1
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
2
|
Hau RK, Wright SH, Cherrington NJ. Addressing the Clinical Importance of Equilibrative Nucleoside Transporters in Drug Discovery and Development. Clin Pharmacol Ther 2023; 114:780-794. [PMID: 37404197 PMCID: PMC11347013 DOI: 10.1002/cpt.2984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Stephen H Wright
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
4
|
Yang M, Xu X. Important roles of transporters in the pharmacokinetics of anti-viral nucleoside/nucleotide analogs. Expert Opin Drug Metab Toxicol 2022; 18:483-505. [PMID: 35975669 PMCID: PMC9506706 DOI: 10.1080/17425255.2022.2112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Nucleoside analogs are an important class of antiviral agents. Due to the high hydrophilicity and limited membrane permeability of antiviral nucleoside/nucleotide analogs (AVNAs), transporters play critical roles in AVNA pharmacokinetics. Understanding the properties of these transporters is important to accelerate translational research for AVNAs. AREAS COVERED The roles of key transporters in the pharmacokinetics of 25 approved AVNAs were reviewed. Clinically relevant information that can be explained by the modulation of transporter functions is also highlighted. EXPERT OPINION Although the roles of transporters in the intestinal absorption and renal excretion of AVNAs have been well identified, more research is warranted to understand their roles in the distribution of AVNAs, especially to immune privileged compartments where treatment of viral infection is challenging. P-gp, MRP4, BCRP, and nucleoside transporters have shown extensive impacts in the disposition of AVNAs. It is highly recommended that the role of transporters should be investigated during the development of novel AVNAs. Clinically, co-administered inhibitors and genetic polymorphism of transporters are the two most frequently reported factors altering AVNA pharmacokinetics. Physiopathology conditions also regulate transporter activities, while their effects on pharmacokinetics need further exploration. Pharmacokinetic models could be useful for elucidating these complicated factors in clinical settings.
Collapse
Affiliation(s)
- Mengbi Yang
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
5
|
Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, Munafo A. Review of Transporter Substrate, Inhibitor, and Inducer Characteristics of Cladribine. Clin Pharmacokinet 2021; 60:1509-1535. [PMID: 34435310 PMCID: PMC8613159 DOI: 10.1007/s40262-021-01065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Cladribine is a nucleoside analog that is phosphorylated in its target cells (B- and T-lymphocytes) to its active adenosine triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®) administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years) are used to treat patients with relapsing multiple sclerosis. The ATP-binding cassette, solute carrier, and nucleoside transporter substrate, inhibitor, and inducer characteristics of cladribine are reviewed in this article. Available evidence suggests that the distribution of cladribine across biological membranes is facilitated by a number of uptake and efflux transporters. Among the key ATP-binding cassette efflux transporters, only breast cancer resistance protein has been shown to be an efficient transporter of cladribine, while P-glycoprotein does not transport cladribine well. Intestinal absorption, distribution throughout the body, and intracellular uptake of cladribine appear to be exclusively mediated by equilibrative and concentrative nucleoside transporters, specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Renal excretion of cladribine appears to be most likely driven by breast cancer resistance protein, ENT1, and P-glycoprotein. The latter may play a role despite its poor cladribine transport efficiency in view of the renal abundance of P-glycoprotein. There is no evidence that solute carrier uptake transporters such as organic anion transporting polypeptides, organic anion transporters, and organic cation transporters are involved in the transport of cladribine. Available in vitro studies examining the inhibitor characteristics of cladribine for a total of 13 major ATP-binding cassette, solute carrier, and CNT transporters indicate that in vivo inhibition of any of these transporters by cladribine is unlikely.
Collapse
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance (cr.appliance), Heinrich-Vingerhut-Weg 3, 63571, Gelnhausen, Germany.
| | | | | | | | | | | | - Alain Munafo
- Institute of Pharmacometrics, an Affiliate of Merck KGaA, Lausanne, Switzerland
| |
Collapse
|
6
|
Yamamura T, Narumi K, Ohata T, Satoh H, Mori T, Furugen A, Kobayashi M, Iseki K. Characterization of deoxyribonucleoside transport mediated by concentrative nucleoside transporters. Biochem Biophys Res Commun 2021; 558:120-125. [PMID: 33910126 DOI: 10.1016/j.bbrc.2021.04.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
Human concentrative nucleoside transporters (CNTs) are responsible for cellular uptake of ribonucleosides; however, although it is important to better characterize CNT-subtype specificity to understand the systemic disposition of deoxyribonucleosides (dNs) and their analogs, the involvement of CNTs in transporting dNs is not fully understood. In this study, using COS-7 cells that transiently expressed CNT1, CNT2, or CNT3, we investigated if CNTs could transport not only ribonucleosides but also dNs, i.e., 2'-deoxyadenosine (dAdo), 2'-deoxyguanosine (dGuo), and 2'-deoxycytidine (dCyd). The cellular uptake study demonstrated that dAdo and dGuo were taken up by CNT2 but not by CNT1. Although dCyd was taken up by CNT1, no significant uptake was detected in COS-7 cells expressing CNT2. Similarly, these dNs were transported by CNT3. The apparent Km values of their uptake were as follows: CNT1, Km = 141 μM for dCyd; CNT2, Km = 62.4 μM and 54.9 μM for dAdo and dGuo, respectively; CNT3, Km = 14.7 μM and 34.4 μM for dGuo and dCyd, respectively. These results demonstrate that CNTs contribute not only to ribonucleoside transport but also to the transport of dNs. Moreover, our data indicated that CNT1 and CNT2 selectively transported pyrimidine and purine dNs, respectively, and CNT3 was shown to transport both pyrimidine and purine dNs.
Collapse
Affiliation(s)
- Taiki Yamamura
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Tsukika Ohata
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Satoh
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Hokkaido, Japan
| | - Takao Mori
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Hokkaido, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
9
|
Mayati A, Moreau A, Jouan E, Febvre-James M, Denizot C, Parmentier Y, Fardel O. mRNA Expression and Activity of Nucleoside Transporters in Human Hepatoma HepaRG Cells. Pharmaceutics 2018; 10:pharmaceutics10040246. [PMID: 30469356 PMCID: PMC6320972 DOI: 10.3390/pharmaceutics10040246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
The HepaRG cell line is a highly differentiated human hepatoma cell line, displaying the expression of various drug transporters. However, functional expression of nucleoside transporters remains poorly characterized in HepaRG cells, although these transporters play a key role in hepatic uptake of antiviral and anticancer drugs. The present study was, therefore, designed to characterize the expression, activity and regulation of equilibrative (ENT) and concentrative (CNT) nucleoside transporter isoforms in differentiated HepaRG cells. These cells were found to exhibit a profile of nucleoside transporter mRNAs similar to that found in human hepatocytes, i.e., notable expression of ENT1, ENT2 and CNT1, with very low or no expression of CNT2 and CNT3. ENT1 activity was, next, demonstrated to be the main uridine transport activity present in HepaRG cells, like in cultured human hepatocytes. Various physiological factors, such as protein kinase C (PKC) activation or treatment by inflammatory cytokines or hepatocyte growth factor (HGF), were additionally found to regulate expression of ENT1, ENT2 and CNT1; PKC activation and HGF notably concomitantly induced mRNA expression and activity of ENT1 in HepaRG cells. Overall, these data suggest that HepaRG cells may be useful for analyzing cellular pharmacokinetics of nucleoside-like drugs in human hepatic cells, especially of those handled by ENT1.
Collapse
Affiliation(s)
- Abdullah Mayati
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Marie Febvre-James
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Yannick Parmentier
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
- Pôle Biologie, Centre Hospitalier Universitaire, F-35033 Rennes, France.
| |
Collapse
|
10
|
Vaskó B, Juhász V, Tóth B, Kurunczi A, Fekete Z, Krisjanis Zolnerciks J, Kis E, Magnan R, Bidon-Chanal Badia A, Pastor-Anglada M, Hazai E, Bikadi Z, Fülöp F, Krajcsi P. Inhibitor selectivity of CNTs and ENTs. Xenobiotica 2018; 49:840-851. [PMID: 30022699 DOI: 10.1080/00498254.2018.1501832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The concentrative nucleoside transporters (CNT; solute carrier family 28 (SLC28)) and the equilibrative nucleoside transporters (ENT; solute carrier family 29 (SLC29)) are important therapeutic targets but may also mediate toxicity or adverse events. To explore the relative role of the base and the monosaccharide moiety in inhibitor selectivity we selected compounds that either harbor an arabinose moiety or a cytosine moiety, as these groups had several commercially available drug members. The screening data showed that more compounds harboring a cytosine moiety displayed potent interactions with the CNTs than compounds harboring the arabinose moiety. In contrast, ENTs showed a preference for compounds with an arabinose moiety. The correlation between CNT1 and CNT3 was good as five of six compounds displayed IC50 values within the threefold threshold and one displayed a borderline 4-fold difference. For CNT1 and CNT2 as well as for CNT2 and CNT3 only two of six IC50 values correlated and one displayed a borderline 4-fold difference. Interestingly, of the six compounds that potently interacted with both ENT1 and ENT2 only nelarabine displayed selectivity. Our data show differences between inhibitor selectivities of CNTs and ENTs as well as differences within the CNT family members.
