1
|
Ricardi LL, Zecchinati F, Perdomo VG, Basiglio CL, García F, Arana MR, Villanueva SSM. Oxidative stress promotes post-translational down-regulation of MRP2 in Caco-2 cells: Involvement of proteasomal degradation and toxicological implications. Food Chem Toxicol 2025; 201:115459. [PMID: 40252905 DOI: 10.1016/j.fct.2025.115459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
The intestinal tract is highly susceptible to oxidative stress (OS), which impairs gut barrier function. Multidrug Resistance-Associated Protein 2 (MRP2) is a key efflux pump in the intestinal transcellular barrier, regulating toxicant and drug disposition. We here evaluated the effects of OS on MRP2 in Caco-2 cells treated with tert-butyl hydroperoxide (TBH). After 24 h, TBH 250 μM increased ROS production and lipid peroxidation while decreasing GSH content and SOD activity, confirming OS induction. Under these conditions, total MRP2 protein levels decreased, while P-gp levels remained unchanged. Correspondingly, MRP2 efflux activity decreased, impairing barrier function against ochratoxin A (OTA), a substrate of MRP2, and exacerbating OTA toxicity. Localization analysis revealed reduced apical MRP2 signal in TBH 250 group, with unchanged mRNA levels, indicating post-transcriptional regulation. Mechanistically, TBH induced rapid MRP2 internalization (30 min), mediated by cPKC and clathrin, without microtubule involvement, followed by proteasomal degradation at 24 h. Both processes were dependent on GSH depletion, as treatment with N-Acetyl-l-Cysteine (NAC) restored GSH levels, MRP2 localization, and activity. We provide here the first evidence that human intestinal MRP2 is post-translationally downregulated under specific OS conditions, highlighting its potential role in exacerbating xenobiotic absorption and toxicity in OS-related human diseases.
Collapse
Affiliation(s)
- Laura Lis Ricardi
- Instituto de Fisiología Experimental (IFISE)-CONICET-Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario, Rosario, Argentina
| | - Felipe Zecchinati
- Instituto de Fisiología Experimental (IFISE)-CONICET-Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario, Rosario, Argentina
| | - Virginia Gabriela Perdomo
- CONICET-Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia Lorena Basiglio
- Instituto de Fisiología Experimental (IFISE)-CONICET-Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario, Rosario, Argentina
| | - Fabiana García
- Laboratorio de Fisiología Metabólica-CONICET-Facultad de Ciencias Médicas-Universidad Nacional de Rosario, Rosario, Argentina
| | - Maite Rocío Arana
- Instituto de Fisiología Experimental (IFISE)-CONICET-Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario, Rosario, Argentina
| | - Silvina Stella Maris Villanueva
- Instituto de Fisiología Experimental (IFISE)-CONICET-Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
2
|
Medeot AC, Boaglio AC, Salas G, Maidagan PM, Miszczuk GS, Barosso IR, Sánchez Pozzi EJ, Crocenzi FA, Roma MG. Tauroursodeoxycholate prevents estradiol 17β-d-glucuronide-induced cholestasis and endocytosis of canalicular transporters by switching off pro-cholestatic signaling pathways. Life Sci 2024; 352:122839. [PMID: 38876186 DOI: 10.1016/j.lfs.2024.122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
AIMS Estradiol 17β-d-glucuronide (E217G) induces cholestasis by triggering endocytosis and further intracellular retention of the canalicular transporters Bsep and Mrp2, in a cPKC- and PI3K-dependent manner, respectively. Pregnancy-induced cholestasis has been associated with E217G cholestatic effect, and is routinely treated with ursodeoxycholic acid (UDCA). Since protective mechanisms of UDCA in E217G-induced cholestasis are still unknown, we ascertained here whether its main metabolite, tauroursodeoxycholate (TUDC), can prevent endocytosis of canalicular transporters by counteracting cPKC and PI3K/Akt activation. MAIN METHODS Activation of cPKC and PI3K/Akt was evaluated in isolated rat hepatocytes by immunoblotting (assessment of membrane-bound and phosphorylated forms, respectively). Bsep/Mrp2 function was quantified in isolated rat hepatocyte couplets (IRHCs) by assessing the apical accumulation of their fluorescent substrates, CLF and GS-MF, respectively. We also studied, in isolated, perfused rat livers (IPRLs), the status of Bsep and Mrp2 transport function, assessed by the biliary excretion of TC and DNP-SG, respectively, and Bsep/Mrp2 localization by immunofluorescence. KEY FINDINGS E217G activated both cPKC- and PI3K/Akt-dependent signaling, and pretreatment with TUDC significantly attenuated these activations. In IRHCs, TUDC prevented the E217G-induced decrease in apical accumulation of CLF and GS-MF, and inhibitors of protein phosphatases failed to counteract this protection. In IPRLs, E217G induced an acute decrease in bile flow and in the biliary excretion of TC and DNP-SG, and this was prevented by TUDC. Immunofluorescence studies revealed that TUDC prevented E217G-induced Bsep/Mrp2 endocytosis. SIGNIFICANCE TUDC restores function and localization of Bsep/Mrp2 impaired by E217G, by preventing both cPKC and PI3K/Akt activation in a protein-phosphatase-independent manner.
Collapse
Affiliation(s)
- Anabela C Medeot
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Andrea C Boaglio
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Gimena Salas
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Paula M Maidagan
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Gisel S Miszczuk
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Ismael R Barosso
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Fernando A Crocenzi
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina
| | - Marcelo G Roma
- Institute of Experimental Physiology (IFISE-CONICET), National University of Rosario, 2000 Rosario, Argentina.
| |
Collapse
|
3
|
Zu Y, Yang J, Zhang C, Liu D. The Pathological Mechanisms of Estrogen-Induced Cholestasis: Current Perspectives. Front Pharmacol 2021; 12:761255. [PMID: 34819862 PMCID: PMC8606790 DOI: 10.3389/fphar.2021.761255] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogens are steroid hormones with a wide range of biological activities. The excess of estrogens can lead to decreased bile flow, toxic bile acid (BA) accumulation, subsequently causing intrahepatic cholestasis. Estrogen-induced cholestasis (EIC) may have increased incidence during pregnancy, and within women taking oral contraception and postmenopausal hormone replacement therapy, and result in liver injury, preterm birth, meconium-stained amniotic fluid, and intrauterine fetal death in pregnant women. The main pathogenic mechanisms of EIC may include deregulation of BA synthetic or metabolic enzymes, and BA transporters. In addition, impaired cell membrane fluidity, inflammatory responses and change of hepatocyte tight junctions are also involved in the pathogenesis of EIC. In this article, we review the role of estrogens in intrahepatic cholestasis, and outlined the mechanisms of EIC, providing a greater understanding of this disease.
