1
|
Non-Canonical Programmed Cell Death in Colon Cancer. Cancers (Basel) 2022; 14:cancers14143309. [PMID: 35884370 PMCID: PMC9320762 DOI: 10.3390/cancers14143309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Non-canonical PCD is an important player in colon cancer cell suicide. It influences colon cancer in many ways, such as through tumorigenesis, treatment, and prognosis. In this review, we present the mechanism, application, and prospect of different types of non-canonical PCD in colon cancer. Abstract Programmed cell death (PCD) is an evolutionarily conserved process of cell suicide that is regulated by various genes and the interaction of multiple signal pathways. Non-canonical programmed cell death (PCD) represents different signaling excluding apoptosis. Colon cancer is the third most incident and the fourth most mortal worldwide. Multiple factors such as alcohol, obesity, and genetic and epigenetic alternations contribute to the carcinogenesis of colon cancer. In recent years, emerging evidence has suggested that diverse types of non-canonical programmed cell death are involved in the initiation and development of colon cancer, including mitotic catastrophe, ferroptosis, pyroptosis, necroptosis, parthanatos, oxeiptosis, NETosis, PANoptosis, and entosis. In this review, we summarized the association of different types of non-canonical PCD with tumorigenesis, progression, prevention, treatments, and prognosis of colon cancer. In addition, the prospect of drug-resistant colon cancer therapy related to non-canonical PCD, and the interaction between different types of non-canonical PCD, was systemically reviewed.
Collapse
|
2
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
3
|
Wang J, Wang C, Li L, Yang L, Wang S, Ning X, Gao S, Ren L, Chaulagain A, Tang J, Wang T. Alternative splicing: An important regulatory mechanism in colorectal carcinoma. Mol Carcinog 2021; 60:279-293. [PMID: 33629774 DOI: 10.1002/mc.23291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Alternative splicing (AS) is a process that produces various mRNA splicing isoforms via different splicing patterns of mRNA precursors (pre-mRNAs). AS is the primary mechanism for increasing the types and quantities of proteins to improve biodiversity and influence multiple biological processes, including chromatin modification, signal transduction, and protein expression. It has been reported that AS is involved in the tumorigenesis and development of colorectal carcinoma (CRC). In this review, we delineate the concept, types, regulatory processes, and technical advances of AS and focus on the role of AS in CRC initiation, progression, treatment, and prognosis. This summary of the current knowledge about AS will contribute to our understanding of CRC initiation and development. This study will help in the discovery of novel biomarkers and therapeutic targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Jianyi Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xuelian Ning
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Wang Y, Chen Y, Xiao S, Fu K. Integrated Analysis of the Functions and Prognostic Values of RNA-Binding Proteins in Colorectal Cancer. Front Cell Dev Biol 2020; 8:595605. [PMID: 33224957 PMCID: PMC7674310 DOI: 10.3389/fcell.2020.595605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Selecting effective treatment for CRC patients, especially in the early stages, remains a challenge because of the lack of adequate biomarkers. Recent evidence suggests that RNA-binding proteins (RBPs) play a vital role in development and progression of carcinogenesis. However, their mechanisms in cancer progression are still limited. The role of RBPs in CRC has been poorly understood. There were 1,542 reported RBPs analyzed between CRC tissues and normal tissues using the Wilcoxon test to identify differentially expressed RBPs (DE RBPs). Then, the potential functions and the prognostic value of these DE RBPs were explored through systematic bioinformatics analysis. There were 177 DE RBPs identified between CRC tissues and normal tissues. A protein-protein interaction network was constructed based on DE RBPs, and critical modules were screened. A regulatory network between prognostic DE RBPs and differentially expressed transcription factors was constructed. Besides, a risk signature was built based on prognostic DE RBPs, which is able to predict overall survival of CRC patients with high accuracy. In conclusion, the results provided a comprehensive understanding of the functions of RBPs in CRC, as well as an RBP-related prognostic signature.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiao Chen
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Xiao
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
5
|
The Role of VEGFA, COX2, HUR and CUGBP2 in Predicting the Response to Neoadjuvant Therapy in Rectal Cancer Patients. ACTA ACUST UNITED AC 2020; 56:medicina56040192. [PMID: 32331433 PMCID: PMC7230171 DOI: 10.3390/medicina56040192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Background and objectives: The effectiveness of neoadjuvant therapy, which is commonly used for stage II-III rectal cancer (RC) treatment, is limited. Genes associated with the pathogenesis of RC could determine response to this treatment. Therefore, the aim of this study was to investigate the potential predictive value of VEGFA, COX2, HUR and CUGBP2 genes and the associations between post-treatment changes in gene expression and the efficacy of neoadjuvant therapy. Materials and Methods: Biopsies from RC and healthy rectal tissue of 28 RC patients were collected before neoadjuvant therapy and 6-8 weeks after neoadjuvant therapy. The expression levels of VEGFA, COX2, HUR, CUGBP2 genes were evaluated using a quantitative real-time polymerase chain reaction. Results: The results reveal a significantly higher expression of VEGFA, COX2 and HUR mRNA in RC tissue compared to healthy rectal tissue (p < 0.05), and elevated VEGFA gene expression in pre-treatment tissues was associated with a better response to neoadjuvant therapy based on T-stage downstaging (p < 0.05). The expression of VEGFA, HUR and CUGBP2 genes significantly decreased after neoadjuvant therapy (p < 0.05). Responders to treatment demonstrated a significantly stronger decrease of VEGFA and COX2 expression after neoadjuvant therapy than non-responders (p < 0.05). Conclusions: The findings of this study suggest that the pre-treatment VEGFA gene expression might have predictive value for the response to neoadjuvant therapy, while the post-treatment decrease in VEGFA and COX2 gene expression could indicate the effectiveness of neoadjuvant therapy in RC patients.
