdehyde (MDA), and increasing levels of serum high-density lipoprotein (HDL-c), liver superoxide dismutase (SOD). Further investigation indicated that OPC markedly decreased the expressions of lipid synthesis genes and inflammation genes such as sterol regulatory element-binding protein-1c (Srebp-1c), protein-2 (Srebp2), interleukin IL-1β, IL-6 and TNF-α. Furthermore, AML-12 cells line was used to investigate the possible mechanisms which indicated that OPC might alleviate liver steatosis and damage through AMP-activated protein kinase (AMPK) activation involving oxidative stress. In conclusion, our study demonstrated excellent protective effect of OPC against alcohol-induced liver steatosis and injury, which could a potential drug for the treatment of alcohol-induced liver injury in the future.
Collapse
Affiliation(s)
- Zhiguo Wang
- Hospital of Integrated Chinese and Western Medicine in Jiangsu Province, Jiangsu, China
| | - Bo Su
- Huai'an Maternity and Child Health-Care Hospital, Huai'an, China
| | - Sumei Fan
- Huai'an Second People's Hospital, Huai'an, China
| | - Haixia Fei
- Jiangsu Province Official Hospital, Jiangsu, China.
| | - Wei Zhao
- Nanjing Maternity and Child Health-Care Hospital, Nanjing, China.
| |
Collapse
|
30
|
Abstract
Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that mRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
31
|
Alcohol and inflammatory responses: summary of the 2013 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2015; 49:1-6. [PMID: 25468277 DOI: 10.1016/j.alcohol.2014.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 12/18/2022]
Abstract
Loyola University Chicago, Health Sciences Campus in Maywood, Illinois hosted the 18th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting on November 22, 2013. This year's meeting emphasized alcohol's effect on inflammatory responses in diverse disease states and injury conditions. The meeting consisted of three plenary sessions demonstrating the adverse effects of alcohol, specifically, liver inflammation, adverse systemic effects, and alcohol's role in infection and immunology. Researchers also presented insight on modulation of microRNAs and stress proteins following alcohol consumption. Additionally, researchers revealed sex- and concentration-dependent differences in alcohol-mediated pathologies.
Collapse
|
32
|
Abstract
Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that mRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
33
|
Γ-glutamyl transferase as an early and sensitive marker in ethanol-induced liver injury of rats. Transplant Proc 2015; 46:1180-5. [PMID: 24815155 DOI: 10.1016/j.transproceed.2013.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 01/01/2023]
Abstract
γ-Glutamyl transferase (GGT) has been regarded as a biological marker of heavy alcohol consumption or hepatobiliary disease such as fatty liver. However, the role of GGT is unknown in the molecular pathway during alcohol-induced liver injury. To determine the role of GGT in alcohol-induced liver injury, Sprague-Dawley rats were administered 22% and 38% ethanol for 3 days as acute and 5 weeks as subchronic model. In serologic analysis, the level of GGT was significantly increased and the level of alanine aminotransferase, aspartate aminotransferase, and total bilirubin were not changed at 3 days and 5 weeks. In histologic analysis, ethanol exposure induced granular deposit formation and sinusoidal dilation in the acute model for 3 days. In the subchronic model for 5 weeks, ethanol exposure further increased the granular deposit formation, sinusoidal congestion, and mild fatty liver change. To determine whether ethanol-exposed liver is associated with changes of antioxidants levels, we performed reverse-transcriptase polymerase chain reaction (RT-PCR) analysis on ethanol-exposed livers of rats. In RT-PCR analysis, the mRNA levels of GPX1 and SOD1 were significantly increased as well as up-regulation of CYP2E1. In the glutathione assay, the level of glutathione was significantly reduced in response to ethanol in rats. Therefore, in this study, ethanol increased the level of serum GGT but depleted the level of glutathione. Moreover, the CYP2E1 was rapidly reflected to ethanol in rats. Taken together, our findings suggest that the elevated GGT is associated with cellular antioxidant defense system, and the CYP2E1 can be used for early diagnosis in alcohol-related diseases.
