1
|
Ciric D, Kravic-Stevovic T, Bumbasirevic V, Petricevic S, Jovanovic S, Trajkovic V, Martinovic T. Effects of metformin and simvastatin treatment on ultrastructural features of liver macrophages in HFD mice. Ultrastruct Pathol 2023; 47:1-11. [PMID: 36520527 DOI: 10.1080/01913123.2022.2156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes is a major health burden to the society. Macrophages and liver inflammation emerged as important factors in its development. We investigated ultrastructural changes in the liver, with a special emphasis on macrophages in high fat diet (HFD) fed C57BL/6 J mice treated with metformin or simvastatin, two drugs that are used frequently in diabetes. Both metformin and simvastatin reduced the liver damage in HFD fed animals, manifested as the prevention of nonalcoholic steatohepatitis development and reduced activation and number of macrophages in the liver, as well as the percentage of these cells with lipid droplets in the cytoplasm compared to untreated HFD animals. In contrast with untreated HFD-fed animals, lipid droplets were not observed in lysosomes of macrophages in HFD animals treated with metformin and simvastatin. These findings provide new insight into the effects of metformin and simvastatin on the liver in this experimental model of type 2 diabetes and provide further rationale for implementation of statins in the therapeutic regimens in this disease.
Collapse
Affiliation(s)
- Darko Ciric
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Medical Science Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sasa Petricevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sofija Jovanovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol 2020; 180:114147. [PMID: 32653589 PMCID: PMC7347500 DOI: 10.1016/j.bcp.2020.114147] [Citation(s) in RCA: 827] [Impact Index Per Article: 165.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Owing to the efficacy in reducing pain and inflammation, non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most popularly used medicines confirming their position in the WHO's Model List of Essential Medicines. With escalating musculoskeletal complications, as evident from 2016 Global Burden of Disease data, NSAID usage is evidently unavoidable. Apart from analgesic, anti-inflammatory and antipyretic efficacies, NSAIDs are further documented to offer protection against diverse critical disorders including cancer and heart attacks. However, data from multiple placebo-controlled trials and meta-analyses studies alarmingly signify the adverse effects of NSAIDs in gastrointestinal, cardiovascular, hepatic, renal, cerebral and pulmonary complications. Although extensive research has elucidated the mechanisms underlying the clinical hazards of NSAIDs, no review has extensively collated the outcomes on various multiorgan toxicities of these drugs together. In this regard, the present review provides a comprehensive insight of the existing knowledge and recent developments on NSAID-induced organ damage. It precisely encompasses the current understanding of structure, classification and mode of action of NSAIDs while reiterating on the emerging instances of NSAID drug repurposing along with pharmacophore modification aimed at safer usage of NSAIDs where toxic effects are tamed without compromising the clinical benefits. The review does not intend to vilify these 'wonder drugs'; rather provides a careful understanding of their side-effects which would be beneficial in evaluating the risk-benefit threshold while rationally using NSAIDs at safer dose and duration.
Collapse
Affiliation(s)
- Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101 India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal 700054 India.
| |
Collapse
|
3
|
Tatematsu Y, Fujita H, Hayashi H, Yamamoto A, Tabata A, Nagamune H, Ohkura K. Effects of the Nonsteroidal Anti-inflammatory Drug Celecoxib on Mitochondrial Function. Biol Pharm Bull 2018; 41:319-325. [PMID: 29491208 DOI: 10.1248/bpb.b17-00527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat inflammation and pain. In the present study, we examined the effects of celecoxib, a cyclooxygenase-2 (COX-2)-selective NSAID, on rat liver mitochondrial function. Celecoxib dose-dependently induced mitochondria swelling, which was not suppressed by cyclosporine A (CsA). The oxygen consumption rate in mitochondria-suspended solution was facilitated by the addition of celecoxib, and its uncoupling activity was observed. Celecoxib also suppressed SF6847-induced uncoupling, and appeared to exert inhibitory effects on the electron transport chain. Celecoxib suppressed the state 3 oxygen consumption rate in the presence of ADP. Protein release from the mitochondrial matrix was detected following the addition of celecoxib, and aldehyde dehydrogenase 2 (ALDH2) and hydroxymethylglutaryl-CoA (HMG-CoA) synthase 2 (HMGCS2) bands were confirmed in a Western blot analysis. On the other hand, protein release of cytochrome C (CytC), which is an inducer of apoptosis, from the intermembrane space was not observed. Celecoxib enhanced the membrane permeability of human erythrocytes and synthesized liposomes dose-dependently. It then induced the membrane-involving mitochondrial swelling and suppressed mitochondrial function.