Collapse
Affiliation(s)
- Yue Zu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Anticholestatic mechanisms of ursodeoxycholic acid in lipopolysaccharide-induced cholestasis. Biochem Pharmacol 2019; 168:48-56. [DOI: 10.1016/j.bcp.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
5
|
Andermatten RB, Ciriaci N, Schuck VS, Di Siervi N, Razori MV, Miszczuk GS, Medeot AC, Davio CA, Crocenzi FA, Roma MG, Barosso IR, Sánchez Pozzi EJ. Sphingosine 1-phosphate receptor 2/adenylyl cyclase/protein kinase A pathway is involved in taurolithocholate-induced internalization of Abcc2 in rats. Arch Toxicol 2019; 93:2279-2294. [PMID: 31300867 DOI: 10.1007/s00204-019-02514-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/05/2023]
Abstract
Taurolithocholate (TLC) is a cholestatic bile salt that induces disinsertion of the canalicular transporter Abcc2 (Mrp2, multidrug resistance-associated protein 2). This internalization is mediated by different intracellular signaling proteins such as PI3K, PKCε and MARCK but the initial receptor of TLC remains unknown. A few G protein-coupled receptors interact with bile salts in hepatocytes. Among them, sphingosine-1 phosphate receptor 2 (S1PR2) represents a potential initial receptor for TLC. The aim of this study was to evaluate the role of this receptor and its downstream effectors in the impairment of Abcc2 function induced by TLC. In vitro, S1PR2 inhibition by JTE-013 or its knockdown by small interfering RNA partially prevented the decrease in Abcc2 activity induced by TLC. Moreover, adenylyl cyclase (AC)/PKA and PI3K/Akt inhibition partially prevented TLC effect on canalicular transporter function. TLC produced PKA and Akt activation, which were blocked by JTE-013 and AC inhibitors, connecting S1PR2/AC/PKA and PI3K/Akt in a same pathway. In isolated perfused rat liver, injection of TLC triggered endocytosis of Abcc2 that was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Abcc2 substrate dinitrophenyl-glutathione until the end of the perfusion period. S1PR2 or AC inhibition did not prevent the initial decay, but they accelerated the recovery of these parameters and the reinsertion of Abcc2 into the canalicular membrane. In conclusion, S1PR2 and the subsequent activation of AC, PKA, PI3K and Akt is partially responsible for the cholestatic effects of TLC through sustained internalization of Abcc2.
Collapse
Affiliation(s)
- Romina Belén Andermatten
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Nadia Ciriaci
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Virginia Soledad Schuck
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Nicolás Di Siervi
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Valeria Razori
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Gisel Sabrina Miszczuk
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Anabela Carolina Medeot
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Carlos Alberto Davio
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Fernando Ariel Crocenzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Marcelo Gabriel Roma
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Ismael Ricardo Barosso
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Enrique Juan Sánchez Pozzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
6
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
7
|
Activation of insulin-like growth factor 1 receptor participates downstream of GPR30 in estradiol-17β-D-glucuronide-induced cholestasis in rats. Arch Toxicol 2017; 92:729-744. [PMID: 29090346 DOI: 10.1007/s00204-017-2098-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023]
Abstract
Estradiol-17β-D-glucuronide (E17G), through the activation of different signaling proteins, induces acute endocytic internalization of canalicular transporters in rat, including multidrug resistance-associated protein 2 (Abcc2) and bile salt export pump (Abcb11), generating cholestasis. Insulin-like growth factor 1 receptor (IGF-1R) is a membrane-bound tyrosine kinase receptor that can potentially interact with proteins activated by E17G. The aim of this study was to analyze the potential role of IGF-1R in the effects of E17G in isolated perfused rat liver (IPRL) and isolated rat hepatocyte couplets. In vitro, IGF-1R inhibition by tyrphostin AG1024 (TYR, 100 nM), or its knock-down with siRNA, strongly prevented E17G-induced impairment of Abcc2 and Abcb11 function and localization. The protection by TYR was not additive to that produced by wortmannin (PI3K inhibitor, 100 nM), and both protections share the same dependency on microtubule integrity, suggesting that IGF-1R shared the signaling pathway of PI3K/Akt. Further analysis of the activation of Akt and IGF-1R induced by E17G indicated a sequence of activation GPR30-IGF-1R-PI3K/Akt. In IPRL, an intraportal injection of E17G triggered endocytosis of Abcc2 and Abcb11, and this was accompanied by a sustained decrease in the bile flow and the biliary excretion of Abcc2 and Abcb11 substrates. TYR did not prevent the initial decay, but it greatly accelerated the recovery to normality of these parameters and the reinsertion of transporters into the canalicular membrane. In conclusion, the activation of IGF-1R is a key factor in the alteration of canalicular transporter function and localization induced by E17G, and its activation follows that of GPR30 and precedes that of PI3K/Akt.
Collapse
|
8
|
Tocchetti GN, Arias A, Arana MR, Rigalli JP, Domínguez CJ, Zecchinati F, Ruiz ML, Villanueva SSM, Mottino AD. Acute regulation of multidrug resistance-associated protein 2 localization and activity by cAMP and estradiol-17β-D-glucuronide in rat intestine and Caco-2 cells. Arch Toxicol 2017; 92:777-788. [PMID: 29052767 DOI: 10.1007/s00204-017-2092-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/05/2017] [Indexed: 01/27/2023]
Abstract
Multidrug resistance-associated protein 2 (MRP2) is an ATP-dependent transporter expressed at the brush border membrane of the enterocyte that confers protection against absorption of toxicants from foods or bile. Acute, short-term regulation of intestinal MRP2 activity involving changes in its apical membrane localization was poorly explored. We evaluated the effects of dibutyryl-cAMP (db-cAMP), a permeable analog of cAMP, and estradiol-17β-D-glucuronide (E217G), an endogenous derivative of estradiol, on MRP2 localization and activity using isolated rat intestinal sacs and Caco-2 cells, a model of human intestinal epithelium. Changes in MRP2 localization were studied by Western blotting of plasma membrane (PM) vs. intracellular membrane (IM) fractions in both experimental models, and additionally, by confocal microscopy in Caco-2 cells. After 30 min of exposure, db-cAMP-stimulated sorting of MRP2 from IM to PM both in rat jejunum and Caco-2 cells at 10 and 100 µM concentrations, respectively, with increased excretion of the model substrate 2,4-dinitrophenyl-S-glutathione. In contrast, E217G (400 µM) induced internalization of MRP2 together with impairment of transport activity. Confocal microscopy analysis performed in Caco-2 cells confirmed Western blot results. In the particular case of E217G, MRP2 exhibited an unusual pattern of staining compatible with endocytic vesiculation. Use of selective inhibitors demonstrated the participation of cAMP-dependent protein kinase and classic calcium-dependent protein kinase C in db-cAMP and E217G effects, respectively. We conclude that localization of MRP2 in intestine may be subjected to a dynamic equilibrium between plasma membrane and intracellular domains, thus allowing for rapid regulation of MRP2 function.
Collapse
Affiliation(s)
- Guillermo Nicolás Tocchetti
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Agostina Arias
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Maite Rocío Arana
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Juan Pablo Rigalli
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | - Felipe Zecchinati
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - María Laura Ruiz
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | | | - Aldo Domingo Mottino
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
9
|
Bright AS, Herrera-Garcia G, Moscovitz JE, You D, Guo GL, Aleksunes LM. Regulation of Drug Disposition Gene Expression in Pregnant Mice with Car Receptor Activation. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27818994 DOI: 10.11131/2016/101193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
More than half of pregnant women use prescription medications in order to maintain both maternal and fetal health. The constitutive androstane receptor (Car) critically affects the disposition of chemicals by regulating the transcription of genes encoding metabolic enzymes and transporters. However, the effects of Car activation on chemical disposition during pregnancy are unclear. This study aims to determine the degree to which pregnancy alters the expression of drug metabolizing enzymes and transporters in response to the pharmacological activation of Car. To test this, pregnant C57BL/6 mice were administered IP doses of vehicle, or a potent Car agonist, TCPOBOP, on gestation days 14, 15 and 16. Hepatic mRNA and protein expression of Car target genes (phase I, II and transporters) were quantified on gestation day 17. Pregnancy-related changes, such as induction of Cyp2b10, Ugt1a1 and Sult1a1 and repression of Ugt1a6, Gsta1, Gsta2 and Mrp6, were observed. Interestingly, the induction of Cyp2b10, Gsta1, Gsta2 and Mrp2-4 mRNAs by TCPOBOP was attenuated in maternal livers suggesting that Car activation is impeded by the biochemical and/or physiological changes that occur during gestation. Taken together, these findings suggest that pregnancy and pharmacological activation of Car can differentially regulate the expression of drug metabolism and transport genes.
