1
|
Shiozaki‐Takagi Y, Ozaki N, Toyoda Y. Epac2 activation mediates glucagon-induced glucogenesis in primary rat hepatocytes. J Diabetes Investig 2024; 15:429-436. [PMID: 38243676 PMCID: PMC10981141 DOI: 10.1111/jdi.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
AIMS/INTRODUCTION Glucagon plays an essential role in hepatic glucogenesis by enhancing glycogen breakdown, inducing gluconeogenesis, and suppressing glycogenesis. Moreover, glucagon increases cyclic adenosine monophosphate (cAMP) levels, thereby activating protein kinase A (PKA) and cAMP guanine nucleotide exchange factor (also known as Epac). Although the function of PKA in the liver has been studied extensively, the function of hepatic Epac is poorly understood. The aim of this study was to elucidate the role of Epac in mediating the action of glucagon on the hepatocytes. MATERIALS AND METHODS Epac mRNA and protein expression, localization, and activity in the hepatocytes were analyzed by reverse transcription polymerase chain reaction, western blotting, immunofluorescence staining, and Rap1 activity assay, respectively. Additionally, we investigated the effects of an Epac-specific activator, 8-CPT, and an Epac-specific inhibitor, ESI-05, on glycogen metabolism in isolated rat hepatocytes. Further mechanisms of glycogen metabolism were evaluated by examining glucokinase (GK) translocation and mRNA expression of gluconeogenic enzymes. RESULTS Epac2, but not Epac1, was predominantly expressed in the liver. Moreover, 8-CPT inhibited glycogen accumulation and GK translocation and enhanced the mRNA expression of gluconeogenic enzymes. ESI-05 failed to reverse glucagon-induced suppression of glycogen storage and partially inhibited glucagon-induced GK translocation and the mRNA expression of gluconeogenic enzymes. CONCLUSIONS Epac signaling plays a role in mediating the glucogenic action of glucagon in the hepatocytes.
Collapse
Affiliation(s)
- Yusuke Shiozaki‐Takagi
- Research Center of Health, Physical Fitness and SportsNagoya UniversityNagoyaJapan
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
- Present address:
Division of Cell Signaling and Molecular Medicine, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Nobuaki Ozaki
- Research Center of Health, Physical Fitness and SportsNagoya UniversityNagoyaJapan
- Division of EndocrinologyJapanese Red Cross Aichi Medical Center Nagoya Daiichi HospitalNagoyaJapan
| | - Yukiyasu Toyoda
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
| |
Collapse
|
2
|
Agarwal H, Tinsley B, Sarecha AK, Ozcan L. Rap1 in the Context of PCSK9, Atherosclerosis, and Diabetes. Curr Atheroscler Rep 2023; 25:931-937. [PMID: 37979063 DOI: 10.1007/s11883-023-01162-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW The focus of this article is to highlight the importance of the small GTPase, Ras-associated protein 1 (Rap1), in proprotein convertase subtilisin/kexin type 9 (PCSK9) regulation and atherosclerosis and type 2 diabetes etiology and discuss the potential therapeutic implications of targeting Rap1 in these disease areas. REVIEW FINDINGS Cardiometabolic disease characterized by obesity, glucose intolerance, dyslipidemia, and atherosclerotic cardiovascular disease remain an important cause of mortality. Evidence using mouse models of obesity and insulin resistance indicates that Rap1 deficiency increases proatherogenic PCSK9 and low-density lipoprotein cholesterol levels and predisposes these mice to develop obesity- and statin-induced hyperglycemia, which highlights Rap1's role in cardiometabolic dysfunction. Rap1 may also contribute to cardiovascular disease through its effects on vascular wall cells involved in the atherosclerosis progression. Rap1 activation, specifically in the liver, could be beneficial in the prevention of cardiometabolic perturbations, including type 2 diabetes, hypercholesterolemia, and atherosclerosis.
Collapse
Affiliation(s)
- Heena Agarwal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brea Tinsley
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Amesh K Sarecha
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Mora FAA, Musheshe N, Arroyave Ospina JC, Geng Y, Soto JM, Rodrigo JA, Alieva T, Buist-Homan M, Lezoualc'h F, Cheng X, Schmidt M, Moshage H. Metformin protects against diclofenac-induced toxicity in primary rat hepatocytes by preserving mitochondrial integrity via a pathway involving EPAC. Biomed Pharmacother 2021; 143:112072. [PMID: 34464747 DOI: 10.1016/j.biopha.2021.112072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE It has been shown that the antidiabetic drug metformin protects hepatocytes against toxicity by various stressors. Chronic or excessive consumption of diclofenac (DF) - a pain-relieving drug, leads to drug-induced liver injury via a mechanism involving mitochondrial damage and ultimately apoptotic death of hepatocytes. However, whether metformin protects against DF-induced toxicity is unknown. Recently, it was also shown that cAMP elevation is protective against DF-induced apoptotic death in hepatocytes, a protective effect primarily involving the downstream cAMP effector EPAC and preservation of mitochondrial function. This study therefore aimed at investigating whether metformin protects against DF-induced toxicity via cAMP-EPACs. EXPERIMENTAL APPROACH Primary rat hepatocytes were exposed to 400 µmol/L DF. CE3F4 or ESI-O5 were used as EPAC-1 or 2 inhibitors respectively. Apoptosis was measured by caspase-3 activity and necrosis by Sytox green staining. Seahorse X96 assay was used to determine mitochondrial function. Mitochondrial reactive oxygen species (ROS) production was measured using MitoSox, mitochondrial MnSOD expression was determined by immunostaining and mitochondrial morphology (fusion and fission ratio) by 3D refractive index imaging. KEY RESULTS Metformin (1 mmol/L) was protective against DF-induced apoptosis in hepatocytes. This protective effect was EPAC-dependent (mainly EPAC-2). Metformin restored mitochondrial morphology in an EPAC-independent manner. DF-induced mitochondrial dysfunction which was demonstrated by decreased oxygen consumption rate, an increased ROS production and a reduced MnSOD level, were all reversed by metformin in an EPAC-dependent manner. CONCLUSION AND IMPLICATIONS Metformin protects hepatocytes against DF-induced toxicity via cAMP-dependent EPAC-2.
Collapse
Affiliation(s)
- Fabio Alejandro Aguilar Mora
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Nshunge Musheshe
- Deptartment Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, The Netherlands.
| | - Johanna C Arroyave Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Juan M Soto
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - José A Rodrigo
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - Tatiana Alieva
- Department of Optics and Faculty of Physical Sciences, Complutense University of Madrid, Spain.
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Metaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France.
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Martina Schmidt
- Deptartment Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, The Netherlands.