Collapse
Affiliation(s)
- Yohei Tatematsu
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Haruhi Fujita
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Hiroki Hayashi
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Atsushi Yamamoto
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Kazuto Ohkura
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
4
|
Celecoxib-induced Liver Injury: Analysis of Published Case Reports and Cases Reported to the Food and Drug Administration. J Clin Gastroenterol 2018; 52:114-122. [PMID: 28795997 DOI: 10.1097/mcg.0000000000000888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Celecoxib is a widely prescribed nonsteroidal anti-inflammatory drug, and has been associated with rare instances of idiosyncratic drug-induced liver injury (DILI). The aim of this study is to describe and analyze the salient features of published cases of celecoxib DILI. MATERIALS AND METHODS A literature search using common terms for liver injury cross-referenced with celecoxib was undertaken from the year 2000 through June 2016. Identified cases were analyzed with respect to reported demographic and clinical data with descriptive. RESULTS Celecoxib DILI was reported in 18 patients with a median age of 54 years (range, 29 to 84) and 15 (88%) were female. The median daily dose was 200 mg (range, 200 to 533), and median duration and latency were 13 days (1 to 730) and 17 days (2 to 730), respectively. In 15 (83%) cases, DILI occurred after relatively short treatment duration, median of 12 days (1 to 42). Rash and immunoallergic features were noted in these patients, with peripheral or histologic findings of eosinophilia in 6 (40%). In 3 cases, DILI occurred after prolonged exposure (range, 152 to 730 d), none with immunoallergic features. The pattern of liver injury included hepatocellular (6), mixed (5), and cholestatic (4), and was unknown in 3 cases. Clinical outcomes included 2 (11%) requiring liver transplantation, 4 (22%) with chronic liver injury and recovery in 12 (67%) cases. CONCLUSIONS Women are overrepresented in published reports of celecoxib DILI. Latency was short (<3 mo) in most patients but some subjects may present with DILI following prolonged celecoxib use. Although rare, celecoxib-DILI can have potentially life threatening consequences.
Collapse
|
5
|
Bessone F, Hernandez N, Roma MG, Ridruejo E, Mendizabal M, Medina-Cáliz I, Robles-Díaz M, Lucena MI, Andrade RJ. Hepatotoxicity induced by coxibs: how concerned should we be? Expert Opin Drug Saf 2016; 15:1463-1475. [PMID: 27537326 DOI: 10.1080/14740338.2016.1225719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022]
Abstract
The selective inhibitors of COX-2, coxibs, are nonsteroidal anti-inflammatory drugs (NSAIDs) that have much better gastrointestinal safety profile as compared with non-selective NSAIDs. In this review, we analyze both the epidemiological features of coxib-induced hepatotoxicity and the clinical impact of coxib-associated liver damage, based on literature data. Areas covered: We carried out a search of the databases MEDLINE (PubMed), LILACS and SCIELO, from December 1999 to January 2016, to retrieve studies exploring the real impact of coxibs in liver toxicity as compared to non-selective COX-2 inhibitor NSAIDs. Expert opinion: Although reliable data on the incidence of celecoxib- and etoricoxib-induced hepatotoxicity are lacking, because of cohort studies have been generally underpowered to detect hepatic events, coxibs have been scarcely related to hepatotoxicity. Hence, coxib-induced liver injury seems to be an uncommon event, yet exhibits a wide spectrum of damage. Increasing COX-2 drug selectivity, as for rofecoxib, valdecoxib, parecoxib, and lumiracoxib, has been associated with higher cardiovascular risk, as well as dermatological and serious hepatic reactions. The actual risk of liver toxicity from the currently approved coxibs compared with non-selective NSAIDs will be discussed. Finally, classical and novel molecular mechanisms of coxib-induced hepatotoxicity are also described.