Collapse
|
34
|
Almeida JRDS, Araújo RC, Castilho GVD, Stahelin L, Pandolfi LDR, Silva CQ. Usefulness of a new prognostic index for alcoholic hepatitis. ARQUIVOS DE GASTROENTEROLOGIA 2015; 52:22-26. [PMID: 26017078 DOI: 10.1590/s0004-28032015000100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Alcoholic liver disease is a major cause of end-stage liver disease worldwide and severe forms of alcoholic hepatitis are associated with a high short-term mortality. Objectives To analyze the importance of age-bilirubin-INR-creatinine (ABIC) score as an index of mortality and predictor for complications in patients with alcoholic hepatitis. To evaluate its correlation with those complications, with risk of death, as well as the scores model for end stage liver disease (MELD) and Maddrey's discriminat function. METHODS A total of 46 medical records of patients who had been hospitalized with alcoholic hepatitis were assessed retrospectively with lab tests on admission and after seven days. Score calculations were carried out and analyzed as well. RESULTS The scores showed positive reciprocal correlation and were associated with both hepatic encephalopathy and ascites. ABIC index, which was classified as high risk, presented as a risk factor for these complications and for death. In univariate logistic regression analysis of mortality, the ABIC index at hospital admission odds ratio was 19.27, whereas after 7 days, it was 41.29. The average survival of patients with ABIC of low and intermediate risk was 61.1 days, and for those with high risk, 26.2 days. CONCLUSIONS ABIC index is a predictor factor for complications such as ascites and hepatic encephalopathy, as well as for risk of death. Thus, it is a useful tool for clinical practice.
Collapse
Affiliation(s)
| | - Roberta Chaves Araújo
- Departamento de Clínica - Gastroenterologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brasil
| | - Giane Vieira de Castilho
- Departamento de Clínica - Gastroenterologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brasil
| | - Letícia Stahelin
- Departamento de Clínica - Gastroenterologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brasil
| | - Lívia Dos Reis Pandolfi
- Departamento de Clínica - Gastroenterologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brasil
| | - Cecília Queiroz Silva
- Departamento de Clínica - Gastroenterologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brasil
| |
Collapse
|
35
|
|
36
|
Wu Y, Pan X, Zhang S, Wang W, Cai M, Li Y, Yang F, Guo H. Protective effect of corn peptides against alcoholic liver injury in men with chronic alcohol consumption: a randomized double-blind placebo-controlled study. Lipids Health Dis 2014; 13:192. [PMID: 25494594 PMCID: PMC4290095 DOI: 10.1186/1476-511x-13-192] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corn peptides (CPs) are a novel food prepared from corn gluten meal, which is a main by-product of the corn starch industry. Recently, significant beneficial effects of CPs on early alcoholic liver injury in rats and on acute alcoholic injury in mice were observed. To our knowledge, the present study is the first report showing that CPs supplementation has beneficial effects on lipid profile, oxidative stress and alcoholic liver injury in men with chronic alcohol consumption. METHODS A 9-week, randomized, double-blind, placebo-controlled study was conducted between September 2011 and August 2012 to assess the hepatoprotective effect of CPs. A total of 161 men were randomized to receive CPs (n=53), whey protein (n=54), or corn starch placebo (n=54) at the same dose of 2 g twice daily. 146 participants completed the study. Serum lipid profile, serum markers of liver injury, oxidative stress and inflammation, and fatty liver based on the results of abdominal ultrasonography were assessed at the beginning and end of the intervention. RESULTS CPs supplementation (4 g/d) for 9 weeks significantly lowered serum levels or activities of total cholesterol, triglyceride, alanine aminotransferase, aspartate aminotransferase, malondialdehyde and tumor necrosis factor-α, and significantly increased serum activities of superoxide dismutase and glutathione peroxidase, but the same dose of whey protein and corn starch (placebo) did not demonstrate these effects. CONCLUSIONS Our results indicate that CPs may have protective effects on alcohol-induced liver damage via modulation of lipid metabolism and oxidative stress. CPs may potentially be used as a functional food for the management of alcoholic liver disease in subjects with chronic alcohol consumption.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongwei Guo
- Department of Nutrition and Food Hygiene, School of Public Health, and Key Laboratory of Public Health Safety (Ministry of Education), Fudan University, Shanghai 200032, China.
