1
|
Hong X, Li H, Lin Y, Luo L, Xu W, Kang J, Li J, Huang B, Xu Y, Pan H, Guo S. Efficacy and potential therapeutic mechanism of Weiwei decoction on Spasmolytic polypeptide-expressing metaplasia in Helicobacter pylori-infected and Atp4a-knockout mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117062. [PMID: 37598768 DOI: 10.1016/j.jep.2023.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spasmolytic polypeptide-expressing metaplasia (SPEM) is characterized by mucus cell morphologies at the base of gastric glands, which is considered advanced SPEM when accompanied with an increase in transcripts associated with intestinal-type gastric cancer. Weiwei decoction (WWD) was modified from "Si-Jun-Zi Tang," which has been used for thousands of years in China against gastric atrophy and metaplasia. AIM OF THE STUDY To investigate the effects and potential mechanisms of WWD against advanced SPEM. MATERIALS AND METHODS Liquid chromatography-mass spectrometry was employed to analyze the constituents of WWD. Five-month-infected Helicobacter pylori (H. pylori) Sydney strain 1 C57BL/6J mice and 6-week-old ATPase H+/K+ transporting subunit alpha-knockout mice (Atp4a-/-) were given folic acid (1.95 mg/kg) or WWD (13.65 g/kg, 27.30 g/kg, 54.60 g/kg) by gavage for one month. RESULTS WWD demonstrated beneficial effects on gastric mucosal pathology and mucus secretion. In H. pylori-infected mice, WWD effectively reduced the expression of GSII and inhibited the mRNA levels of key markers associated with advanced SPEM, including Clu, Cftr, Wfdc2, Dmbt1, and Gpx2. Similarly, in Atp4a-/- mice, WWD significantly decreased the expressions of GSII and Clusterin, and inhibited the mRNA levels of Wfdc2, Cftr, Dmbt1, and Gpx2. Notably, WWD restored the expression of markers for chief cells (PGC, GIF) and parietal cells (ATP4A), particularly in the medium- and high-dose groups, indicating its potential anti-atrophy effect on H. pylori-infected and Atp4a-/- mice. WWD administration resulted in a decline in TFF2 expression to baseline levels, suggesting that the mucous protection mediated by TFF2 was unaffected. Furthermore, the infiltration of CD163+F4/80+ M2 macrophages in the gastric mucosa of H. pylori-infected mice was reduced after WWD treatment, indicating a potential modulatory role of WWD on M2 macrophages. CONCLUSION WWD exerted protective effects against SPEM in H. pylori-infected and Atp4a-/- mice. The optimal doses of WWD were found to be medium doses in H. pylori-infected mice and high doses in Atp4a-/- mice. These effects include inhibition of transcripts associated with intestinal-type gastric adenocarcinoma, restoration of ATP4A and PGC expression, and reduction of M2 macrophage infiltration. These findings provide valuable insights into the therapeutic effects of WWD on advanced SPEM and highlight its potential as a treatment option.
Collapse
Affiliation(s)
- Xinxin Hong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Haiwen Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yandan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liuru Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weijun Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jianyuan Kang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jingwei Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Huafeng Pan
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shaoju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Hodges P, Kelly P, Kayamba V. Helicobacter pylori infection and hypochlorhydria in Zambian adults and children: A secondary data analysis. PLoS One 2021; 16:e0256487. [PMID: 34449790 PMCID: PMC8396721 DOI: 10.1371/journal.pone.0256487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
Background Hypochlorhydria (gastric pH >4) increases susceptibility to diarrhoea, iron deficiency, and gastric cancer. We sought to clarify the prevalence of this condition and its predisposing factors in Zambia by pooling data from previous studies conducted in hospital and community settings. Methods Gastric pH was measured in participants from five separate studies by collecting gastric aspirate from fasted adults and children under 3 years of age undergoing gastroscopy. Gastric pH was correlated with serological testing for Human Immunodeficiency Virus (HIV) and Helicobacter pylori (H. pylori) infections. Results We studied 597 individuals (487 adults and 110 children). Hypochlorhydria was present in 53% of adults and 31% of children. HIV infection was detected in 41% of adults and 11% of children. H. pylori serology was available for 366 individuals: 93% of adults and 6% of children were seropositive. In univariate analysis, hypochlorhydria was significantly associated with HIV seropositivity (OR 1.7; 95% CI 1.2–2.4; p = 0.004) and H. pylori antibody seropositivity (OR 4.9; 95% CI 2.8–8.6; p<0.0001), and with advancing age in HIV negative individuals (p = 0.0001). In multivariable analysis, only H. pylori was associated with hypochlorhydria (OR 4.0; 95% CI 2.2–7.2; p<0.0001) while excluding possible exposure to proton pump inhibitors. Conclusions Hypochlorhydria is common in our population, with H. pylori being the dominant factor. Only young HIV seronegative individuals had a low prevalence of hypochlorhydria. This may have implications for the risk of other health conditions including gastric cancer.