Collapse
Affiliation(s)
- Fernando Bessone
- a Hospital Provincial del Centenario, University of Rosario School of Medicine , Gastroenterology & Hepatology Department , Rosario , Argentina
| | - Nelia Hernandez
- b Hospital de Clínicas, Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Marcelo Gabriel Roma
- c Instituto de Fisiología Experimental (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmaceúticas , Universidad de Rosario , Rosario , Argentina
| | - Ezequiel Ridruejo
- d Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno 'CEMIC' , Medicine Department, Hepatology Section , Ciudad Autónoma de Buenos Aires , Argentina
| | - Manuel Mendizabal
- e Hospital Universitario Austral , Herpatology & Liver Transplant Unit , Buenos Aires , Argentina
| | - Inmaculada Medina-Cáliz
- f UGC de Ap Digestivo y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria , Universidad de Málaga, CIBERehd , Málaga , Spain
| | - Mercedes Robles-Díaz
- f UGC de Ap Digestivo y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria , Universidad de Málaga, CIBERehd , Málaga , Spain
| | - M Isabel Lucena
- f UGC de Ap Digestivo y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria , Universidad de Málaga, CIBERehd , Málaga , Spain
| | - Raúl J Andrade
- f UGC de Ap Digestivo y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria , Universidad de Málaga, CIBERehd , Málaga , Spain
| |
Collapse
|
6
|
Yano A, Higuchi S, Tsuneyama K, Fukami T, Nakajima M, Yokoi T. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice. Toxicology 2012; 293:107-114. [PMID: 22285467 DOI: 10.1016/j.tox.2012.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/20/2011] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl₃) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified.
Collapse
Affiliation(s)
- Azusa Yano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satonori Higuchi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
7
|
Bessone F. Non-steroidal anti-inflammatory drugs: What is the actual risk of liver damage? World J Gastroenterol 2010; 16:5651-5661. [PMID: 21128314 PMCID: PMC2997980 DOI: 10.3748/wjg.v16.i45.5651] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/06/2010] [Accepted: 09/13/2010] [Indexed: 02/07/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) constitute a family of drugs, which taken as a group, represents one of the most frequently prescribed around the world. Thus, not surprisingly NSAIDs, along with anti-infectious agents, list on the top for causes of Drug-Induced Liver Injury (DILI). The incidence of liver disease induced by NSAIDs reported in clinical studies is fairly uniform ranging from 0.29/100 000 [95% confidence interval (CI): 0.17-051] to 9/100 000 (95% CI: 6-15). However, compared with these results, a higher risk of liver-related hospitalizations was reported (3-23 per 100 000 patients). NSAIDs exhibit a broad spectrum of liver damage ranging from asymptomatic, transient, hyper-transaminasemia to fulminant hepatic failure. However, under-reporting of asymptomatic, mild cases, as well as of those with transient liver-tests alteration, in conjunction with reports non-compliant with pharmacovigilance criteria to ascertain DILI and flawed epidemiological studies, jeopardize the chance to ascertain the actual risk of NSAIDs hepatotoxicity. Several NSAIDs, namely bromfenac, ibufenac and benoxaprofen, have been withdrawn from the market due to hepatotoxicity; others like nimesulide were never marketed in some countries and withdrawn in others. Indeed, the controversy concerning the actual risk of severe liver disease persists within NSAIDs research. The present work intends (1) to provide a critical analysis of the dissimilar results currently available in the literature concerning the epidemiology of NSAIDS hepatotoxicity; and (2) to review the risk of hepatotoxicity for each one of the most commonly employed compounds of the NSAIDs family, based on past and recently published data.
Collapse
|
8
|
Early life activation of toll-like receptor 4 reprograms neural anti-inflammatory pathways. J Neurosci 2010; 30:7975-83. [PMID: 20534845 DOI: 10.1523/jneurosci.6078-09.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A single postnatal exposure to the bacterial endotoxin, lipopolysaccharide (LPS), reduces the neuroimmune response to a subsequent LPS exposure in the adult rat. The attenuated fever and proinflammatory response is caused by a paradoxical, amplified, early corticosterone response to LPS. Here we identify the mechanisms underlying the heightened corticosterone response to LPS in adults after early life exposure to LPS. In postnatal LPS-treated rats, hypothalamic corticotrophin-releasing hormone mRNA, pituitary proopiomelanocortin mRNA, and circulating adrenocorticotrophic hormone were all increased after adult exposure to LPS without significant modification to hippocampal or hypothalamic glucocorticoid receptor mRNA or protein or vagally mediated afferent signaling to the brain. Postnatal LPS administration did cause a persistent upregulation of the LPS Toll-like receptor-4 (TLR4) mRNA in liver and spleen, but not in brain, pituitary, or adrenal gland. In addition, cyclooxygenase-2 (COX-2), which is a prostaglandin biosynthetic enzyme and is normally undetectable in most peripheral tissue, was constitutively expressed in the liver. Adult immune activation of the upregulated TLR4 and COX-2 caused a rapid, amplified rise in circulating, but not brain, prostaglandin E(2) that induced an early, enhanced activation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, postnatal LPS reprograms the neuroimmune axis by priming peripheral tissues to create a novel, prostaglandin-mediated activation of the HPA axis brought about by increased constitutive expression of TLR4 and COX-2.