| |
Collapse
|
37
|
Tuomi H, Kultti J, Danielsson J, Kangastupa P, Akerman K, Niemelä O. Serum soluble urokinase plasminogen activator receptor in alcoholics: relation to liver disease severity, fibrogenesis, and alcohol use. J Gastroenterol Hepatol 2014; 29:1991-5. [PMID: 24909734 DOI: 10.1111/jgh.12639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Heavy alcohol consumption may lead to development of liver disease and the need for non-invasive parameters for detecting those at risk is widely acknowledged. METHODS We measured serum soluble urokinase-type plasminogen activator receptor (suPAR) levels from 63 patients with alcoholic liver disease (ALD), 57 heavy drinkers without apparent liver disease, and 39 controls who were either moderate drinkers or abstainers. RESULTS The highest serum suPAR concentrations were detected in patients with ALD (P < 0.001) showing high diagnostic accuracy in differentiating ALD patients from heavy drinkers without liver disease (area under curve 0.921, P < 0.001). Levels of suPAR correlated positively with serum markers of fibrogenesis (aminoterminal propeptide of type III procollagen and hyaluronic acid) (P < 0.001), with clinical (combined clinical and laboratory index P < 0.01) and morphological (combined morphological index P < 0.05) indices of liver disease severity and with the stage of fibrosis (P < 0.01). The suPAR concentrations were also elevated in heavy drinkers when compared with healthy controls (P < 0.001). CONCLUSION The data indicate that serum suPAR concentrations are increased as a result of heavy alcohol consumption and further with development of ALD, showing a good diagnostic performance in detecting those with liver disease. The association with the histological severity of ALD and correlation with fibrosis indicates potential of serum suPAR also as a prognostic marker in ALD.
Collapse
Affiliation(s)
- Heidi Tuomi
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and University of Tampere, Seinäjoki, Finland
| | | | | | | | | | | |
Collapse
|
38
|
WU TAO, LIU TAO, ZHANG LI, XING LIANJUN, ZHENG PEIYONG, JI GUANG. Chinese medicinal formula, Qinggan Huoxue Recipe protects rats from alcoholic liver disease via the lipopolysaccharide-Kupffer cell signal conduction pathway. Exp Ther Med 2014; 8:363-370. [PMID: 25009584 PMCID: PMC4079449 DOI: 10.3892/etm.2014.1740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/12/2014] [Indexed: 12/20/2022] Open
Abstract
The Chinese medicinal formula, Qinggan (QG) Huoxue (HX) Recipe (R) exerts a range of pharmacological effects, including reversible steatosis, decreased levels of inflammatory cytokines and lipid peroxidation resistance. The aim of the present study was to determine the specific mechanisms of QGHXR hepatoprotection through the lipopolysaccharide-Kupffer cell (LPS-KC) signal conduction pathway in rats with alcoholic liver disease (ALD). ALD rats were exposed to the compound factors, QGR and HXR. Hematoxylin and eosin staining was conducted to evaluate the pathological changes in the liver following QGHXR treatment and an enzyme-linked immunosorbent assay was performed to measure the content of tumor necrosis factor (TNF)-α in the plasma. Immunohistochemical staining was conducted to examine the expression of cell differentiation antigen (CD) 68 and 14. In addition, western blot analysis and reverse transcription-polymerase chain reaction were used to measure the expression of Toll-like receptor 4 (TLR4), phosphorylated-extracellular regulated protein kinases (p-ERK), nuclear factor (NF)-κB, CD14 and TNF-α. Following stimulation with the compound factors, the rats exhibited increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, as well as marked pathological changes. Furthermore, the related molecules in the LPS-KC pathway were upregulated and QGHXR was identified to be effective in the LPS-KC signal conduction pathway in the ALD rats. QGHXR was superior to QGR and HXR in reducing the serum ALT and AST levels, regulating CD14, TLR4, NF-κB, ERK and TNF-α as well as improving the pathological changes. The results indicated that QGHXR therapy may provide a novel strategy for treating ALD via regulation of the related molecules in the LPS-KC signaling pathway.