Collapse
Affiliation(s)
- Phoebe Hodges
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine Department of Internal Medicine, Lusaka, Zambia
- Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul Kelly
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine Department of Internal Medicine, Lusaka, Zambia
- Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Violet Kayamba
- Tropical Gastroenterology & Nutrition group, University of Zambia School of Medicine Department of Internal Medicine, Lusaka, Zambia
| |
Collapse
|
3
|
Kim HJ, Kim N, Park JH, Choi S, Shin CM, Lee OJ. Helicobacter pylori Eradication Induced Constant Decrease in Interleukin- 1B Expression over More Than 5 Years in Patients with Gastric Cancer and Dysplasia. Gut Liver 2021; 14:735-745. [PMID: 32703913 PMCID: PMC7667922 DOI: 10.5009/gnl19312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims Helicobacter pylori (Hp) suppresses gastric acid secretion by repressing the expression of the H+, K+-adenosine triphosphatase (H+, K+-ATPase) and stimulating interleukin-1 (IL-1β; encoded by IL-1B). This study was aimed at evaluating the expression of the H+, K+-ATPase and IL-1β after Hp eradication. Methods Two hundred twenty-one subjects were categorized as Hp-negative (n=84) or Hp-positive (n=137) according to the results of Hp tests (histology, CLO test, culturing, and serology). The mRNA expression levels of IL-1B and ATP4A (the gene encoding the α-subunit of H+, K+-ATPase) were measured in biopsy specimens from the gastric corpus using real-time polymerase chain reaction. Results The Hp-positive group had significantly higher IL-1B mRNA levels than the whole Hp-negative group and the intestinal metaplasia (IM)-negative subgroup. After Hp eradication, the difference between the Hp-negative and Hp-eradicated groups disappeared, including in the IM-negative subgroup. The IL-1B mRNA level did not significantly change from the baseline level. Within the gastric cancer (GC)/dysplasia subgroup, the IL-1B mRNA levels at 1, 2, 3–4, and ≥5 years after Hp eradication were significantly lower than the baseline level. The difference in ATP4A mRNA levels between the Hp-negative and Hp-positive groups was not significant at baseline, and the changes in the ATP4A mRNA levels after Hp eradication compared to the baseline levels in the whole group and subgroups stratified by the presence of IM and GC/dysplasia were not significant. Conclusions Infection with Hp has an effect on the level of IL-1B mRNA in IM-negative subjects. The continuous reduction in the IL-1B mRNA level in patients with GC/dysplasia after Hp eradication contributes to the prevention of metachronous GC after Hp eradication.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, Korea
| | - Sunkyu Choi
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, Korea
| | - Ok Jae Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|
4
|
Engevik AC, Kaji I, Goldenring JR. The Physiology of the Gastric Parietal Cell. Physiol Rev 2020; 100:573-602. [PMID: 31670611 PMCID: PMC7327232 DOI: 10.1152/physrev.00016.2019] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.
Collapse
Affiliation(s)
- Amy C Engevik
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Departments of Surgery and of Cell and Developmental Biology and the Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt University Medical Center and the Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
5
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Modification of the Gastric Mucosal Microbiota by a Strain-Specific Helicobacter pylori Oncoprotein and Carcinogenic Histologic Phenotype. mBio 2019; 10:mBio.00955-19. [PMID: 31138752 PMCID: PMC6538789 DOI: 10.1128/mbio.00955-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microbial communities are essential for the maintenance of human health, and when these communities are altered, hosts can become susceptible to inflammation and disease. Dysbiosis contributes to gastrointestinal cancers, and specific bacterial species are associated with this phenotype. This study uses a robust and reproducible animal model to demonstrate that H. pylori infection induces gastric dysbiosis in a cagA-dependent manner and further that dysbiosis and altered microbial community structure parallel the severity of H. pylori-induced gastric injury. Ultimately, such models of H. pylori infection and cancer that can effectively evaluate multiple determinants simultaneously may yield effective strategies for manipulating the gastric microbiota to prevent the development of gastric cancer. Helicobacter pylori is the strongest risk factor for gastric adenocarcinoma; however, most infected individuals never develop this malignancy. Strain-specific microbial factors, such as the oncoprotein CagA, as well as environmental conditions, such as iron deficiency, augment cancer risk. Importantly, dysbiosis of the gastric microbiota is also associated with gastric cancer. To investigate the combinatorial effects of these determinants in an in vivo model of gastric cancer, Mongolian gerbils were infected with the carcinogenic cag+H. pylori strain 7.13 or a 7.13 cagA isogenic mutant, and microbial DNA extracted from gastric tissue was analyzed by 16S rRNA sequencing. Infection with H. pylori significantly increased gastric inflammation and injury, decreased α-diversity, and altered microbial community structure in a cagA-dependent manner. The effect of iron deficiency on gastric microbial communities was also investigated within the context of infection. H. pylori-induced injury was augmented under conditions of iron deficiency, but despite differences in gastric pathology, there were no significant differences in α- or β-diversity, phyla, or operational taxonomic unit (OTU) abundance among infected gerbils maintained on iron-replete or iron-depleted diets. However, when microbial composition was stratified based solely on the severity of histologic injury, significant differences in α- and β-diversity were present among gerbils harboring premalignant or malignant lesions compared to gerbils with gastritis alone. This study demonstrates that H. pylori decreases gastric microbial diversity and community structure in a cagA-dependent manner and that as carcinogenesis progresses, there are corresponding alterations in community structure that parallel the severity of disease.