Collapse
|
9
|
Chaturvedi R, Bansal K, Narayana Y, Kapoor N, Sukumar N, Togarsimalemath SK, Chandra N, Mishra S, Ajitkumar P, Joshi B, Katoch VM, Patil SA, Balaji KN. The multifunctional PE_PGRS11 protein from Mycobacterium tuberculosis plays a role in regulating resistance to oxidative stress. J Biol Chem 2010; 285:30389-403. [PMID: 20558725 DOI: 10.1074/jbc.m110.135251] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H(2)O(2)-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.
Collapse
Affiliation(s)
- Rashmi Chaturvedi
- Department of Microbiology and Cell Biology, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Ausman LM, Russell RM, Greenberg AS, Wang XD. Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun NH2-terminal kinase activation and elevated proapoptotic Bax. J Nutr 2008; 138:1866-71. [PMID: 18806094 PMCID: PMC2587062 DOI: 10.1093/jn/138.10.1866] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatocyte apoptosis in addition to oxidative stress could be a key component in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms of hepatocellular apoptotic response associated with oxidative stress have not been investigated in high-fat diet (HFD)-induced NASH models. In this study, Sprague-Dawley rats were fed either a Lieber-DeCarli control diet (CD; 35% energy from fat) or a HFD (71% energy from fat) for 6 wk. Pathologic lesions, lipid peroxidation products, and apoptotic hepatocytes in the liver were examined. The expressions of hepatic tumor necrosis factor-alpha (TNFalpha) and protein concentrations of cleaved caspase-3, cytochrome p4502E1 (CYP2E1), phosphorylated c-Jun NH(2)-terminal kinase (JNK), Bax, Bcl-2, and Bcl-xl were measured. Results showed that the key histological features of NASH, including steatosis, inflammatory cell infiltration, and ballooning degeneration of hepatocytes, were induced by HFD feeding, with increased hepatic TNFalpha mRNA expression. HFD-fed rats had elevated lipid peroxidation products and CYP2E1 protein in the liver. The apoptotic hepatocytes were significantly greater in livers of rats fed HFD than in those fed CD, and these were associated with a higher level of cleaved caspase-3. In addition, HFD feeding increased both hepatic phosphorylated JNK and pro-apoptotic Bax but did not affect anti-apoptotic Bcl-2 and Bcl-xl compared with CD feeding. These data indicate that the increased oxidative stress and its associated JNK activation as well as an imbalance of pro- and anti-apoptotic proteins in the Bcl-2 family all contribute to high hepatocyte apoptosis that may play an important role in the pathogenesis of NASH in this model.
Collapse
Affiliation(s)
- Yan Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111
| | - Lynne M. Ausman
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111
| | - Robert M. Russell
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111
| | - Andrew S. Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111,Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, To whom correspondence should be addressed. E-mail: .
| |
Collapse
|
11
|
Effect of high fat diet on the volume of liver and quantitative feature of Kupffer cells in the female rat: a stereological and ultrastructural study. Obes Surg 2008; 17:1381-8. [PMID: 18000736 DOI: 10.1007/s11695-007-9219-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/29/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND The role of Kupffer cells (KCs) in nonalcoholic steatohepatitis (NASH) which is regarded as a major cause of cryptogenic cirrhosis of the liver was investigated using stereological methods and electron microscopy in the rat model. To our knowledge, there is no stereological study on the volume of liver, total number, numerical density, and nuclear height of KCs of liver in the female rat fed with a high fat diet (HFD) in the literature. METHOD 16 female Sprague Dawley rats were randomized into HFD and control group, with HFD and standard diet for 12 weeks, respectively. In this study, two basic research methods were used to analyze the samples. One was histopathological observation at both light and electron microscopic level. The other was stereological methods that consist of Cavalieri principle for liver volume estimation and physical disector method for estimation of numerical density and total number of KCs in the liver. RESULTS Liver volume, both mean numerical density and total number of KCs, were statistically increased in HFD rats. Ultrastructurally, a significant decrease in the mean nuclear height of KCs in HFD rats was also found. In the control group, no abnormal change was observed, but in the HFD group, some changes such as diffuse steatosis, mononuclear cell infiltration, necrosis, fibrosis, accumulation of fat droplets and intra-cytoplasmic vacuoles, and swollen mitochondria with irregular membranes were observed in the hepatocytes. CONCLUSION The number and activity of KCs are increased significantly in NASH induced by HFD, and KCs might be involved in the pathogenesis of steatohepatitis as previously attributed as a major cause of cryptogenic cirrhosis of the liver.