Collapse
Affiliation(s)
- TAO WU
- Research Center of Chinese Medicine Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - TAO LIU
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - LI ZHANG
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - LIAN-JUN XING
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - PEI-YONG ZHENG
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - GUANG JI
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
39
|
Hammerich L, Tacke F. Eat more carrots? Dampening cell death in ethanol-induced liver fibrosis by β-carotene. Hepatobiliary Surg Nutr 2014; 2:248-51. [PMID: 24570954 DOI: 10.3978/j.issn.2304-3881.2013.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 11/14/2022]
Abstract
Alcoholic liver disease (ALD) represents one of the principal causes of liver damage in humans. Long-term ethanol abuse leads to progressive liver injury and tissue remodeling, including steatosis, inflammation, fibrosis, cirrhosis and increased risk for hepatocellular carcinoma (HCC) development. Oxidative stress and subsequent liver cell death has long been identified as one of the key mechanisms during ALD progression, therefore antioxidants may display promising treatment options. In this issue of Hepatobiliary Surgery and Nutrition (HBSN), Peng et al. demonstrate that oral supplementation with β-carotene during chronic ethanol feeding in rats reduces oxidative stress, apoptotic cell death and inflammation. Reducing hepatocyte apoptosis, a major trigger for fibrogenesis and tumorigenesis, would make β-carotene a prospective target for treatment. However, before translating the promising findings of Peng and colleagues into clinical scenarios, it needs to be determined which cell death pathways, including necrosis and necroptosis, are affected by β-carotene, which liver cell populations are targeted by this vitamin A precursor, how specific the effects are for ALD in comparison to non-alcoholic steatohepatitis (NASH) or other chronic liver diseases, and whether reduced hepatic oxidative stress and apoptosis upon β-carotene supplementation truly relate to beneficial long-term consequences with respect to fibrosis, cirrhosis or HCC development.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Medicine III, RWTH-University Hospital Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Germany
| |
Collapse
|
40
|
Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-κB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes. Mediators Inflamm 2014; 2014:808695. [PMID: 24623963 PMCID: PMC3928853 DOI: 10.1155/2014/808695] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022] Open
Abstract
Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κBEGFP reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.
Collapse
|
41
|
Abstract
Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- 1Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
42
|
Sid B, Verrax J, Calderon PB. Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radic Res 2013; 47:894-904. [PMID: 23800214 DOI: 10.3109/10715762.2013.819428] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic alcohol consumption is a well-known risk factor for liver disease, which represents a major cause of morbidity and mortality worldwide. The pathological process of alcohol-induced liver disease is characterized by a broad spectrum of morphological changes ranging from steatosis with minimal injury to more advanced liver damage, including steato-hepatitis and fibrosis/cirrhosis. Experimental and clinical studies increasingly show that the oxidative damage induced by ethanol contribute in many ways to the pathogenesis of alcohol hepatotoxicity. This article describes the contribution of oxidative mechanisms to liver damage by alcohol.
Collapse
Affiliation(s)
- B Sid
- Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group (GTOX) , Brussels , Belgium
| | | | | |
Collapse
|
43
|
Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J, Zelger B, Sgonc R, Wolfram D. The immunology of fibrosis. Annu Rev Immunol 2013; 31:107-35. [PMID: 23516981 DOI: 10.1146/annurev-immunol-032712-095937] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibrosis is the production of excessive amounts of connective tissue, i.e., scar formation, in the course of reactive and reparative processes. Fibrosis develops as a consequence of various underlying diseases and presents a major diagnostically and therapeutically unsolved problem. In this review, we postulate that fibrosis is always a sequela of inflammatory processes and that the many different causes of fibrosis all channel into the same final stereotypical pathways. During the inflammatory phase, both innate and adaptive immune mechanisms are operative. This concept is exemplified by fibrotic diseases that develop as a consequence of tissue damage, primary inflammatory diseases, fibrotic alterations induced by foreign body implants, "spontaneous" fibrosis, and tumor-associated fibrotic changes.