Collapse
|
7
|
Helicobacter pylori-Induced Changes in Gastric Acid Secretion and Upper Gastrointestinal Disease. Curr Top Microbiol Immunol 2017; 400:227-252. [PMID: 28124156 DOI: 10.1007/978-3-319-50520-6_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Appropriate management of Helicobacter pylori infection of the human stomach is evolving and remains a significant clinical challenge. Acute infection results in hypochlorhydria, whereas chronic infection results in either hypo- or hyperchlorhydria, depending upon the anatomic site of infection. Acute hypochlorhydria facilitates survival of the bacterium and its infection of the stomach. Interestingly, most patients chronically infected with H. pylori manifest a pangastritis with reduced acid secretion due to bacterial virulence factors, inflammatory cytokines, and various degrees of gastric atrophy. While these patients are predisposed to develop gastric adenocarcinoma (~1%), there is increasing evidence from population studies that they are also protected from gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), and esophageal adenocarcinoma (EAC). Eradication of H. pylori, in these patients, may provoke GERD in predisposed individuals and may be a contributory factor for the rising incidence of refractory GERD, BE, and EAC observed in Westernized societies. Only ~10% of chronically infected patients, mainly the young, manifest an antral predominant gastritis with increased acid secretion due to a decrease in somatostatin and increase in gastrin secretion; these patients are predisposed to develop peptic ulcer disease. H. pylori-induced changes in acid secretion, in particular hypochlorhydria, may allow ingested microorganisms to survive transit through the stomach and colonize the distal intestine and colon. Such perturbation of gut microbiota, i.e. dysbiosis, may influence human health and disease.
Collapse
|
8
|
He C, Yang Z, Lu N. Imbalance of Gastrointestinal Microbiota in the Pathogenesis of Helicobacter pylori-Associated Diseases. Helicobacter 2016; 21:337-48. [PMID: 26876927 DOI: 10.1111/hel.12297] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of new nucleotide sequencing techniques and advanced bioinformatics tools has opened the field for studying the diversity and complexity of the gastrointestinal microbiome independent of traditional cultural methods. Owing largely to the gastric acid barrier, the human stomach was long thought to be sterile. The discovery of Helicobacter pylori, the gram-negative bacterium that infects upwards of 50% of the global population, has started a major paradigm shift in our understanding of the stomach as an ecologic niche for bacteria. Recent sequencing analysis of gastric microbiota showed that H. pylori was not alone and the interaction of H. pylori with those microorganisms might play a part in H. pylori-associated diseases such as gastric cancer. In this review, we summarize the available literature about the changes of gastrointestinal microbiota after H. pylori infection in humans and animal models, and discuss the possible underlying mechanisms including the alterations of the gastric environment, the secretion of hormones and the degree of inflammatory response. In general, information regarding the composition and function of gastrointestinal microbiome is still in its infancy, future studies are needed to elucidate whether and to what extent H. pylori infection perturbs the established microbiota. It is assumed that clarifying the role of gastrointestinal communities in H. pylori-associated diseases will provide an opportunity for translational application as a biomarker for the risk of serious H. pylori diseases and perhaps identify specific organisms for therapeutic eradication.
Collapse
Affiliation(s)
- Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
9
|
Hammond CE, Beeson C, Suarez G, Peek RM, Backert S, Smolka AJ. Helicobacter pylori virulence factors affecting gastric proton pump expression and acid secretion. Am J Physiol Gastrointest Liver Physiol 2015; 309:G193-201. [PMID: 26045613 PMCID: PMC4525105 DOI: 10.1152/ajpgi.00099.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/28/2015] [Indexed: 01/31/2023]
Abstract
Acute Helicobacter pylori infection of gastric epithelial cells and human gastric biopsies represses H,K-ATPase α subunit (HKα) gene expression and inhibits acid secretion, causing transient hypochlorhydria and supporting gastric H. pylori colonization. Infection by H. pylori strains deficient in the cag pathogenicity island (cag PAI) genes cagL, cagE, or cagM, which do not transfer CagA into host cells or induce interleukin-8 secretion, does not inhibit HKα expression, nor does a cagA-deficient strain that induces IL-8. To test the hypothesis that virulence factors other than those mediating CagA translocation or IL-8 induction participate in HKα repression by activating NF-κB, AGS cells transfected with HKα promoter-Luc reporter constructs containing an intact or mutated NF-κB binding site were infected with wild-type H. pylori strain 7.13, isogenic mutants lacking cag PAI genes responsible for CagA translocation and/or IL-8 induction (cagA, cagζ, cagε, cagZ, and cagβ), or deficient in genes encoding two peptidoglycan hydrolases (slt and cagγ). H. pylori-induced AGS cell HKα promoter activities, translocated CagA, and IL-8 secretion were measured by luminometry, immunoblotting, and ELISA, respectively. Human gastric biopsy acid secretion was measured by microphysiometry. Taken together, the data showed that HKα repression is independent of IL-8 expression, and that CagA translocation together with H. pylori transglycosylases encoded by slt and cagγ participate in NF-κB-dependent HKα repression and acid inhibition. The findings are significant because H. pylori factors other than CagA and IL-8 secretion are now implicated in transient hypochlorhydria which facilitates gastric colonization and potential triggering of epithelial progression to neoplasia.