Collapse
Affiliation(s)
| | | | - Beáta Tóth
- b SOLVO Biotechnology , Budaörs , Hungary
| | | | | | | | - Emese Kis
- a SOLVO Biotechnology , Szeged , Hungary
| | | | - Axel Bidon-Chanal Badia
- c Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació and Institute of Biomedicine (IBUB), Campus de l'Alimentació de Torribera , Universitat de Barcelona , Santa Coloma de Gramenet , Spain
| | - Marçal Pastor-Anglada
- d Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia and Institute of Biomedicine (IBUB) , Universitat de Barcelona , Barcelona , Spain.,e Oncology Program , National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III , Madrid , Spain
| | | | | | - Ferenc Fülöp
- g Institute of Pharmaceutical Chemistry, University of Szeged , Szeged , Hungary
| | - Peter Krajcsi
- a SOLVO Biotechnology , Szeged , Hungary.,h Department of Morphology and Physiology, Faculty of Health Sciences , Semmelweis University , Budapest , Hungary.,i Faculty of Information Technology and Bionics , Pázmány Péter Catholic University , Budapest , Hungary
| |
Collapse
|
11
|
Pastor-Anglada M, Urtasun N, Pérez-Torras S. Intestinal Nucleoside Transporters: Function, Expression, and Regulation. Compr Physiol 2018; 8:1003-1017. [PMID: 29978890 DOI: 10.1002/cphy.c170039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is the absorptive organ for nutrients found in foods after digestion. Nucleosides and, to a lesser extent nucleobases, are the late products of nucleoprotein digestion. These metabolites are absorbed by nucleoside (and nucleobase) transporter (NT) proteins. NTs are differentially distributed along the gastrointestinal tract showing also polarized expression in epithelial cells. Concentrative nucleoside transporters (CNTs) are mainly located at the apical side of enterocytes, whereas equilibrative nucleoside transporters (ENTs) facilitate the basolateral efflux of nucleosides and nucleobases to the bloodstream. Moreover, selected nucleotides and the bioactive nucleoside adenosine act directly on intestinal cells modulating purinergic signaling. NT-polarized insertion is tightly regulated. However, not much is known about the modulation of intestinal NT function in humans, probably due to the lack of appropriate cell models retaining CNT functional expression. Thus, the possibility of nutritional regulation of intestinal NTs has been addressed using animal models. Besides the nutrition-related role of NT proteins, orally administered drugs also need to cross the intestinal barrier, this event being a major determinant of drug bioavailability. In this regard, NT proteins might also play a role in pharmacology, thereby allowing the absorption of nucleoside- and nucleobase-derived drugs. The relative broad selectivity of these membrane transporters also suggests clinically relevant drug-drug interactions when using combined therapies. This review focuses on all these physiological and pharmacological aspects of NT protein biology. © 2017 American Physiological Society. Compr Physiol 8:1003-1017, 2018.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Urtasun
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
12
|
Pastor-Anglada M, Pérez-Torras S. Who Is Who in Adenosine Transport. Front Pharmacol 2018; 9:627. [PMID: 29962948 PMCID: PMC6010718 DOI: 10.3389/fphar.2018.00627] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine concentrations are regulated by a panel of membrane transporters which, in most cases, mediate its uptake into cells. Adenosine transporters belong to two gene families encoding Equilibrative and Concentrative Nucleoside Transporter proteins (ENTs and CNTs, respectively). The lack of appropriate pharmacological tools targeting every transporter subtype has introduced some bias on the current knowledge of the role of these transporters in modulating adenosine levels. In this regard, ENT1, for which pharmacology is relatively well-developed, has often been identified as a major player in purinergic signaling. Nevertheless, other transporters such as CNT2 and CNT3 can also contribute to purinergic modulation based on their high affinity for adenosine and concentrative capacity. Moreover, both transporter proteins have also been shown to be under purinergic regulation via P1 receptors in different cell types, which further supports its relevance in purinergic signaling. Thus, several transporter proteins regulate extracellular adenosine levels. Moreover, CNT and ENT proteins are differentially expressed in tissues but also in particular cell types. Accordingly, transporter-mediated fine tuning of adenosine levels is cell and tissue specific. Future developments focusing on CNT pharmacology are needed to unveil transporter subtype-specific events.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases – CIBER ehd, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases – CIBER ehd, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
13
|
Ware BR, Durham MJ, Monckton CP, Khetani SR. A Cell Culture Platform to Maintain Long-term Phenotype of Primary Human Hepatocytes and Endothelial Cells. Cell Mol Gastroenterol Hepatol 2018; 5:187-207. [PMID: 29379855 PMCID: PMC5782488 DOI: 10.1016/j.jcmgh.2017.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Modeling interactions between primary human hepatocytes (PHHs) and primary human liver sinusoidal endothelial cells (LSECs) in vitro can help elucidate human-specific mechanisms underlying liver physiology/disease and drug responses; however, existing hepatocyte/endothelial coculture models are suboptimal because of their use of rodent cells, cancerous cell lines, and/or nonliver endothelial cells. Hence, we sought to develop a platform that could maintain the long-term phenotype of PHHs and primary human LSECs. METHODS Primary human LSECs or human umbilical vein endothelial cells as the nonliver control were cocultivated with micropatterned PHH colonies (to control homotypic interactions) followed by an assessment of PHH morphology and functions (albumin and urea secretion, and cytochrome P-450 2A6 and 3A4 enzyme activities) over 3 weeks. Endothelial phenotype was assessed via gene expression patterns and scanning electron microscopy to visualize fenestrations. Hepatic responses in PHH/endothelial cocultures were benchmarked against responses in previously developed PHH/3T3-J2 fibroblast cocultures. Finally, PHH/fibroblast/endothelial cell tricultures were created and characterized as described previously. RESULTS LSECs, but not human umbilical vein endothelial cells, induced PHH albumin secretion for ∼11 days; however, neither endothelial cell type could maintain PHH morphology and functions to the same magnitude/longevity as the fibroblasts. In contrast, both PHHs and endothelial cells displayed stable phenotype for 3 weeks in PHH/fibroblast/endothelial cell tricultures; furthermore, layered tricultures in which PHHs and endothelial cells were separated by a protein gel to mimic the space of Disse displayed similar functional levels as the coplanar tricultures. CONCLUSIONS PHH/fibroblast/endothelial tricultures constitute a robust platform to elucidate reciprocal interactions between PHHs and endothelial cells in physiology, disease, and after drug exposure.
Collapse
Key Words
- 3T3-J2 Fibroblasts
- CD31, cluster of differentiation 31
- CD54, cluster of differentiation 54
- CYP450, cytochrome P-450
- ECM, extracellular matrix
- F8, factor VIII
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HUVECs
- HUVECs, human umbilical vein endothelial cells
- LSECs
- LSECs, liver sinusoidal endothelial cells
- Micropatterned Cocultures
- NPCs, nonparenchymal cells
- PHHs, primary human hepatocytes
- SEM, scanning electron microscope
- Tricultures
- cDNA, complementary DNA
- vWF, von Willebrand factor
Collapse
Affiliation(s)
- Brenton R. Ware
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Mitchell J. Durham
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado
| | - Chase P. Monckton
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R. Khetani
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
14
|
Fouad R, Zachariah K, Khairy M, Khorshied M, Ezzat W, Sheta MM, Heiba A. Single Nucleotide rs760370 Polymorphism at the Main Ribavirin Transporter Gene Detection by PCR-RFLP Assay Compared with the TaqMan Assay and Its Relation to Sustained Virological Response in Chronic HCV Patients Treated with Pegylated Interferon-Ribavirin Therapy. J Interferon Cytokine Res 2018; 37:90-96. [PMID: 28207300 DOI: 10.1089/jir.2016.0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ribavirin clearly plays a role in chronic hepatitis C treatment response. The equilibrative nucleoside transporter-1 codified by SLC29A1 gene has been associated with ribavirin uptake into hepatocytes and erythrocytes. rs760370A>G single nucleotide polymorphism (SNP) at the SLC29A1 gene may have a role in ribavirin-based regimen treatment response. Accuracy of the polymerase-chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay compared with the TaqMan assay for the detection of the SNP rs760370 at the main ribavirin transporter gene and its relation to sustained virological response in chronic hepatitis C virus (HCV) patients treated with pegylated interferon-ribavirin therapy. The study included 100 chronic HCV patients who were treated with pegylated interferon-ribavirin therapy. The patients were categorized according to the treatment response into responders (50 patients) and null responders (50 patients). rs760370 SNP was measured using TaqMan 5-nuclease assay and by the newly developed PCR-based RFLP assay. The overall accuracy of the newly developed PCR-RFLP assay compared with the TaqMan assay for rs760370 polymorphism detection was 100%. Allelic frequencies at rs760370 were as follows: A/A genotype (28%), A/G genotype (58%), and G/G genotype (14%). Treatment response was not significantly related with rs760370 polymorphism (P = 0.5). Ribavirin-induced anemia was good predictor of sustained virological response (P = 0.001), but was not related to rs760370 polymorphism (P = 0.92). PCR-RFLP assay is an accurate, cost-effective method in the detection of rs760370 compared with TaqMan assay. rs760370 SNP cannot serve as predictor of response in chronic HCV patients treated with interferon ribavirin therapy.