Collapse
Affiliation(s)
- Amanda S Bright
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guadalupe Herrera-Garcia
- Department of Obstetrics and Gynecology, Rutgers-Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dahea You
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Schonhoff CM, Park SW, Webster CR, Anwer MS. p38 MAPK α and β isoforms differentially regulate plasma membrane localization of MRP2. Am J Physiol Gastrointest Liver Physiol 2016; 310:G999-G1005. [PMID: 27012769 PMCID: PMC4935486 DOI: 10.1152/ajpgi.00005.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/14/2016] [Indexed: 01/31/2023]
Abstract
In hepatocytes, cAMP both activates p38 mitogen-activated protein kinase (MAPK) and increases the amount of multidrug resistance-associated protein-2 (MRP2) in the plasma membrane (PM-MRP2). Paradoxically, taurolithocholate (TLC) activates p38 MAPK but decreases PM-MRP2 in hepatocytes. These opposing effects of cAMP and TLC could be mediated via different p38 MAPK isoforms (α and β) that are activated differentially by upstream kinases (MKK3, MKK4, and MKK6). Thus we tested the hypothesis that p38α MAPK and p38β MAPK mediate increases and decreases in PM-MRP2 by cAMP and TLC, respectively. Studies were conducted in hepatocytes isolated from C57BL/6 wild-type (WT) and MKK3-knockout (MKK3(-/-)) mice and in a hepatoma cell line (HuH7) that overexpresses sodium-taurocholate cotransporting polypeptide (NTCP) (HuH-NTCP). Cyclic AMP activated MKK3, p38 MAPK, and p38α MAPK and increased PM-MRP2 in WT hepatocytes, but failed to activate p38α MAPK or increase PM-MRP2 in MKK3(-/-) hepatocytes. In contrast to cAMP, TLC activated total p38 MAPK but decreased PM-MRP2, and did not activate MKK3 or p38α MAPK in WT hepatocytes. In MKK3(-/-) hepatocytes, TLC still decreased PM-MRP2 and activated p38 MAPK, indicating that these effects are not MKK3-dependent. Additionally, TLC activated MKK6 in MKK3(-/-) hepatocytes, and small interfering RNA knockdown of p38β MAPK abrogated TLC-mediated decreases in PM-MRP2 in HuH-NTCP cells. Taken together, these results suggest that p38α MAPK facilitates plasma membrane insertion of MRP2 by cAMP, whereas p38β MAPK mediates retrieval of PM-MRP2 by TLC.
Collapse
Affiliation(s)
- Christopher M. Schonhoff
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Se Won Park
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Cynthia R.L. Webster
- 2Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- 1Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| |
Collapse
|
11
|
Aleksandrova MI, Sirotina NS, Smirnova OV. Expression of Multidrug Resistance Protein 2 (mrp2) in the Liver and Kidney Cells of Female Rats with Modeled Cholestasis of Pregnancy. Bull Exp Biol Med 2015; 158:748-52. [PMID: 25896592 DOI: 10.1007/s10517-015-2853-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Indexed: 11/27/2022]
Abstract
Using immunohistochemical method with semiquantitative analysis of images, we showed that mrp2 expression in response to cholestasis decreased in hepatocytes and cholangiocytes, and remained unchanged in the kidney structures. A decrease of mrp2 expression in renal tubules leading to a decrease of metabolic intoxication of the kidney was demonstrated in cholestasis of pregnancy model. In bile ducts cells, negative correlations of mrp2 with previously measured levels of prolactin receptors, CFTR, and mrp3 were revealed. In renal structures and in hepatocytes, no correlations were found between the expression of these proteins. We hypothesize that prolactin produces a direct effect on mrp2 expression in bile ducts cells mediated by prolactin receptors in cholangiocytes. The absence of correlations between mrp2 and the above-mentioned proteins in hepatocytes and renal structures is most likely related to prolactin effects on other systemic regulators.
Collapse
Affiliation(s)
- M I Aleksandrova
- Laboratory of Endocrinology, Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia,
| | | | | |
Collapse
|
12
|
Barosso IR, Zucchetti AE, Miszczuk GS, Boaglio AC, Taborda DR, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. EGFR participates downstream of ERα in estradiol-17β-D-glucuronide-induced impairment of Abcc2 function in isolated rat hepatocyte couplets. Arch Toxicol 2015; 90:891-903. [PMID: 25813982 DOI: 10.1007/s00204-015-1507-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
Estradiol-17β-D-glucuronide (E17G) induces acute endocytic internalization of canalicular transporters, including multidrug resistance-associated protein 2 (Abcc2) in rat, generating cholestasis. Several proteins organized in at least two different signaling pathways are involved in E17G cholestasis: one pathway involves estrogen receptor alpha (ERα), Ca(2+)-dependent protein kinase C and p38-mitogen activated protein kinase, and the other pathway involves GPR30, PKA, phosphoinositide 3-kinase/AKT and extracellular signal-related kinase 1/2. EGF receptor (EGFR) can potentially participate in both pathways since it interacts with GPR30 and ERα. Hence, the aim of this study was to analyze the potential role of this receptor and its downstream effectors, members of the Src family kinases in E17G-induced cholestasis. In vitro, EGFR inhibition by Tyrphostin (Tyr), Cl-387785 or its knockdown with siRNA strongly prevented E17G-induced impairment of Abcc2 function and localization. Activation of EGFR was necessary but not sufficient to impair the canalicular transporter function, whereas the simultaneous activation of EGFR and GPR30 could impair Abcc2 transport. The protection of Tyr was not additive to that produced by the ERα inhibitor ICI neither with that produced by Src kinase inhibitors, suggesting that EGFR shared the signaling pathway of ERα and Src. Further analysis of ERα, EGFR and Src activations induced by E17G, demonstrated that ERα activation precedes that of EGFR and EGFR activation precedes that of Src. In conclusion, activation of EGFR is a key factor in the alteration of canalicular transporter function and localization induced by E17G and it occurs before that of Src and after that of ERα.
Collapse
Affiliation(s)
- Ismael R Barosso
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Andrés E Zucchetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Gisel S Miszczuk
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Andrea C Boaglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Diego R Taborda
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
13
|
Abu-Hayyeh S, Williamson C. Estradiol, farnesoid X receptor, and altered metabolism in pregnancy. Hepatology 2014; 60:1815-7. [PMID: 24975680 DOI: 10.1002/hep.27280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Shadi Abu-Hayyeh
- Women's Health Academic Centre, Kings College London, Guy's Campus, London, UK
| | | |
Collapse
|
14
|
Zucchetti AE, Barosso IR, Boaglio AC, Basiglio CL, Miszczuk G, Larocca MC, Ruiz ML, Davio CA, Roma MG, Crocenzi FA, Pozzi EJS. G-protein-coupled receptor 30/adenylyl cyclase/protein kinase A pathway is involved in estradiol 17ß-D-glucuronide-induced cholestasis. Hepatology 2014; 59:1016-29. [PMID: 24115158 DOI: 10.1002/hep.26752] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 09/16/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED Estradiol-17ß-D-glucuronide (E17G) activates different signaling pathways (e.g., Ca(2+) -dependent protein kinase C, phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinases [MAPKs] p38 and extracellular signal-related kinase 1/2, and estrogen receptor alpha) that lead to acute cholestasis in rat liver with retrieval of the canalicular transporters, bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). E17G shares with nonconjugated estradiol the capacity to activate these pathways. G-protein-coupled receptor 30 (GPR30) is a receptor implicated in nongenomic effects of estradiol, and the aim of this study was to analyze the potential role of this receptor and its downstream effectors in E17G-induced cholestasis. In vitro, GPR30 inhibition by G15 or its knockdown with small interfering RNA strongly prevented E17G-induced impairment of canalicular transporter function and localization. E17G increased cyclic adenosine monophosphate (cAMP) levels, and this increase was blocked by G15, linking GPR30 to adenylyl cyclase (AC). Moreover, AC inhibition totally prevented E17G insult. E17G also increased protein kinase A (PKA) activity, which was blocked by G15 and AC inhibitors, connecting the links of the pathway, GPR30-AC-PKA. PKA inhibition prevented E17G-induced cholestasis, whereas exchange protein activated directly by cyclic nucleotide/MAPK kinase, another cAMP downstream effector, was not implicated in cAMP cholestatic action. In the perfused rat liver model, inhibition of the GPR30-AC-PKA pathway totally prevented E17G-induced alteration in Abcb11 and Abcc2 function and localization. CONCLUSION Activation of GPR30-AC-PKA is a key factor in the alteration of canalicular transporter function and localization induced by E17G. Interaction of E17G with GPR30 may be the first event in the cascade of signaling activation.