Collapse
Affiliation(s)
- Georg Wick
- Division of Experimental Pathophysiology and Immunology, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Introducción. GASTROENTEROLOGIA Y HEPATOLOGIA 2012; 35 Suppl 2:1-2. [DOI: 10.1016/s0210-5705(12)70042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Wu LH, Huang CC, Adhikarakunnathu S, San Mateo LR, Duffy KE, Rafferty P, Bugelski P, Raymond H, Deutsch H, Picha K, Ward CK, Alexoupolou L, Flavell RA, Mbow ML, Susulic VS. Loss of toll-like receptor 3 function improves glucose tolerance and reduces liver steatosis in obese mice. Metabolism 2012; 61:1633-45. [PMID: 22607770 DOI: 10.1016/j.metabol.2012.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/29/2012] [Accepted: 04/13/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Emerging evidence suggests a link between innate immunity and development of type 2 diabetes mellitus (T2D); however, the molecular mechanisms linking them are not fully understood. Toll-like Receptor 3 (TLR3) is a pathogen pattern recognition receptor that recognizes the double-stranded RNA of microbial or mammalian origin and contributes to immune responses in the context of infections and chronic inflammation. The objective of this study was to determine whether TLR3 activity impacts insulin sensitivity and lipid metabolism. MATERIALS AND METHODS Wild type (WT) and TLR3 knock-out (TLR3(-/-)) mice were fed a high fat diet (HFD) and submitted to glucose tolerance tests (GTTs) over a period of 33 weeks. In another study, the same group of mice was treated with a neutralizing monoclonal antibody (mAb) against mouse TLR3. RESULTS TLR3(-/-) mice fed an HFD developed obesity, although they exhibited improved glucose tolerance and lipid profiles compared with WT obese mice. In addition, the increase in liver weight and lipid content normally observed in WT mice on an HFD was significantly ameliorated in TLR3(-/-) mice. These changes were accompanied by up-regulation of genes involved in cholesterol efflux such as PPARδ, LXRα, and LXRα-targeting genes and down-regulation of pro-inflammatory cytokine and chemokine genes in obese TLR3(-/-) mice. Furthermore, global gene expression profiling in liver demonstrated TLR3-specific changes in both lipid biosynthesis and innate immune response pathways. CONCLUSIONS TLR3 affects glucose and lipid metabolism as well as inflammatory mediators, and findings in this study reveal a new role for TLR3 in metabolic homeostasis. This suggests antagonizing TLR3 may be a beneficial therapeutic approach for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Linda H Wu
- Janssen Pharmaceutical Companies of Johnson & Johnson, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Agrimonia eupatoria protects against chronic ethanol-induced liver injury in rats. Food Chem Toxicol 2012; 50:2335-41. [DOI: 10.1016/j.fct.2012.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
|
47
|
Estrogen suppresses heptatic IκB expression during short-term alcohol exposure. Inflamm Res 2012; 61:1053-61. [DOI: 10.1007/s00011-012-0497-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/25/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023] Open
|
48
|
Hu CM, Cao Q, Lv XW, Cheng WM, Li R, Li J. Protective Effects of Total Flavonoids from Litsea coreana on Alcoholic Fatty Liver in Rats Associated with Down-Regulation Adipose Differentiation-Related Protein Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:599-610. [DOI: 10.1142/s0192415x12500450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alcoholic fatty liver (AFL) is a reversible condition, but it can potentiate the development of alcoholic hepatitis and even cirrhosis by increasing oxidant generation, which is one of the key pathogenic factors and could result in alcoholic liver disease (ALD). Total flavonoids from Litsea coreana (TFLC), an active component extracted from Litsea coreana leve, have been shown to have therapeutic effects on hyperlipidemia. The present study was to evaluate the protective effects of TFLC on alcoholic fatty liver (AFL) in rats, and investigate the potential mechanism. An AFL model in rats was established by intaking different doses of alcohol (concentration from 5% to 40%) over 12 weeks. Serum levels of TG, TC, LDL-C, HDL-C, TNF-α, insulin, and glucose were measured, histopathologic changes were determined, and expression of adipose differentiation-related protein (ADRP) in the liver were evaluated by Western blotting and immunohistochemistry, respectively. The results showed that treatment with TFLC resulted in decreased serum levels of TG, TC, LDL-C, TNF-α, glucose and insulin, as well as improved liver index. Morphological evaluation revealed rats in model group developed a severe steatosis, but the severities of liver steatosis were effectively ameliorated in TFLC (200 and 400 mg/kg) treated groups. Expression of hepatic ADRP were increased in model group, and suppressed in TFLC treated groups. These results suggest that TFLC had a protective effect on AFL rats; the mechanism may be involved in regulation serum lipid profiles via down-regulation of hepatic expression of ADRP in AFL rats.