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Ye J, Xin L, Liu J, Tang T, Bao X, Yan Y. Dkk1 inhibits malignant transformation induced by Bmi1 via the β-catenin signaling axis in WB-F344 oval cells. FEBS Open Bio 2021; 11:1854-1866. [PMID: 33639034 PMCID: PMC8255841 DOI: 10.1002/2211-5463.13132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/05/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Dickkopf-1 (Dkk1) is an inhibitor of Wnt signaling involved in cancer cell proliferation, apoptosis, and migration and angiogenesis. It was previously reported that B cell-specific Moloney mouse leukemia virus integration site 1 (Bmi1) activates the Wnt pathway by inhibiting the expression of DKK1 in breast cancer cell lines and 293T cells. Bmi1 and DKK1 are highly expressed in liver samples taken by biopsy from patients with hepatitis B virus-related hepatocellular carcinoma (HCC), but the effect of both Bmi1 and DKK1 on the carcinogenesis of adult hepatic stem cells (oval cells) has not previously been reported. In this study, we used WB-F344 cells to explore the function and regulation of Dkk1 upon Bmi1 treatment. Overexpression of Dkk1 repressed differentiation, proliferation, and migration induced by Bmi1 but promoted the apoptosis of hepatic WB-F344 oval cells. In addition, Dkk1 reduced the enhancement of β-catenin levels induced by Bmi1. Finally, we used transcriptome sequencing to perform a comprehensive evaluation of the transcriptome-related changes in WB-F344 oval cells induced by Dkk1 and Bmi1. These results may provide evidence for future studies of the pathogenesis of HCC and the design of possible therapies.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Le Xin
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Jidong Liu
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Tao Tang
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Xing Bao
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| | - Yukuang Yan
- Department of General Surgery, Longgang Central Hospital, Shenzhen, China
| |
Collapse
|
5
|
Aguilar Mora FA, Musheshe N, Oun A, Buist-Homan M, Lezoualc'h F, Cheng X, Schmidt M, Moshage H. Elevated cAMP Protects against Diclofenac-Induced Toxicity in Primary Rat Hepatocytes: A Protective Effect Mediated by the Exchange Protein Directly Activated by cAMP/cAMP-Regulated Guanine Nucleotide Exchange Factors. Mol Pharmacol 2021; 99:294-307. [PMID: 33574047 PMCID: PMC11033960 DOI: 10.1124/molpharm.120.000217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic consumption of the nonsteroidal anti-inflammatory drug diclofenac may induce drug-induced liver injury (DILI). The mechanism of diclofenac-induced liver injury is partially elucidated and involves mitochondrial damage. Elevated cAMP protects hepatocytes against bile acid-induced injury. However, it is unknown whether cAMP protects against DILI and, if so, which downstream targets of cAMP are implicated in the protective mechanism, including the classic protein kinase A (PKA) pathway or alternative pathways like the exchange protein directly activated by cAMP (EPAC). The aim of this study was to investigate whether cAMP and/or its downstream targets protect against diclofenac-induced injury in hepatocytes. Rat hepatocytes were exposed to 400 µmol/l diclofenac. Apoptosis and necrosis were measured by caspase-3 activity assay and Sytox green staining, respectively. Mitochondrial membrane potential (MMP) was measured by JC-10 staining. mRNA and protein expression were assessed by quantitative polymerase chain reaction (qPCR) and Western blot, respectively. The cAMP-elevating agent 7β-acetoxy-8,13-epoxy-1α,6β,9α-trihydroxylabd-14-en-11-one (forskolin), the pan-phosphodiesterase inhibitor IBMX, and EPAC inhibitors 5,7-dibromo-6-fluoro-3,4-dihydro-2-methyl-1(2H)-quinoline carboxaldehyde (CE3F4) and ESI-O5 were used to assess the role of cAMP and its effectors, PKA or EPAC. Diclofenac exposure induced apoptotic cell death and loss of MMP in hepatocytes. Both forskolin and IBMX prevented diclofenac-induced apoptosis. EPAC inhibition but not PKA inhibition abolished the protective effect of forskolin and IBMX. Forskolin and IBMX preserved the MMP, whereas both EPAC inhibitors diminished this effect. Both EPAC1 and EPAC2 were expressed in hepatocytes and localized in mitochondria. cAMP elevation protects hepatocytes against diclofenac-induced cell death, a process primarily involving EPACs. The cAMP/EPAC pathway may be a novel target for treatment of DILI. SIGNIFICANCE STATEMENT: This study shows two main highlights. First, elevated cAMP levels protect against diclofenac-induced apoptosis in primary hepatocytes via maintenance of mitochondrial integrity. In addition, this study proposes the existence of mitochondrial cAMP-EPAC microdomains in rat hepatocytes, opening new avenues for targeted therapy in drug-induced liver injury (DILI). Both EPAC1 and EPAC2, but not protein kinase A, are responsible for this protective effect. Our findings present cAMP-EPAC as a potential target for the treatment of DILI and liver injury involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fabio Alejandro Aguilar Mora
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Nshunge Musheshe
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Asmaa Oun
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Manon Buist-Homan
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Frank Lezoualc'h
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Xiaodong Cheng
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Martina Schmidt
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| | - Han Moshage
- Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)
| |
Collapse
|
6
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
7
|
Rodriguez WE, Wahlang B, Wang Y, Zhang J, Vadhanam MV, Joshi-Barve S, Bauer P, Cannon R, Ahmadi AR, Sun Z, Cameron A, Barve S, Maldonado C, McClain C, Gobejishvili L. Phosphodiesterase 4 Inhibition as a Therapeutic Target for Alcoholic Liver Disease: From Bedside to Bench. Hepatology 2019; 70:1958-1971. [PMID: 31081957 PMCID: PMC6851418 DOI: 10.1002/hep.30761] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) is a major cause of liver-related mortality. There is still no US Food and Drug Administration-approved therapy for ALD, and therefore, identifying therapeutic targets is needed. Our previous work demonstrated that ethanol exposure leads to up-regulation of cAMP-degrading phosphodiesterase 4 (PDE4) expression, which compromises normal cAMP signaling in monocytes/macrophages and hepatocytes. This effect of ethanol on cAMP signaling contributes to dysregulated inflammatory response and altered lipid metabolism. It is unknown whether chronic alcohol consumption in humans alters hepatic PDE4 expression and cAMP signaling and whether inadequate cAMP signaling plays a pathogenic role in alcohol-induced liver injury. Our present work shows that expression of the PDE4 subfamily of enzymes is significantly up-regulated and cAMP levels are markedly decreased in hepatic tissues of patients with severe ALD. We also demonstrate the anti-inflammatory efficacy of roflumilast, a clinically available PDE4 inhibitor, on endotoxin-inducible proinflammatory cytokine production ex vivo in whole blood of patients with alcoholic hepatitis. Moreover, we demonstrate that ethanol-mediated changes in hepatic PDE4 and cAMP levels play a causal role in liver injury in in vivo and in vitro models of ALD. This study employs a drug delivery system that specifically delivers the PDE4 inhibitor rolipram to the liver to avoid central nervous system side effects associated with this drug. Our results show that PDE4 inhibition significantly attenuates ethanol-induced hepatic steatosis and injury through multiple mechanisms, including reduced oxidative and endoplasmic reticulum stress both in vivo and in vitro. Conclusion: Increased PDE4 plays a pathogenic role in the development of ALD; hence, directed interventions aimed at inhibiting PDE4 might be an effective treatment for ALD.
Collapse
Affiliation(s)
- Walter E. Rodriguez
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Banrida Wahlang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Yali Wang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Jingwen Zhang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Manicka V. Vadhanam
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Swati Joshi-Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA,,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Philip Bauer
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA,,EndoProtech, Inc., Louisville, Kentucky, USA
| | - Robert Cannon
- Department of Surgery, School of Medicine, University of Louisville, Kentucky, USA
| | - Ali Reza Ahmadi
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Cameron
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA,,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA,,EndoProtech, Inc., Louisville, Kentucky, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA,,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA,,Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA,,Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA,,Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA,,Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| |
Collapse
|
8
|
Spolitu S, Okamoto H, Dai W, Zadroga JA, Wittchen ES, Gromada J, Ozcan L. Hepatic Glucagon Signaling Regulates PCSK9 and Low-Density Lipoprotein Cholesterol. Circ Res 2019; 124:38-51. [PMID: 30582457 DOI: 10.1161/circresaha.118.313648] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Glucagon is a key hormone that regulates the adaptive metabolic responses to fasting. In addition to maintaining glucose homeostasis, glucagon participates in the regulation of cholesterol metabolism; however, the molecular pathways underlying this effect are incompletely understood. OBJECTIVE We sought to determine the role of hepatic Gcgr (glucagon receptor) signaling in plasma cholesterol regulation and identify its underlying molecular mechanisms. METHODS AND RESULTS We show that Gcgr signaling plays an essential role in LDL-C (low-density lipoprotein cholesterol) homeostasis through regulating the PCSK9 (proprotein convertase subtilisin/kexin type 9) levels. Silencing of hepatic Gcgr or inhibition of glucagon action increased hepatic and plasma PCSK9 and resulted in lower LDLR (LDL receptor) protein and increased plasma LDL-C. Conversely, treatment of wild-type (WT) mice with glucagon lowered LDL-C levels, whereas this response was abrogated in Pcsk9-/- and Ldlr-/- mice. Our gain- and loss-of-function studies identified Epac2 (exchange protein activated by cAMP-2) and Rap1 (Ras-related protein-1) as the downstream mediators of glucagon's action on PCSK9 homeostasis. Moreover, mechanistic studies revealed that glucagon affected the half-life of PCSK9 protein without changing the level of its mRNA, indicating that Gcgr signaling regulates PCSK9 degradation. CONCLUSIONS These findings provide novel insights into the molecular interplay between hepatic glucagon signaling and lipid metabolism and describe a new posttranscriptional mechanism of PCSK9 regulation.
Collapse
Affiliation(s)
- Stefano Spolitu
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (H.O., J.G.)
| | - Wen Dai
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - John A Zadroga
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - Erika S Wittchen
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill (E.S.W.)
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (H.O., J.G.)
| | - Lale Ozcan
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| |
Collapse
|
9
|
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49:105-115. [PMID: 29902522 PMCID: PMC6445381 DOI: 10.1016/j.cellsig.2018.06.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
Collapse
Affiliation(s)
- Banrida Wahlang
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA; Robley Rex Louisville VAMC, Louisville, KY, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
10
|
Sequera C, Manzano S, Guerrero C, Porras A. How Rap and its GEFs control liver physiology and cancer development. C3G alterations in human hepatocarcinoma. Hepat Oncol 2018; 5:HEP05. [PMID: 30302196 PMCID: PMC6168044 DOI: 10.2217/hep-2017-0026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/20/2018] [Indexed: 02/08/2023] Open
Abstract
Rap proteins regulate liver physiopathology. For example, Rap2B promotes hepatocarcinoma (HCC) growth, while Rap1 might play a dual role. The RapGEF, Epac1, activates Rap upon cAMP binding, regulating metabolism, survival, and liver regeneration. A liver specific Epac2 isoform lacking cAMP-binding domain also activates Rap1, promoting fibrosis in alcoholic liver disease. C3G (RapGEF1) is also present in the liver, but mainly as shorter isoforms. Its function in the liver remains unknown. Information from different public genetic databases revealed that C3G mRNA levels increase in HCC, although they decrease in metastatic stages. In addition, several mutations in RapGEF1 gene are present, associated with a reduced patient survival. Based on this, C3G might represent a new HCC diagnostic and prognostic marker, and a therapeutic target.