Collapse
Affiliation(s)
- Andrés E Zucchetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET-U.N.R.), Rosario, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
16
|
Pfeifer ND, Hardwick RN, Brouwer KLR. Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol 2013; 54:509-35. [PMID: 24160696 DOI: 10.1146/annurev-pharmtox-011613-140021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatic efflux transporters include numerous well-known and emerging proteins localized to the canalicular or basolateral membrane of the hepatocyte that are responsible for the excretion of drugs into the bile or blood, respectively. Altered function of hepatic efflux transporters due to drug-drug interactions, genetic variation, and/or disease states may lead to changes in xenobiotic exposure in the hepatocyte and/or systemic circulation. This review focuses on transport proteins involved in the hepatocellular efflux of drugs and metabolites, discusses mechanisms of altered transporter function as well as the interplay between multiple transport pathways, and highlights the importance of considering intracellular unbound concentrations of transporter substrates and/or inhibitors. Methods to evaluate hepatic efflux transport and predict the effects of impaired transporter function on systemic and hepatocyte exposure are discussed, and the sandwich-cultured hepatocyte model to evaluate comprehensively the role of hepatic efflux in the hepatobiliary disposition of xenobiotics is characterized.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; ,
| | | | | |
Collapse
|
17
|
YANG KYUNGHEE, KÖCK KATHLEEN, SEDYKH ALEXANDER, TROPSHA ALEXANDER, BROUWER KIML. An updated review on drug-induced cholestasis: mechanisms and investigation of physicochemical properties and pharmacokinetic parameters. J Pharm Sci 2013; 102:3037-57. [PMID: 23653385 PMCID: PMC4369767 DOI: 10.1002/jps.23584] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 12/15/2022]
Abstract
Drug-induced cholestasis is an important form of acquired liver disease and is associated with significant morbidity and mortality. Bile acids are key signaling molecules, but they can exert toxic responses when they accumulate in hepatocytes. This review focuses on the physiological mechanisms of drug-induced cholestasis associated with altered bile acid homeostasis due to direct (e.g., bile acid transporter inhibition) or indirect (e.g., activation of nuclear receptors, altered function/expression of bile acid transporters) processes. Mechanistic information about the effects of a drug on bile acid homeostasis is important when evaluating the cholestatic potential of a compound, but experimental data often are not available. The relationship between physicochemical properties, pharmacokinetic parameters, and inhibition of the bile salt export pump among 77 cholestatic drugs with different pathophysiological mechanisms of cholestasis (i.e., impaired formation of bile vs. physical obstruction of bile flow) was investigated. The utility of in silico models to obtain mechanistic information about the impact of compounds on bile acid homeostasis to aid in predicting the cholestatic potential of drugs is highlighted.
Collapse
Affiliation(s)
- KYUNGHEE YANG
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - KATHLEEN KÖCK
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - ALEXANDER SEDYKH
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - ALEXANDER TROPSHA
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - KIM L.R. BROUWER
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
18
|
Zucchetti AE, Barosso IR, Boaglio AC, Luquita MG, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. Hormonal modulation of hepatic cAMP prevents estradiol 17β-D-glucuronide-induced cholestasis in perfused rat liver. Dig Dis Sci 2013; 58:1602-14. [PMID: 23371010 DOI: 10.1007/s10620-013-2558-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/01/2013] [Indexed: 12/09/2022]
Abstract
BACKGROUND Estradiol-17β-D-glucuronide (E17G) induces cholestasis in vivo, endocytic internalization of the canalicular transporters multidrug resistance-associated protein 2 (Abcc2) and bile salt export pump (Abcb11) being a key pathomechanism. Cyclic AMP (cAMP) prevents cholestasis by targeting these transporters back to the canalicular membrane. In hepatocyte couplets, glucagon and salbutamol, both of which increase cAMP, prevented E17G action by stimulating the trafficking of these transporters by different mechanisms, namely: glucagon activates a protein kinase A-dependent pathway, whereas salbutamol activates an exchange-protein activated by cAMP (Epac)-mediated, microtubule-dependent pathway. METHODS The present study evaluated whether glucagon and salbutamol prevent E17G-induced cholestasis in a more physiological model, i.e., the perfused rat liver (PRL). Additionally, the preventive effect of in vivo alanine administration, which induces pancreatic glucagon secretion, was evaluated. RESULTS In PRLs, glucagon and salbutamol prevented E17G-induced decrease in both bile flow and the secretory activity of Abcc2 and Abcb11. Salbutamol prevention fully depended on microtubule integrity. On the other hand, glucagon prevention was microtubule-independent only at early time periods after E17G administration, but it was ultimately affected by the microtubule disrupter colchicine. Cholestasis was associated with endocytic internalization of Abcb11 and Abcc2, the intracellular carriers being partially colocalized with the endosomal marker Rab11a. This effect was completely prevented by salbutamol, whereas some transporter-containing vesicles remained colocalized with Rab11a after glucagon treatment. In vivo, alanine administration increased hepatic cAMP and accelerated the recovery of bile flow and Abcb11/Abcc2 transport function after E17G administration. The initial recovery afforded by alanine was microtubule-independent, but microtubule integrity was required to sustain this protective effect. CONCLUSION We conclude that modulation of cAMP levels either by direct administration of cAMP modulators or by physiological manipulations leadings to hormone-mediated increase of cAMP levels (alanine administration), prevents estrogen-induced cholestasis in models with preserved liver architecture, through mechanisms similar to those arisen from in vitro studies.
Collapse
Affiliation(s)
- Andrés E Zucchetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET, U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
19
|
Abu-Hayyeh S, Papacleovoulou G, Williamson C. Nuclear receptors, bile acids and cholesterol homeostasis series - bile acids and pregnancy. Mol Cell Endocrinol 2013; 368:120-8. [PMID: 23159988 DOI: 10.1016/j.mce.2012.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/28/2012] [Accepted: 10/26/2012] [Indexed: 12/19/2022]
Abstract
Bile acids have been traditionally thought of as having an important role in fat emulsification. It is now emerging that they act as important signalling molecules that not only autoregulate their own synthesis but also influence lipid and glucose metabolism. Although, the mechanisms that underlie the regulation of bile acid homeostasis have been well characterised in normal physiology, the impact of pregnancy on bile acid regulation is still poorly understood. This review summarises the main regulatory mechanisms underlying bile acid homeostasis and discusses how pregnancy, a unique physiological state, can modify them. The fetoplacental adaptations that protect against fetal bile acid toxicity are reviewed. We highlight the importance of bile acid regulation during gestation by discussing the liver disease of pregnancy, intrahepatic cholestasis of pregnancy (ICP) and how genetic, endocrine and environmental factors contribute to the disease aetiology at a cellular and molecular level.