Collapse
Affiliation(s)
- Rabab Fouad
- 1 Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Khaled Zachariah
- 1 Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Marwa Khairy
- 1 Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Mervat Khorshied
- 2 Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Wafaa Ezzat
- 3 Topical Medicine Department, National Research Center, Cairo, Egypt
| | - Marwa M Sheta
- 2 Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Ahmed Heiba
- 3 Topical Medicine Department, National Research Center, Cairo, Egypt
| |
Collapse
|
15
|
Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites. J Clin Pharmacol 2017; 56 Suppl 7:S23-39. [PMID: 27385177 DOI: 10.1002/jcph.671] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/16/2015] [Indexed: 01/04/2023]
Abstract
This review provides a practical clinical perspective on the relevance of hepatic transporters in pharmacokinetics and drug-drug interactions (DDIs). Special emphasis is placed on transporters with clear relevance to clinical DDIs, efficacy, and safety. Basolateral OATP1B1 and 1B3 emerged as important hepatic drug uptake pathways, sites for systemic DDIs, and sources of pharmacogenetic variability. As the first step in hepatic drug removal from the circulation, OATPs are an important determinant of systemic pharmacokinetics, specifically influencing systemic absorption, clearance, and hepatic distribution for subsequent metabolism and/or excretion. Biliary excretion of parent drugs is a less prevalent clearance pathway than metabolism or urinary excretion, but BCRP and MRP2 are critically important to biliary/fecal elimination of drug metabolites. Inhibition of biliary excretion is typically not apparent at the level of systemic pharmacokinetics but can markedly increase liver exposure. Basolateral efflux transporters MRP3 and MRP4 mediate excretion of parent drugs and, more commonly, polar metabolites from hepatocytes into blood. Basolateral excretion is an area in need of further clinical investigation, which will necessitate studies more complex than just systemic pharmacokinetics. Clinical relevance of hepatic uptake is relatively well appreciated, and clinical consequences of hepatic excretion (biliary and basolateral) modulation remain an active research area.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition, GlaxoSmithKline, King of Prussia, PA, USA
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, Hertfordshire, UK
| | | |
Collapse
|
16
|
Mody HR, Hung SW, Naidu K, Lee H, Gilbert CA, Hoang TT, Pathak RK, Manoharan R, Muruganandan S, Govindarajan R. SET contributes to the epithelial-mesenchymal transition of pancreatic cancer. Oncotarget 2017; 8:67966-67979. [PMID: 28978088 PMCID: PMC5620228 DOI: 10.18632/oncotarget.19067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer has a devastating prognosis due to 80-90% of diagnostic cases occurring when metastasis has already presented. Activation of the epithelial-mesenchymal transition (EMT) is a prerequisite for metastasis because it allows for the dissemination of tumor cells to blood stream and secondary organs. Here, we sought to determine the role of SET oncoprotein, an endogenous inhibitor of PP2A, in EMT and pancreatic tumor progression. Among the two major isoforms of SET (isoform 1 and isoform 2), higher protein levels of SET isoform 2 were identified in aggressive pancreatic cancer cell lines. Overexpressing SET isoform 2, and to a lesser extent SET isoform 1, in epithelial cell lines promoted EMT-like features by inducing mesenchymal characteristics and promoting cellular proliferation, migration, invasion, and colony formation. Consistently, knockdown of SET isoforms in the mesenchymal cell line partially resisted these characteristics and promoted epithelial features. SET-induced EMT was likely facilitated by increased N-cadherin overexpression, decreased PP2A activity and/or increased expression of key EMT-driving transcription factors. Additionally, SET overexpression activated the Rac1/JNK/c-Jun signaling pathway that induced transcriptional activation of N-cadherin expression. In vivo, SET isoform 2 overexpression significantly correlated with increased N-cadherin in human PDAC and to tumor burden and metastatic ability in an orthotopic mouse tumor model. These findings identify a new role for SET in cancer and have implications for the design and targeting of SET for intervening pancreatic tumor progression.
Collapse
Affiliation(s)
- Hardik R Mody
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA.,Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| | - Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| | - Kineta Naidu
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Haesung Lee
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Caitlin A Gilbert
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Toan Thanh Hoang
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Rakesh K Pathak
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Radhika Manoharan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Shanmugam Muruganandan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA.,Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
| |
Collapse
|
17
|
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
18
|
Endres CJ, Moss AM, Ishida K, Govindarajan R, Unadkat JD. The role of the equilibrative nucleoside transporter 1 on tissue and fetal distribution of ribavirin in the mouse. Biopharm Drug Dispos 2017; 37:336-44. [PMID: 27194214 DOI: 10.1002/bdd.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 11/07/2022]
Abstract
Ribavirin is used for the treatment of hepatitis C virus (HCV) infection. The equilibrative nucleoside transporter 1 (ENT1) expressed in hepatocytes transports ribavirin into the liver, the site of efficacy of the drug. However, it is still unclear whether ENT1 plays a dominant role in the hepatic distribution of the drug in vivo. In addition, due to fetal toxicity, administration of ribavirin to pregnant women with HCV infection is contraindicated. ENT1 might play a role in the fetal distribution and therefore the fetal toxicity of ribavirin. The aim of the present study was to investigate the in vivo contribution of ENT1 to the tissue distribution of ribavirin. When compared with that in Ent1(+/+) mice, the ribavirin tissue to plasma concentration ratio (including phosphorylated metabolites) in Ent1(-/-) mice at 15 min and 6 h after intravenous [(3) H]-ribavirin (3 mg/kg) administration was consistently and significantly decreased in the liver and the pancreas. Likewise, when compared with the Ent1(+/+) mice, the fetal distribution of ribavirin at 15 min after administration was significantly reduced in Ent1(-/-) fetuses and placenta. In contrast, there was no significant difference between Ent1(+/+), Ent1(+/-) and Ent1(-/-) mice in the fetal or placental to maternal plasma ribavirin concentration ratio at 2 h after ribavirin administration. The findings in the present study suggest that ENT1 plays a pivotal role in the distribution of ribavirin into tissues including the liver and pancreas, but affects only the rate, but not the extent, of ribavirin distribution into the fetus. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Aaron M Moss
- Department of Pharmaceutics, Seattle, Washington, USA
| | - Kazuya Ishida
- Department of Pharmaceutics, Seattle, Washington, USA
| | | | | |
Collapse
|
19
|
Baloch K, Chen L, Memon AA, Dexter L, Irving W, Ilyas M, Thomson BJ. Equilibrative nucleoside transporter 1 expression in primary human hepatocytes is highly variable and determines uptake of ribavirin. Antivir Chem Chemother 2017; 25:2-10. [PMID: 28417642 DOI: 10.1177/2040206616686894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims Ribavirin is a nucleoside analogue and remains a necessary component of both interferon-based and directly acting anti-viral regimens for the treatment of hepatitis C virus infection. The achievable concentration of ribavirin within hepatocytes is likely to be an important determinant of therapeutic outcome. In vitro expression levels of equilibrative nucleoside transporter 1 (ENT1) has been shown to be a predictor of treatment response in patients receiving nucleoside-based chemotherapeutic agents. We therefore investigated whether a similar relationship existed between ENT1 expression and ribavirin uptake in freshly isolated primary hepatocytes. Methods Primary hepatocytes were cultured on collagen-coated plates and exposed to ribavirin. Parallel samples were taken for high-performance liquid chromatography to assess ribavirin uptake and for quantitative polymerase chain reaction to evaluate ENT1 expression. Similar assays were performed on the human hepatoma cell line (Huh7). ENT1 gene sequence was analysed by cloning of polymerase chain reaction amplified complementary DNA followed by direct sequencing. Results There was a strong direct correlation between expression of ENT1 in primary hepatocytes and ribavirin uptake at 24 hr. Huh7 cells expressed ENT1 at similar levels to the majority of primary hepatocytes, but did not take up ribavirin. Sequencing revealed that ENT1 in Huh7 cells is wild type. Conclusions In this study, we clearly demonstrate that ribavirin uptake in primary human hepatocytes is variable and correlates with ENT1 expression. This variation in ENT1 expression may account for differences in response rate in patients receiving ribavirin-based anti-hepatitis C virus therapy.
Collapse
Affiliation(s)
- Kanwal Baloch
- 1 School of Medicine, University of Nottingham, Nottingham, UK.,2 Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Liqiong Chen
- 3 School of Pharmacy, University of Nottingham, Nottingham, UK.,4 AEM iMed, AstraZeneca, Shanghai, China
| | - Ameer A Memon
- 2 Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Laura Dexter
- 3 School of Pharmacy, University of Nottingham, Nottingham, UK.,5 Wales Specialist Virology Centre, University Hospital of Wales, Heath Park, Cardiff, UK
| | - William Irving
- 6 Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK.,7 Nottingham Digestive Diseases Centre Biomedical Research Unit, Nottingham University Hospitals, Nottingham, UK
| | - Mohammad Ilyas
- 1 School of Medicine, University of Nottingham, Nottingham, UK
| | - Brian J Thomson
- 1 School of Medicine, University of Nottingham, Nottingham, UK.,7 Nottingham Digestive Diseases Centre Biomedical Research Unit, Nottingham University Hospitals, Nottingham, UK
| |
Collapse
|
20
|
Shimada T, Nakanishi T, Tajima H, Yamazaki M, Yokono R, Takabayashi M, Shimada T, Sawamoto K, Miyamoto KI, Kitagawa H, Ohta T, Tamai I, Sai Y. Saturable Hepatic Extraction of Gemcitabine Involves Biphasic Uptake Mediated by Nucleoside Transporters Equilibrative Nucleoside Transporter 1 and 2. J Pharm Sci 2015; 104:3162-9. [PMID: 26037416 DOI: 10.1002/jps.24498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Hepatic arterial infusion (HAI) chemotherapy with gemcitabine (GEM) is expected to be more effective and safer method to treat hepatic metastasis of pancreatic cancer compared with intravenous administration, because it affords higher tumor exposure with lower systemic exposure. Thus, a key issue for dose selection is the saturability of hepatic uptake of GEM. Therefore, we investigated GEM uptake in rat and human isolated hepatocytes. Hepatic GEM uptake involved high- and low-affinity saturable components with Km values of micromolar and millimolar order, respectively. The uptake was inhibited concentration dependently by S-(4-nitrobenzyl)-6-thioinosine (NBMPR) and was sodium-ion-independent, suggesting a contribution of equilibrative nucleoside transporters (ENTs). The concentration dependence of uptake in the presence of 0.1 μM NBMPR showed a single low-affinity binding site. Therefore, the high- and low-affinity sites correspond to ENT1 and ENT2, respectively. Our results indicate hepatic extraction of GEM is predominantly mediated by the low-affinity site (hENT2), and at clinically relevant hepatic concentrations of GEM, hENT2-mediated uptake would not be completely saturated. This is critical for HAI, because saturation of hepatic uptake would result in a marked increase of GEM concentration in the peripheral circulation, abrogating the advantage of HAI over intravenous administration in terms of severe adverse events.