Collapse
Affiliation(s)
- Celia Sequera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Sara Manzano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, USAL-CSIC, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
11
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
12
|
Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Horm Mol Biol Clin Investig 2016; 30:/j/hmbci.ahead-of-print/hmbci-2016-0016/hmbci-2016-0016.xml. [PMID: 27285327 DOI: 10.1515/hmbci-2016-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/08/2016] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor 21 (FGF21) gene expression is altered by a wide array of physiological, metabolic, and environmental factors. Among dietary factors, high dextrose, low protein, methionine restriction, short-chain fatty acids (butyric acid and lipoic acid), and all-trans-retinoic acid were repeatedly shown to induce FGF21 expression and circulating levels. These effects are usually more pronounced in liver or isolated hepatocytes than in adipose tissue or isolated fat cells. Although peroxisome proliferator-activated receptor α (PPARα) is a key mediator of hepatic FGF21 expression and function, including the regulation of gluconeogenesis, ketogenesis, torpor, and growth inhibition, there is increasing evidence of PPARα-independent transactivation of the FGF21 gene by dietary molecules. FGF21 expression is believed to follow the circadian rhythm and be placed under the control of first order clock-controlled transcription factors, retinoic acid receptor-related orphan receptors (RORs) and nuclear receptors subfamily 1 group D (REV-ERBs), with FGF21 rhythm being anti-phase to REV-ERBs. Key metabolic hormones such as glucagon, insulin, and thyroid hormone have presumed or clearly demonstrated roles in regulating FGF21 transcription and secretion. The control of the FGF21 gene by glucagon and insulin appears more complex than first anticipated. Some discrepancies are noted and will need continued studies. The complexity in assessing the significance of FGF21 gene expression resides in the difficulty to ascertain (i) when transcription results in local or systemic increase of FGF21 protein; (ii) if FGF21 is among the first or second order genes upregulated by physiological, metabolic, and environmental stimuli, or merely an epiphenomenon; and (iii) whether FGF21 may have some adverse effects alongside beneficial outcomes.
Collapse
|
13
|
Webster CRL, Anwer MS. Hydrophobic bile acid apoptosis is regulated by sphingosine-1-phosphate receptor 2 in rat hepatocytes and human hepatocellular carcinoma cells. Am J Physiol Gastrointest Liver Physiol 2016; 310:G865-73. [PMID: 26999807 PMCID: PMC4895872 DOI: 10.1152/ajpgi.00253.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/14/2016] [Indexed: 01/31/2023]
Abstract
The hepatotoxic bile acid glycochenodeoxycholate (GCDC) modulates hepatocyte cell death through activation of JNK, Akt, and Erk. The nonhepatotoxic bile acid taurocholate activates Akt and Erk through the sphingosine-1-phosphate receptor 2 (S1PR2). The role of the S1PR2 in GCDC-mediated apoptosis and kinase activation is unknown. Studies were done in rat hepatocytes, HUH7 cells, and HUH7 cells stably transfected with rat Ntcp (HUH7-Ntcp). Cells were treated with GCDC and apoptosis was monitored morphologically by Hoechst staining and biochemically by immunoblotting for the active cleaved fragment of caspase 3. Kinase activation was determined by immunoblotting with phospho-specific antibodies. JTE-013, an inhibitor of S1PR2, significantly attenuated morphological evidence of GCDC-induced apoptosis and prevented caspase 3 cleavage in rat hepatocytes and HUH7-Ntcp cells. In hepatocytes, JTE-013 mildly suppressed, augmented, and had no effect on GCDC-induced JNK, Akt, and Erk phosphorylation, respectively. Similar results were seen in HUH7-Ntcp cells except for mild suppression of JNK and Erk phosphorylation. Knockdown of S1PR2 in HUH7-Ntcp augmented Akt, inhibited JNK, and had no effect on Erk phosphorylation. GCDC failed to induce apoptosis or kinase activation in HUH7 cells. In conclusion, SIPR2 inhibition attenuates GCDC-induced apoptosis and inhibits and augments GCDC-induced JNK and Akt phosphorylation, respectively. In addition, GCDC must enter hepatocytes to mediate cell death or activate kinases. These results suggest that SIPR2 activation is proapoptotic in GCDC-induced cell death but that this effect is not due to direct ligation of the S1PR2 by the bile acid.
Collapse
Affiliation(s)
- Cynthia R L Webster
- Department of Clinical Science, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts; and
| | - M Sawkat Anwer
- Department of Biomedical Science, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts
| |
Collapse
|
14
|
Lewis AE, Aesoy R, Bakke M. Role of EPAC in cAMP-Mediated Actions in Adrenocortical Cells. Front Endocrinol (Lausanne) 2016; 7:63. [PMID: 27379015 PMCID: PMC4904129 DOI: 10.3389/fendo.2016.00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Adrenocorticotropic hormone regulates adrenal steroidogenesis mainly via the intracellular signaling molecule cAMP. The effects of cAMP are principally relayed by activating protein kinase A (PKA) and the more recently discovered exchange proteins directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). While the intracellular roles of PKA have been extensively studied in steroidogenic tissues, those of EPACs are only emerging. EPAC1 and EPAC2 are encoded by the genes RAPGEF3 and RAPGEF4, respectively. Whereas EPAC1 is ubiquitously expressed, the expression of EPAC2 is more restricted, and typically found in endocrine tissues. Alternative promoter usage of RAPGEF4 gives rise to three different isoforms of EPAC2 that vary in their N-termini (EPAC2A, EPAC2B, and EPAC2C) and that exhibit distinct expression patterns. EPAC2A is expressed in the brain and pancreas, EPAC2B in steroidogenic cells of the adrenal gland and testis, and EPAC2C has until now only been found in the liver. In this review, we discuss current knowledge on EPAC expression and function with focus on the known roles of EPAC in adrenal gland physiology.
Collapse
Affiliation(s)
- Aurélia E. Lewis
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- *Correspondence: Aurélia E. Lewis,
| | - Reidun Aesoy
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Webster CRL, Johnston AN, Anwer MS. Protein kinase Cδ protects against bile acid apoptosis by suppressing proapoptotic JNK and BIM pathways in human and rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1207-15. [PMID: 25359536 PMCID: PMC4269680 DOI: 10.1152/ajpgi.00165.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Retained bile acids, which are capable of inducing cell death, activate protein kinase Cδ (PKC-δ) in hepatocytes. In nonhepatic cells, both pro- and antiapoptotic effects of PKC-δ are described. The aim of this study was to determine the role of PKC-δ in glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes and human HUH7-Na-taurocholate-cotransporting polypeptide (Ntcp) cells. Apoptosis was monitored morphologically by Hoechst staining and biochemically by immunoblotting for caspase 3 cleavage. The role of PKC-δ was evaluated with a PKC activator (phorbol myristate acetate, PMA) and PKC inhibitors (chelerythrine, H-7, or calphostin), PKC-δ knockdown, and wild-type (WT) or constitutively active (CA) PKC-δ. PKC-δ activation was monitored by immunoblotting for PKC-δ Thr505 and Tyr311 phosphorylation or by membrane translocation. JNK and Akt phosphorylation and the amount of total bisindolylmaleimide (BIM) were determined by immunoblotting. GCDC induced the translocation of PKC-δ to the mitochondria and/or plasma membrane in rat hepatocytes and HUH7-Ntcp cells and increased PKC-δ phosphorylation on Thr505, but not on Tyr311, in HUH7-Ntcp cells. GCDC-induced apoptosis was attenuated by PMA and augmented by PKC inhibition in rat hepatocytes. In HUH-Ntcp cells, transfection with CA or WT PKC-δ attenuated GCDC-induced apoptosis, whereas knockdown of PKC-δ increased GCDC-induced apoptosis. PKC-δ silencing increased GCDC-induced JNK phosphorylation, decreased GCDC-induced Akt phosphorylation, and increased expression of BIM. GCDC translocated BIM to the mitochondria in rat hepatocytes, and knockdown of BIM in HUH7-Ntcp cells decreased GCDC-induced apoptosis. Collectively, these results suggest that PKC-δ does not mediate GCDC-induced apoptosis in hepatocytes. Instead PKC-δ activation by GCDC stimulates a cytoprotective pathway that involves JNK inhibition, Akt activation, and downregulation of BIM.
Collapse
Affiliation(s)
- Cynthia R. L. Webster
- 1Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts;
| | - Andrea N. Johnston
- 1Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts;
| | - M. Sawkat Anwer
- 2Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts
| |
Collapse
|
16
|
Zhang B, Crankshaw W, Nesemeier R, Patel J, Nweze I, Lakshmanan J, Harbrecht BG. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression. J Surg Res 2014; 193:795-801. [PMID: 25150084 DOI: 10.1016/j.jss.2014.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. MATERIALS AND METHODS Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. RESULTS The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. CONCLUSIONS These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines.