Collapse
Affiliation(s)
- Shadi Abu-Hayyeh
- Institute of Reproductive and Developmental Biology, Dept. of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | |
Collapse
|
20
|
Barosso IR, Zucchetti AE, Boaglio AC, Larocca MC, Taborda DR, Luquita MG, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. Sequential activation of classic PKC and estrogen receptor α is involved in estradiol 17ß-D-glucuronide-induced cholestasis. PLoS One 2012; 7:e50711. [PMID: 23209816 PMCID: PMC3507741 DOI: 10.1371/journal.pone.0050711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022] Open
Abstract
Estradiol 17ß-d-glucuronide (E17G) induces acute cholestasis in rat with endocytic internalization of the canalicular transporters bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). Classical protein kinase C (cPKC) and PI3K pathways play complementary roles in E17G cholestasis. Since non-conjugated estradiol is capable of activating these pathways via estrogen receptor alpha (ERα), we assessed the participation of this receptor in the cholestatic manifestations of estradiol glucuronidated-metabolite E17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In both models, E17G activated ERα. In PRL, E17G maximally decreased bile flow, and the excretions of dinitrophenyl-glutathione, and taurocholate (Abcc2 and Abcb11 substrates, respectively) by 60% approximately; preadministration of ICI 182,780 (ICI, ERα inhibitor) almost totally prevented these decreases. In IRHC, E17G decreased the canalicular vacuolar accumulation of cholyl-glycylamido-fluorescein (Abcb11 substrate) with an IC50 of 91±1 µM. ICI increased the IC50 to 184±1 µM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Abcc2 substrate, glutathione-methylfluorescein. ICI also completely prevented E17G-induced delocalization of Abcb11 and Abcc2 from the canalicular membrane, both in PRL and IRHC. The role of ERα in canalicular transporter internalization induced by E17G was confirmed in ERα-knocked-down hepatocytes cultured in collagen sandwich. In IRHC, the protection of ICI was additive to that produced by PI3K inhibitor wortmannin but not with that produced by cPKC inhibitor Gö6976, suggesting that ERα shared the signaling pathway of cPKC but not that of PI3K. Further analysis of ERα and cPKC activations induced by E17G, demonstrated that ICI did not affect cPKC activation whereas Gö6976 prevented that of ERα, indicating that cPKC activation precedes that of ERα. Conclusion: ERα is involved in the biliary secretory failure induced by E17G and its activation follows that of cPKC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enrique J. Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET – U.N.R.), Rosario, Argentina
- * E-mail:
| |
Collapse
|
21
|
Boaglio AC, Zucchetti AE, Toledo FD, Barosso IR, Sánchez Pozzi EJ, Crocenzi FA, Roma MG. ERK1/2 and p38 MAPKs are complementarily involved in estradiol 17ß-D-glucuronide-induced cholestasis: crosstalk with cPKC and PI3K. PLoS One 2012; 7:e49255. [PMID: 23166621 PMCID: PMC3498151 DOI: 10.1371/journal.pone.0049255] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022] Open
Abstract
Objective The endogenous, cholestatic metabolite estradiol 17ß-d-glucuronide (E217G) induces endocytic internalization of the canalicular transporters relevant to bile formation, Bsep and Mrp2. We evaluated here whether MAPKs are involved in this effect. Design ERK1/2, JNK1/2, and p38 MAPK activation was assessed by the increase in their phosphorylation status. Hepatocanalicular function was evaluated in isolated rat hepatocyte couplets (IRHCs) by quantifying the apical secretion of fluorescent Bsep and Mrp2 substrates, and in isolated, perfused rat livers (IPRLs), using taurocholate and 2,4-dinitrophenyl-S-glutathione, respectively. Protein kinase participation in E217G-induced secretory failure was assessed by co-administering selective inhibitors. Internalization of Bsep/Mrp2 was assessed by confocal microscopy and image analysis. Results E217G activated all kinds of MAPKs. The PI3K inhibitor wortmannin prevented ERK1/2 activation, whereas the cPKC inhibitor Gö6976 prevented p38 activation, suggesting that ERK1/2 and p38 are downstream of PI3K and cPKC, respectively. The p38 inhibitor SB203580 and the ERK1/2 inhibitor PD98059, but not the JNK1/2 inhibitor SP600125, partially prevented E217G-induced changes in transporter activity and localization in IRHCs. p38 and ERK1/2 co-inhibition resulted in additive protection, suggesting complementary involvement of these MAPKs. In IPRLs, E217G induced endocytosis of canalicular transporters and a rapid and sustained decrease in bile flow and biliary excretion of Bsep/Mrp2 substrates. p38 inhibition prevented this initial decay, and the internalization of Bsep/Mrp2. Contrarily, ERK1/2 inhibition accelerated the recovery of biliary secretion and the canalicular reinsertion of Bsep/Mrp2. Conclusions cPKC/p38 MAPK and PI3K/ERK1/2 signalling pathways participate complementarily in E217G-induced cholestasis, through internalization and sustained intracellular retention of canalicular transporters, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando A. Crocenzi
- Institute of Experimental Physiology, National Scientific and Technical Research Council/National University of Rosario, Rosario, Argentina
- * E-mail: (FAC); (MGR)
| | - Marcelo G. Roma
- Institute of Experimental Physiology, National Scientific and Technical Research Council/National University of Rosario, Rosario, Argentina
- * E-mail: (FAC); (MGR)
| |
Collapse
|
22
|
Lu ZH, -Chen W, Ju CX, -Den J, Kuai SG, Pei H, Huang LH, Gu XB, Ying YX, Hu XQ, Zhu TF, Xing YP, Fan QH. CD25 is a novel marker of hepatic bile canaliculus. Int J Surg Pathol 2012; 20:455-61. [PMID: 22576476 DOI: 10.1177/1066896912444158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Although many antigens have been investigated, the method for the bile canaliculus staining using optical microscopy needs to be improved. The aim of the present study was to assess the expression pattern of a candidate marker, CD25, in normal and diseased liver tissue. METHODS Immunohistochemistry, immunofluorescence, and immune electron microscopy assays were performed with 41 liver sections and 2 different anti-CD25 monoclonal antibodies. A polyclonal antibody against carcinoembryonic antigen (CEA) was also used to stain bile canaliculus as a control. CD25 expression levels in normal and diseased liver tissue were also determined. RESULTS CD25 was predominantly localized at the bile canaliculus of adult and infantile liver, evidenced by both immunohistochemistry and immunofluorescence assays. The electron microscopy assay showed that there were obvious amorphous electron-dense deposits at the bile canaliculus. In contrast, the CEA-positive area included bile canaliculus as well as basolateral aspects of hepatocytes. CD25 expression levels did not differ significantly among different disease states. CONCLUSION This study provides the first evidence that CD25 is a novel marker of bile canaliculus. Characteristics of CD25 expression may shed light on immunohistochemistry and immunofluorescence analysis of bile canaliculus in both basic and clinical hepatic investigations.
Collapse
Affiliation(s)
- Zhong-Hua Lu
- 1Hepatology Research Institute, Contagious Hospital, Wuxi, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hardwick RN, Fisher CD, Street SM, Canet MJ, Cherrington NJ. Molecular mechanism of altered ezetimibe disposition in nonalcoholic steatohepatitis. Drug Metab Dispos 2012; 40:450-60. [PMID: 22112382 PMCID: PMC3286272 DOI: 10.1124/dmd.111.041095] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/23/2011] [Indexed: 01/21/2023] Open
Abstract
Ezetimibe (EZE) lowers serum lipid levels by blocking cholesterol uptake in the intestine. Disposition of EZE and its pharmacologically active glucuronide metabolite (EZE-GLUC) to the intestine is dependent on hepatobiliary efflux. Previous studies suggested that hepatic transporter expression and function may be altered during nonalcoholic steatohepatitis (NASH). The purpose of the current study was to determine whether NASH-induced changes in the expression and function of hepatic transporters result in altered disposition of EZE and EZE-GLUC. Rats fed a methionine- and choline-deficient (MCD) diet for 8 weeks were administered 10 mg/kg EZE either by intravenous bolus or oral gavage. Plasma and bile samples were collected over 2 h followed by terminal urine and tissue collection. EZE and EZE-GLUC concentrations were determined by liquid chromatography-tandem mass spectrometry. The sinusoidal transporter Abcc3 was induced in MCD rats, which correlated with increased plasma concentrations of EZE-GLUC, regardless of dosing method. Hepatic expression of the biliary transporters Abcc2 and Abcb1 was also increased in MCD animals, but the biliary efflux of EZE-GLUC was slightly diminished, whereas biliary bile acid concentrations were unaltered. The cellular localization of Abcc2 and Abcb1 appeared to be internalized away from the canalicular membrane in MCD livers, providing a mechanism for the shift to plasma drug efflux. The combination of induced expression and altered localization of efflux transporters in NASH shifts the disposition profile of EZE-GLUC toward plasma retention away from the site of action. This increased plasma retention of drugs in NASH may have implications for the pharmacological effect and safety of numerous drugs.