Collapse
|
12
|
Yan B, Leung Y, Urbanski SJ, Myers RP. Rofecoxib-induced hepatotoxicity: a forgotten complication of the coxibs. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2006; 20:351-5. [PMID: 16691302 PMCID: PMC2659894 DOI: 10.1155/2006/356434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rofecoxib is a member of the coxib family of nonsteroidal anti-inflammatory drugs that selectively inhibit cyclooxygenase-2. Although the coxibs are generally well-tolerated, rofecoxib was recently withdrawn from the market due to concerns regarding cardiovascular safety. Rare cases of hepatic injury attributable to the coxibs have been reported. In the present study, two additional cases of severe hepatotoxicity are described in patients with cholestatic symptoms and abnormal liver biochemistry, shortly following the initiation of rofecoxib for arthritic complaints. In both cases, liver histology was compatible with drug-induced hepatotoxicity, and rapid clinical and biochemical improvements were observed following rofecoxib discontinuation. With new coxibs and expanding indications on the horizon, physicians in all areas of practice must be aware of this disorder and consider it in any patient who develops hepatic dysfunction after taking a coxib.
Collapse
Affiliation(s)
- Brian Yan
- Liver Unit, Division of Gastroenterology, Department of Medicine, University of Calgary; Calgary, Alberta
| | - Yvette Leung
- Liver Unit, Division of Gastroenterology, Department of Medicine, University of Calgary; Calgary, Alberta
| | | | - Robert P Myers
- Liver Unit, Division of Gastroenterology, Department of Medicine, University of Calgary; Calgary, Alberta
- Correspondence: Dr Robert P Myers, G126, 3330 Hospital Drive North West, Calgary, Alberta T2N 4N1. Telephone 403-210-9837, fax 403-210-9368, e-mail
| |
Collapse
|
13
|
Anan A, Baskin-Bey ES, Isomoto H, Mott JL, Bronk SF, Albrecht JH, Gores GJ. Proteasome inhibition attenuates hepatic injury in the bile duct-ligated mouse. Am J Physiol Gastrointest Liver Physiol 2006; 291:G709-16. [PMID: 16798723 DOI: 10.1152/ajpgi.00126.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteasome inhibition has recently been demonstrated to inhibit hepatic fibrogenesis in the bile duct-ligated (BDL) mouse by blocking stellate cell NF-kappaB activation. The effect of proteasome inhibition on liver injury, however, is unclear. Our aims were to assess the effect of the proteasome inhibitor bortezomib on liver injury in the BDL mouse. Liver injury was assessed in 7-day BDL mice treated with a single dose of bortezomib on day 4 after bile duct ligation. Despite NF-kappaB inhibition by bortezomib, liver injury and hepatocyte apoptosis were reduced in treated BDL mice. The antiapoptotic effect of bortezomib was likely mediated by an increase in hepatic cellular FLICE inhibitory protein (c-FLIP) levels, a potent antiapoptotic protein. Unexpectedly, numerous mitotic hepatocytes were observed in the bortezomib-treated BDL mice liver specimens. Consistent with this observation, PCNA immunoreactivity and cyclin A protein expression were also increased with bortezomib treatment. Bortezomib therapy was also associated with a decrease in numbers and activation of Kupffer cells/macrophages. In conclusion, these data suggest that the proteasome inhibitor bortezomib reduces hepatocyte injury in the BDL mouse by mechanisms associated with a reduction in hepatocyte apoptosis, a decrease in Kupffer cell/macrophage number and activation, and increased hepatocyte proliferation.