Collapse
Affiliation(s)
- Baochun Zhang
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Will Crankshaw
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Ryan Nesemeier
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Jay Patel
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Ikenna Nweze
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Jaganathan Lakshmanan
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky
| | - Brian G Harbrecht
- The Hiram C. Polk, Jr. MD Department of Surgery, the Price Institute for Surgical Research, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
17
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
18
|
Cyphert HA, Alonge KM, Ippagunta SM, Hillgartner FB. Glucagon stimulates hepatic FGF21 secretion through a PKA- and EPAC-dependent posttranscriptional mechanism. PLoS One 2014; 9:e94996. [PMID: 24733293 PMCID: PMC3986400 DOI: 10.1371/journal.pone.0094996] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/21/2014] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that whole body deletion of the glucagon receptor suppresses the ability of starvation to increase hepatic fibroblast growth factor 21 (FGF21) expression and plasma FGF21 concentration. Here, we investigate the mechanism by which glucagon receptor activation increases hepatic FGF21 production. Incubating primary rat hepatocyte cultures with glucagon, dibutyryl cAMP or forskolin stimulated a 3-4-fold increase in FGF21 secretion. The effect of these agents on FGF21 secretion was not associated with an increase in FGF21 mRNA abundance. Glucagon induction of FGF21 secretion was additive with the stimulatory effect of a PPARα activator (GW7647) on FGF21 secretion. Inhibition of protein kinase A (PKA) and downstream components of the PKA pathway [i.e. AMP-activated protein kinase and p38 MAPK] suppressed glucagon activation of FGF21 secretion. Incubating hepatocytes with an exchange protein directly activated by cAMP (EPAC)-selective cAMP analog [i.e. 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME)], stimulated a 3.9-fold increase FGF21 secretion, whereas inhibition of the EPAC effector, Rap1, suppressed glucagon activation of FGF21 secretion. Treatment of hepatocytes with insulin also increased FGF21 secretion. In contrast to glucagon, insulin activation of FGF21 secretion was associated with an increase in FGF21 mRNA abundance. Glucagon synergistically interacted with insulin to stimulate a further increase in FGF21 secretion and FGF21 mRNA abundance. These results demonstrate that glucagon increases hepatic FGF21 secretion via a posttranscriptional mechanism and provide evidence that both the PKA branch and EPAC branch of the cAMP pathway play a role in mediating this effect. These results also identify a novel synergistic interaction between glucagon and insulin in the regulation of FGF21 secretion and FGF21 mRNA abundance. We propose that this insulin/glucagon synergism plays a role in mediating the elevation in FGF21 production during starvation and conditions related to metabolic syndrome.
Collapse
Affiliation(s)
- Holly A Cyphert
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Kimberly M Alonge
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Siri M Ippagunta
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - F Bradley Hillgartner
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
19
|
Gobejishvili L, Barve S, Breitkopf-Heinlein K, Li Y, Zhang J, Avila DV, Dooley S, McClain CJ. Rolipram attenuates bile duct ligation-induced liver injury in rats: a potential pathogenic role of PDE4. J Pharmacol Exp Ther 2013; 347:80-90. [PMID: 23887098 PMCID: PMC3781411 DOI: 10.1124/jpet.113.204933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022] Open
Abstract
Anti-inflammatory and antifibrotic effects of the broad spectrum phosphodiesterase (PDE) inhibitor pentoxifylline have suggested an important role for cyclic nucleotides in the pathogenesis of hepatic fibrosis; however, studies examining the role of specific PDEs are lacking. Endotoxemia and Toll-like receptor 4 (TLR4)-mediated inflammatory and profibrotic signaling play a major role in the development of hepatic fibrosis. Because cAMP-specific PDE4 critically regulates lipopolysaccharide (LPS)-TLR4-induced inflammatory cytokine expression, its pathogenic role in bile duct ligation-induced hepatic injury and fibrogenesis in Sprague-Dawley rats was examined. Initiation of cholestatic liver injury and fibrosis was accompanied by a significant induction of PDE4A, B, and D expression and activity. Treatment with the PDE4-specific inhibitor rolipram significantly decreased liver PDE4 activity, hepatic inflammatory and profibrotic cytokine expression, injury, and fibrosis. At the cellular level, in relevance to endotoxemia and inflammatory cytokine production, PDE4B was observed to play a major regulatory role in the LPS-inducible tumor necrosis factor (TNF) production by isolated Kupffer cells. Moreover, PDE4 expression was also involved in the in vitro activation and transdifferentiation of isolated hepatic stellate cells (HSCs). Particularly, PDE4A, B, and D upregulation preceded induction of the HSC activation marker α-smooth muscle actin (α-SMA). In vitro treatment of HSCs with rolipram effectively attenuated α-SMA, collagen expression, and accompanying morphologic changes. Overall, these data strongly suggest that upregulation of PDE4 expression during cholestatic liver injury plays a potential pathogenic role in the development of inflammation, injury, and fibrosis.
Collapse
Affiliation(s)
- Leila Gobejishvili
- Department of Internal Medicine (L.G., S.B., J.Z., D.V.A., C.J.M.) and Department of Pharmacology and Toxicology (S.B., D.V.A., C.J.M.), University of Louisville, Louisville, Kentucky; Department of Surgery, University of Louisville Medical Center, Louisville, Kentucky (Y.L.); VA Medical Center, Louisville, Kentucky (C.J.M.); University of Louisville Alcohol Research Center Louisville, Kentucky (L.G., S.B., J.Z., D.V.A., C.J.M.); and Department of Medicine II, Section Molecular Hepatology-Alcohol Associated Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (K.B.-H., S.D.)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Activation of a cyclic amp-guanine exchange factor in hepatocytes decreases nitric oxide synthase expression. Shock 2013; 39:70-6. [PMID: 23143065 DOI: 10.1097/shk.0b013e3182760530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adenosine 3',5'-cyclic adenosine monophosphate (cAMP) activates intracellular signaling by regulating protein kinase A, calcium influx, and cAMP-binging guanine nucleotide exchange factors (Epac [exchange protein directly activated by cAMP] or cAMP-GEF). Cyclic adenosine monophosphate inhibits cytokine-induced expression of inducible nitric oxide synthase (iNOS) in hepatocytes by a protein kinase A-independent mechanism. We hypothesized that Epac mediates this effect. A cyclic AMP analog that specifically activates Epac, 8-(4-methoxyphenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (OPTmecAMP), and overexpression of liver-specific Epac2 both inhibited interleukin 1β/interferon γ-induced iNOS expression and nitrite production. OPTmecAMP inactivated Raf1/MEK/ERK signaling, but ERK had no effect on iNOS expression. OPTmecAMP induced a persistent Akt phosphorylation in hepatocytes that lasted up to 8 h. Overexpression of a dominant-negative Akt blocked the inhibitory effect of OPTmecAMP on iNOS production. A specific PI3K inhibitor, LY294002, attenuated the inhibition of nitrite production and iNOS expression produced by overexpressing a liver-specific Epac2 (LEpac2). OPTmecAMP also induced c-Jun N-terminal kinase (JNK) phosphorylation in hepatocytes. Overexpression of dominant-negative JNK enhanced cytokine-induced iNOS expression and nitrite production and reversed the inhibitory effects of LEpac2 on nitrite production and iNOS expression. We conclude that Epac regulates hepatocyte iNOS expression through an Akt- and JNK-mediated signaling mechanism.
Collapse
|
21
|
Svejda B, Kidd M, Timberlake A, Harry K, Kazberouk A, Schimmack S, Lawrence B, Pfragner R, Modlin IM. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors. Cancer Sci 2013; 104:844-55. [PMID: 23578138 DOI: 10.1111/cas.12174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT₇ receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT₇ receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT₇ expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT₇ receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT₇ receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC₅₀: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT₇ was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT₇ receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT₇ in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors.
Collapse
Affiliation(s)
- Bernhard Svejda
- Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Park JW, Ryter SW, Kyung SY, Lee SP, Jeong SH. The phosphodiesterase 4 inhibitor rolipram protects against cigarette smoke extract-induced apoptosis in human lung fibroblasts. Eur J Pharmacol 2013; 706:76-83. [PMID: 23499692 DOI: 10.1016/j.ejphar.2013.02.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/14/2013] [Accepted: 02/24/2013] [Indexed: 11/30/2022]
Abstract
Cigarette smoke, a major causative agent of chronic obstructive pulmonary disease (COPD), induces lung cell death by incompletely understood mechanisms. The induction of apoptosis in lung structural cells by cigarette smoke may contribute to the pathogenesis of emphysema. Phosphodiesterase-4 (PDE4) inhibitors are anti-inflammatory agents used in COPD therapy that can prevent cigarette smoke-induced emphysema in mice. We investigated the effect of rolipram, a first generation PDE4 inhibitor, on the regulation of cigarette smoke-induced apoptosis. Human lung fibroblast (MRC-5) cells were exposed to cigarette smoke extract (CSE). Cell viability and apoptosis were determined by MTT assay and Annexin-V staining, respectively. Caspase activation was determined by Western immunoblot analysis. Rolipram protected against cell death and increased viability in MRC-5 fibroblasts after CSE exposure. Furthermore, rolipram protected against apoptosis, decreased caspase-3 and -8 cleavage in MRC-5 cells exposed to CSE. Pre-treatment with rolipram enhanced Akt phosphorylation and associated cytoprotection in CSE-treated cells, which could be reversed by the PI3K inhibitor LY294002 partly. In conclusion, rolipram protects against apoptosis of MRC-5 cells through inhibition of caspase-3 and caspase-8. Rolipram may represent an effective therapeutic agent to reduce cigarette smoke-induced apoptosis of lung fibroblasts.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Pulmonary and Critical Care Medicine, Gachon University, Gil Medical Center, 1198 Guwol Dong, Namdong-Gu, Incheon, Republic of Korea.
| | | | | | | | | |
Collapse
|
23
|
Eichhorn T, Schloissnig S, Hahn B, Wendler A, Mertens R, Lehmann WD, Krauth-Siegel RL, Efferth T. Bioinformatic and experimental fishing for artemisinin-interacting proteins from human nasopharyngeal cancer cells. MOLECULAR BIOSYSTEMS 2012; 8:1311-8. [PMID: 22311186 DOI: 10.1039/c2mb05437j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determining interacting cellular partners of drugs by chemical proteomic techniques is complex and tedious. Most approaches rely on activity-based probe profiling and compound-centric chemical proteomics. The anti-malarial artemisinin also exerts profound anti-cancer activity, but the mechanisms of action are incompletely understood. In the present investigation, we present a novel approach to identify artemisinin-interacting target proteins. Our approach overcomes usual problems in traditional fishing procedures, because the drug was attached to a surface without further chemical modification. The proteins identified effect among others, cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. Furthermore, a bioinformatic approach confirmed experimentally identified proteins and suggested a large number of other interacting proteins. Theoretically predicted interaction partners may serve as a starting point to complete the whole set of proteins binding artemisinin.