Collapse
|
6
|
RNA-binding protein CELF6 is cell cycle regulated and controls cancer cell proliferation by stabilizing p21. Cell Death Dis 2019; 10:688. [PMID: 31534127 PMCID: PMC6751195 DOI: 10.1038/s41419-019-1927-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific alternative splicing and contributes to the pathogenesis of myotonic dystrophy (DM), however the role of CELF6 in cancer cell proliferation is less appreciated. Here, we show that the expression of CELF6 is cell cycle regulated. The cell cycle-dependent expression of CELF6 is mediated through the ubiquitin-proteasome pathway, SCF-β-TrCP recognizes a nonphospho motif in CELF6 and regulates its proteasomal degradation. Overexpression or depletion of CELF6 modulates p21 gene expression. CELF6 binds to the 3'UTR of p21 transcript and increases its mRNA stability. Depletion of CELF6 promotes cell cycle progression, cell proliferation and colony formation whereas overexpression of CELF6 induces G1 phase arrest. The effect of CELF6 on cell proliferation is p53 and/or p21 dependent. Collectively, these data demonstrate that CELF6 might be a potential tumor suppressor, CELF6 regulates cell proliferation and cell cycle progression via modulating p21 stability.
Collapse
|
7
|
Elmaci İ, Bilir A, Ozpinar A, Altinoz MA. Gemcitabine, vinorelbine and cyclooxygenase inhibitors in the treatment of glioblastoma. Ultrastructural analyses in C6 glioma in vitro. Tissue Cell 2019; 59:18-32. [PMID: 31383285 DOI: 10.1016/j.tice.2019.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To define ultrastructural features accompanying to antitumor effects of gemcitabine, vinorelbine and cyclooxygenase inhibitors in C6 glioma cells in vitro. Vinorelbine is a semisynthetic vinca alkaloid and recent studies showed its antitumor activity in pediatric optic and pontine gliomas. Vinorelbine infusion induces a severe tumor site-pain in systemic cancers, but it is unknown whether algesia and inflammation contribute to its antitumor effects. Gemcitabine is a nucleoside-chemotherapeutic which was recently shown to act as a radiosensitizer in high-grade glioma. Some studies showed synergism of anti-inflammatory cyclooxygenase-inhibitors with microtubule inhibitors and gemcitabine. DMSO is a solvent and blocks both cylooxygenase and ribonucleotide reductase, another target of gemcitabine. Rofecoxib is withdrawn from the market, yet we used it for investigational purposes, since it blocks cylooxygenase-2 1000-times more potently than cylooxygenase -1 and is also a selective inhibitor of crinophagy. METHODS Plating efficacy, 3D-spheroid S-phase analysis with BrdU labelling and transmission electron microscopical analyses were performed. RESULTS Vinorelbine induced frequent mitotic slippage/apoptosis and autophagy. Despite both DMSO and rofecoxib induced autophagy alone and in synergy, they reduced mitotic catastrophe and autophagy triggered by vinorelbine, which was also reflected by reduced inhibition of spheroid S-phase. Gemcitabine induced karyolysis and margination of coarse chromatin towards the nuclear membrane, abundant autophagy, gutta adipis formation and decrease in mitochondria, which were enhanced by DMSO and rofecoxib. CONCLUSIONS Detailed ultrastructural analysis of the effects of chemotherapeutic drugs may provide a broader insight about their actions and pave to develop better strategies in treatment of glioblastoma.