Collapse
Affiliation(s)
- Akira Anan
- Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Kataoka K, Takikawa Y, Lin SD, Suzuki K. Prostaglandin E2 receptor EP4 agonist induces Bcl-xL and independently activates proliferation signals in mouse primary hepatocytes. J Gastroenterol 2005; 40:610-6. [PMID: 16007395 DOI: 10.1007/s00535-005-1595-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 02/14/2005] [Indexed: 02/04/2023]
Abstract
BACKGROUND To improve the survival rate of fulminant hepatic failure (FHF), we examined the mechanism of the antiapoptotic effect, and the possible proliferative effect, of a specific agonist of prostaglandin E2 receptor EP4 (PGEP4-A) on mouse primary hepatocytes, as a candidate for a new therapeutic agent. METHODS The expression of four PGE2 receptor subtypes was detected by a reverse transcriptase polymerase chain reaction (PCR) method. Hepatocytes were stimulated with PGEP4-A, ONO-AE1-437, and changes in the expression levels of Bcl-xL and cyclin D1 and in the phosphorylation of epidermal growth factor receptor (EGF-R) and extracellular-signal related kinase (ERK) were examined by Western blot analysis. RESULTS Mouse primary hepatocytes constitutively expressed the mRNAs of all four PGE2 receptor subtypes, including that of PGEP4. PGEP4-A induced not only Bcl-xL protein expression (as we had previously demonstrated in HepG2 cells) but also induced cyclin D1 protein expression in mouse primary hepatocytes as well as the phosphorylation of EGF-R and ERK. The inhibition of ERK phosphorylation by a specific inhibitor, PD98059, did not affect the increase in Bcl-xL expression level. CONCLUSIONS PGEP4-A may be a therapeutic agent for FHF because of its antiapoptotic and regenerative effects on hepatocytes.
Collapse
Affiliation(s)
- Kojiro Kataoka
- First Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | | | | | | |
Collapse
|
15
|
Planagumà A, Clària J, Miquel R, López-Parra M, Titos E, Masferrer JL, Arroyo V, Rodés J. The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation. FASEB J 2005; 19:1120-2. [PMID: 15876570 DOI: 10.1096/fj.04-2753fje] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The importance of inflammation in initiating the sequence of events that lead to liver fibrosis is increasingly recognized. In this study, we tested the effects of SC-236, a selective cyclooxygenase (COX)-2 inhibitor, in rats with carbon tetrachloride (CCl4)-induced liver fibrosis. Livers from CCl4-treated rats showed increased COX-2 expression and 15-deoxy-prostaglandin (PG)J2 (15d-PGJ2) formation, as well as decreased peroxisome proliferator-activated receptor (PPAR)gamma expression. In these animals, SC-236 reduced liver fibrosis as revealed by histological analysis and by a reduction in hepatic hydroxyproline levels, metalloproteinase-2 activity, and alpha-smooth muscle actin expression. Interestingly, SC-236 normalized 15d-PGJ2 levels and restored PPARgamma expression in the liver of CCl4-treated rats. In isolated hepatic stellate cells (HSCs)--the major player in liver fibrogenesis--and Kupffer cells--the cell type primarily responsible for increased hepatic COX-2-SC-236 exhibited remarkable pro-apoptotic and growth inhibitory properties. Of interest, SC-236 decreased HSC viability to a similar extent than the PPARgamma ligand rosiglitazone. Moreover, SC-236 significantly induced PPARgamma expression in HSCs and acted as a potent PPARgamma agonist in a luciferase-reporter trans-activation assay. These data indicate that, by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation, the selective COX-2 inhibitor SC-236 might have therapeutic potential for prevention of liver fibrosis.
Collapse
Affiliation(s)
- Anna Planagumà
- DNA Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bronk SF, Gores GJ. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 2003; 38:1188-98. [PMID: 14578857 DOI: 10.1053/jhep.2003.50472] [Citation(s) in RCA: 352] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocyte apoptosis by death receptors, hepatic inflammation, and fibrosis are prominent features of liver diseases. However, the link between these processes remains unclear. Our aim was to ascertain whether engulfment of apoptotic bodies by Kupffer cells promotes hepatic inflammation and fibrosis. Isolated murine Kupffer cells efficiently engulfed apoptotic bodies generated from UV-treated mouse hepatocytes. Engulfment of the apoptotic bodies, but not latex beads, stimulated Kupffer cell generation of death ligands, including Fas ligand, and tumor necrosis factor alpha (TNF-alpha). Both apoptotic body phagocytosis and death ligand generation were attenuated by gadolinium chloride, a Kupffer cell toxicant. Kupffer cells isolated from 3-day bile duct-ligated (BDL) mice were phenotypically similar to apoptotic body-"fed" Kupffer cells with enhanced death ligand expression; inhibition of hepatocyte apoptosis with a caspase inhibitor prevented this Kupffer cell activation. Consistent with a role for Kupffer cells in liver inflammation and fibrosis, gadolinium chloride attenuated neutrophil infiltration and markers for stellate cell activation. In conclusion, these findings support a model of cholestatic liver injury where Kupffer cell engulfment of apoptotic bodies promotes inflammation and fibrogenesis.