Collapse
Affiliation(s)
- T Eichhorn
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Harbrecht BG, Nweze I, Smith JW, Zhang B. Insulin inhibits hepatocyte iNOS expression induced by cytokines by an Akt-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2012; 302:G116-22. [PMID: 22038823 PMCID: PMC3345958 DOI: 10.1152/ajpgi.00114.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte inducible nitric oxide synthese (iNOS) expression is a tightly controlled pathway that mediates hepatic inflammation and hepatocyte injury in a variety of disease states. We have shown that cyclic adenosine monophosphate (cAMP) regulates cytokine-induced hepatocyte iNOS expression through mechanisms that involve protein kinase B/Akt. We hypothesized that insulin, which activates Akt signaling in hepatocytes, as well as signaling through p38 and MAPK p42/p44, would regulate iNOS expression during inflammation. In primary rat hepatocytes, insulin inhibited cytokine-stimulated nitrite accumulation and iNOS expression in a dose-dependent manner. Inhibition of MAPK p42/p44 with PD98059 had no effect on iNOS activation, whereas SB203580 to block p38 reversed insulin's inhibitory effect. However, insulin did not increase p38 activation and inhibition of p38 signaling with a dominant negative p38 plasmid had no effect on cytokine- or insulin-mediated effects on iNOS. We found that SB203580 blocked insulin-induced Akt activation. Inhibition of Akt signaling with LY294002 or a dominant negative Akt plasmid increased cytokine-stimulated nitrite production and iNOS protein expression and blocked the inhibitory effects of insulin. NF-κB induces iNOS expression and can be regulated by Akt, but insulin had no effect on cytokine-mediated IκBα levels or NF-κB p65 translocation. Our data demonstrate that insulin inhibits cytokine-stimulated hepatocyte iNOS expression and does so through effects on Akt-mediated signaling.
Collapse
Affiliation(s)
- Brian G. Harbrecht
- Department of Surgery and the Price Institute for Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky
| | - Ikenna Nweze
- Department of Surgery and the Price Institute for Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jason W. Smith
- Department of Surgery and the Price Institute for Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky
| | - Baochun Zhang
- Department of Surgery and the Price Institute for Surgical Research, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
25
|
Johnston A, Ponzetti K, Anwer MS, Webster CRL. cAMP-guanine exchange factor protection from bile acid-induced hepatocyte apoptosis involves glycogen synthase kinase regulation of c-Jun NH2-terminal kinase. Am J Physiol Gastrointest Liver Physiol 2011; 301:G385-400. [PMID: 21546580 PMCID: PMC3280825 DOI: 10.1152/ajpgi.00430.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 05/01/2011] [Indexed: 01/31/2023]
Abstract
Cholestatic liver disorders are accompanied by the hepatic accumulation of cytotoxic bile acids that induce cell death. Increases in cAMP protect hepatocytes from bile acid-induced apoptosis by a cAMP-guanine exchange factor (cAMP-GEF)/phosphoinositide-3-kinase (PI3K)/Akt pathway. The aim of these studies was to identify the downstream substrate in this pathway and to determine at what level in the apoptotic cascade cytoprotection occurs. Since inhibitory phosphorylation of glycogen synthase kinase-3 (GSK) occurs downstream of PI3K/Akt and this phosphorylation has been implicated in cell survival, we conducted studies to determine whether GSK was downstream in cAMP-GEF/PI3K/Akt-mediated cytoprotection. Our results show that treatment of hepatocytes with the cAMP-GEF-specific analog, 4-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cAMP, results in PI3K-dependent phosphorylation of GSK. Direct chemical inhibition of GSK in rat hepatocytes or human HUH7-NTCP cells with several structurally and functionally distinct inhibitors including bromoindirubin-3'-oxime (BIO), maleimides (SB216763, SB415286), thiadiazolidine derivatives, and LiCl attenuates apoptosis induced by glycochenodeoxycholate (GCDC). In addition, genetic silencing of the GSK β isoform with small interfering RNA attenuates GCDC apoptosis in HUH7-NTCP cells. Adenoviral inhibition of the Rap1 blocks both cAMP-GEF-mediated cytoprotection against GCDC-induced apoptosis and Akt/GSK3β phosphorylation. GCDC-induced phosphorylation of the proapoptotic kinase, c-Jun NH(2)-terminal kinase (JNK) is inhibited by GSK inhibition or cAMP-GEF activation. GCDC-induced apoptosis is accompanied by phosphorylation of the endoplasmic reticulum stress markers pIEF2α and IRE-1, and pretreatment with the cAMP-GEF analog or GSK inhibitors prevents this phosphorylation. Collectively, our results support the presence of a cAMP/cAMP-GEF/Rap1/PI3K/Akt/GSKβ survival pathway in hepatocytes that inhibits bile acid-induced JNK phosphorylation.
Collapse
Affiliation(s)
| | | | - M. S. Anwer
- Biomedical Science, Tufts Cummings School of Veterinary Medicine, Grafton, Massachusetts
| | | |
Collapse
|
26
|
Adderley SP, Sridharan M, Bowles EA, Stephenson AH, Sprague RS, Ellsworth ML. Inhibition of ATP release from erythrocytes: a role for EPACs and PKC. Microcirculation 2011; 18:128-35. [PMID: 21166931 DOI: 10.1111/j.1549-8719.2010.00073.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Here we demonstrate that, in human erythrocytes, increases in cAMP that are not localized to a specific receptor-mediated signaling pathway for ATP release can activate effector proteins resulting in inhibition of ATP release. Specifically we sought to establish that exchange proteins activated by cAMP (EPACs) inhibit ATP release via activation of protein kinase C (PKC). METHODS ATP release stimulated by iloprost (ILO), or isoproterenol (ISO), was determined in the absence and presence of selective phosphodiesterase inhibitors and/or the EPAC activator, 8CPT2OMecAMP (8CPT). To determine whether EPACs inhibit ATP release via activation of PKC, erythrocytes were incubated with phorbol 12-myristate 13-acetate (PMA) prior to either forskolin or ILO in the absence and presence of a PKC inhibitor, calphostin C (CALC). RESULTS Selective inhibition of PDEs in one pathway inhibited ATP release in response to activation of the other cAMP-dependent pathway. 8CPT and PMA inhibited both ILO- and ISO-induced ATP release. Inhibition of ATP release with 8CPT was rescued by CALC. CONCLUSION These results support the hypothesis that cAMP not localized to a specific signaling pathway can activate EPACs which inhibit ATP release via activation of PKC and suggest a novel role for EPACs in erythrocytes.
Collapse
Affiliation(s)
- Shaquria P Adderley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Banerjee R, Henson BS, Russo N, Tsodikov A, D'Silva NJ. Rap1 mediates galanin receptor 2-induced proliferation and survival in squamous cell carcinoma. Cell Signal 2011; 23:1110-8. [PMID: 21345369 DOI: 10.1016/j.cellsig.2011.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 02/06/2023]
Abstract
Previously we showed that galanin, a neuropeptide, is secreted by human squamous cell carcinoma of the head and neck (SCCHN) in which it exhibits an autocrine mitogenic effect. We also showed that rap1, a ras-like signaling protein, is a critical mediator of SCCHN progression. Given the emerging importance of the galanin cascade in regulating proliferation and survival, we investigated the effect of GAL on SCCHN progression via induction of galanin receptor 2 (GALR2)-mediated rap1 activation. Studies were performed in multiple SCCHN cell lines by inducing endogenous GALR2, by stably overexpressing GALR2 and by downregulating endogenous GALR2 with siGALR2. Cell proliferation and survival, mediated by the ERK and AKT signaling cascades, respectively, were evaluated by functional and immunoblot analysis. The role of rap1 in GALR2-mediated proliferation and survival was evaluated by modulating expression. Finally, the effect of GALR2 on tumor growth was determined. GALR2 stimulated proliferation and survival via ERK and AKT activation, respectively. Knockdown or inactivation of rap1 inhibited GALR2-induced, AKT and ERK-mediated survival and proliferation. Overexpression of GALR2 promoted tumor growth in vivo. GALR2 promotes proliferation and survival in vitro, and promotes tumor growth in vivo, consistent with an oncogenic role for GALR2 in SCCHN.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, The University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
28
|
Zhang B, Li S, Harbrecht BG. Akt-mediated signaling is induced by cytokines and cyclic adenosine monophosphate and suppresses hepatocyte inducible nitric oxide synthase expression independent of MAPK P44/42. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:73-9. [PMID: 20934465 DOI: 10.1016/j.bbamcr.2010.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 11/26/2022]
Abstract
Cyclic AMP inhibits the expression of nitric oxide synthase (Harbrecht et al., 1995 [1]) in hepatocytes but the mechanism for this effect is incompletely understood. Cyclic AMP can activate several intracellular signaling pathways in hepatocytes including Protein Kinase A (PKA), cAMP regulated guanine nucleotide exchange factors (cAMP-GEFs), and calcium-mediated Protein Kinases. There is considerable overlap and cross-talk between many of these signaling pathways, however, and how these cascades regulate hepatocyte iNOS is not known. We hypothesized that Akt mediates the effect of cAMP on hepatocyte iNOS expression. Hepatocytes cultured with cytokines and dbcAMP increased Akt phosphorylation up to 2h of culture. Akt phosphorylation was inhibited by the PI3K inhibitor LY294002 (10μM), farnyltranferase inhibitor FTI-276, or transfection with a dominant negative Akt. The cyclic AMP-induced suppression of cytokine-stimulated iNOS was partially reversed by LY294002 and FTI-276. LY294002 also increased NFκB nucleus translocation by Western blot analysis in nuclear extracts. Cyclic AMP increased phosphorylation of Raf1 at serine 259 which was blocked by LY294002 and associated with decreased MAPK P44/42 phosphorylation. However, inhibition of MAPK P44/42 signaling with PD98059 failed to suppress cytokine-induced hepatocyte iNOS expression and did not enhance the inhibitory effect of dbcAMP on iNOS production. A constitutively active MAPK P44/42 plasmid had no effect on cytokine-stimulated NO production. These data demonstrate that dbcAMP regulates hepatocyte iNOS expression through an Akt-mediated signaling mechanism that is independent of MAPK P44/42.