Collapse
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital, Istanbul, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Aydin University, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey; Department of Psychiatry, Maastricht University, Holland.
| |
Collapse
|
8
|
García-Cárdenas JM, Guerrero S, López-Cortés A, Armendáriz-Castillo I, Guevara-Ramírez P, Pérez-Villa A, Yumiceba V, Zambrano AK, Leone PE, Paz-y-Miño C. Post-transcriptional Regulation of Colorectal Cancer: A Focus on RNA-Binding Proteins. Front Mol Biosci 2019; 6:65. [PMID: 31440515 PMCID: PMC6693420 DOI: 10.3389/fmolb.2019.00065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health problem with an estimated 1. 8 million new cases worldwide. To date, most CRC studies have focused on DNA-related aberrations, leaving post-transcriptional processes under-studied. However, post-transcriptional alterations have been shown to play a significant part in the maintenance of cancer features. RNA binding proteins (RBPs) are uprising as critical regulators of every cancer hallmark, yet little is known regarding the underlying mechanisms and key downstream oncogenic targets. Currently, more than a thousand RBPs have been discovered in humans and only a few have been implicated in the carcinogenic process and even much less in CRC. Identification of cancer-related RBPs is of great interest to better understand CRC biology and potentially unveil new targets for cancer therapy and prognostic biomarkers. In this work, we reviewed all RBPs which have a role in CRC, including their control by microRNAs, xenograft studies and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - César Paz-y-Miño
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| |
Collapse
|
9
|
MicroRNA-20a Regulates Glioma Cell Proliferation, Invasion, and Apoptosis by Targeting CUGBP Elav-Like Family Member 2. World Neurosurg 2018; 121:e519-e527. [PMID: 30268547 DOI: 10.1016/j.wneu.2018.09.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are a class of small noncoding RNAs that play important roles in tumor development and progression. miR-20a acts as an oncogene in many cancers; however, the underlying role of miR-20a in human glioma remains unknown. METHODS Glioma tissue samples were obtained from 32 patients with primary glioma who had undergone surgery at the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, China). Twenty-two normal brain tissue samples used as controls were obtained by internal decompression in patients who had undergone surgery for cerebral injury and cerebral hemorrhage at the same hospital. RESULTS Quantitative reverse transcription polymerase chain reaction showed upregulation of miR-20a in glioma tissues and cell lines compared with normal brain tissue and normal human astrocytes. Functional assays showed that miR-20a promotes proliferation and invasion and inhibits apoptosis in glioma cells. The bioinformatic analysis showed that CELF2 (CUGBP Elav-like family member 2) is a direct target gene of miR-20a, which was confirmed using a luciferase reporter assay. Downregulation of CELF2 reversed the effects of inhibiting miR-20a expression. CONCLUSIONS Collectively, these results suggest a critical role for miR-20a in glioma cell apoptosis, proliferation, and invasion via the direct targeting of CELF2 and indicate its potential application in cancer therapy.
Collapse
|
10
|
Mary Lazer L, Sadhasivam B, Palaniyandi K, Muthuswamy T, Ramachandran I, Balakrishnan A, Pathak S, Narayan S, Ramalingam S. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int J Biol Macromol 2017; 107:1988-1998. [PMID: 29032208 DOI: 10.1016/j.ijbiomac.2017.10.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 01/06/2023]
Abstract
Cancer is one of the major causes of increased morbidity and mortality in modern society. Colorectal cancer is the third leading cause for cancer related death worldwide. Current chemotherapeutics are not very effective and have severe side effects. Hesperetin is a bioflavonoid from citrus fruits and its clinical use is restricted because of the poor water solubility. Folate receptor is overexpressed in various cancer cells. Therefore, we synthesized the chitosan folate hesperetin nanoparticle (CFH) by covalently conjugating folic acid with chitosan molecules. The size of the CFH nanoparticles is around 450nm, which is advantageous for passively targeting the cancer cell specifically due to the leaky vasculature of the tumour. Particle surface and size were observed using SEM and TEM studies. The results show that hesperetin has an IC50 value of 190μM and it induces apoptosis in HCT15 cells, however, CFH is very potent in inhibiting the proliferation with the IC50 value of 28μM. In addition, CFH inhibited colony formation and induced apoptosis by regulating the expression of proapoptotic genes expression. Therefore, the chitosan - folic acid conjugation appears to be the suitable carrier for colorectal cancer cell-specific delivery of hesperetin.