Collapse
Affiliation(s)
- Ali Canbay
- Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN, George JW, Pohl LR. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 2002; 15:1504-13. [PMID: 12482232 DOI: 10.1021/tx0255976] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic injury induced by various toxic agents, including acetaminophen (APAP), has been attributed, in part, to the production of proinflammatory cytokines and other mediators by resident Kupffer cells within the liver. However, recent evidence from our laboratory has demonstrated that hepato-protective factors, such as interleukin (IL)-10 and cyclooxygenase-derived mediators, are also upregulated in response to hepatic damage to help protect against exacerbated injury, and Kupffer cells have been suggested to be a source of these modulatory factors. In other models, Kupffer cells also serve important regulatory functions in pathophysiological states of the liver. Therefore, we reevaluated the role of Kupffer cells in a murine model of APAP-induced liver injury using liposome-entrapped clodronate (liposome/clodronate) as an effective Kupffer cell-depleting agent. We show that in contrast to pretreatment of mice with a widely used macrophage inhibitor, gadolinium chloride, which did not deplete Kupffer cells but moderately protected against APAP-induced hepatotoxicity as reported previously, the intravenous injection of liposome/clodronate caused nearly complete elimination of Kupffer cells and significantly increased susceptibility to APAP-induced liver injury as compared with mice pretreated with empty liposomes. This increased susceptibility was apparently unrelated to the metabolism of APAP since liposome/clodronate pretreatment did not alter APAP-protein adduct levels. Instead, Kupffer cell depletion by liposome/clodronate led to significant decreases in the levels of hepatic mRNA expression of several hepato-regulatory cytokines and mediators, including IL-6, IL-10, IL-18 binding protein and complement 1q, suggesting that Kupffer cells are a significant source for production of these mediators in this model. Our findings indicate that, in addition to their protoxicant activities, Kupffer cells can also have an important protective function in the liver through the production of a variety of modulatory factors which may counteract inflammatory responses and/or stimulate liver regeneration.
Collapse
Affiliation(s)
- Cynthia Ju
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been associated with idiosyncratic hepatotoxicity in susceptible patients. The molecular mechanisms underlying this toxicity have not yet been fully elucidated. However, experimental evidence suggests that they include increased concentration of the drugs in the hepatobiliary compartment, formation of reactive metabolites that covalently modify proteins and produce oxidative stress, and mitochondrial injury. Genetic and/or acquired patient factors can either augment the pathways leading to hepatic toxicity or impede the protective and detoxifying pathways. An example is nimesulide, a selective cyclo-oxygenase-2 inhibitor widely used for the treatment of inflammatory and pain conditions, which has been recently associated with rare but serious and unpredictable adverse reactions in the liver (increases in serum aminotransferase activities, hepatocellular necrosis, and/or intrahepatic cholestasis). Similar to other drugs causing idiosyncratic hepatotoxicity, both the molecule and the patient contribute to the hazard. Here, the weakly acidic sulfonanilide drug undergoes bioreductive metabolism of the nitroarene group to reactive intermediates that have been implicated in oxidative stress, covalent binding, and mitochondrial injury. It is only in a small number of susceptible patients, however, that genetic or nongenetic factors will cause this potential toxicity to become clinically manifest. In view of the very large recipient population, the incidence of nimesulide-induced liver injury has been low (approximately 0.1 per 100,000 patients treated). Although this estimation is based on spontaneous reporting data versus sales units and needs correction due to the classical bias of this system, the type and incidence of these rare but severe hepatic adverse reactions are comparable to that of other NSAIDs.