Collapse
Affiliation(s)
- Baochun Zhang
- University of Louisville, Department of Surgery, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
29
|
Ponzetti K, King M, Gates A, Anwer MS, Webster CR. Cyclic AMP-guanine exchange factor activation inhibits JNK-dependent lipopolysaccharide-induced apoptosis in rat hepatocytes. Hepat Med 2010; 2010:1-11. [PMID: 21743791 PMCID: PMC3131672 DOI: 10.2147/hmer.s7673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lipopolysaccharide (LPS) is known to damage hepatocytes by cytokines released from activated Kupffer cells, but the ancillary role of LPS as a direct hepatotoxin is less well characterized. The aim of this study was to determine the direct effect of LPS on hepatocyte viability and the underlying signaling mechanism. Rat hepatocyte cultures treated overnight with LPS (500 ng/mL) induced apoptosis as monitored morphologically (Hoechst 33258) and biochemically (cleavage of caspase 3 and 9 and the appearance of cytochrome C in the cytoplasm). LPS-induced apoptosis was additive to that induced by glycochenodeoxycholate or Fas ligand, was associated with activation of c-Jun N-terminal kinase B (JNK) and p38 mitogen-activated protein kinases (MAPK), and inhibition of protein kinase (AKT). Inhibition of JNK by SP600125, but not of p38 MAPK by SB203580 attenuated LPS-induced apoptosis, indicating JNK dependency. CPT-2-Me-cAMP, an activator of cAMP-GEF, decreased apoptosis due to LPS alone or in combination with glycochenodeoxycholate or Fas ligand. CPT-2-Me-cAMP also prevented LPS-induced activation of JNK and inhibition of AKT Taken together, these results suggest that LPS can induce hepatocyte apoptosis directly in vitro in a JNK-dependent manner and activation of cAMP-GEF protects against the LPS-induced apoptosis most likely by reversing the effect of LPS on JNK and AKT
Collapse
Affiliation(s)
- Kathleen Ponzetti
- Department of Clinical Science, Tufts Cummings School of Veterinary Medicine, Grafton MA, USA
| | | | | | | | | |
Collapse
|
30
|
Synergistic effect of cAMP and palmitate in promoting altered mitochondrial function and cell death in HepG2 cells. Exp Cell Res 2009; 316:716-27. [PMID: 20026039 DOI: 10.1016/j.yexcr.2009.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 01/19/2023]
Abstract
Saturated free fatty acids (FFAs), e.g. palmitate, have long been shown to induce toxicity and cell death in various types of cells. In this study, we demonstrate that cAMP synergistically amplifies the effect of palmitate on the induction of cell death in human hepatocellular carcinoma cell line, HepG2 cells. Elevation of cAMP level in palmitate-treated cells led to enhanced mitochondrial fragmentation, mitochondrial reactive oxygen species (ROS) generation and mitochondrial biogenesis. Mitochondrial fragmentation precedes mitochondrial ROS generation and mitochondrial biogenesis, and may contribute to mitochondrial ROS overproduction and subsequent mitochondrial biogenesis. Fragmentation of mitochondria also facilitated the release of cytotoxic mitochondrial proteins, such as Smac, from the mitochondria and subsequent activation of caspases. However, cell death induced by palmitate and cAMP was caspase-independent and mainly necrotic.
Collapse
|
31
|
Sousa LP, Carmo AF, Rezende BM, Lopes F, Silva DM, Alessandri AL, Bonjardim CA, Rossi AG, Teixeira MM, Pinho V. Cyclic AMP enhances resolution of allergic pleurisy by promoting inflammatory cell apoptosis via inhibition of PI3K/Akt and NF-kappaB. Biochem Pharmacol 2009; 78:396-405. [PMID: 19422809 DOI: 10.1016/j.bcp.2009.04.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 12/23/2022]
Abstract
Selective and timely induction of apoptosis is an effective means of resolving inflammation. The effects and putative mechanisms by which cyclic AMP (cAMP) modulates leukocyte apoptosis in vivo are still unclear. The present study aims at identifying intracellular pathways underlying the ability of cAMP elevating agents to resolve eosinophilic inflammation in a model of allergic pleurisy in mice. Ovalbumin (OVA) challenge of immunized mice induced eosinophil recruitment that peaked at 24h and persisted till 48h. Treatment with the PDE4 inhibitor rolipram, cAMP mimetic db-cAMP or adenylate cyclase activator forskolin, at 24h after antigen-challenge resulted in profound resolution of eosinophilic inflammation, without a decrease of mononuclear cell numbers. There was a concomitant increase in number of apoptotic cells in the pleural cavity. The effects of rolipram and db-cAMP were inhibited by the PKA inhibitor H89. Inhibition of PI3K/Akt or NF-kappaB induced resolution of inflammation that was associated with increased apoptosis. OVA-challenge resulted in a time-dependent activation of Akt and NF-kappaB, which was blocked by treatment with rolipram or PI3K/Akt pathway inhibitors. Thus, cAMP elevating agents resolve established eosinophilic inflammation by inducing leukocyte apoptosis. Mechanistically, the actions of cAMP are dependent on PKA and target a PI3K/Akt-dependent NF-kappaB survival pathway.
Collapse
Affiliation(s)
- Lirlândia P Sousa
- Setor de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gates A, Hohenester S, Anwer MS, Webster CRL. cAMP-GEF cytoprotection by Src tyrosine kinase activation of phosphoinositide-3-kinase p110 beta/alpha in rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 2009; 296:G764-74. [PMID: 19196950 PMCID: PMC2670669 DOI: 10.1152/ajpgi.90622.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclic AMP protects against hepatocyte apoptosis by a protein kinase A-independent cAMP-GEF/phosphoinositide-3-kinase (PI3K)/Akt signaling pathway. However, the signaling pathway coupling cAMP-GEF with PI3K is unknown. The aim of this study was to investigate the role of Src tyrosine kinases (Src-TYK) and PI3K-p110 isoforms in this pathway. Studies were done in rat hepatocytes using the hydrophobic bile acid glycochenodeoxycholic acid (GCDC) to induce apoptosis. cAMP-binding guanine nucleotide exchange factors (cAMP-GEFs) were selectively activated by using 4-(4-chloro-phenylthio)-2'-O-methyladenosine-3'-5'-cyclic monophosphate (CPT-2-Me-cAMP), which sequentially phosphorylated Src-TYK (within 1 min) followed by Akt (within 5 min). The Src inhibitors PP2 and SU6656 inhibited basal and CPT-2-Me-cAMP-mediated Src and Akt phosphorylation. These inhibitors had no effect on CPT-2-Me-cAMP-mediated activation of Rap GTPases. CPT-2-Me-cAMP induced transient Src dependent autophosphorylation of the epidermal growth factor receptor (EGFR). Inhibition of the EGFR with AG 1478 partially inhibited the ability of CPT-2-Me to phosphorylate Akt. Whereas PP2 completely abolished the protective effect of CPT-2-Me-cAMP in GCDC induced apoptosis, AG 1478 partially inhibited the cytoprotective effect. CPT-2-Me-cAMP treatment resulted in Src-dependent activation of the p110 beta and alpha subunits of PI3K, but only the latter was sensitive to inhibition with AG 1478. In conclusion, activation of cAMP-GEFs results in phosphorylation of Src-TYK and Akt and activation of the p110 beta/alpha subunits of PI3K. Maximal cAMP-GEF-mediated Akt phosphorylation as well as protection from bile acid-induced apoptosis requires activation of Src-TYK and the EGFR. These studies support the existence of two pathways: cAMP-GEF/Rap/Src/PI3Kbeta/Akt and cAMP-GEF/Rap/Src/EGFR/PI3Kalpha/Akt, both of which are necessary for maximal cytoprotective effect of cAMP-GEFs in hepatocytes.