Collapse
Affiliation(s)
- Charles E. Hammond
- 1Department of Medicine, Medical University of South Carolina, Charleston, South Carolina,
| | - Craig Beeson
- 2Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina;
| | - Giovanni Suarez
- 3Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Richard M. Peek
- 3Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | | | - Adam J. Smolka
- 1Department of Medicine, Medical University of South Carolina, Charleston, South Carolina,
| |
Collapse
|
10
|
Yan Z, Luke BT, Tsang SX, Xing R, Pan Y, Liu Y, Wang J, Geng T, Li J, Lu Y. Identification of gene signatures used to recognize biological characteristics of gastric cancer upon gene expression data. Biomark Insights 2014; 9:67-76. [PMID: 25210421 PMCID: PMC4149392 DOI: 10.4137/bmi.s13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023] Open
Abstract
High-throughput gene expression microarrays can be examined by machine-learning algorithms to identify gene signatures that recognize the biological characteristics of specific human diseases, including cancer, with high sensitivity and specificity. A previous study compared 20 gastric cancer (GC) samples against 20 normal tissue (NT) samples and identified 1,519 differentially expressed genes (DEGs). In this study, Classification Information Index (CII), Information Gain Index (IGI), and RELIEF algorithms are used to mine the previously reported gene expression profiling data. In all, 29 of these genes are identified by all three algorithms and are treated as GC candidate biomarkers. Three biomarkers, COL1A2, ATP4B, and HADHSC, are selected and further examined using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) staining in two independent sets of GC and normal adjacent tissue (NAT) samples. Our study shows that COL1A2 and HADHSC are the two best biomarkers from the microarray data, distinguishing all GC from the NT, whereas ATP4B is diagnostically significant in lab tests because of its wider range of fold-changes in expression. Herein, a data-mining model applicable for small sample sizes is presented and discussed. Our result suggested that this mining model may be useful in small sample-size studies to identify putative biomarkers and potential biological features of GC.
Collapse
Affiliation(s)
- Zhi Yan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Brian T Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Rui Xing
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Yuanming Pan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Yixuan Liu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Jinlian Wang
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Tao Geng
- College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, People’s Republic of China
| | - Jiangeng Li
- College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, People’s Republic of China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Highly accurate two-gene signature for gastric cancer. Med Oncol 2013; 30:584. [DOI: 10.1007/s12032-013-0584-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
|
12
|
Zaki M, Coudron PE, McCuen RW, Harrington L, Chu S, Schubert ML. H. pylori acutely inhibits gastric secretion by activating CGRP sensory neurons coupled to stimulation of somatostatin and inhibition of histamine secretion. Am J Physiol Gastrointest Liver Physiol 2013; 304:G715-22. [PMID: 23392237 DOI: 10.1152/ajpgi.00187.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute Helicobacter pylori infection produces hypochlorhydria. The decrease in acid facilitates survival of the bacterium and its colonization of the stomach. The present study was designed to identify the pathways in oxyntic mucosa by which acute H. pylori infection inhibits acid secretion. In rat fundic sheets in an Ussing chamber, perfusion of the luminal surface with H. pylori in spent broth (10(3)-10(8) cfu/ml) or spent broth alone (1:10(5) to 1:10(0) final dilution) caused a concentration-dependent increase in somatostatin (SST; maximal: 200 ± 20 and 194 ± 9% above basal; P < 0.001) and decrease in histamine secretion (maximal: 45 ± 5 and 48 ± 2% below basal; P < 0.001); the latter was abolished by SST antibody, implying that changes in histamine secretion reflected changes in SST secretion. Both responses were abolished by the axonal blocker tetrodotoxin (TTX), the sensory neurotoxin capsaicin, or the CGRP antagonist CGRP8-37, implying that the reciprocal changes in SST and histamine secretion were due to release of CGRP from sensory neurons. In isolated rabbit oxyntic glands, H. pylori inhibited basal and histamine-stimulated acid secretion in a concentration-dependent manner; the responses were not affected by TTX or SST antibody, implying that H. pylori can directly inhibit parietal cell function. In conclusion, acute administration of H. pylori is capable of inhibiting acid secretion directly as well as indirectly by activating intramural CGRP sensory neurons coupled to stimulation of SST and inhibition of histamine secretion. Activation of neural pathways provides one explanation as to how initial patchy colonization of the superficial gastric mucosa by H. pylori can acutely inhibit acid secretion.
Collapse
Affiliation(s)
- Muhammad Zaki
- Department of Medicine, Virginia Commonwealth University's Medical College of Virginia, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
13
|
von Rosenvinge EC, O'May GA, Macfarlane S, Macfarlane GT, Shirtliff ME. Microbial biofilms and gastrointestinal diseases. Pathog Dis 2013; 67:25-38. [PMID: 23620117 DOI: 10.1111/2049-632x.12020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022] Open
Abstract
The majority of bacteria live not planktonically, but as residents of sessile biofilm communities. Such populations have been defined as 'matrix-enclosed microbial accretions, which adhere to both biological and nonbiological surfaces'. Bacterial formation of biofilm is implicated in many chronic disease states. Growth in this mode promotes survival by increasing community recalcitrance to clearance by host immune effectors and therapeutic antimicrobials. The human gastrointestinal (GI) tract encompasses a plethora of nutritional and physicochemical environments, many of which are ideal for biofilm formation and survival. However, little is known of the nature, function, and clinical relevance of these communities. This review summarizes current knowledge of the composition and association with health and disease of biofilm communities in the GI tract.