Collapse
Affiliation(s)
- Takuya Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hidehiro Tajima
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Maiko Yamazaki
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Rina Yokono
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Makiko Takabayashi
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Tsutomu Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Kazuki Sawamoto
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Ken-Ichi Miyamoto
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Hirohisa Kitagawa
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoshimichi Sai
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
21
|
Arimany-Nardi C, Errasti-Murugarren E, Minuesa G, Martinez-Picado J, Gorboulev V, Koepsell H, Pastor-Anglada M. Nucleoside transporters and human organic cation transporter 1 determine the cellular handling of DNA-methyltransferase inhibitors. Br J Pharmacol 2015; 171:3868-80. [PMID: 24780098 DOI: 10.1111/bph.12748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibitors of DNA methyltransferases (DNMTs), such as azacytidine, decitabine and zebularine, are used for the epigenetic treatment of cancer. Their action may depend upon their translocation across the plasma membrane. The aim of this study was to identify transporter proteins contributing to DNMT inhibitor action. EXPERIMENTAL APPROACH Drug interactions with selected hCNT and hENT proteins were studied in transiently transfected HeLa and MDCK cells. Interaction with human organic cation transporters (hOCTs) was assessed in transiently transfected HeLa cells and Xenopus laevis oocytes. KEY RESULTS Zebularine uptake was mediated by hCNT1, hCNT3 and hENT2. Decitabine interacted with but was not translocated by any nucleoside transporter (NT) type. hCNT expression at the apical domain of MDCK cells promoted net vectorial flux of zebularine. Neither hOCT1 nor hOCT2 transported decitabine, but both were involved in the efflux of zebularine, suggesting these proteins act as efflux transporters. hOCT1 polymorphic variants, known to alter function, decreased zebularine efflux. CONCLUSIONS AND IMPLICATIONS This study highlights the influence of human NTs and hOCTs on the pharmacokinetics and pharmacodynamics of selected DNMT inhibitors. As hOCTs may also behave as efflux transporters, they could contribute either to chemoresistance or to chemosensitivity, depending upon the nature of the drug or combination of drugs being used in cancer therapy.
Collapse
Affiliation(s)
- C Arimany-Nardi
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) & National Biomedical Research Institute on Liver and Gastrointestinal Diseaes (CIBERehd), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Pastor-Anglada M, Pérez-Torras S. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 2015; 6:13. [PMID: 25713533 PMCID: PMC4322540 DOI: 10.3389/fphar.2015.00013] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
Nucleoside and nucleobase analogs are currently used in the treatment of solid tumors, lymphoproliferative diseases, viral infections such as hepatitis and AIDS, and some inflammatory diseases such as Crohn. Two gene families are implicated in the uptake of nucleosides and nucleoside analogs into cells, SCL28 and SLC29. The former encodes hCNT1, hCNT2, and hCNT3 proteins. They translocate nucleosides in a Na+ coupled manner with high affinity and some substrate selectivity, being hCNT1 and hCNT2 pyrimidine- and purine-preferring, respectively, and hCNT3 a broad selectivity transporter. SLC29 genes encode four members, being hENT1 and hENT2 the only two which are unequivocally implicated in the translocation of nucleosides and nucleobases (the latter mostly via hENT2) at the cell plasma membrane. Some nucleoside-derived drugs can also interact with and be translocated by members of the SLC22 gene family, particularly hOCT and hOAT proteins. Inter-individual differences in transporter function and perhaps, more importantly, altered expression associated with the disease itself might modulate the transporter profile of target cells, thereby determining drug bioavailability and action. Drug transporter pharmacology has been periodically reviewed. Thus, with this contribution we aim at providing a state-of-the-art overview of the clinical evidence generated so far supporting the concept that these membrane proteins can indeed be biomarkers suitable for diagnosis and/or prognosis. Last but not least, some of these transporter proteins can also be envisaged as drug targets, as long as they can show “transceptor” functions, in some cases related to their role as modulators of extracellular adenosine levels, thereby providing a functional link between P1 receptors and transporters.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona Spain ; Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona Spain ; Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona Spain
| |
Collapse
|
23
|
Hung SW, Marrache S, Cummins S, Bhutia YD, Mody H, Hooks SB, Dhar S, Govindarajan R. Defective hCNT1 transport contributes to gemcitabine chemoresistance in ovarian cancer subtypes: overcoming transport defects using a nanoparticle approach. Cancer Lett 2015; 359:233-40. [PMID: 25600708 DOI: 10.1016/j.canlet.2015.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/30/2022]
Abstract
Nucleoside analogs are used as chemotherapeutic options for the treatment of platinum-resistant ovarian cancers. Human concentrative nucleoside transporter 1 (hCNT1) is implicated in sensitizing solid tumors to nucleoside analogs although its role in determining drug efficacy in ovarian cancers remains unclear. Here we examined the functional expression of hCNT1 and compared its contributions toward gemcitabine efficacy in histological subtypes of ovarian cancer. Radioactivity analysis identified hCNT1-mediated (3)H-gemcitabine transport in ovarian cancer cells to be significantly reduced compared with that of normal ovarian surface epithelial cells. Biochemical and immunocytochemical analysis identified that unlike normal ovarian cells which expressed high levels of hCNT1 at the apical cell surface, the transporter was either diminished in expression and/or mislocalized in cell lines of various subtypes of ovarian cancer. Retroviral expression of hCNT1 selectively rescued gemcitabine transport in cell lines representing serous, teratocarcinoma, and endometrioid subtypes, but not clear cell carcinoma (CCC). In addition, exogenous hCNT1 predominantly accumulated in intracytoplasmic vesicles in CCC suggesting defective cellular trafficking of hCNT1 as a contributing factor to transport deficiency. Despite diminution of hCNT1 transport in the majority of ovarian cancers and apparent trafficking defects with CCC, the chemotherapeutic efficacy of gemcitabine was broadly enhanced in all subtypes when delivered via engineered nanoparticles (NPs). Additionally, by bypassing the transport requirement, the delivery of a gemcitabine-cisplatin combination in NP formulation increased their synergistic interactions. These findings uncover hCNT1 as a putative determinant for nucleoside analog chemoresistance in ovarian cancer and may help rationalize drug selection and delivery strategies for various histological subtypes of ovarian cancer.
Collapse
Affiliation(s)
- Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Sean Marrache
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Shannon Cummins
- Department of Biological Sciences, University of Georgia, Athens, GA, USA
| | - Yangzom D Bhutia
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Hardik Mody
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Shanta Dhar
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Rajgopal Govindarajan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
24
|
Abstract
Hepatocytes in sandwich configuration constitute of primary hepatocytes cultured between two layers of extracellular matrix. Sandwich-cultured hepatocytes maintain expression of liver-specific proteins and gradually form intact bile canaliculi with functional biliary excretion of endogenous compounds and xenobiotics. Both freshly isolated and cryopreserved hepatocytes can be used to establish sandwich cultures. Therefore, this preclinical model has become an invaluable in vitro tool to evaluate hepatobiliary drug transport, metabolism, hepatotoxicity, and drug interactions. In this chapter, commonly used procedures to cultivate primary hepatocytes from human and rat in sandwich configuration are described.
Collapse
Affiliation(s)
- Janneke Keemink
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, O&N2, Herestraat 49, Bus 921, Leuven, 3000, Belgium
| | | | | |
Collapse
|
25
|
Allegra S, Cusato J, De Nicolò A, Boglione L, Gatto A, Cariti G, Di Perri G, D'Avolio A. Role of pharmacogenetic in ribavirin outcome prediction and pharmacokinetics in an Italian cohort of HCV-1 and 4 patients. Biomed Pharmacother 2014; 69:47-55. [PMID: 25661337 DOI: 10.1016/j.biopha.2014.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023] Open
Abstract
Ribavirin is phosphorylated by adenosine kinase 1 (AK1) and cytosolic 5'-nucleotidase 2 and it is transported into cells by concentrative nucleoside transporters (CNT) 2/3, coded by SLC28A2/3 genes, and equilibrative nucleoside transporters (ENT) 1/2, coded by SLC29A1/2 genes. We evaluated the association of some polymorphisms of IL28B, SLC28A2/3, SLC29A1, ABCB1, NT5C2, AK1, HNF4α genes and ribavirin treatment outcome and pharmacokinetics after 4weeks of therapy, in a cohort of HCV-1/4 Italian patients. Allelic discrimination was performed by real-time PCR; plasma concentrations were determined at the end of dosing interval (Ctrough) using an HPLC-UV method. Non response was negatively predicted by cryoglobulinemia and IL28B_rs12980275 AA genotype and positively by Metavir score; Metavir score, insulin resistance and SLC28A2_rs1060896 CA/AA and HNF4α_rs1884613 CC genotypes were negative predictive factors of SVR, whereas HCV viral load at baseline and IL28B_rs12980275 AA and rs8099917 TT genotypes positively predicted this outcome; RVR was negatively predicted by insulin resistance and positively by cryoglobulinemia and IL28B_rs12980275 AA genotype; Metavir score and insulin resistance were able to negatively predict EVR, whereas cryoglobulinemia and IL28B_rs12980275 AA genotype positively predicted it; at last, virological relapse was negatively predicted by IL28B_rs8099917 TT and AK1_rs1109374 TT genotypes, insulin resistance was a positive predictor factor. Concerning ribavirin pharmacokinetics, SLC28A2_rs11854488 TT was related to lower Ctrough levels; conversely patients with TC profile of SLC28A3_rs10868138 and SLC29A1_rs760370 GG genotype had higher ribavirin levels. These results might contribute to the clarification of mechanisms causing the individuality in the response to ribavirin containing therapy.