Collapse
Affiliation(s)
- Cheng-Mu Hu
- School of Pharmacy, Anhui Medical University, Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, China
| | - Qi Cao
- School of Pharmacy, Anhui Medical University, Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, China
| | - Xiong-Wen Lv
- School of Pharmacy, Anhui Medical University, Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, China
| | - Wen-Ming Cheng
- School of Pharmacy, Anhui Medical University, Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, China
| |
Collapse
|
49
|
Abstract
Alcoholic liver disease (ALD) is associated with a spectrum of liver injury ranging from steatosis and steatohepatitis to fibrosis and cirrhosis. While multifactorial pathogenesis plays a role in the disease progression, enhanced inflammation in the liver during ethanol exposure is a major feature of ALD. Dysregulated cytokine metabolism and activity are crucial to the initiation of alcohol-induced liver injury. The pro-inflammatory cytokine tumor necrosis factor (TNF-α) has been demonstrated to be one of the key factors in the various aspects of pathophysiology of ALD. The immunomodulatory cytokines such as interleukin 10 and interleukin 6 play roles in exerting hepatic protective effects. Adiponectin is an adipose tissue-derived hormone, which displays protective actions on ethanol-induced liver injury. Treatment for mice with adiponectin decreases TNF-α expression, steatosis and prevents alcohol-induced liver injury. Adiponectin exerts its anti-inflammatory effects via suppression of TNF-α expression and induction of anti-inflammatory cytokines such as IL-10. Adiponectin attenuates alcoholic liver injury by the complex network of multiple signaling pathways in the liver, leading to enhanced fatty acid oxidation and reduced steatosis. Interactions between pro- and anti-inflammatory cytokines such as TNFα and adiponectin and other cytokines are likely to play important roles in the development and progression of alcoholic liver disease.
Collapse
|
50
|
Shi X, Yao D, Chen C. Identification of N-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. J Biol Chem 2012; 287:6336-49. [PMID: 22228769 DOI: 10.1074/jbc.m111.312199] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The influence of ethanol on the small molecule metabolome and the role of CYP2E1 in ethanol-induced hepatotoxicity were investigated using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics platform and Cyp2e1-null mouse model. Histological and biochemical examinations of ethanol-exposed mice indicated that the Cyp2e1-null mice were more resistant to ethanol-induced hepatic steatosis and transaminase leakage than the wild-type mice, suggesting CYP2E1 contributes to ethanol-induced toxicity. Metabolomic analysis of urinary metabolites revealed time- and dose-dependent changes in the chemical composition of urine. Along with ethyl glucuronide and ethyl sulfate, N-acetyltaurine (NAT) was identified as a urinary metabolite that is highly responsive to ethanol exposure and is correlated with the presence of CYP2E1. Subsequent stable isotope labeling analysis using deuterated ethanol determined that NAT is a novel metabolite of ethanol. Among three possible substrates of NAT biosynthesis (taurine, acetyl-CoA, and acetate), the level of taurine was significantly reduced, whereas the levels of acetyl-CoA and acetate were dramatically increased after ethanol exposure. In vitro incubation assays suggested that acetate is the main precursor of NAT, which was further confirmed by the stable isotope labeling analysis using deuterated acetate. The incubations of tissues and cellular fractions with taurine and acetate indicated that the kidney has the highest NAT synthase activity among the tested organs, whereas the cytosol is the main site of NAT biosynthesis inside the cell. Overall, the combination of biochemical and metabolomic analysis revealed NAT is a novel metabolite of ethanol and a potential biomarker of hyperacetatemia.
Collapse
Affiliation(s)
- Xiaolei Shi
- Department of Food Science and Nutrition, University of Minnesota, St Paul, Minnesota 55108, USA
| | | | | |
Collapse
|