Collapse
Affiliation(s)
- Anna Gates
- Departments of Clinical Sciences and Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Simon Hohenester
- Departments of Clinical Sciences and Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - M. Sawkat Anwer
- Departments of Clinical Sciences and Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Cynthia R. L. Webster
- Departments of Clinical Sciences and Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| |
Collapse
|
33
|
Sinclair EM, Yusta B, Streutker C, Baggio LL, Koehler J, Charron MJ, Drucker DJ. Glucagon receptor signaling is essential for control of murine hepatocyte survival. Gastroenterology 2008; 135:2096-106. [PMID: 18809404 DOI: 10.1053/j.gastro.2008.07.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 06/27/2008] [Accepted: 07/24/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Glucagon action in the liver is essential for control of glucose homeostasis and the counterregulatory response to hypoglycemia. Because receptors for the related peptides glucagon-like peptide-1 and glucagon-like peptide-2 regulate beta-cell and enterocyte apoptosis, respectively, we examined whether glucagon receptor (Gcgr) signaling modulates hepatocyte survival. METHODS The importance of the Gcgr for hepatocyte cell survival was examined using Gcgr+/+ and Gcgr-/- mice in vivo, and murine hepatocyte cultures in vitro. RESULTS Gcgr-/- mice showed enhanced susceptibility to experimental liver injury induced by either Fas Ligord activation or a methionine- and choline-deficient diet. Restoration of hepatic Gcgr expression in Gcgr-/- mice attenuated the development of hepatocellular injury. Furthermore, exogenous glucagon administration reduced Jo2-induced apoptosis in wild-type mice and decreased caspase activation in fibroblasts expressing a heterologous Gcgr and in primary murine hepatocyte cultures. The anti-apoptotic actions of glucagon were independent of protein kinase A, phosphatidylinositol-3K, and mitogen-activated protein kinase, and were mimicked by the exchange protein directly activated by the cyclic AMP agonist 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate-cAMP. CONCLUSIONS These findings extend the essential actions of the Gcgr beyond the metabolic control of glucose homeostasis to encompass the regulation of hepatocyte survival.
Collapse
Affiliation(s)
- Elaine M Sinclair
- Department of Medicine, Mt. Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Implication of protein kinase A for a hepato-protective mechanism of milrinone pretreatment. J Surg Res 2008; 155:32-9. [PMID: 19111324 DOI: 10.1016/j.jss.2008.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 05/22/2008] [Accepted: 07/02/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND We have previously reported that an increase of adenosine 3',5'-cyclic monophosphate (cAMP) in liver tissue after an administration of milrinone, a phosphodiesterase-3 inhibitor attenuates hepatic warm ischemia-reperfusion injury. The aim of this study was to determine whether cAMP-dependent protein kinase (protein kinase A) activation was involved in the milrinone-induced hepatoprotective effect on an ischemia-reperfusion injury in an in vivo model. MATERIALS AND METHODS Male Lewis rats were allocated into 3 groups. In Group M, milrinone was administrated before ischemia; in Group I, a protein kinase A inhibitor, adenosine 3',5'-cyclic monophosphorothioate, 8-bromo-, Rp-isomer, sodium salt (Rp-8-Br-cAMPS), was injected prior to the administration of milrinone; and in Group C, the control group, there was no pretreatment. After pretreatment, all rats were exposed to a 45-min total hepatic inflow occlusion. RESULTS After milrinone administration, liver cAMP concentrations and protein kinase A activity ratios were elevated. They protected the liver from ischemia-reperfusion injury. Rp-8-Br-cAMPS suppressed protein kinase A activation without affecting cAMP elevating responses to milrinone. Compared with Group C, hepatocellular necrosis, neutrophil infiltration, and congestion were ameliorated, and serum tumor necrosis factor-alpha, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase levels were significantly suppressed in Group M. Rp-8-Br-cAMPS canceled this effect, showing histological damages in Group I as severe as in Group C. The levels of tumor necrosis factor-alpha, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase were the same in Groups C and I. CONCLUSIONS Activation of protein kinase A might play an important role in the mechanism of milrinone-induced ischemic tolerance in the liver.
Collapse
|
35
|
Misra UK, Kaczowka S, Pizzo SV. The cAMP-activated GTP exchange factor, Epac1 upregulates plasma membrane and nuclear Akt kinase activities in 8-CPT-2-O-Me-cAMP-stimulated macrophages: Gene silencing of the cAMP-activated GTP exchange Epac1 prevents 8-CPT-2-O-Me-cAMP activation of Akt activity in macrophages. Cell Signal 2008; 20:1459-70. [PMID: 18495429 PMCID: PMC2519236 DOI: 10.1016/j.cellsig.2008.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 03/11/2008] [Accepted: 04/01/2008] [Indexed: 11/16/2022]
Abstract
cAMP regulates a wide range of processes through its downstream effectors including PKA, and the family of guanine nucleotide exchange factors. Depending on the cell type, cAMP inhibits or stimulates growth and proliferation in a PKA-dependent or independent manner. PKA-independent effects are mediated by PI 3-kinases-Akt signaling and EPAC1 (exchange protein directly activated by cAMP) activation. Recently, we reported PKA-independent activation of the protein kinase Akt as well co-immunoprecipitation of Epac1 with Rap1, p-Akt(Thr-308), and p-Akt(Ser-473) in forskolin-stimulated macrophages. To further probe the role of Epac1 in Akt protein kinase activation and cellular proliferation, we employed the cAMP analog 8-CPT-2-O-Me-cAMP, which selectively binds to Epac1 and triggers Epac1 signaling. We show the association of Epac1 with activated Akt kinases by co-immunoprecipitation and GST-pulldown assays. Silencing Epac1 gene expression by RNA interference significantly reduced levels of Epac1 mRNA, Epac protein, Rap1 GTP, p-ERK1/2, p-B-Raf, p110alpha catalytic subunit of PI 3-kinase, p-PDK, and p-p(70s6k). Silencing Epac1 gene expression by RNA interference also suppressed 8-CPT-2-O-Me-cAMP-upregulated protein and DNA synthesis. Concomitantly, 8-CPT-2-O-Me-cAMP-mediated upregulation of Akt(Thr-308) protein kinase activity and p-Akt(Thr-308) levels was prevented in plasma membranes and nuclei of the cells. In contrast, silencing Epac1 gene expression reduced Akt(Ser-473) kinase activity and p-Akt(Ser-473) levels in plasma membranes, but showed negligible effects on nuclear activity. In conclusion, we show that cAMP-induced Akt kinase activation and cellular proliferation is mediated by Epac1 which appears to function as an accessory protein for Akt activation.
Collapse
Affiliation(s)
- Uma K. Misra
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Steven Kaczowka
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Salvatore V. Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
36
|
Usechak P, Gates A, Webster CR. Activation of focal adhesion kinase and JNK contributes to the extracellular matrix and cAMP-GEF mediated survival from bile acid induced apoptosis in rat hepatocytes. J Hepatol 2008; 49:251-61. [PMID: 18550202 PMCID: PMC2585364 DOI: 10.1016/j.jhep.2008.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Adherence to an extracellular matrix (ECM) rescues hepatocytes from apoptosis, but how hepatocytes adhered to different ECM and respond to apoptotic and cytoprotective stimuli is unknown. METHODS Rat hepatocytes were plated on type 1 collagen (CI), laminin (LM) or polylysine (PL) and the amount of apoptosis induced by glycochenodeoxycholate (GCDC), deoxycholate (DCA), Fas ligand or serum withdrawal was determined by Hoechst staining. The response to cytoprotection by cAMP-guanine exchange factor (cAMP-GEF) activation was determined. Kinase activation was determined by immunoblotting with phosphospecific antibodies. RESULTS Hepatocytes on LM and PL had more apoptosis in response to all apoptotic stimuli. GCDC increased c-jun-N-terminal kinase (JNK) phosphorylation 2-fold in hepatocytes on CI, but 15- and 30-fold in hepatocytes on PL or LM. SP-600125, a JNK inhibitor, prevented LM and PL potentiation of bile acid apoptosis. GCDC induced dephosphorylation of focal adhesion kinase (FAK) was prevented by cAMP-GEF activation. Cytochalasin B which decreased FAK phosphorylation prevented cAMP-GEF cytoprotection. CONCLUSIONS JNK activation augments apoptosis in hepatocytes plated on PL and LM. Decreased FAK phosphorylation as seen in cells treated with bile acids or attached to PL and LM promotes hepatocyte apoptosis.