Collapse
Affiliation(s)
- Rhiannon N Hardwick
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, Arizona, USA
| | | | | | | | | |
Collapse
|
24
|
Zucchetti AE, Barosso IR, Boaglio A, Pellegrino JM, Ochoa EJ, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. Prevention of estradiol 17beta-D-glucuronide-induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes. Mol Biol Cell 2011; 22:3902-15. [PMID: 21865596 PMCID: PMC3192868 DOI: 10.1091/mbc.e11-01-0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In estradiol 17β-d-glucuronide (E17G)-induced cholestasis, the canalicular hepatocellular transporters bile salt export pump (Abcb11) and multidrug-resistance associated protein 2 (Abcc2) undergo endocytic internalization. cAMP stimulates the trafficking of transporter-containing vesicles to the apical membrane and is able to prevent internalization of these transporters in estrogen-induced cholestasis. Hepatocyte levels of cAMP are regulated by hormones such as glucagon and adrenaline (via the β2 receptor). We analyzed the effects of glucagon and salbutamol (a β2 adrenergic agonist) on function and localization of Abcb11 and Abcc2 in isolated rat hepatocyte couplets exposed to E17G and compared the mechanistic bases of their effects. Glucagon and salbutamol partially prevented the impairment in Abcb11 and Abcc2 transport capacity. E17G also induced endocytic internalization of Abcb11 and Abcc2, which partially colocalized with the endosomal marker Rab11a. This effect was completely prevented by salbutamol, whereas some transporter-containing vesicles remained internalized and mainly colocalizing with Rab11a in the perinuclear region after incubation with glucagon. Glucagon prevention was dependent on cAMP-dependent protein kinase (PKA) and independent of exchange proteins activated directly by cAMP (Epac) and microtubules. In contrast, salbutamol prevention was PKA independent and Epac/MEK and microtubule dependent. Anticholestatic effects of glucagon and salbutamol were additive in nature. Our results show that increases in cAMP could activate different anticholestatic signaling pathways, depending on the hormonal mediator involved.
Collapse
Affiliation(s)
- Andrés E Zucchetti
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002LRL Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Papacleovoulou G, Abu-Hayyeh S, Williamson C. Nuclear receptor-driven alterations in bile acid and lipid metabolic pathways during gestation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:879-87. [PMID: 21073948 DOI: 10.1016/j.bbadis.2010.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 12/27/2022]
Abstract
Nuclear receptor signalling is essential for physiological processes such as metabolism, development, and reproduction. Alterations in the endocrine state that naturally occur during pregnancy result in maternal adaptations to support the feto-placental unit. A series of studies have shown that nuclear receptor signalling is involved in maternal adaptations of bile acid, cholesterol, and lipid homeostasis pathways to ensure maintenance of the nutritional demands of the fetus. We discuss regulation of hepatic nuclear receptors and their target genes in pregnancy and their impact on the development of disorders such as intrahepatic cholestasis of pregnancy and oestrogen-induced hepatotoxicity. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Georgia Papacleovoulou
- Imperial College London, Maternal and Fetal Disease Group, Institute of Reproductive and Developmental Biology, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
26
|
Boaglio AC, Zucchetti AE, Sánchez Pozzi EJ, Pellegrino JM, Ochoa JE, Mottino AD, Vore M, Crocenzi FA, Roma MG. Phosphoinositide 3-kinase/protein kinase B signaling pathway is involved in estradiol 17β-D-glucuronide-induced cholestasis: complementarity with classical protein kinase C. Hepatology 2010; 52:1465-76. [PMID: 20815017 DOI: 10.1002/hep.23846] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Estradiol 17β-D-glucuronide (E(2)17G) is an endogenous, cholestatic metabolite that induces endocytic internalization of the canalicular transporters relevant to bile secretion: bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). We assessed whether phosphoinositide 3-kinase (PI3K) is involved in E(2)17G-induced cholestasis. E(2)17G activated PI3K according to an assessment of the phosphorylation of the final PI3K effector, protein kinase B (Akt). When the PI3K inhibitor wortmannin (WM) was preadministered to isolated rat hepatocyte couplets (IRHCs), it partially prevented the reduction induced by E(2)17G in the proportion of IRHCs secreting fluorescent Bsep and Mrp2 substrates (cholyl lysyl fluorescein and glutathione methylfluorescein, respectively). 2-Morpholin-4-yl-8-phenylchromen-4-one, another PI3K inhibitor, and an Akt inhibitor (Calbiochem 124005) showed similar protective effects. IRHC immunostaining and confocal microscopy analysis revealed that endocytic internalization of Bsep and Mrp2 induced by E(2)17G was extensively prevented by WM; this effect was fully blocked by the microtubule-disrupting agent colchicine. The protection of WM was additive to that afforded by the classical protein kinase C (cPKC) inhibitor 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile (Gö6976); this suggested differential and complementary involvement of the PI3K and cPKC signaling pathways in E(2)17G-induced cholestasis. In isolated perfused rat liver, an intraportal injection of E(2)17G triggered endocytosis of Bsep and Mrp2, and this was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Bsep and Mrp2 substrates [(3)H]taurocholate and glutathione until the end of the perfusion period. Unlike Gö6976, WM did not prevent the initial decay, but it greatly accelerated the recovery to normality of these parameters and the reinsertion of Bsep and Mrp2 into the canalicular membrane in a microtubule-dependent manner. CONCLUSION The PI3K/Akt signaling pathway is involved in the biliary secretory failure induced by E(2)17G through sustained internalization of canalicular transporters endocytosed via cPKC.
Collapse
Affiliation(s)
- Andrea C Boaglio
- Institute of Experimental Physiology, National Scientific and Technical Research Council/University of Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yano K, Sekine S, Nemoto K, Fuwa T, Horie T. The effect of dimerumic acid on LPS-induced downregulation of Mrp2 in the rat. Biochem Pharmacol 2010; 80:533-9. [DOI: 10.1016/j.bcp.2010.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/19/2010] [Accepted: 04/30/2010] [Indexed: 11/25/2022]
|
28
|
Sánchez Pozzi EJ, Roma MG. Putative role for actin organization status in the dynamic localization of canalicular carriers under oxidative stress conditions. Am J Physiol Gastrointest Liver Physiol 2009; 296:G969. [PMID: 19332616 DOI: 10.1152/ajpgi.00019.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Crocenzi FA, Sánchez Pozzi EJ, Ruiz ML, Zucchetti AE, Roma MG, Mottino AD, Vore M. Ca(2+)-dependent protein kinase C isoforms are critical to estradiol 17beta-D-glucuronide-induced cholestasis in the rat. Hepatology 2008; 48:1885-95. [PMID: 18972403 PMCID: PMC3004396 DOI: 10.1002/hep.22532] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The endogenous estradiol metabolite estradiol 17beta-D-glucuronide (E(2)17G) induces an acute cholestasis in rat liver coincident with retrieval of the canalicular transporters bile salt export pump (Bsep, Abcc11) and multidrug resistance-associated protein 2 (Mrp2, Abcc2) and their associated loss of function. We assessed the participation of Ca(2+)-dependent protein kinase C isoforms (cPKC) in the cholestatic manifestations of E(2)17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHCs). In PRL, E(2)17G (2 mumol/liver; intraportal, single injection) maximally decreased bile flow, total glutathione, and [(3)H] taurocholate excretion by 61%, 62%, and 79%, respectively; incorporation of the specific cPKC inhibitor Gö6976 (500 nM) in the perfusate almost totally prevented these decreases. In dose-response studies using IRHC, E(2)17G (3.75-800 muM) decreased the canalicular vacuolar accumulation of the Bsep substrate cholyl-lysylfluorescein with an IC50 of 54.9 +/- 7.9 muM. Gö6976 (1 muM) increased the IC50 to 178.4 +/- 23.1 muM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Mrp2 substrate, glutathione methylfluorescein. Prevention of these changes by Gö6976 coincided with complete protection against E(2)17G-induced retrieval of Bsep and Mrp2 from the canalicular membrane, as detected both in the PRL and IRHC. E(2)17G also increased paracellular permeability in IRHC, which was only partially prevented by Gö6976. The cPKC isoform PKCalpha, but not the Ca(2+)-independent PKC isoform, PKCepsilon, translocated to the plasma membrane after E(2)17G administration in primary cultured rat hepatocytes; Gö6976 completely prevented this translocation, thus indicating specific activation of cPKC. This is consistent with increased autophosphorylation of cPKC by E(2)17G, as detected via western blotting. CONCLUSION Our findings support a central role for cPKC isoforms in E(2)17G-induced cholestasis, by inducing both transporter retrieval from the canalicular membrane and opening of the paracellular route.