Collapse
Affiliation(s)
- Erik C von Rosenvinge
- Department of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
14
|
Smolka AJ, Backert S. How Helicobacter pylori infection controls gastric acid secretion. J Gastroenterol 2012; 47:609-18. [PMID: 22565637 DOI: 10.1007/s00535-012-0592-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 02/06/2023]
Abstract
Infection of the human stomach mucosa by Helicobacter pylori induces strong inflammatory responses and a transitory hypochlorhydria which can progress in ~2 % of patients to atrophic gastritis, dysplasia, or gastric adenocarcinoma. H. pylori infection of gastric biopsies or cultured gastric epithelial cells in vitro represses the activity of endogenous or transfected promoter of the alpha-subunit (HKα) of gastric H,K-adenosine triphosphatase (H,K-ATPase), the parietal cell enzyme mediating acid secretion. Some mechanistic details of H. pylori-mediated repression of HKα and ensuing hypochlorhydria have been recently elucidated. H. pylori strains expressing a type IV secretion system (T4SS) encoded by the cag pathogenicity island are known to upregulate the transcription factor nuclear factor (NF)-κB. The NF-κB-binding regions in the HKα promoter were identified and shown to repress its transcriptional activity. Interaction studies have indicated that although active phosphorylated NF-κB p65 is present in infected cells, an NF-κB p50/p65 heterodimeric complex fails to bind to the HKα promoter. Point mutations at -159 and -161 bp in the HKα promoter NF-κB binding sequence prevent the binding of NF-κB p50 and prevent H. pylori repression of point-mutated HKα promoter activity. The T4SS factors CagL, CagE, CagM, and possibly CagA and the lytic transglycosylase Slt, are mechanistically involved in NF-κB activation and repression of HKα transcription. CagL, a T4SS pilus component, binds to the integrin α(5)β(1) to mediate translocation of virulence factors into the host cell and initiate signaling. During acute H. pylori infection, CagL dissociates ADAM 17 (a disintegrin and a metalloprotease 17) from the integrin α(5)β(1) complex and stimulates ADAM17-dependent release of heparin-binding epidermal growth factor (HB-EGF), EGF receptor (EGFR) stimulation, ERK1/2 kinase activation, and NF-κB-mediated repression of HKα. These studies suggest that H. pylori inhibits HKα gene expression by an integrin α(5)β(1) → ADAM17 → HB-EGF → EGFR → ERK1/2 → NF-κB pathway mediating NF-κB p50 homodimer binding to the HKα promoter. Here we review the molecular basis and recent progress of this novel pathogen-dependent mechanism of H,K-ATPase inhibition, which contributes significantly to our current understanding of H. pylori pathophysiology.
Collapse
Affiliation(s)
- Adam J Smolka
- Department of Medicine, Medicine/Gastro CSB 921E, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
15
|
Wang AY, Peura DA. The prevalence and incidence of Helicobacter pylori-associated peptic ulcer disease and upper gastrointestinal bleeding throughout the world. Gastrointest Endosc Clin N Am 2011; 21:613-35. [PMID: 21944414 DOI: 10.1016/j.giec.2011.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Due to heightened awareness regarding testing for and eradication of infection, the prevalence and incidence of H pylori infection (and by extension the prevalence and incidence of peptic ulcer disease) appear to have declined in recent years. However, antimicrobial resistance is mounting and traditional clarithromycin- or metronidazole-containing triple therapies may no longer be highly effective at eradicating the infection. Combined bismuth- and metronidazole-containing quadruple therapy or sequential 4-drug therapy may be better choices for first-line treatment against this unique pathogen that is ideally suited to survive in the human stomach.
Collapse
Affiliation(s)
- Andrew Y Wang
- Division of Gastroenterology and Hepatology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
16
|
Saha A, Backert S, Hammond CE, Gooz M, Smolka AJ. Helicobacter pylori CagL activates ADAM17 to induce repression of the gastric H, K-ATPase alpha subunit. Gastroenterology 2010; 139:239-48. [PMID: 20303353 PMCID: PMC2902712 DOI: 10.1053/j.gastro.2010.03.036] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Infection with Helicobacter pylori represses expression of the gastric H, K-adenosine triphosphatase alpha-subunit (HKalpha), which could contribute to transient hypochlorhydria. CagL, a pilus protein component of the H pylori type IV secretion system, binds to the integrin alpha(5)beta1 to mediate translocation of virulence factors into the host cell and initiate signaling. alpha(5)beta1 binds a disintegrin and metalloprotease (ADAM) 17, a metalloenzyme that catalyzes ectodomain shedding of receptor tyrosine kinase ligands. We investigated whether H pylori-induced repression of HKalpha is mediated by CagL activation of ADAM17 and release of heparin-binding epidermal growth factor (HB-EGF). METHODS HKalpha promoter and ADAM17 activity were measured in AGS gastric epithelial cells transfected with HKalpha promoter-reporter constructs or ADAM17-specific small interfering RNAs and infected with H pylori. HB-EGF secretion was measured by enzyme-linked immunosorbent assay analysis, and ADAM17 interaction with integrins was investigated by coimmunoprecipitation analyses. RESULTS Infection of AGS cells with wild-type H pylori or an H pylori cagL-deficient isogenic mutant that also contained a wild-type version of cagL (P12DeltacagL/cagL) repressed HKalpha promoter-Luc reporter activity and stimulated ADAM17 activity. Both responses were inhibited by point mutations in the nuclear factor-kappaB binding site of HKalpha or by infection with P12DeltacagL. Small interfering RNA-mediated silencing of ADAM17 in AGS cells inhibited the repression of wild-type HKalpha promoter and reduced ADAM17 activity and HB-EGF production, compared to controls. Coimmunoprecipitation studies of AGS lysates showed that wild-type H pylori disrupted ADAM17-alpha5beta1 complexes. CONCLUSIONS During acute H pylori infection, CagL dissociates ADAM17 from the integrin alpha(5)beta1 and activates ADAM17-dependent, nuclear factor-kappaB-mediated repression of HKalpha. This might contribute to transient hypochlorhydria in patients with H pylori infection.