Collapse
Affiliation(s)
- Sarah Allegra
- Laboratory of Clinical Pharmacology and Pharmacogenetics(2), Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics(2), Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy.
| | - Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics(2), Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Lucio Boglione
- Laboratory of Clinical Pharmacology and Pharmacogenetics(2), Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Alberto Gatto
- Laboratory of Clinical Pharmacology and Pharmacogenetics(2), Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Giuseppe Cariti
- Laboratory of Clinical Pharmacology and Pharmacogenetics(2), Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Giovanni Di Perri
- Laboratory of Clinical Pharmacology and Pharmacogenetics(2), Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics(2), Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| |
Collapse
|
26
|
rCNT2 extracellular cysteines, Cys615
and Cys649
, are important for maturation and sorting to the plasma membrane. FEBS Lett 2014; 588:4382-9. [DOI: 10.1016/j.febslet.2014.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/27/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
|
27
|
Choi MK, Kim MH, Maeng HJ, Song IS. Contribution of CNT1 and ENT1 to ribavirin uptake in human hepatocytes. Arch Pharm Res 2014; 38:904-13. [PMID: 25011570 DOI: 10.1007/s12272-014-0437-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
The objective of this study was to investigate the contributions of a sodium-dependent concentrative nucleoside transporter (CNT) 1 and an equilibrative nucleoside transporter (ENT) 1 to ribavirin uptake in human hepatocytes. The initial studies in oocytes expressing CNT1 and ENT1 showed increases in ribavirin uptake, indicating that ribavirin was a substrate for both CNT1 and ENT1. The CNT1- and ENT1-mediated ribavirin uptake showed concentration dependency with the following kinetics parameters: Km 26.3 μM and Vmax 426.2 fmol/min/oocyte for CNT1; Km 70.5 μM and Vmax 134.3 fmol/min/oocyte for ENT1. Ribavirin uptake clearance in six human hepatocytes ranged from 21.3 to 300.7 μL/min. Estimation of the contributions of CNT1 and ENT1 to the hepatic uptake of ribavirin by using a relative activity factor method indicated that the relative contribution of ENT1 to the ribavirin uptake was 82.8 ± 3.9%. Real-time polymerase chain reaction analysis of CNT1 and ENT1 expressions in the hepatocytes showed that ENT1 mRNA expression was closely correlated with ribavirin uptake (R = 0.95, P = 0.003) while CNT1 was not. The findings indicated that ENT1 was the major transporter controlling the hepatic uptake of ribavirin.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, 119 Dandaero, Cheonan, Chungnam, 330-714, Korea
| | | | | | | |
Collapse
|
28
|
Pinilla-Macua I, Fernández-Calotti P, Pérez-Del-Pulgar S, Pastor-Anglada M. Ribavirin uptake into human hepatocyte HHL5 cells is enhanced by interferon-α via up-regulation of the human concentrative nucleoside transporter (hCNT2). Mol Pharm 2014; 11:3223-30. [PMID: 24957263 DOI: 10.1021/mp500263p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ribavirin is a broad spectrum antiviral that increases the response rate in chronic hepatitis C patients when administered in combination with IFNα. Ribavirin is a purine nucleoside derivative, transported into hepatocytes by nucleoside transporters. hCNT2 is the best candidate to mediate ribavirin uptake into hepatocytes due to its high-affinity for purines and its capacity to concentrate its substrates intracellularly. The aim of this study was to determine whether hCNT2 function is under IFNα modulation. IFNα treatment of the nontransformed human hepatocyte-derived cell line HHL5 induced a rapid and transient increase in hCNT2 activity after cytokine addition. hCNT2 activity up-regulation was associated with increased ribavirin accumulation into cells. This increase was consistent with the translocation of hCNT2-containing vesicles to the plasma membrane via a mechanism requiring ERK 1/2 and ROCK activation and cytoskeleton integrity. Longer treatments with IFNα induced transcriptional activation of the hCNT2-encoding gene (SLC28A2), resulting in a sustained increase in hCNT2-related activity. These observations are proof of concept for at least one of the putative mechanisms underlying the synergistic responses induced by combination therapy with IFNα and ribavirin.
Collapse
Affiliation(s)
- Itziar Pinilla-Macua
- Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB) , 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
30
|
Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int 2013; 85:522-8. [PMID: 24132209 PMCID: PMC4276411 DOI: 10.1038/ki.2013.399] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 01/15/2023]
Abstract
The pharmacokinetics of non-renally cleared drugs in patients with chronic kidney disease is often unpredictable. Some of this variability may be due to alterations in the expression and activity of extra-renal drug metabolizing enzymes and transporters, primarily localized in the liver and intestine. Studies conducted in rodent models of renal failure have shown decreased mRNA and protein expression of many members of the cytochrome P450 enzyme (CYP) gene family and the ATP-Binding Cassette (ABC) and Solute Carrier (SLC) gene families of drug transporters. Uremic toxins interfere with transcriptional activation, cause down-regulation of gene expression mediated by proinflammatory cytokines, and directly inhibit the activity of the cytochrome P450s and drug transporters. While much has been learned about the effects of kidney disease on non-renal drug disposition, important questions remain regarding the mechanisms of these effects, as well as the interplay between drug metabolizing enzymes and drug transporters in the uremic milieu. In this review, we have highlighted the existing gaps in our knowledge and understanding of the impact of chronic kidney disease on non-renal drug clearance, and identified areas of opportunity for future research.
Collapse
|
31
|
Young JD, Yao SYM, Baldwin JM, Cass CE, Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med 2013; 34:529-47. [PMID: 23506887 DOI: 10.1016/j.mam.2012.05.007] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/11/2012] [Indexed: 12/23/2022]
Abstract
Nucleoside transport in humans is mediated by members of two unrelated protein families, the SLC28 family of cation-linked concentrative nucleoside transporters (CNTs) and the SLC29 family of energy-independent, equilibrative nucleoside transporters (ENTs). These families contain three and four members, respectively, which differ both in the stoichiometry of cation coupling and in permeant selectivity. Together, they play key roles in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis. Moreover, they facilitate cellular uptake of several nucleoside and nucleobase drugs used in cancer chemotherapy and treatment of viral infections. Thus, the transporter content of target cells can represent a key determinant of the response to treatment. In addition, by regulating the concentration of adenosine available to cell surface receptors, nucleoside transporters modulate many physiological processes ranging from neurotransmission to cardiovascular activity. This review describes the molecular and functional properties of the two transporter families, with a particular focus on their physiological roles in humans and relevance to disease treatment.
Collapse
Affiliation(s)
- James D Young
- Membrane Protein Research Group, Edmonton, Alberta, Canada T6G 2H7.
| | | | | | | | | |
Collapse
|
32
|
Hung SW, Mody H, Marrache S, Bhutia YD, Davis F, Cho JH, Zastre J, Dhar S, Chu CK, Govindarajan R. Pharmacological reversal of histone methylation presensitizes pancreatic cancer cells to nucleoside drugs: in vitro optimization and novel nanoparticle delivery studies. PLoS One 2013; 8:e71196. [PMID: 23940717 PMCID: PMC3735519 DOI: 10.1371/journal.pone.0071196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/27/2013] [Indexed: 01/29/2023] Open
Abstract
We evaluated the potential of an investigational histone methylation reversal agent, 3-deazaneplanocin A (DZNep), in improving the chemosensitivity of pancreatic cancer to nucleoside analogs (i.e., gemcitabine). DZNep brought delayed but selective cytotoxicity to pancreatic cancer cells without affecting normal human pancreatic ductal epithelial (HPDE) cells. Co-exposure of DZNep and gemcitabine induced cytotoxic additivity or synergism in both well- and poorly-differentiated pancreatic cell lines by increased apoptosis. In contrast, DZNep exerted antagonism with gemcitabine against HPDE cells with significant reduction in cytotoxicity compared with the gemcitabine-alone regimen. DZNep marginally depended on purine nucleoside transporters for its cytotoxicity, but the transport dependence was circumvented by acyl derivatization. Drug exposure studies revealed that a short priming with DZNep followed by gemcitabine treatment rather than co-treatment of both agents to produce a maximal chemosensitization response in both gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. DZNep rapidly and reversibly decreased trimethylation of histone H3 lysine 27 but increased trimethylation of lysine 9 in an EZH2- and JMJD1A/2C-dependent manner, respectively. However, DZNep potentiation of nucleoside analog chemosensitization was found to be temporally coupled to trimethylation changes in lysine 27 and not lysine 9. Polymeric nanoparticles engineered to chronologically release DZNep followed by gemcitabine produced pronounced chemosensitization and dose-lowering effects. Together, our results identify that an optimized DZNep exposure can presensitize pancreatic cancer cells to anticancer nucleoside analogs through the reversal of histone methylation, emphasizing the promising clinical utilities of epigenetic reversal agents in future pancreatic cancer combination therapies.
Collapse
Affiliation(s)
- Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Hardik Mody
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Sean Marrache
- Department of Chemistry, The University of Georgia, Athens, Georgia, United States of America
| | - Yangzom D. Bhutia
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Franklin Davis
- Department of Biological Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Jong Hyun Cho
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Jason Zastre
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Shanta Dhar
- Department of Chemistry, The University of Georgia, Athens, Georgia, United States of America
| | - Chung K. Chu
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Rajgopal Govindarajan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Liu L, Unadkat JD. Interaction between HIV protease inhibitors (PIs) and hepatic transporters in sandwich cultured human hepatocytes: implication for PI-based DDIs. Biopharm Drug Dispos 2013; 34:155-64. [PMID: 23280499 DOI: 10.1002/bdd.1832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/07/2022]
Abstract
Although HIV protease inhibitors (PIs) produce profound metabolic interactions through inactivation/inhibition of CYP3A enzymes, their role as victims of transporter-based drug-drug interactions (DDIs) is less well understood. Therefore, this study investigated if the PIs, nelfinavir (NFV), ritonavir (RTV), lopinavir (LPV) or amprenavir (APV) were transported into sandwich-cultured human hepatocytes (SCHH), and whether OATPs contributed to this transport. The findings showed that, except for (3) H-APV, no significant decrease in the total hepatocyte accumulation of the (3) H-PIs was detected in the presence of the corresponding unlabeled PI, indicating that the uptake of the other PIs was not mediated. Further, hepatocyte biliary efflux studies using (3) H-APV and unlabeled APV confirmed this decrease to be due to inhibition of sinusoidal influx transporter(s) and not the canalicular efflux transporters. Moreover, this sinusoidal transport of APV was not OATP-mediated. The results indicate that the hepatic uptake of NFV, RTV or LPV was primarily mediated by passive diffusion. The hepatic uptake of APV was mediated by an unidentified sinusoidal transporter(s). Therefore, NFV, RTV or LPV will not be victims of DDIs involving inhibition of hepatic influx transporters; however, the disposition of APV may be affected if its sinusoidal transport is inhibited.