Collapse
Affiliation(s)
- Lizha Mary Lazer
- Department of Biotechnology, School of Bio-Engineering, SRM University, Kattankulathur, Kanchipuram - 603203, Tamil Nadu, India; Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai - 603103, Tamil Nadu, India
| | - Balaji Sadhasivam
- Department of Endocrinology, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai - 600113, Tamil Nadu, India
| | - Kanagaraj Palaniyandi
- Department of Biotechnology, School of Bio-Engineering, SRM University, Kattankulathur, Kanchipuram - 603203, Tamil Nadu, India
| | - Thangavel Muthuswamy
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai - 603103, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai - 600113, Tamil Nadu, India
| | - Anandan Balakrishnan
- Department of Genetics, Dr. ALMPGIBMS, University of Madras, Taramani Campus, Chennai - 600113, Tamil Nadu, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai - 603103, Tamil Nadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai - 603103, Tamil Nadu, India
| | - Satish Ramalingam
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai - 603103, Tamil Nadu, India; Department of Genetic Engineering, School of Bio-Engineering, SRM University, Kattankulathur, Kanchipuram - 603203, Tamil Nadu, India.
| |
Collapse
|
11
|
Guo YM, Sun MX, Li J, Liu TT, Huang HZ, Chen JR, Liu WS, Feng QS, Chen LZ, Bei JX, Zeng YX. Association of CELF2 polymorphism and the prognosis of nasopharyngeal carcinoma in southern Chinese population. Oncotarget 2016; 6:27176-86. [PMID: 26314850 PMCID: PMC4694981 DOI: 10.18632/oncotarget.4870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy with high metastatic potential and loco-regional recurrence. The overall survival of NPC has been limited from further improvement partly due to the lack of effective biomarker for accurate prognosis prediction and precise treatments. Here, in light of the implication of CELF gene family in cancer prognosis, we selected 112 tagging single nucleotide polymorphisms (SNPs) located in six members of the family and tested their associations with the clinical outcomes in a discovery cohort of 717 NPC patients. Survival analyses under multivariate cox proportional hazards model and Kaplan–Meier curve revealed five promising SNPs, which were further validated in another independent sample of 1,520 cases. Combined analysis revealed that SNP rs3740194 in CELF2 was significantly associated with the decreased risk of death with a Hazard ratio (HR) of 0.69 (95% confidence interval [CI] = 0.58–0.82, codominant model). Moreover, rs3740194 also showed a significant association with superior metastasis-free survival (HR = 0.69, 95% CI = 0.57–0.83, codominant model). Taken together, our findings suggested that genetic variant of rs3740194 in CELF2 gene might be a valuable predictor for NPC prognosis, and potentially useful in the personalized treatment of NPC.
Collapse
Affiliation(s)
- Yun-Miao Guo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Ming-Xia Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Tong-Tong Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Hang-Zhen Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jie-Rong Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Wen-Sheng Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Qi-Sheng Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Li-Zhen Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jin-Xin Bei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Yi-Xin Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China.,Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
12
|
Palaniappan A, Ramar K, Ramalingam S. Computational Identification of Novel Stage-Specific Biomarkers in Colorectal Cancer Progression. PLoS One 2016; 11:e0156665. [PMID: 27243824 PMCID: PMC4887059 DOI: 10.1371/journal.pone.0156665] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
It is well-known that the conversion of normal colon epithelium to adenoma and then to carcinoma stems from acquired molecular changes in the genome. The genetic basis of colorectal cancer has been elucidated to a certain extent, and much remains to be known about the identity of specific cancer genes that are associated with the advancement of colorectal cancer from one stage to the next. Here in this study we attempted to identify novel cancer genes that could underlie the stage-specific progression and metastasis of colorectal cancer. We conducted a stage-based meta-analysis of the voluminous tumor genome-sequencing data and mined using multiple approaches for novel genes driving the progression to stage-II, stage-III and stage-IV colorectal cancer. The consensus of these driver genes seeded the construction of stage-specific networks, which were then analyzed for the centrality of genes, clustering of subnetworks, and enrichment of gene-ontology processes. Our study identified three novel driver genes as hubs for stage-II progression: DYNC1H1, GRIN2A, GRM1. Four novel driver genes were identified as hubs for stage-III progression: IGF1R, CPS1, SPTA1, DSP. Three novel driver genes were identified as hubs for stage-IV progression: GSK3B, GGT1, EIF2B5. We also identified several non-driver genes that appeared to underscore the progression of colorectal cancer. Our study yielded potential diagnostic biomarkers for colorectal cancer as well as novel stage-specific drug targets for rational intervention. Our methodology is extendable to the analysis of other types of cancer to fill the gaps in our knowledge.