Collapse
Affiliation(s)
- Arindam Saha
- Department of Medicine, University of California, San Diego
| | - Steffen Backert
- School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | | | - Monika Gooz
- Co-corresponding authors: Monika Gooz, MD, PhD, Medicine/Nephrology STB 409, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29403, 843 789 6771, . Adam J. Smolka, PhD, Medicine/Gastro CSB 921E, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, 843 792 3527,
| | - Adam J. Smolka
- Co-corresponding authors: Monika Gooz, MD, PhD, Medicine/Nephrology STB 409, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29403, 843 789 6771, . Adam J. Smolka, PhD, Medicine/Gastro CSB 921E, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, 843 792 3527,
| |
Collapse
|
17
|
Schubert ML, D. Kaunitz J. Gastric Secretion. SLEISENGER AND FORDTRAN'S GASTROINTESTINAL AND LIVER DISEASE 2010:817-832.e7. [DOI: 10.1016/b978-1-4160-6189-2.00049-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Saha A, Hammond CE, Gooz M, Smolka AJ. The role of Sp1 in IL-1beta and H. pylori-mediated regulation of H,K-ATPase gene transcription. Am J Physiol Gastrointest Liver Physiol 2008; 295:G977-86. [PMID: 18772363 PMCID: PMC2584829 DOI: 10.1152/ajpgi.90338.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori infection of the gastric body induces transient hypochlorhydria and contributes to mucosal progression toward gastric carcinoma. Acid secretion is mediated by parietal cell H,K-ATPase, in which the catalytic alpha-subunit (HKalpha) promoter activity in transfected gastric epithelial [gastric adenocarcinoma (AGS)] cells is repressed by H. pylori through NF-kappaB p50 homodimer binding to the promoter. IL-1beta, an acid secretory inhibitor whose mucosal level is increased by H. pylori, upregulates HKalpha promoter activity in AGS cells. Because IL-1beta also activates NF-kappaB signaling, we investigated disparate HKalpha regulation by H. pylori and IL-1beta, testing the hypothesis that IL-1beta-induced HKalpha promoter activation is mediated by the transcription factor Sp1. DNase I footprinting revealed Sp1 binding to the HKalpha promoter at -56 to -39 bp. IL-1beta stimulated the activity of three HKalpha promoter constructs containing NF-kappaB and Sp1 sites transfected into AGS cells and also stimulated a construct containing only an Sp1 site. This stimulation was abrogated by mutating the HKalpha promoter Sp1 binding site. Gelshift assays showed that IL-1beta increased Sp1 but not p50 binding to cognate HKalpha probes and that Sp1 also interacts with an HKalpha NF-kappaB site when bound to its cognate HKalpha cis-response element. H. pylori did not augment Sp1 binding to an HKalpha Sp1 probe, and small interfering RNA-mediated knockdown of Sp1 expression abrogated IL-1beta-induced HKalpha promoter stimulation. We conclude that IL-1beta upregulates HKalpha gene transcription by inducing Sp1 binding to HKalpha Sp1 and NF-kappaB sites and that the H. pylori perturbation of HKalpha gene expression is independent of Sp1-mediated basal HKalpha transcription.
Collapse
Affiliation(s)
- Arindam Saha
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Charles E. Hammond
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monika Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Adam J. Smolka
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
19
|
Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology 2008; 134:1842-60. [PMID: 18474247 DOI: 10.1053/j.gastro.2008.05.021] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/28/2008] [Indexed: 12/16/2022]
Abstract
Recent milestones in the understanding of gastric acid secretion and treatment of acid-peptic disorders include the (1) discovery of histamine H(2)-receptors and development of histamine H(2)-receptor antagonists, (2) identification of H(+)K(+)-ATPase as the parietal cell proton pump and development of proton pump inhibitors, and (3) identification of Helicobacter pylori as the major cause of duodenal ulcer and development of effective eradication regimens. This review emphasizes the importance and relevance of gastric acid secretion and its regulation in health and disease. We review the physiology and pathophysiology of acid secretion as well as evidence regarding its inhibition in the management of acid-related clinical conditions.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Department of Medicine, Division of Gastroenterology, Virginia Commonwealth University's Medical College of Virginia, McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, USA.