Collapse
Affiliation(s)
- Li Liu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
34
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
Bhutia YD, Hung SW, Krentz M, Patel D, Lovin D, Manoharan R, Thomson JM, Govindarajan R. Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: role of LIN-28 and SET oncoprotein. PLoS One 2013; 8:e53436. [PMID: 23335963 PMCID: PMC3546076 DOI: 10.1371/journal.pone.0053436] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022] Open
Abstract
Overexpression of ribonucleotide reductase subunit M2 (RRM2), involved in deoxyribonucleotide synthesis, drives the chemoresistance of pancreatic cancer to nucleoside analogs (e.g., gemcitabine). While silencing RRM2 by synthetic means has shown promise in reducing chemoresistance, targeting endogenous molecules, especially microRNAs (miRNAs), to advance chemotherapeutic outcomes has been poorly explored. Based on computational predictions, we hypothesized that the let-7 tumor suppressor miRNAs will inhibit RRM2-mediated gemcitabine chemoresistance in pancreatic cancer. Reduced expression of the majority of let-7 miRNAs with an inverse relationship to RRM2 expression was identified in innately gemcitabine-resistant pancreatic cancer cell lines. Direct binding of let-7 miRNAs to the 3′ UTR of RRM2 transcripts identified post-transcriptional regulation of RRM2 influencing gemcitabine chemosensitivity. Intriguingly, overexpression of human precursor-let-7 miRNAs led to differential RRM2 expression and chemosensitivity responses in a poorly differentiated pancreatic cancer cell line, MIA PaCa-2. Defective processing of let-7a precursors to mature forms, in part, explained the discrepancies observed with let-7a expressional outcomes. Consistently, the ratios of mature to precursor let-7a were progressively reduced in gemcitabine-sensitive L3.6pl and Capan-1 cell lines induced to acquire gemcitabine resistance. Besides known regulators of let-7 biogenesis (e.g., LIN-28), short hairpin RNA library screening identified several novel RNA binding proteins, including the SET oncoprotein, to differentially impact let-7 biogenesis and chemosensitivity in gemcitabine-sensitive versus -resistant pancreatic cancer cells. Further, LIN-28 and SET knockdown in the cells led to profound reductions in cellular proliferation and colony-formation capacities. Finally, defective processing of let-7a precursors with a positive correlation to RRM2 overexpression was identified in patient-derived pancreatic ductal adenocarcinoma (PDAC) tissues. These data demonstrate an intricate post-transcriptional regulation of RRM2 and chemosensitivity by let-7a and that the manipulation of regulatory proteins involved in let-7a transcription/processing may provide a mechanism for improving chemotherapeutic and/or tumor growth control responses in pancreatic cancer.
Collapse
Affiliation(s)
- Yangzom Doma Bhutia
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Madeline Krentz
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Dimal Patel
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Dylan Lovin
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - Radhika Manoharan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
| | - J. Michael Thomson
- Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical School, Nashville, Tennessee, United States of America
| | - Rajgopal Govindarajan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Moss AM, Endres CJ, Ruiz-Garcia A, Choi DS, Unadkat JD. Role of the equilibrative and concentrative nucleoside transporters in the intestinal absorption of the nucleoside drug, ribavirin, in wild-type and Ent1(-/-) mice. Mol Pharm 2012; 9:2442-9. [PMID: 22812541 DOI: 10.1021/mp200647a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribavirin is frontline treatment for hepatitis C virus infection. To determine the role of nucleoside transporters in the intestinal absorption of orally administered ribavirin, we perfused the intestines of Ent1(-/-) and wild-type mice, in situ, with [(3)H] ribavirin (20, 200, and 5000 μM) in the presence and absence of sodium. The decrease in luminal ribavirin concentration over 30 min was measured at 5 min intervals. Blood samples were collected approximately every 10 min. Ribavirin plus phosphorylated metabolite concentrations (hereafter referred to as ribavirin) were determined in tissue, blood, and plasma by HPLC fractionation and scintillation counting. There was no significant difference between wild-type and Ent1(-/-) mice in intestinal loss of ribavirin at any ribavirin concentration studied. Perfusions without sodium drastically reduced the intestinal loss of ribavirin in both wild-type and Ent1(-/-) mice. After 20 μM ribavirin perfusions, Ent1(-/-) intestinal tissue contained 8-fold greater ribavirin than wild-type mice (p < 0.01). Ribavirin concentrations in the wild-type intestinal tissue were 70-fold higher after 200 vs 20 μM perfusions (p < 0.001), indicating saturation of intestinal ribavirin efflux and possibly other processes as well. Ribavirin plasma concentrations were significantly higher in wild-type mice (2.7-fold) vs Ent1(-/-) mice at 30 min after the 20 μM perfusion (p < 0.01). These results suggest that, at lower intestinal concentrations of ribavirin, concentrative and equilibrative nucleoside transporters are important in the intestinal absorption of ribavirin. At higher intestinal concentrations, these transporters are saturated and other processes in the intestine (transport and/or metabolism) play an important role in the absorption of ribavirin.
Collapse
Affiliation(s)
- Aaron M Moss
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195-7610, United States
| | | | | | | | | |
Collapse
|
37
|
Tsubota A, Shimada N, Yoshizawa K, Furihata T, Agata R, Yumoto Y, Abe H, Ika M, Namiki Y, Chiba K, Fujise K, Tada N, Aizawa Y. Contribution of ribavirin transporter gene polymorphism to treatment response in peginterferon plus ribavirin therapy for HCV genotype 1b patients. Liver Int 2012; 32:826-836. [PMID: 22212648 DOI: 10.1111/j.1478-3231.2011.02727.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/20/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Standard-dose ribavirin is crucial for the standard-of-care treatment of chronic hepatitis C virus (HCV) infection. Equilibrative nucleoside transporter 1 (ENT1), encoded by SLC29A1 gene, is the main transporter that imports ribavirin into human hepatocytes. AIMS To determine whether single nucleotide polymorphisms (SNPs) at the SLC29A1 gene could influence the probability of treatment response compared with other baseline and host genetic factors. METHODS A total of 526 East Asian patients monoinfected with HCV genotype 1b who had received pegylated interferon alpha plus ribavirin therapy were enrolled in this study. They were assigned randomly to the derivation and confirmatory groups. SNPs related to the IL28B, ITPA and SLC29A1 genes were genotyped using real-time detection polymerase chain reaction. Factors associated with sustained virological response (SVR) were analysed using multiple logistic regression analysis. RESULTS Multivariate analysis for the derivation group identified six baseline variables significantly and independently associated with SVR: age [P = 0.023, odds ratio (OR) = 0.97], gender (P = 0.0047, OR = 2.25), platelet count (P = 0.00017, OR = 1.11), viral load (P = 0.00026, OR = 0.54), IL28B SNP rs12979860 (P = 1.09 × 10(-7) , OR = 8.68) and SLC29A1 SNP rs6932345 (P = 0.030, OR = 1.85). Using the model constructed by these independent variables, positive and negative predictive values and predictive accuracy were 73.3, 70.1 and 71.9% respectively. For the confirmatory group, they were 71.4, 84.6 and 75.3% respectively. The SLC29A1 and IL28B SNPs were also significantly associated with rapid virological response. CONCLUSIONS The SNP at the major ribavirin transporter ENT1 gene SLC29A1 was one of significantly independent factors influencing treatment response, although the impact on the prediction was small.
Collapse
Affiliation(s)
- Akihito Tsubota
- Institute of Clinical Medicine and Research (ICMR), Jikei University School of Medicine, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schlecker C, Ultsch A, Geisslinger G, Lötsch J. The pharmacogenetic background of hepatitis C treatment. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:36-48. [PMID: 22409946 DOI: 10.1016/j.mrrev.2012.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/20/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Insufficiently treated hepatitis C virus (HCV) infection remains a major healthcare issue. Individual therapy responses vary considerably from spontaneous clearing of the virus to lethal conditions. Host genetics currently receives a major scientific and clinical interest as an important source of interindividual variability in treatment. Mainly the associations of interleukin 28B gene (IL28B) variants with decreased HCV clearance under standard therapy are considered as "state of the art" of hepatitis C pharmacogenetics. However, a search in PubMed identified 41 genes reportedly modulating the individual therapy response, e.g., genes coding for major histocompatibility complex (HLA), the tumor necrosis factor (TNF), interleukin 10 (IL10), other interferon coding genes than IL28B (e.g., IFNAR1, IFNAR2, IFNG), several components of downstream interferon signaling as well as genes modulating side effects of current anti-HCV therapeutics (e.g., SLC28A3, ITPA involved in ribavirin associated hemolytic effects or SLC6A4 and HTR1A involved in serotonin associated psychiatric side effects). Applying knowledge discovery methods from the area of data mining and machine-learning to this comprehensive set of HCV therapy modulating genes, relating the HCV genes to the world wide knowledge on genes given in the form of the Gene Ontology (GO) knowledge base, found that the relevant genes belong to the GO subcategories of "inflammatory response" and "immune response" and "response to virus". This complex approaches to the pharmacogenomics of HCV may serve to identify future candidates for a personalization of HCV therapy and structured approach to possible new therapeutic targets for the control of hepatitis C virus.