Collapse
Affiliation(s)
- Ashok Palaniappan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
- * E-mail:
| | - Karthick Ramar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Satish Ramalingam
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| |
Collapse
|
13
|
Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin may alter LH release patterns by abolishing sex differences in GABA/glutamate cell number and modifying the transcriptome of the male anteroventral periventricular nucleus. Neuroscience 2016; 329:239-53. [PMID: 27185484 DOI: 10.1016/j.neuroscience.2016.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/08/2016] [Accepted: 04/30/2016] [Indexed: 01/17/2023]
Abstract
Developmental exposure to arylhydrocarbon receptor (AhR) ligands abolishes sex differences in a wide range of neural structures and functions. A well-studied example is the anteroventral periventricular nucleus (AVPV), a structure that controls sex-specific luteinizing hormone (LH) release. In the male, testosterone (T) secreted by the developing testes defeminizes LH release mechanisms; conversely, perinatal AhR activation by 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) blocks defeminization. To better understand developmental mechanisms altered by TCDD exposure, we first verified that neonatal TCDD exposure in male rats prevented the loss of AVPV GABA/glutamate neurons that are critical for female-typical LH surge release. We then used whole genome arrays and quantitative real-time polymerase chain reaction (QPCR) to compare AVPV transcriptomes of males treated neonatally with TCDD or vehicle. Our bioinformatics analyses showed that TCDD enriched gene sets important for neuron development, synaptic transmission, ion homeostasis, and cholesterol biosynthesis. In addition, upstream regulatory analysis suggests that both estrogen receptors (ER) and androgen receptors (AR) regulate genes targeted by TCDD. Of the 23 mRNAs found to be changed by TCDD at least 2-fold (p<0.05), most participate in the functions identified in our bioinformatics analyses. Several, including matrix metallopeptidase 9 and SRY-box 11 (Sox11), are known targets of E2. CUG triplet repeat, RNA binding protein 2 (cugbp2) is particularly interesting because it is sex-specific, oppositely regulated by estradiol (E2) and TCDD. Moreover, it regulates the post-transcriptional processing of molecules previously linked to sexual differentiation of the brain. These findings provide new insights into how TCDD may interfere with defeminization of LH release patterns.
Collapse
|
14
|
Del Pino Sans J, Krishnan S, Aggison LK, Adams HL, Shrikant MM, López-Giráldez F, Petersen SL. Microarray analysis of neonatal rat anteroventral periventricular transcriptomes identifies the proapoptotic Cugbp2 gene as sex-specific and regulated by estradiol. Neuroscience 2015; 303:312-22. [PMID: 26166732 DOI: 10.1016/j.neuroscience.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/11/2015] [Accepted: 07/01/2015] [Indexed: 01/08/2023]
Abstract
Sexually dimorphic neural structures regulate numerous gender-specific functions including luteinizing hormone (LH) release patterns. The female cyclic surge pattern of release is controlled by the anteroventral periventricular nucleus (AVPV), a preoptic area (POA) region that is significantly smaller in males. The prevailing hypothesis used to explain these differences in structure and function is that a "default" feminine AVPV is defeminized by exposure to estradiol (E2), a metabolite of testosterone (T) produced by the perinatal testes. E2 exposure then culminates in apoptosis in the male AVPV, but the upstream pathways are poorly understood. To address this issue, we compared AVPV transcriptomes of postnatal day 2 (PND2) males and females with those of females treated with E2 or vehicle. Only six of 89 sex-specific genes were also regulated by E2 in the PND2 AVPV and E2 regulated over 280 genes not found to be sex-specific. Of targets that changed similarly in males and E2-treated females, the gene encoding CUG triplet repeat, RNA-binding protein 2 (Cugbp2), a proapoptotic protein, showed the highest fold-changes. Quantitative polymerase chain reaction (QPCR) studies confirmed higher mRNA levels in PND2 male and E2-treated female AVPVs wherein E2 induces apoptosis. POA mapping studies detected Cugbp2 mRNA in the AVPV and in the sexually dimorphic nucleus of the POA (SDN-POA); however, sex differences and E2 effects occurred only in the AVPV. Combined with evidence that Cugbp2 regulates splicing and translation of mRNAs linked to sexual differentiation, we propose that this gene mediates E2-dependent effects on AVPV defeminization.