| | | |
Collapse
|
20
|
Saha A, Hammond CE, Trojanowska M, Smolka AJ. Helicobacter pylori-induced H,K-ATPase alpha-subunit gene repression is mediated by NF-kappaB p50 homodimer promoter binding. Am J Physiol Gastrointest Liver Physiol 2008; 294:G795-807. [PMID: 18202112 DOI: 10.1152/ajpgi.00431.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Infection of human gastric body mucosa by the gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and a transitory hypochlorhydria that progresses in approximately 2% of patients to atrophic gastritis, dysplasia, and gastric adenocarcinoma. We have previously shown that H. pylori infection of cultured gastric epithelial cells (AGS) represses the activity of the transfected alpha-subunit (HKalpha) promoter of H,K-ATPase, the parietal cell enzyme mediating acid secretion. However, the mechanistic details of H. pylori-mediated repression of HKalpha and ensuing hypochlorhydria are unknown. H. pylori is known to upregulate the transcription factor NF-kappaB through the ERK1/2 MAPK pathway. We identified NF-kappaB-binding regions in the HKalpha promoter and found that H. pylori inoculation of AGS cells increased NF-kappaB p50 binding to the transfected HKalpha promoter and repressed its transcriptional activity. Immunoblot and DNA-protein interaction studies showed that although active phosphorylated NF-kappaB p65 is present in H. pylori-infected AGS cells, an NF-kappaB p50/p65 heterodimeric complex fails to bind to the HKalpha promoter. Point mutations at -159 and -161 bp in the HKalpha promoter NF-kappaB binding sequence prevented binding of NF-kappaB p50 and prevented H. pylori repression of point-mutated HKalpha promoter activity in transfected AGS cells. Small interfering RNA-mediated knockdown of NF-kappaB p50 in H. pylori-infected AGS cells also abrogated H. pylori-induced HKalpha repression, whereas NF-kappaB p65 knockdown did not. We conclude that H. pylori inhibits HKalpha gene expression by ERK1/2-mediated NF-kappaB p50 homodimer binding to the HKalpha promoter. This study identifies a novel pathogen-dependent mechanism of H,K-ATPase inhibition and contributes to understanding of H. pylori pathophysiology.
Collapse
Affiliation(s)
- Arindam Saha
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
21
|
Saha A, Hammond CE, Gooz M, Smolka AJ. IL-1beta modulation of H,K-ATPase alpha-subunit gene transcription in Helicobacter pylori infection. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1055-61. [PMID: 17204545 DOI: 10.1152/ajpgi.00338.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori infection of the human gastric body induces hypochlorhydria by perturbing acid secretion. H. pylori inhibits parietal cell H,K-ATPase alpha-subunit (HKalpha) gene and protein expression, providing a mechanistic basis for clinical hypochlorhydria. Given that H. pylori infection increases gastric mucosal IL-1beta, an acid secretory inhibitor, we investigated the role of IL-1beta in H. pylori-mediated inhibition of HKalpha transcription. Human gastric adenocarcinoma (AGS) cells were transfected with promoter-reporter constructs containing human HKalpha 5'-flanking sequence deletions. IL-1beta (10 ng/ml) had no effect on the transcriptional activity of six progressively shorter deletion constructs of the HKalpha promoter (HKalpha2179-HKalpha340) and significantly stimulated the activity of HKalpha206, HKalpha177, HKalpha165, and HKalpha102 deletion constructs (80%, 100%, 46%, and 35%, respectively). H. pylori inhibited the transcriptional activity of HKalpha2179, HKalpha206, HKalpha177, and HKalpha165; IL-1beta relieved the H. pylori inhibition of HKalpha2179 and HKalpha206 activity but not HKalpha177 and HKalpha165 activity. AGS cell pretreatment with a MEK1/2 inhibitor prevented the IL-1beta-mediated stimulation, but p38 and JNK pathway inhibitors did not. IL-1beta mRNA levels in AGS cells were low and unaffected by H. pylori, and ELISAs of H. pylori-conditioned AGS culture media showed no measurable IL-1beta secretion. These data indicate that an IL-1beta-dependent cis-response element lies downstream of -206 nt in the HKalpha promoter and that IL-1beta-mediated upregulation of HKalpha transcription is affected by an ERK1/2 kinase signal pathway. We conclude that an IL-1beta-responsive HKalpha cis element positively regulates HKalpha gene transcription in shortened deletion constructs and that H. pylori-induced inhibition of HKalpha transcription is not mediated by IL-1beta.