Collapse
Affiliation(s)
- Christina Schlecker
- pharmazentrum frankfurt/ZAFES, Institute for Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
39
|
Structural determinants for rCNT2 sorting to the plasma membrane of polarized and non-polarized cells. Biochem J 2012; 442:517-25. [DOI: 10.1042/bj20110605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
rCNT2 (rat concentrative nucleoside transporter 2) (Slc28a2) is a purine-preferring concentrative nucleoside transporter. It is expressed in both non-polarized and polarized cells, where it is localized in the brush border membrane. Since no information about the domains implicated in the plasma membrane sorting of rCNT2 is available, the present study aimed to identify structural and functional requirements for rCNT2 trafficking. The comprehensive topological mapping of the intracellular N-terminal tail revealed two main features: (i) a glutamate-enriched region (NPGLELME) between residues 21 and 28 that seems to be implicated in the stabilization of rCNT2 in the cell surface, since mutagenesis of these conserved glutamates resulted in enhanced endocytosis; and (ii) mutation of a potential protein kinase CK2 domain that led to a loss of brush border-specific sorting. Although the shortest proteins assayed (rCNT2-74AA, -48AA and -37AA) accumulated intracellularly and lost their brush border membrane preference, they were still functional. A deeper analysis of CK2 implication in CNT2 trafficking, using a CK2-specific inhibitor [DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)] and other complementary mutations mimicking the negative charge provided by phosphorylation (S46D and S46E), demonstrated an effect of this kinase on rCNT2 activity. In summary, the N-terminal tail of rCNT2 contains dual sorting signals. An acidic region is responsible for its proper stabilization at the plasma membrane, whereas the putative CK2 domain (Ser46) is implicated in the apical sorting of the transporter.
Collapse
|
40
|
Minuesa G, Huber-Ruano I, Pastor-Anglada M, Koepsell H, Clotet B, Martinez-Picado J. Drug uptake transporters in antiretroviral therapy. Pharmacol Ther 2011; 132:268-79. [DOI: 10.1016/j.pharmthera.2011.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/30/2011] [Indexed: 01/11/2023]
|
41
|
Lötsch J, Hofmann WP, Schlecker C, Zeuzem S, Geisslinger G, Ultsch A, Doehring A. Single and combined IL28B, ITPA and SLC28A3 host genetic markers modulating response to anti-hepatitis C therapy. Pharmacogenomics 2011; 12:1729-40. [PMID: 22118055 DOI: 10.2217/pgs.11.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in hepatitis C pharmacogenomics identified modulations of a sustained virologic response (SVR) by frequent IL28B gene variants and of ribavirin-induced hemolysis by frequent ITPA gene variants. These associations have been widely reproduced in various ethnicities, clinical settings and hepatitis C viral genotypes. The IL28B minor alleles rs8099917G, rs12979860T and rs12980275G have been associated with non-SVR whereas the ITPA minor alleles rs1127354A and rs7270101C were associated with less hemolytic side effects, an effect also attributed to a nucleoside transporter gene SLC28A3 rs10868138G/rs56350726T haplotype. The significance levels of these associations, especially in genome-wide studies, were very high. We nevertheless tested how good clinical outcomes of peginterferon α/ribavirin therapy, such as SVR or hemolytic side effects, were predicted by these variants. An analysis in an example dataset of 115 patients revealed that the prediction of non-SVR or hemolysis by single variants was often only slightly better than guessing. Using combinations of IL28B variants provided a higher accuracy (64.5%) of predicting non-SVR than with single IL28B variants (accuracy 60-63%). Similarly, a decline in blood hemoglobin by ≥3 g/dl could be better predicted at an accuracy of 70% (10% better than guessing) with a combination of an ITPA variant with a nucleoside transporter gene (SLC28A3) haplotype. Thus, genotyping information about single IL28B or ITPA variants is reproducibly and statistically significantly associated with hepatitis C therapy outcomes; however, the clinical predictive utility of single variants can be increased by combinations of genotypes.
Collapse
Affiliation(s)
- Jörn Lötsch
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital, Theodor Stern Kai 7, D-60590 Franfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Jiang XX, Fu HQ, Chao YH, Liu ZY. Expression characteristics of ENT1 in human hepatocellular carcinoma cells. Shijie Huaren Xiaohua Zazhi 2011; 19:2104-2108. [DOI: 10.11569/wcjd.v19.i20.2104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression characteristics of equilibrative nucleoside transporter 1 (ENT1) in human hepatocellular carcinoma (HCC) cell lines.
METHODS: Human HCC cell lines HuH-7, HepG2 and Hep3B, and the breast cancer cell line MCF7 were used in this study. ENT1 was localized by immunofluorescence staining. Before and after treatment with roscovitine, a cyclin-dependent kinase inhibitor, the expression of ENT1 mRNA in the above cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS: ENT1 could be detected on the membrane of the three human HCC cell lines. The expression levels of ENT1 mRNA in HCC cell lines were higher than that in the breast cancer cell line (HuH-7: 0.756 ± 0.019; HepG2: 0.469 ± 0.041; Hep3B: 0.580 ± 0.030; MCF-7: 0.356 ± 0.029). The expression level of ENT1 mRNA differed significantly among the three human HCC cell lines. Treatment with roscovitine increased the expression level of ENT1 mRNA (0.737 ± 0.017 vs 0.345 ± 0.027, P < 0.05).
CONCLUSION: ENT1 was localized to the membrane of HCC cells. The expression levels of ENT1 mRNA vary among different HCC cell lines. Treatment with roscovitine increased the expression level of ENT1 mRNA in HCC cell lines.
Collapse
|
43
|
Loccisano AE, Campbell JL, Butenhoff JL, Andersen ME, Clewell HJ. Comparison and evaluation of pharmacokinetics of PFOA and PFOS in the adult rat using a physiologically based pharmacokinetic model. Reprod Toxicol 2011; 33:452-467. [PMID: 21565266 DOI: 10.1016/j.reprotox.2011.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 01/13/2023]
Abstract
Perfluoroalkyl acid carboxylates and sulfonates (PFAAs) have many consumer and industrial applications. The persistence and widespread distribution of PFAAs have brought them under intense scrutiny. Limited PK data for PFAAs is available for humans; however, toxicological and pharmacokinetic data exist for rats, which can be useful for cross-species extrapolation. In this work, PBPK models were developed for adult male and female rats to describe the pharmacokinetics of PFOA and PFOS. The models contain a description of saturable renal resorption, free fraction of chemical in plasma, and saturable binding in liver. Both male and female rat models for each chemical were consistent with available PK data resulting from IV, oral, and dietary dosing regimens. Predicted plasma concentration curves followed trends observed in experimental data, and model predictions were within a factor of two of experimental values. PFOA and PFOS rat model output is sensitive to parameters governing renal resorption, indicating that renal resorption is responsible for the long-half life. These models, along with the PFAA gestation and lactation models published in this issue, will help address concerns about possible health effects due to PFAA exposure in the fetus and neonate and will be useful in comparing PK across life stages.
Collapse
Affiliation(s)
- Anne E Loccisano
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, United States.
| | - Jerry L Campbell
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, United States
| | - John L Butenhoff
- 3M Medical Department, Corporate Toxicology, 3M Center 220-2E-02, St. Paul, MN 55144, United States
| | - Melvin E Andersen
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, United States
| | - Harvey J Clewell
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, United States
| |
Collapse
|
44
|
Bhutia YD, Hung SW, Patel B, Lovin D, Govindarajan R. CNT1 expression influences proliferation and chemosensitivity in drug-resistant pancreatic cancer cells. Cancer Res 2011; 71:1825-35. [PMID: 21343396 DOI: 10.1158/0008-5472.can-10-2736] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overcoming the inherent chemoresistance of pancreatic cancers remains a major goal of therapeutic investigations in this disease. In this study, we discovered a role for the human concentrative nucleoside transporter-1 (hCNT1; SLC28A1), a high-affinity pyrimidine nucleoside transporter, in determining the chemosensitivity of human pancreatic cancer cells to gemcitabine, the drug used presently as a standard of care. Compared with normal pancreas and pancreatic ductal epithelial cells, hCNT1 expression was frequently reduced in pancreatic tumors and tumor cell lines. In addition, hCNT1-mediated (3)H-gemcitabine transport was lower in pancreatic cancer cell lines and correlated with cytotoxic IC(50) estimations of gemcitabine. In contrast to gemcitabine-sensitive pancreatic cancer cell lines, MIA PaCa-2, a gemcitabine-resistant pancreatic cancer cell line, exhibited relatively restrictive, cell cycle-dependent hCNT1 expression and transport. hCNT1 translation was suppressed in the late G1-enriched MIA PaCa-2 cell population possibly in an miRNA-dependent manner, which corresponded with the lowest hCNT1-mediated gemcitabine transport during this phase. Although hCNT1 protein was induced during G1/S transition, increased hCNT1 trafficking resulted in maximal cell surface recruitment and transport-overshoot in the G2/M phase-enriched cell population. hCNT1 protein was directed predominantly to proteasomal or lysosomal degradation in S or G2/M phase MIA PaCa-2 cells, respectively. Pharmacological inhibition of hCNT1 degradation moderately increased cell surface hCNT1 expression and cellular gemcitabine transport in MIA PaCa-2 cells. Constitutive hCNT1 expression reduced clonogenic survival of MIA PaCa-2 cells and steeply augmented gemcitabine transport and chemosensitization. In addition to supporting a putative tumor suppressor role for hCNT1, our findings identify hCNT1 as a potential candidate to render drug-resistant pancreatic cancer cells amenable to chemotherapy.