Collapse
Affiliation(s)
- J Del Pino Sans
- Department of Veterinary and Animal Sciences, 661 North Pleasant Street, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - S Krishnan
- Department of Veterinary and Animal Sciences, 661 North Pleasant Street, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - L K Aggison
- Department of Veterinary and Animal Sciences, 661 North Pleasant Street, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - H L Adams
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - M M Shrikant
- Yale Center for Genome Analysis, Yale University, Orange, CT, United States
| | - F López-Giráldez
- Yale Center for Genome Analysis, Yale University, Orange, CT, United States
| | - S L Petersen
- Department of Veterinary and Animal Sciences, 661 North Pleasant Street, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
15
|
Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis 2014; 5:e1246. [PMID: 24853424 PMCID: PMC4047921 DOI: 10.1038/cddis.2014.219] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023]
Abstract
Hyperactivation of the Wingless-type (Wnt)/β-catenin pathway promotes tumor initiation, tumor growth and metastasis in various tissues. Although there is evidence for the involvement of Wnt/β-catenin pathway activation in salivary gland tumors, the precise mechanisms are unknown. Here we report for the first time that downregulation of the Wnt inhibitory factor 1 (WIF1) is a widespread event in salivary gland carcinoma ex-pleomorphic adenoma (CaExPA). We also show that WIF1 downregulation occurs in the CaExPA precursor lesion pleomorphic adenoma (PA) and indicates a higher risk of progression from benign to malignant tumor. Our results demonstrate that diverse mechanisms including WIF1 promoter hypermethylation and loss of heterozygosity contribute to WIF1 downregulation in human salivary gland tumors. In accordance with a crucial role in suppressing salivary gland tumor progression, WIF1 re-expression in salivary gland tumor cells inhibited cell proliferation, induced more differentiated phenotype and promoted cellular senescence, possibly through upregulation of tumor-suppressor genes, such as p53 and p21. Most importantly, WIF1 significantly diminished the number of salivary gland cancer stem cells and the anchorage-independent cell growth. Consistent with this observation, WIF1 caused a reduction in the expression of pluripotency and stemness markers (OCT4 and c-MYC), as well as adult stem cell self-renewal and multi-lineage differentiation markers, such as WNT3A, TCF4, c-KIT and MYB. Furthermore, WIF1 significantly increased the expression of microRNAs pri-let-7a and pri-miR-200c, negative regulators of stemness and cancer progression. In addition, we show that WIF1 functions as a positive regulator of miR-200c, leading to downregulation of BMI1, ZEB1 and ZEB2, with a consequent increase in downstream targets such as E-cadherin. Our study emphasizes the prognostic and therapeutic potential of WIF1 in human salivary gland CaExPA. Moreover, our findings demonstrate a novel mechanism by which WIF1 regulates cancer stemness and senescence, which might have major implications in the field of cancer biology.
Collapse
|
16
|
Blech-Hermoni Y, Stillwagon SJ, Ladd AN. Diversity and conservation of CELF1 and CELF2 RNA and protein expression patterns during embryonic development. Dev Dyn 2013; 242:767-77. [PMID: 23468433 DOI: 10.1002/dvdy.23959] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION CUG-BP, Elav-like family member 1 (CELF1) and CELF2 are RNA-binding proteins that regulate several stages of RNA processing, and are broadly expressed in developing and adult tissues. In this study, we investigated the expression patterns of CELF1 and CELF2 transcripts and proteins in different tissues, stages of development, and organisms. RESULTS We found that CELF1 and CELF2 protein levels are regulated independently of transcript levels during heart development, and these proteins exhibit nuclear and cytoplasmic isoforms in the embryonic heart. We found that the subcellular distribution of CELF1 differs between heart, liver, nervous system, and eye, and identified tissue-specific isoforms of both CELF1 and CELF2 in these tissues. CELF1 and CELF2 are largely co-expressed, but are found in mutually exclusive territories in several organs, including the heart and eye. Finally, we show that the expression patterns observed in embryonic chicken were mostly recapitulated in the developing mouse, suggesting that the roles of these proteins in the tissues and cells of the developing embryo are conserved as well. CONCLUSIONS CELF1 and CELF2 may underlie conserved, developmentally regulated, tissue-specific processes in vertebrate embryos. Different tissues likely have unique profiles of nuclear and cytoplasmic CELF1- and CELF2-mediated functions.
Collapse
Affiliation(s)
- Y Blech-Hermoni
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
17
|
Vlasova-St Louis I, Dickson AM, Bohjanen PR, Wilusz CJ. CELFish ways to modulate mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:695-707. [PMID: 23328451 DOI: 10.1016/j.bbagrm.2013.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/14/2022]
Abstract
The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
18
|
Ramalingam S, Ramamoorthy P, Subramaniam D, Anant S. Reduced Expression of RNA Binding Protein CELF2, a Putative Tumor Suppressor Gene in Colon Cancer. ACTA ACUST UNITED AC 2012; 1:27-33. [PMID: 23795348 DOI: 10.7178/ig.1.1.7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Colon cancer is the third leading cause of cancer death in both men and women in the United States. Every year, 160000 cases of colorectal cancer are diagnosed, and 57000 patients die. CUGBP, Elav-like family member 2 (CELF2) is an RNA binding protein that modulates various posttranscriptional events including RNA splicing, shuttling, editing, stability and translation. Previous studies have demonstrated that CELF2 expression is low in colon cancer cells. Furthermore, ectopic overexpression of CELF2 induces cells to undergo death by mitotic catastrophe. Based on the above observations, we hypothesized that CELF2 expression might be reduced during neoplastic transformation of colon cells. METHODS Forty human colon cancer tissues along with 10 uninvolved normal colon tissues from cancer patients were utilized for immunohistochemical analysis of CELF2 expression. RESULTS We have observed that CELF2 levels are reduced in colon tumor tissues when compared to the normal intestinal tissues. The data set suggests that RNA binding protein CELF2 could be a potential tumor suppressor protein. CELF2 was predominantly nuclear in normal cells, while the cancer tissues had diffused cytoplasmic staining. CONCLUSION CELF2 expression is consistently reduced during neoplastic transformation suggesting that it might play a crucial role in tumor initiation and progression.