Collapse
Affiliation(s)
- Arindam Saha
- Department of medicine, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
22
|
Shanjana A, Archana A. Cytotoxic isolates of Helicobacter pylori from peptic ulcer diseases decrease K+-dependent ATPase activity in HeLa cells. BMC Gastroenterol 2003; 3:31. [PMID: 14604441 PMCID: PMC280654 DOI: 10.1186/1471-230x-3-31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Accepted: 11/06/2003] [Indexed: 12/25/2022] Open
Abstract
Background Helicobacter pylori is a Gram negative bacterium that plays a central role in the etiology of chronic gastritis and peptic ulcer diseases. However, not all H. pylori positive cases develop advanced disease. This discriminatory behavior has been attributed to the difference in virulence of the bacteria. Among all virulence factors, cytotoxin released by H. pylori is the most important factor. In this work, we studied variation in H. pylori isolates from Indian dyspeptic patients on the basis of cytotoxin production and associated changes in K+-dependent ATPase (one of its targets) enzyme activity in HeLa cells. Methods The patients were retrospectively grouped on the basis of endoscopic and histopathological observation as having gastritis or peptic ulcer. The HeLa cells were incubated with the broth culture filtrates (BCFs) of H. pylori isolates from patients of both groups and observed for the cytopathic effects: morphological changes and viability. In addition, the K+-dependent ATPase activity was measured in HeLa cells extracts. Results The cytotoxin production was observed in 3/7 (gastritis) and 4/4 (peptic ulcer) H. pylori isolates. The BCFs of cytotoxin producing H. pylori strains reduced the ATPase activity of HeLa cells to 40% of that measured with non-cytotoxin producing H. pylori strains (1.33 μmole Pi/mg protein and 3.36 μmole Pi/mg protein, respectively, p < 0.05). The decreased activity of ATPase enzyme or the release of cytotoxin also correlated with the increased pathogenicity indices of the patients. Conclusions Our results suggest that the isolation of cytotoxic H. pylori is more common in severe form of acid peptic diseases (peptic ulcer) than in gastritis patients from India. Also the cytotoxin released by H. pylori impairs the ion-transporting ATPase and is a measure of cytotoxicity.
Collapse
Affiliation(s)
- Awasthi Shanjana
- Department of Microbiology, Sanjay Gandhi P.G. Institute of Medical Sciences, Lucknow, UP, India
| | - Ayyagari Archana
- Department of Microbiology, Sanjay Gandhi P.G. Institute of Medical Sciences, Lucknow, UP, India
| |
Collapse
|
23
|
Abstract
The influence of central and peripheral stimuli on gastric acid secretion is mediated via activation of histaminergic, gastrinergic, and cholinergic pathways coupled to intracellular second-messenger systems that determine the trafficking and activity of H+ K+-ATPase, the proton pump of the parietal cell. Histamine, released from enterochromaffin-like cells stimulates the parietal cell directly via H-2 receptors coupled to generation of cAMP. Gastrin, acting via cholecystokinin-2 receptors on enterochromaffin-like cells coupled to an increase in intracellular calcium, stimulates the parietal cell indirectly by activating histidine decarboxylase, releasing histamine, and inducing enterochromaffin-like cell hypertrophy and hyperplasia. Acetylcholine, released from gastric postganglionic intramural neurons, stimulates the parietal cell directly via M-3 receptors coupled to intracellular calcium release and calcium entry. The second-messenger systems activated in the parietal cell converge on H+ K+-ATPase that catalyzes the exchange of luminal K+ for cytoplasmic H+ and is responsible for gastric luminal acidification. The main inhibitor of acid secretion is somatostatin which, acting via sst2 receptors, exerts a tonic inhibitory influence on parietal, enterochromaffin-like, and gastrin cells. Acute infection with Helicobacter pylori results in hypochlorhydria, whereas chronic infection may be associated with either hypo- or hyperchlorhydria. Although prostaglandins are thought to play a physiologic role in the regulation of acid secretion and maintenance of gastric mucosal integrity, the precise roles of cyclooxygenase-1 and cyclooxygenase-2 in these processes still eludes us.
Collapse
Affiliation(s)
- M L Schubert
- Department of Medicine, Division of Gastroenterology, Medical College of Virginia and McGuire VAMC, Richmond, Virginia 23249, USA.
| |
Collapse
|
24
|
Göõz M, Göõz P, Smolka AJ. Epithelial and bacterial metalloproteinases and their inhibitors in H. pylori infection of human gastric cells. Am J Physiol Gastrointest Liver Physiol 2001; 281:G823-32. [PMID: 11518695 DOI: 10.1152/ajpgi.2001.281.3.g823] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To test the hypothesis that Helicobacter pylori regulates gastric cell secretion of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), culture media from infected and uninfected human gastric adenocarcinoma (AGS) cells were analyzed by zymography, MMP activity assays, and immunoblotting. AGS cells secreted gelatinolytic (prominently 90 kDa) and caseinolytic (110 kDa) activity together with MMP-1, MMP-3, and TIMP-1, TIMP-2, and TIMP-3 isoforms. H. pylori secreted caseinolytic activity (60 kDa), MMP-3-like enzyme activity, and TIMP-3 immunoreactivity. H. pylori infection increased the 110-kDa caseinolytic activity and induced new gelatinolytic (~35 kDa) and caseinolytic (22 kDa) activities. Infection also increased both basal secretion and activation of MMP-1 and MMP-3, enhanced TIMP-3 secretion, and increased the formation of MMP-3/TIMP-3 complexes. TIMP-1 and TIMP-2 secretion were unchanged. Normal AGS cells showed a pancellular distribution of TIMP-3, with redistribution of immunoreactivity toward sites of bacterial attachment after H. pylori infection. The data indicate that MMP and TIMP secretion by AGS cells is modulated by H. pylori infection and that host MMP-3 and a TIMP-3 homolog expressed by H. pylori mediate at least part of the host cell response to infection.
Collapse
Affiliation(s)
- M Göõz
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|