Collapse
Affiliation(s)
- Fernando A. Crocenzi
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| | - Enrique J. Sánchez Pozzi
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Andrés E. Zucchetti
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Marcelo G. Roma
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
| | - Aldo D. Mottino
- Institute of Experimental Physiology, National University of Rosario, S2002LRL-Rosario, Argentina
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| | - Mary Vore
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305
| |
Collapse
|
30
|
Roma MG, Crocenzi FA, Mottino AD. Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol 2008; 14:6786-801. [PMID: 19058304 PMCID: PMC2773873 DOI: 10.3748/wjg.14.6786] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vesicle-based trafficking of hepatocellular transporters involves delivery of the newly-synthesized carriers from the rough endoplasmic reticulum to either the plasma membrane domain or to an endosomal, submembrane compartment, followed by exocytic targeting to the plasma membrane. Once delivered to the plasma membrane, the transporters usually undergo recycling between the plasma membrane and the endosomal compartment, which usually serves as a reservoir of pre-existing transporters available on demand. The balance between exocytic targeting and endocytic internalization from/to this recycling compartment is therefore a chief determinant of the overall capability of the liver epithelium to secrete bile and to detoxify endo and xenobiotics. Hence, it is a highly regulated process. Impaired regulation of this balance may lead to abnormal localization of these transporters, which results in bile secretory failure due to endocytic internalization of key transporters involved in bile formation. This occurs in several experimental models of hepatocellular cholestasis, and in most human cholestatic liver diseases. This review describes the molecular bases involved in the biology of the dynamic localization of hepatocellular transporters and its regulation, with a focus on the involvement of signaling pathways in this process. Their alterations in different experimental models of cholestasis and in human cholestatic liver disease are reviewed. In addition, the causes explaining the pathological condition (e.g. disorganization of actin or actin-transporter linkers) and the mediators involved (e.g. activation of cholestatic signaling transduction pathways) are also discussed. Finally, several experimental therapeutic approaches based upon the administration of compounds known to stimulate exocytic insertion of canalicular transporters (e.g. cAMP, tauroursodeoxycholate) are described.
Collapse
|
31
|
Sex-Related Differences in Redistribution of Total Bilirubin Pool after Induction and Removal of Cholestasis in Rats. Bull Exp Biol Med 2008; 146:562-5. [DOI: 10.1007/s10517-009-0337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
van de Water FM, Masereeuw R, Russel FGM. Function and Regulation of Multidrug Resistance Proteins (MRPs) in the Renal Elimination of Organic Anions. Drug Metab Rev 2008; 37:443-71. [PMID: 16257830 DOI: 10.1080/03602530500205275] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The reabsorptive and excretory capacity of the kidney has an important influence on the systemic concentration of drugs. Multidrug resistance proteins (MRP/ABCC) expressed in the kidney play a critical role in the tubular efflux of a wide variety of drugs and toxicants, and, in particular, of their negatively charged phase II metabolites. Nine structurally and functionally related MRP family members have been identified (MRP1-9), which differ from each other by their localization, expression levels, and substrate specificity. During altered physiological circumstances, adaptations in these transporters are required to avoid systemic toxicity as well as renal tubular damage. Key players in these events are hormones, protein kinases, nuclear receptors, and disease conditions, which all may affect transporter protein expression levels. This review discusses current knowledge on the renal characteristics of MRP1-9, with specific focus on their regulation.
Collapse
Affiliation(s)
- Femke M van de Water
- Department of Pharmacology and Toxicology 233, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
33
|
Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci (Lond) 2008; 114:567-88. [PMID: 18377365 DOI: 10.1042/cs20070227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent overwhelming advances in molecular and cell biology have added enormously to our understanding of the physiological processes involved in bile formation and, by extension, to our comprehension of the consequences of their alteration in cholestatic hepatopathies. The present review addresses in detail this new information by summarizing a number of recent experimental findings on the structural, functional and regulatory aspects of hepatocellular transporter function in acquired cholestasis. This comprises (i) a short overview of the physiological mechanisms of bile secretion, including the nature of the transporters involved and their role in bile formation; (ii) the changes induced by nuclear receptors and hepatocyte-enriched transcription factors in the constitutive expression of hepatocellular transporters in cholestasis, either explaining the primary biliary failure or resulting from a secondary adaptive response; (iii) the post-transcriptional changes in transporter function and localization in cholestasis, including a description of the subcellular structures putatively engaged in the endocytic internalization of canalicular transporters and the involvement of signalling cascades in this effect; and (iv) a discussion on how this new information has contributed to the understanding of the mechanism by which anticholestatic agents exert their beneficial effects, or the manner in which it has helped the design of new successful therapeutic approaches to cholestatic liver diseases.
Collapse
|
34
|
Mottino AD, Hoffman T, Crocenzi FA, Sánchez Pozzi EJ, Roma MG, Vore M. Disruption of function and localization of tight junctional structures and Mrp2 in sustained estradiol-17beta-D-glucuronide-induced cholestasis. Am J Physiol Gastrointest Liver Physiol 2007; 293:G391-402. [PMID: 17463180 DOI: 10.1152/ajpgi.00496.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Estradiol-17beta-D-glucuronide (E(2)17G) induces immediate and profound but transient cholestasis in rats when administered as a single bolus dose. Here, we examined the consequence of sustained E(2)17G cholestasis and assessed the function and localization of the tight junctional proteins zonula occludens-1 (ZO-1) and occludin and of the canalicular transporter multidrug resistance-associated protein-2 (Mrp2). An initial dose of E(2)17G (15 mumol/kg iv) followed by five subsequent doses of 7.5 mumol/kg from 60 to 240 min induced a sustained 40-70% decrease in bile flow. Following their biliary retrograde administration, cholera toxin B subunit-FITC or horseradish peroxidase were detected at the sinusoidal domain, indicating opening of the paracellular route; this occurred as early as 15 min after the first dose as well as 15 min after the last dose of E(2)17G, but not following the administration of vehicle in controls. Localization of ZO-1 and occludin was only slightly affected under acute cholestatic conditions but was severely disrupted under sustained cholestasis, with their appearance suggesting a fragmented structure. Endocytic internalization of Mrp2 to the pericanalicular region was apparent 20 min after a single E(2)17G administration; however, Mrp2 was found more deeply internalized and partially redistributed to the basolateral membrane under sustained cholestasis. In conclusion, acute E(2)17G-induced cholestasis increased permeability of the tight junction, while sustained cholestasis provoked a significant redistribution of ZO-1, occludin, and Mrp2 in addition to increased permeability of the tight junction. Altered tight junction integrity likely contributes to impaired bile secretion and may be causally related to changes in Mrp2 localization.