Collapse
Affiliation(s)
- Satish Ramalingam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas, USA ; Kansas University Cancer Center, University of Kansas Medical Center, Kansas, USA
| | | | | | | |
Collapse
|
19
|
KX-01, a novel Src kinase inhibitor directed toward the peptide substrate site, synergizes with tamoxifen in estrogen receptor α positive breast cancer. Breast Cancer Res Treat 2011; 132:391-409. [PMID: 21509526 DOI: 10.1007/s10549-011-1513-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
KX-01 is the first clinical Src inhibitor of the novel peptidomimetic class that targets the peptide substrate site of Src providing more specificity toward Src kinase. The present study was designed to evaluate the effects of KX-01 as a single agent and in combination with tamoxifen (TAM) on cell growth and apoptosis of ERα positive breast cancer in vitro and in vivo. Flow cytometry demonstrated that KX-01 induced cell cycle arrest in G2/M phase. Immunofluorescent staining for mitotic phase markers and TUNEL staining indicated that cells had arrested in the mitotic phase and mitotic arrested cells were undergoing apoptosis. KX-01 induced nuclear accumulation of cyclin B1, and activation of CDK1, MPM2, and Cdc25C that is required for progression past the G2/M checkpoint. Apoptosis resulted from activation of caspases 6, 7, 8, and 9. Combinational index analysis revealed that combinations of KX-01 with TAM resulted in synergistic growth inhibition of breast cancer cell lines. KX-01 combined with TAM resulted in decreased ERα phosphorylation at Src-regulated phosphorylation sites serines 118 and 167 that were associated with reduced ERα transcriptional activity. Orally administered KX-01 resulted in a dose dependent growth inhibition of MCF-7 tumor xenografts, and in combination with TAM exhibited synergistic growth inhibition. Immunohistochemical analysis revealed that combinational treatment reduced angiogenesis, and ERα signaling in tumors compared to either drug alone that may underlie the synergistic tumor growth inhibition. Combinations of KX-01 with endocrine therapy present a promising new strategy for clinical management of ERα positive breast cancer.
Collapse
|
20
|
Subramaniam D, Ramalingam S, Linehan DC, Dieckgraefe BK, Postier RG, Houchen CW, Jensen RA, Anant S. RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS One 2011; 6:e16958. [PMID: 21347286 PMCID: PMC3037932 DOI: 10.1371/journal.pone.0016958] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Curcumin inhibits the growth of pancreatic cancer tumor xenografts in nude mice; however, the mechanism of action is not well understood. It is becoming increasingly clear that RNA binding proteins regulate posttranscriptional gene expression and play a critical role in RNA stability and translation. Here, we have determined that curcumin modulates the expression of RNA binding protein CUGBP2 to inhibit pancreatic cancer growth. METHODOLOGY/PRINCIPAL FINDINGS In this study, we show that curcumin treated tumor xenografts have a significant reduction in tumor volume and angiogenesis. Curcumin inhibited the proliferation, while inducing G2-M arrest and apoptosis resulting in mitotic catastrophe of various pancreatic cancer cells. This was further confirmed by increased phosphorylation of checkpoint kinase 2 (Chk2) protein coupled with higher levels of nuclear cyclin B1 and Cdc-2. Curcumin increased the expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) mRNA, but protein levels were lower. Furthermore, curcumin increased the expression of RNA binding proteins CUGBP2/CELF2 and TIA-1. CUGBP2 binding to COX-2 and VEGF mRNA was also enhanced, thereby increasing mRNA stability, the half-life changing from 30 min to 8 h. On the other hand, silencer-mediated knockdown of CUGBP2 partially restored the expression of COX-2 and VEGF even with curcumin treatment. COX-2 and VEGF mRNA levels were reduced to control levels, while proteins levels were higher. CONCLUSION/SIGNIFICANCE Curcumin inhibits pancreatic tumor growth through mitotic catastrophe by increasing the expression of RNA binding protein CUGBP2, thereby inhibiting the translation of COX-2 and VEGF mRNA. These data suggest that translation inhibition is a novel mechanism of action for curcumin during the therapeutic intervention of pancreatic cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (SA); (DS)
| | - Satish Ramalingam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - David C. Linehan
- Department of Surgery, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Brian K. Dieckgraefe
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Russell G. Postier
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Roy A. Jensen
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (SA); (DS)
| |
Collapse
|
21
|