Collapse
Affiliation(s)
- Yangzom D Bhutia
- Department of Phamaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
45
|
Chen CF, Hsu EC, Lin KT, Tu PH, Chang HW, Lin CH, Chen YJ, Gu DL, Lin CH, Wu JY, Chen YT, Hsu MT, Jou YS. Overlapping high-resolution copy number alterations in cancer genomes identified putative cancer genes in hepatocellular carcinoma. Hepatology 2010; 52:1690-701. [PMID: 20799341 DOI: 10.1002/hep.23847] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Recurrent cancer genome aberrations are indicators of residing crucial cancer genes. Although recent advances in genomic technologies have led to a global view of cancer genome aberrations, the identification of target genes and biomarkers from the aberrant loci remains difficult. To facilitate searches of cancer genes in human hepatocellular carcinoma (HCC), we established a comprehensive protocol to analyze copy number alterations (CNAs) in cancer genomes using high-density single nucleotide polymorphism arrays with unpaired reference genomes. We identified common HCC genes by overlapping the shared aberrant loci in multiple cell lines with functional validation and clinical implications. A total of 653 amplicons and 57 homozygous deletions (HDs) were revealed in 23 cell lines. To search for novel HCC genes, we overlapped aberrant loci to uncover 6 HDs and 126 amplicons shared by at least two cell lines. We selected two novel genes, fibronectin type III domain containing 3B (FNDC3B) at the 3q26.3 overlapped amplicon and solute carrier family 29 member 2 (SLC29A2) at the 11q13.2 overlapped amplicon, to investigate their aberrations in HCC tumorigenesis. Aberrant up-regulation of FNDC3B and SLC29A2 occurred in multiple HCC data sets. Knockdown of these genes in amplified cells decreased cell proliferation, anchorage-independent growth, and tumor formation in xenograft models. Importantly, up-regulation of SLC29A2 in HCC tissues was significantly associated with advanced stages (P = 0.0031), vascular invasion (P = 0.0353), and poor patient survival (P = 0.0325). Overexpression of FNDC3B or SLC29A2 in unamplified HCC cells promoted cell proliferation through activation of the signal transducer and activator of transcription 3 signaling pathway. CONCLUSION A standardized genome-wide CNA analysis protocol using data from user-generated or public domains normalized with unpaired reference genomes has been established to facilitate high-throughput detection of cancer genes as significant target genes and biomarkers for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Chian-Feng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In vitro hepatocyte models represent very useful systems in both fundamental research and various application areas. Primary hepatocytes appear as the closest model for the liver in vivo. However, they are phenotypically unstable, have a limited life span and in addition, exhibit large interdonor variability when of human origin. Hepatoma cell lines appear as an alternative but only the HepaRG cell line exhibits various functions, including major cytochrome P450 activities, at levels close to those found in primary hepatocytes. In vitro hepatocyte models have brought a substantial contribution to the understanding of the biochemistry, physiology, and cell biology of the normal and diseased liver and in various application domains such as xenobiotic metabolism and toxicity, virology, parasitology, and more generally cell therapies. In the future, new well-differentiated hepatocyte cell lines derived from tumors or from either embryonic or adult stem cells might be expected and although hepatocytes will continue to be used in various fields, these in vitro liver models should allow marked advances, especially in cell-based therapies and predictive and mechanistic hepatotoxicity of new drugs and other chemicals. All models will benefit from new developments in throughput screening based on cell chips coupled with high-content imaging and in toxicogenomics technologies.
Collapse
|
47
|
Swift B, Pfeifer ND, Brouwer KLR. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 2010; 42:446-71. [PMID: 20109035 PMCID: PMC3097390 DOI: 10.3109/03602530903491881] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sandwich-cultured hepatocytes (SCH) are a powerful in vitro tool that can be utilized to study hepatobiliary drug transport, species differences in drug transport, transport protein regulation, drug-drug interactions, and hepatotoxicity. This review provides an up-to-date summary of the SCH model, including a brief history of, and introduction to, the use of SCH, as well as methodology to evaluate hepatobiliary drug disposition. A summary of the literature that has utilized this model to examine the interplay between drug-metabolizing enzymes and transport proteins, drug-drug interactions at the transport level, and hepatotoxicity as a result of altered hepatic transport also is provided.
Collapse
Affiliation(s)
- Brandon Swift
- University of North Carolina at Chapel Hill, 27599-7569, USA
| | | | | |
Collapse
|
48
|
Errasti-Murugarren E, Pastor-Anglada M. Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics 2010; 11:809-41. [PMID: 20504255 DOI: 10.2217/pgs.10.70] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article focuses on the different types of transporter proteins that have been implicated in the influx and efflux of nucleoside-derived drugs currently used in the treatment of cancer, viral infections (i.e., AIDS) and other conditions, including autoimmune and inflammatory diseases. Genetic variations in nucleoside-derived drug transporter proteins encoded by the gene families SLC15, SLC22, SLC28, SLC29, ABCB, ABCC and ABCG will be specifically considered. Variants known to affect biological function are summarized, with a particular emphasis on those for which clinical correlations have already been established. Given that relatively little is known regarding the genetic variability of the players involved in determining nucleoside-derived drug bioavailability, it is anticipated that major challenges will be faced in this area of research.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- The Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Center for Biomedical Research Network in the Subject Area of Liver and Digestive Diseases (CIBERehd), Barcelona 08071, Spain
| | | |
Collapse
|
49
|
Swift B, Brouwer KL. Influence of seeding density and extracellular matrix on bile Acid transport and mrp4 expression in sandwich-cultured mouse hepatocytes. Mol Pharm 2010; 7:491-500. [PMID: 19968322 PMCID: PMC3235796 DOI: 10.1021/mp900227a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was undertaken to examine the influence of seeding density, extracellular matrix and days in culture on bile acid transport proteins and hepatobiliary disposition of the model bile acid taurocholate. Mouse hepatocytes were cultured in a sandwich configuration on six-well Biocoat plates with an overlay of Matrigel (BC/MG) or gelled-collagen (BC/GC) for 3 or 4 days at seeding densities of 1.0, 1.25, or 1.5 x 10(6) cells/well. The lower seeding densities of 1.0 and 1.25 x 10(6) cells/well resulted in good hepatocyte morphology and bile canalicular network formation, as visualized by 5-(and 6)-carboxy-2',7'-dichlorofluorescein accumulation. In general, taurocholate cellular accumulation tended to increase as a function of seeding density in BC/GC; cellular accumulation was significantly increased in hepatocytes cultured in BC/MG compared to BC/GC at the same seeding density on both days 3 and 4 of culture. In general, in vitro intrinsic biliary clearance of taurocholate was increased at higher seeding densities. Levels of bile acid transport proteins on days 3 and 4 were not markedly influenced by seeding density or extracellular matrix except for multidrug resistance protein 4 (Mrp4), which was inversely related to seeding density. Mrp4 levels decreased approximately 2- to 3-fold between seeding densities of 1.0 x 10(6) and 1.25 x 10(6) cells/well regardless of extracellular matrix; an additional approximately 3- to 5-fold decrease in Mrp4 protein was noted in BC/GC between seeding densities of 1.25 x 10(6) and 1.5 x 10(6) cells/well. Results suggest that seeding density, extracellular matrix and days in culture profoundly influence Mrp4 expression in sandwich-cultured mouse hepatocytes. Primary mouse hepatocytes seeded in a BC/MG configuration at densities of 1.25 x 10(6) cells/well and 1.0 x 10(6), and cultured for 3 days, yielded optimal transport based on the probes studied. This work demonstrates the applicability of the sandwich-cultured model to mouse hepatocytes.
Collapse
Affiliation(s)
- Brandon Swift
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7569
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7569
| |
Collapse
|
50
|
Vispo E, Labarga P, Guardiola JM, Barreiro P, Miralles C, Rubio R, Miralles P, Aguirrebengoa K, Portu J, Morello J, Rodriguez-Novoa S, Soriano V. Preemptive erythropoietin plus high ribavirin doses to increase rapid virological responses in HIV patients treated for chronic hepatitis C. AIDS Res Hum Retroviruses 2010; 26:419-24. [PMID: 20377423 DOI: 10.1089/aid.2009.0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic hepatitis C affects one-third of HIV(+) patients worldwide. High ribavirin (RBV) exposure is crucial to maximize the response to hepatitis C therapy in this population, although it may increase the risk for hemolytic anemia. PERICO is a prospective multicenter trial in which HIV/HCV-coinfected patients are randomized to receive peginterferon (pegIFN) alfa-2a 180 microg/week plus either weight-based RBV (1000-1200 mg/day) or RBV 2000 mg/day, the latest along with erythropoietin alfa (EPO) 30,000 IU/week from the first day until week 4. A total of 149 patients were assessed in a planned interim analysis at week 4. In both arms, 22% of patients achieved negative HCV-RNA (rapid virological response, RVR). Multivariate analysis [OR (IC 95%), p] showed that factors associated with RVR were HCV genotypes 2/3 vs. 1/4 [20 (5-100), <0.01] and baseline HCV-RNA [0.16 (0.07-0.37) per log IU/ml, <0.01]. The occurrence of severe anemia (hemoglobin <10 g/dl) did not differ when comparing RBV vs. high RBV + EPO (7% vs. 3%; p = 0.4). Moreover, RBV plasma trough levels were comparable at week 4 (1.9 vs. 2.4 microg/ml; p = 0.2). Use of high RBV doses with preemptive EPO during the first 4 weeks of hepatitis C therapy is safe, but fails to enhance significantly RBV plasma exposure and RVR rates. Extensive intraerythrocyte accumulation of RBV following boosted production of red blood cells by EPO could explain these findings.
Collapse
|