Collapse
Affiliation(s)
- Aldo D Mottino
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | | | | | | | |
Collapse
|
35
|
Uppal H, Saini SPS, Moschetta A, Mu Y, Zhou J, Gong H, Zhai Y, Ren S, Michalopoulos GK, Mangelsdorf DJ, Xie W. Activation of LXRs prevents bile acid toxicity and cholestasis in female mice. Hepatology 2007; 45:422-432. [PMID: 17256725 DOI: 10.1002/hep.21494] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Liver X receptors (LXRs) have been identified as sterol sensors that regulate cholesterol and lipid homeostasis and macrophage functions. In this study, we found that LXRs also affect sensitivity to bile acid toxicity and cholestasis. Activation of LXRalpha in transgenic mice confers a female-specific resistance to lithocholic acid (LCA)-induced hepatotoxicity and bile duct ligation (BDL)-induced cholestasis. This resistance was also seen in wild-type female mice treated with the synthetic LXR ligand TO1317. In contrast, LXR double knockout (DKO) mice deficient in both the alpha and beta isoforms exhibited heightened cholestatic sensitivity. LCA and BDL resistance in transgenic mice was associated with increased expression of bile acid-detoxifying sulfotransferase 2A (Sult2a) and selected bile acid transporters, whereas basal expression of these gene products was reduced in the LXR DKO mice. Promoter analysis showed that the mouse Sult2a9 gene is a transcriptional target of LXRs. Activation of LXRs a l so suppresses expression of oxysterol 7alpha-hydroxylase (Cyp7b1), which may lead to increased levels of LXR-activating oxysterols. CONCLUSION We propose that LXRs have evolved to have the dual functions of maintaining cholesterol and bile acid homeostasis by increasing cholesterol catabolism and, at the same time, preventing toxicity from bile acid accumulation.
Collapse
Affiliation(s)
- Hirdesh Uppal
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sekine S, Ito K, Horie T. Oxidative stress and Mrp2 internalization. Free Radic Biol Med 2006; 40:2166-74. [PMID: 16785030 DOI: 10.1016/j.freeradbiomed.2006.02.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 02/18/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Oxidative stress in the liver is sometimes accompanied by cholestasis. We have described the internalization of multidrug resistance-associated protein 2/ATP-binding cassette transporter family 2 (Mrp2/Abcc2), a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress in rat liver. However, the signaling pathway and regulatory molecules have not been investigated. In the present study, we investigated the mechanism of EA-induced Mrp2 internalization using isolated rat hepatocyte couplets (IRCHs). The Mrp2 index, defined as the ratio of Mrp2-positive canalicular membrane staining in IRCHs per number of cell nuclei, was significantly reduced by treatment with EA. This reduction was abolished by a nonspecific protein kinase C (PKC) inhibitor Gö6850, a Ca(2+) chelator, EGTA, but not by a protein kinase A (PKA)-selective inhibitor, a Ca(2+)-dependent conventional PKC (cPKC) inhibitor Gö6976, or a protein kinase G (PKG) inhibitor (1 microM). Moreover, an increase in the intracellular Ca(2+) level and NO release into medium were observed shortly after the EA treatment. Both of these increases, as well as Mrp2 internalization, were completely blocked by EGTA. In conclusion, EA produced a reduction in GSH, Ca(2+) elevation, NO production, and nPKC activation in a sequential manner, finally leading to Mrp2 internalization.
Collapse
Affiliation(s)
- Shuichi Sekine
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba, 260-8675, Japan
| | | | | |
Collapse
|
37
|
Simon FR, Iwahashi M, Hu LJ, Qadri I, Arias IM, Ortiz D, Dahl R, Sutherland E. Hormonal regulation of hepatic multidrug resistance-associated protein 2 (Abcc2) primarily involves the pattern of growth hormone secretion. Am J Physiol Gastrointest Liver Physiol 2006; 290:G595-G608. [PMID: 16537972 DOI: 10.1152/ajpgi.00240.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary excretion is the rate-limiting step in transfer of bilirubin, other organic anions, and xenobiotics across the liver. Multidrug resistance-associated protein 2 (Mrp2, Abcc2) is the major transporter for conjugated endo- and xenobiotic-conjugated compounds into bile. Hormones regulate bilirubin and xenobiotic secretion into bile, which have dimorphic differences. Therefore, we examined the possible role of sex steroids and growth hormone in the regulation of Mrp2. In approximately 8-wk-old rats, mRNA, transcriptional activity, and hepatic content of Mrp2 were selectively increased fourfold (P < 0.001) in females compared with males. In males, estrogens increased and testosterone decreased Mrp2 mRNA and protein, whereas no significant effect was measured in females, suggesting either a direct effect on the liver or an alteration in growth hormone secretory pattern. After hypophysectomy, Mrp2 mRNA was markedly reduced and the effects of estrogens and testosterone on Mrp2 were prevented, supporting the role of pituitary hormones in controlling Mrp2 expression. Mrp2 increased following growth hormone infusion in males. Mrp2 mRNA was decreased in growth hormone-deficient "Little" mice. Growth hormone infusions in hypophysectomized rats partially restored Mrp2 levels, whereas thyroxine addition returned Mrp2 mRNA and protein to basal levels. Morphology as well as biochemical measurements demonstrated that Mrp2 was localized to the bile canaliculus in equal density in both genders, whereas hormone replacements increased Mrp2 in hypophysectomized animals. In cultured hepatocytes, thyroxine did not have an effect, but growth hormone alone and combined with thyroxine increased Mrp2 mRNA levels. In conclusion, Mrp2 levels are regulated by the combination of thyroxine and different growth hormone secretory patterns.
Collapse
Affiliation(s)
- Francis R Simon
- Department of Medicine, Division of Gastroenterolgy and Hepatology, University of Colorado Health Sciences Center, Denver, 80262, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oude Elferink RPJ, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterology 2006; 130:908-25. [PMID: 16530529 DOI: 10.1053/j.gastro.2005.08.052] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 09/20/2005] [Indexed: 12/31/2022]
Abstract
The apical membrane of the hepatocyte fulfils a unique function in the formation of primary bile. For all important biliary constituents a primary active transporter is present that extrudes or translocates its substrate toward the canalicular lumen. Most of these transporters are ATP-binding cassette (ABC) transporters. Two types of transporters can be recognized: those having endogenous metabolites as substrates (which could be referred to as "physiologic" transporters) and those involved in the elimination of drugs, toxins, and waste products. It should be emphasized that this distinction cannot be strictly made as some endogenous metabolites can be regarded as toxins as well. The importance of the canalicular transporters has been recognized by the pathologic consequence of their genetic defects. For each of the physiologic transporter genes an inherited disease has now been identified and most of these diseases have a quite serious clinical phenotype. Strikingly, complete defects in drug transporter function have not been recognized (yet) or only cause a mild phenotype. In this review we only briefly discuss the inherited defects in transporter function, and we focus on the pathophysiologic concepts that these diseases have generated.
Collapse
|
39
|
Mottino AD, Carreras FI, Gradilone SA, Marinelli RA, Vore M. Canalicular membrane localization of hepatocyte aquaporin-8 is preserved in estradiol-17beta-D-glucuronide-induced cholestasis. J Hepatol 2006; 44:232-3. [PMID: 16274833 DOI: 10.1016/j.jhep.2005.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/02/2005] [Accepted: 08/07/2005] [Indexed: 12/04/2022]
|
40
|
Affiliation(s)
- Raúl A Marinelli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
| | | | | |
Collapse
|