Dujardin G, Buratti E, Charlet-Berguerand N, Martins de Araujo M, Mbopda A, Le Jossic-Corcos C, Pagani F, Ferec C, Corcos L. CELF proteins regulate CFTR pre-mRNA splicing: essential role of the divergent domain of ETR-3. Nucleic Acids Res 2010; 38:7273-85. [PMID: 20631008 PMCID: PMC2978352 DOI: 10.1093/nar/gkq573] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cystic fibrosis is a prominent genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Among the many disease-causing alterations are pre-mRNA splicing defects that can hamper mandatory exon inclusion. CFTR exon 9 splicing depends in part on a polymorphic UG(m)U(n) sequence at the end of intron 8, which can be bound by TDP-43, leading to partial exon 9 skipping. CELF proteins, like CUG-BP1 and ETR-3, can also bind UG repeats and regulate splicing. We show here that ETR-3, but not CUG-BP1, strongly stimulates exon 9 skipping, although both proteins bind efficiently to the same RNA motif as TDP-43 and with higher affinity. We further show that the skipping of this exon may be due to the functional antagonism between U2AF65 and ETR-3 binding onto the polymorphic U or UG stretch, respectively. Importantly, we demonstrate that the divergent domain of ETR-3 is critical for CFTR exon 9 skipping, as shown by deletion and domain-swapping experiments. We propose a model whereby several RNA-binding events account for the complex regulation of CFTR exon 9 inclusion, with strikingly distinct activities of ETR-3 and CUG-BP1, related to the structure of their divergent domain.
Collapse
Affiliation(s)
- Gwendal Dujardin
- Inserm U613-ECLA Team, Faculty of Medicine, 22 Avenue Camille Desmoulins, 29238 Brest Cedex 3, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Anant S, Houchen CW, Pawar V, Ramalingam S. Role of RNA-Binding Proteins in Colorectal Carcinogenesis. CURRENT COLORECTAL CANCER REPORTS 2010; 6:68-73. [PMID: 20401169 DOI: 10.1007/s11888-010-0048-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RNA-binding proteins (RBPs) play key roles in the posttranscriptional regulation of gene expression. RBPs control various posttranscriptional events, including splicing, polyadenylation, mRNA stability, transport, and translation. It is becoming apparent that RBPs play a significant role in pathophysiologic conditions such as inflammation and cancer. More importantly, we and others have begun dissecting the role of mRNA stability and translation in regulating gene expression, dysregulation of which has serious consequences for the fate of the cell. In this article, we discuss this emerging area of posttranscriptional gene regulation and the role of RBPs in the aberrant expression of proteins in tumorigenesis.
Collapse
Affiliation(s)
- Shrikant Anant
- Section of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 920 Stanton L. Young Boulevard WP1345, Oklahoma City, OK 73104, USA; Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
23
|
Cahuzac N, Studény A, Marshall K, Versteege I, Wetenhall K, Pfeiffer B, Léonce S, Hickman JA, Pierré A, Golsteyn RM. An unusual DNA binding compound, S23906, induces mitotic catastrophe in cultured human cells. Cancer Lett 2010; 289:178-87. [DOI: 10.1016/j.canlet.2009.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/04/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
|
24
|
Lee YS, Latham KE, Vandevoort CA. Effects of in vitro maturation on gene expression in rhesus monkey oocytes. Physiol Genomics 2008; 35:145-58. [PMID: 18697858 DOI: 10.1152/physiolgenomics.90281.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In vitro oocyte maturation (IVM) holds great promise as a tool for enhancing clinical treatment of infertility, enhancing availability of nonhuman primates for development of disease models, and facilitating endangered species preservation. However, IVM outcomes have remained significantly below the success rates obtained with in vivo matured (VVM) oocytes from humans and nonhuman primates. A cDNA array-based analysis is presented, comparing the transcriptomes of VVM oocytes with IVM oocytes. We observe a small set of just 59 mRNAs that are differentially expressed between the two cell types. These mRNAs are related to cellular homeostasis, cell-cell interactions including growth factor and hormone stimulation and cell adhesion, and other functions such as mRNA stability and translation. Additionally, we observe in IVM oocytes overexpression of PLAGL1 and MEST, two maternally imprinted genes, indicating a possible interruption or loss of correct epigenetic programming. These results indicate that, under certain IVM conditions, oocytes that are molecularly highly similar to VVM oocytes can be obtained; however, the interruption of normal oocyte-somatic cell interactions during the final hours of oocyte maturation may preclude the establishment of full developmental competence.
Collapse
Affiliation(s)
- Young S Lee
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|