Collapse
Affiliation(s)
- Urs A Boelsterli
- HepaTox Consulting, Pfeffingen, and Institute of Clinical Pharmacy, University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Chen GG, Lai PBS, Hu X, Lam IKY, Chak ECW, Chun YS, Lau WY. Negative correlation between the ratio of Bax to Bcl-2 and the size of tumor treated by culture supernatants from Kupffer cells. Clin Exp Metastasis 2002; 19:457-64. [PMID: 12198774 DOI: 10.1023/a:1016336724463] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kupffer cells play an important role in keeping liver from occurrence of tumors. Apoptosis is thought to be a major mechanism responsible for the anti-tumor function of Kupffer cells. Previous studies have mainly concentrated on the direct contact and interaction between Kupffer cells and tumor cells. The present experiment is to investigate the apoptotic pathway in tumor induced by culture supernatant from activated Kupffer cells. The levels of Bax, Bcl-2 and iNOS were analyzed in an in vivo mouse tumor model, which was treated with culture supernatant from activated Kupffer cells. The results showed that the expression of Bax significantly increased while the expression of Bcl-2 decreased when tumor cells were treated with culture supernatants from activated Kupffer cells. The alteration of Bax and Bcl-2 levels resulted in an increase in the ratio of Bax to Bcl-2, which had negative correlation with the size of tumor and positive correlation with the expression of iNOS. The expression of TNF alpha and the occurrence of apoptosis were also increased in tumor treated with culture supernatants from activated Kupffer cells, compared with those which received no treatment. In conclusion, culture supernatants from activated Kupffer cells were able to change the balance between Bax and Bcl-2 in favor of the former. The ratio of Bax to Bcl-2 is a useful index to evaluate tumor apoptosis induced by Kupffer cells. Our experiment also suggests that alteration of the ratio of Bax to Bcl-2 may result from increased levels of iNOS and TNF alpha.
Collapse
Affiliation(s)
- George G Chen
- Department of Surgery, Sir Yue Kong Pao Centre for Cancer, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
20
|
Diehl AM. Nonalcoholic steatosis and steatohepatitis IV. Nonalcoholic fatty liver disease abnormalities in macrophage function and cytokines. Am J Physiol Gastrointest Liver Physiol 2002; 282:G1-5. [PMID: 11751151 DOI: 10.1152/ajpgi.00384.2001] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Macrophage products, such as cytokines, prostanoids, nitric oxide, and reactive oxygen intermediates, influence the function and viability of macrophages and neighboring cells. Given that the liver has one of the largest resident macrophage populations in the body, it is not surprising that hepatic macrophages [i.e., Kupffer cells (KC)] are involved in the pathogenesis of many kinds of liver disease. This review summarizes the abnormalities that have been demonstrated in bone marrow, peritoneal and hepatic macrophage of leptin-resistant (fa/fa) rats and leptin-deficient (ob/ob) mice, two animal models for nonalcoholic fatty liver disease (NAFLD). Evidence supports the concept that altered KC function influences the viability of other cells, such as lymphocytes and hepatocytes, in fatty livers, thereby contributing to the pathogenesis of NAFLD in animals with reduced leptin activity. Further work is needed to determine whether KC dysfunction is a component of more generalized mechanisms that lead to NAFLD.
Collapse
Affiliation(s)
- Anna Mae Diehl
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
21
|
Reilly TP, Brady JN, Marchick MR, Bourdi M, George JW, Radonovich MF, Pise-Masison CA, Pohl LR. A protective role for cyclooxygenase-2 in drug-induced liver injury in mice. Chem Res Toxicol 2001; 14:1620-8. [PMID: 11743745 DOI: 10.1021/tx0155505] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the utility of cyclooxygenase (COX) inhibition as an antiinflammatory strategy, prostaglandin (PG) products of COX-1 and -2 provide important regulatory functions in some pathophysiological states. Scattered reports suggest that COX inhibition may also promote adverse drug events. Here we demonstrate a protective role for endogenous COX-derived products in a murine model of acetaminophen (APAP)-induced acute liver injury. A single hepatotoxic dose caused the selective induction of COX-2 mRNA and increased PGD2 and PGE2 levels within the livers of COX(+/+) male mice suggesting a role for COX-2 in this model of liver injury. APAP-induced hepatotoxicity and lethality were markedly greater in COX-2(-/-) and (-/+) mice in which normal PG responsiveness is altered. The significantly increased toxicity linked to COX-2 deficiency could be mimicked using the selective COX-2 inhibitory drug, celecoxib, in COX(+/+) mice and was not due to alterations in drug-protein adduct formation, a surrogate for bioactivation and toxicity. Microarray analyses indicated that increased injury associated with COX-2 deficiency coincided, most notably, with a profoundly impaired induction of heat shock proteins in COX-2(-/+) mice suggesting that PGs may act as critical endogenous stress signals following drug insult. These findings suggest that COX-2-derived mediators serve an important hepato-protective function and that COX inhibition may contribute to the risk of drug-induced liver injury, possibly through both nonimmunological and immunological pathways.
Collapse
Affiliation(s)
- T P Reilly
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, NHLBI, NIH, 9000 Rockville Pike, Building 10, Room 8N110, Bethesda, Maryland 20892-1760, USA.
| | | | | | | | | | | | | | | |
Collapse
|