Collapse
Affiliation(s)
- Paul Usechak
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01539, USA
| | | | | |
Collapse
|
37
|
Deree J, Martins JO, Melbostad H, Loomis WH, Coimbra R. Insights into the regulation of TNF-alpha production in human mononuclear cells: the effects of non-specific phosphodiesterase inhibition. Clinics (Sao Paulo) 2008; 63:321-8. [PMID: 18568240 PMCID: PMC2664230 DOI: 10.1590/s1807-59322008000300006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/18/2008] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine the effect of nonspecific phosphodiesterase inhibition on transcription factor activation and tumor necrosis factor-alpha (TNF-alpha) production in lipopolysaccharide (LPS)-stimulated human mononuclear cells. INTRODUCTION The production of TNF-alpha following LPS stimulation is one of the key steps in bacterial sepsis and inflammation. The mechanism by which phosphodiesterase inhibition alters TNF-alpha production in the presence of LPS remains unclear. METHODS Human mononuclear cells were stimulated with LPS (1 microg/mL), in the presence and absence of Pentoxifylline (PTX; 20 mM), a nonspecific phosphodiesterase inhibitor. Western blotting of phosphorylated cytoplasmic I-kBalpha, nuclear factor-kB p65 (NF-kB), and nuclear cAMP-response element binding protein (CREB) was performed. DNA binding of NF-kB and CREB was verified by electrophoretic mobility shift assay. TNF-a levels were determined in the supernatant of stimulated cells in the presence and absence Protein kinase A inhibition by an enzyme-linked immunosorbent assay (ELISA). RESULTS PTX was demonstrated to significantly reduce cytoplasmic I-kBalpha phosphorylation, nuclear p65 phosphorylation, and the DNA binding activity of NF-kB. In contrast, PTX markedly enhanced the phosphorylation and DNA binding activity of CREB. Cells concomitantly treated with PTX and LPS secreted similar levels of TNF-a in the presence and absence Protein kinase A inhibition. DISCUSSION The increased level of cAMP that results from phosphodiesterase inhibition affects cytoplasmic and nuclear events, resulting in the attenuation of NF-kB and the activation of CREB transcriptional DNA binding through pathways that are partially Protein kinase A-independent. CONCLUSION PTX-mediated phosphodiesterase inhibition occurs partially through a Protein kinase A-independent pathway and may serve as a useful tool in the attenuation of LPS-induced inflammation.
Collapse
Affiliation(s)
- Jessica Deree
- Department of Trauma and Critical Care, University of California San Diego Medical Center, San Diego, CA, USA.
| | | | | | | | | |
Collapse
|
38
|
Kwak HJ, Park KM, Choi HE, Chung KS, Lim HJ, Park HY. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell Signal 2007; 20:803-14. [PMID: 18276108 DOI: 10.1016/j.cellsig.2007.12.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 12/05/2007] [Accepted: 12/18/2007] [Indexed: 01/23/2023]
Abstract
Myocyte apoptosis plays an important role in myocardial infarction and cAMP is crucial in the regulation of myocyte apoptosis. Phosphodiesterase-4 (PDE4) inhibitor blocks the hydrolysis of cAMP via inhibition of PDE4 and is attractive candidate for novel anti-inflammatory drugs. However, its function in cardiovascular diseases and cardiomyocyte apoptosis is unclear. Therefore, we investigated whether roflumilast, a PDE4 inhibitor, exerts protective effect against NO-induced apoptosis in both of H9c2 cells and neonatal rat cardiomyocytes (NRCMs), focusing on cAMP downstream molecules such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). According to our data, intracellular cAMP was increased by roflumilast treatment in H9c2 cells and NRCMs. Roflumilast inhibited SNP-induced apoptosis and this effect was reversed by PKA specific inhibitor H-89 and KT-5720. In addition, PKA specific activator N(6)-benzoyladenosine 3',5-cyclic monophosphate (N(6)Bz-cAMP) mimicked the effects of roflumilast. CREB phosphorylation by roflumilast was also inhibited by H-89, indicating that roflumilast protects SNP-induced apoptosis via PKA-dependent pathway. Roflumilast increased Epac1/GTP-Rap1 and the protective effect was abolished by Epac1 siRNA transfection, demonstrating that Epac signaling was also involved in this protective response. In support, Epac specific activator 8-(4-chlrorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT-2Me-cAMP) protected SNP-induced apoptosis. PI3K/Akt inhibitor LY294002 blocked roflumilast-induced Akt phosphorylation and protective effect. Furthermore, inhibition of Epac1 with siRNA had no effect on roflumilast-induced CREB phosphorylation, whereas inhibited Akt phosphorylation, implicating that Akt phosphorylation was regulated by Epac pathway. In addition, it was also observed that rolipram and cilomilast exert similar effects as roflumilast. In summary, our data indicate that roflumilast protects NO-induced apoptosis via both cAMP-PKA/CREB and Epac/Akt-dependent pathway. Our study suggests a possibility of PDE4 inhibitor roflumilast as a potential therapeutic agent against myocardial ischemia/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Hyun-Jeong Kwak
- Division of Cardiovascular Diseases, Department of Biomedical Sciences, National Institutes of Health, 194 Tongillo, Eunpyung-gu, Seoul 122-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Looyenga BD, Hammer GD. Genetic removal of Smad3 from inhibin-null mice attenuates tumor progression by uncoupling extracellular mitogenic signals from the cell cycle machinery. Mol Endocrinol 2007; 21:2440-57. [PMID: 17652186 DOI: 10.1210/me.2006-0402] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inhibin and activin are members of the TGFbeta family that perform mutually antagonistic signaling roles in the anterior pituitary, gonads, and adrenal gland. Unopposed activin signaling in inhibin-null (Inha-/-) mice causes the formation of granulosa cell tumors in the gonads and adrenal cortex, which depend upon FSH for efficient growth and progression. In this study, we demonstrate that Smad3, a key effector of activin signaling, is expressed at high levels and is constitutively activated in tumors from these mice. Removal of Smad3 from Inha-/- mice by a genetic cross to Smad3-null (Madh3-/-) mice leads to a significant decrease in cyclinD2 expression and a significant attenuation of tumor progression in the gonads and adrenal. The decrease in cyclinD2 levels in compound knockout mice is related to a reduction in mitogenic signaling through the phosphoinositide-3-kinase (PI3-kinase)/Akt pathway, which is required for normal cell cycle progression in tumor cells. Loss of PI3-kinase/Akt signaling cannot be attributed to alterations in IGF expression, suggesting instead that signaling through the FSH receptor is attenuated. Gene expression profiling in the ovaries of Madh3-/- and Inha-/-:Madh3-/- compound knockout mice supports this hypothesis and further suggests that Smad3 is specifically required for FSH to activate PI3-kinase/Akt, but not protein kinase A. Together these observations imply that activin/Smad3 signaling is necessary for efficient signaling by FSH in Inha-/- tumor cells and that interruption of this pathway uncouples FSH from its intracellular mitogenic effectors.
Collapse
Affiliation(s)
- Brendan D Looyenga
- Cellular and Molecular Biology Graduate Program, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | |
Collapse
|
40
|
Lerner A, Epstein P. Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 2006; 393:21-41. [PMID: 16336197 PMCID: PMC1383661 DOI: 10.1042/bj20051368] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP signalling pathway has emerged as a key regulator of haematopoietic cell proliferation, differentiation and apoptosis. In parallel, general understanding of the biology of cyclic nucleotide PDEs (phosphodiesterases) has advanced considerably, revealing the remarkable complexity of this enzyme system that regulates the amplitude, kinetics and location of intracellular cAMP-mediated signalling. The development of therapeutic inhibitors of specific PDE gene families has resulted in a growing appreciation of the potential therapeutic application of PDE inhibitors to the treatment of immune-mediated illnesses and haematopoietic malignancies. This review summarizes the expression and function of PDEs in normal haematopoietic cells and the evidence that family-specific inhibitors will be therapeutically useful in myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Adam Lerner
- *Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA 02118, U.S.A
- †Department of Pathology, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Paul M. Epstein
- ‡Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Helms MN, Chen XJ, Ramosevac S, Eaton DC, Jain L. Dopamine regulation of amiloride-sensitive sodium channels in lung cells. Am J Physiol Lung Cell Mol Physiol 2005; 290:L710-L722. [PMID: 16284210 DOI: 10.1152/ajplung.00486.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dopamine increases lung fluid clearance. This is partly due to activation of basolateral Na-K-ATPase. However, activation of Na-K-ATPase by itself is unlikely to produce large changes in transepithelial transport. Therefore, we examined apical and basolateral dopamine's effect on apical, highly selective sodium channels [epithelial sodium channels (ENaC)] in monolayers of an alveolar type 2 cell line (L2). Dopamine increased channel open probability (P(o)) without changing the unitary current. The D(1) receptor blocker SCH-23390 blocked the dopamine effect, but the D(2) receptor blocker sulpiride did not. The dopamine-mediated increase in ENaC activity was not a secondary effect of dopamine stimulation of Na-K-ATPase, since ouabain applied to the basolateral surface to block the activity of Na-K-ATPase did not alter dopamine-mediated ENaC activity. Protein kinase A (PKA) was not responsible for dopamine's effect since a PKA inhibitor, H89, did not reduce dopamine's effect. However, cpt-2-O-Me-cAMP, which selectively binds and activates EPAC (exchange protein activated by cAMP) but not PKA, increased ENaC P(o). An Src inhibitor, PP2, and the phosphatidylinositol-3-kinase inhibitor, LY-294002, blocked dopamine's effect on ENaC. In addition, an MEK blocker, U0126, an inhibitor of phospholipase A(2), and a protein phosphatase inhibitor also blocked the effect of dopamine on ENaC P(o). Finally, since the cAMP-EPAC-Rap1 pathway also activates DARPP32 (32-kDa dopamine response protein phosphatase), we confirmed that dopamine phosphorylates DARPP32, and okadaic acid, which blocks phosphatases (DARPP32), also blocks dopamine's effect. In summary, dopamine increases ENaC activity by a cAMP-mediated alternative signaling pathway involving EPAC and Rap1, signaling molecules usually associated with growth-factor-activated receptors.
Collapse
Affiliation(s)
- My N Helms
- Dept. of Physiology, Emory Univ. School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|