1
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Lindemann A, Roth D, Koop K, Neufert C, Zundler S, Atreya R, Neurath MF, Leppkes M. Protective effect of the novel calcineurin inhibitor voclosporin in experimental colitis. Front Med (Lausanne) 2023; 10:1177450. [PMID: 37358998 PMCID: PMC10289195 DOI: 10.3389/fmed.2023.1177450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Background and aims Acute severe steroid-refractory ulcerative colitis remains a medically challenging condition with frequent need of surgery. It can be treated with the calcineurin inhibitor cyclosporine A with the need for therapeutic drug monitoring and significant toxicity. Recently, a novel calcineurin inhibitor, voclosporin, has been approved for the treatment of lupus nephritis with no need for therapeutic drug monitoring and an improved long-term safety profile. However, the therapeutic effect of voclosporin in acute severe steroid-refractory ulcerative colitis is still uncertain. We aimed to assess the therapeutic potential of voclosporin to ameliorate inflammation in an experimental model of colitis. Methods We used the dextran sodium sulfate-induced model of colitis in C57BL/6 J wildtype mice treated with either cyclosporine A, voclosporin or solvent control. We employed endoscopy, histochemistry, immunofluorescence, bead-based multiplex immunoassays and flow cytometry to study the therapeutic effect of calcineurin inhibitors in a preventive setting. Results Acute colitis was induced by dextran sodium sulfate characterized by weight loss, diarrhea, mucosal erosions and rectal bleeding. Both cyclosporine A and voclosporin strongly ameliorated the course of disease and reduced colitis severity in a similar manner. Conclusion Voclosporin was identified as biologically effective in a preclinical model of colitis and may be a potential therapeutic option in treating acute severe steroid-refractory ulcerative colitis.
Collapse
Affiliation(s)
- Aylin Lindemann
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dominik Roth
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kristina Koop
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
3
|
Chen J, Zhou Y, Sun Y, Yuan S, Kalla R, Sun J, Zhao J, Wang L, Chen X, Zhou X, Dai S, Zhang Y, Ho GT, Xia D, Cao Q, Liu Z, Larsson SC, Wang X, Ding K, Halfvarson J, Li X, Theodoratou E, Satsangi J. Bi-directional Mendelian randomization analysis provides evidence for the causal involvement of dysregulation of CXCL9, CCL11 and CASP8 in the pathogenesis of ulcerative colitis. J Crohns Colitis 2022; 17:777-785. [PMID: 36576886 PMCID: PMC10155748 DOI: 10.1093/ecco-jcc/jjac191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Systemic inflammation is well-recognized to be associated with ulcerative colitis (UC), but whether these effects are causal or consequential remains unclear. We aimed to define potential causal relationship of cytokine dysregulation with different tiers of evidence. METHODS We firstly synthesized serum proteomic profiling data from two multi-centered observational studies, in which a panel of systemic inflammatory proteins was analyzed to examine their associations with UC risk. To further dissect observed associations, we then performed a bidirectional two-sample Mendelian randomization (TSMR) analysis from both forward and reverse directions using five genome-wide association study (GWAS) summary level data for serum proteomic profiles and the largest GWAS of 28,738 European-ancestry individuals for UC risk. RESULTS Pooled analysis of serum proteomic data identified 14 proteins to be associated with the risk of UC. Forward MR analysis using only cis-acting protein quantitative trait loci (cis-pQTLs) or trans-pQTLs further validated causal associations of two chemokines and the increased risk of UC: C-X-C motif chemokine ligand 9 (CXCL9) (OR, 1.45, 95% CI, 1.08-1.95, P=.012) and C-C motif chemokine ligand 11 (CCL11) (OR, 1.14, 95%CI: 1.09-1.18, P=3.89×10 -10). Using both cis- and trans-acting pQTLs, an association of caspase-8 (CASP8) (OR, 1.04, 95% CI, 1.03-1.05, P= 7.63×10 -19) was additionally identified. Reverse MR did not find any influence of genetic predisposition to UC on any of these three inflammation proteins. CONCLUSIONS Pre-existing elevated levels of CXCL9, CCL11 and CASP8 may play a role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yajing Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhao Sun
- Centre for Global Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Yuan
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siqi Dai
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Dajing Xia
- Department of Toxicology of School of Public Health, & Center of Immunology & Infection, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
4
|
Xing G, Zhang Y, Wu X, Wang H, Liu Y, Zhang Z, Hou M, Hua H. Analysis of the Efficacy and Pharmacological Mechanisms of Action of Zhenren Yangzang Decoction on Ulcerative Colitis Using Meta-Analysis and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4512755. [PMID: 34992665 PMCID: PMC8727130 DOI: 10.1155/2021/4512755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We analyzed the efficacy and pharmacological mechanisms of action of Zhen Ren Yang Zang decoction (ZRYZD) on ulcerative colitis (UC) using meta-analysis and network pharmacology. METHODS The major databases were searched for randomized controlled trials of ZRYZD for the treatment of UC. Meta-analysis of the efficacy of ZRYZD on UC was conducted using RevMan software. Active compounds and target genes were acquired using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. UC-related genes were searched using the GeneCards database. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using RGUI. A compound-target network was constructed using Cytoscape software, and a protein-protein interaction network was constructed using the STRING database. Molecular docking simulations of the macromolecular protein targets and their corresponding ligand compounds were performed using the AutoDock tool and AutoDock Vina software. RESULTS Meta-analysis revealed that the total effective rate and recovery rate of clinical efficacy were significantly higher in the experimental group than those of the control group. The screening identified 169 active compounds and 277 active target genes for ZRYZD. The 277 active target genes were compared with the 4,798 UC-related genes. This identified 187 active target genes of ZRYZD for UC that correlated with 138 active compounds. GO functional enrichment and KEGG pathway enrichment analyses were performed, and compound-target and protein-protein interaction networks were constructed. The key compounds and key target proteins were then selected. Finally, target protein binding with the corresponding compound was analyzed using molecular docking. CONCLUSION Our findings demonstrate the effectiveness and safety of ZRYZD for the treatment of UC and provide insight into the underlying pharmacological mechanisms of action. Furthermore, key compounds were identified, laying the foundation for future studies on ZRYZD for the treatment of UC.
Collapse
Affiliation(s)
- Guosheng Xing
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Yufeng Zhang
- Department of Respiratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, China
| | - Xinlin Wu
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Hua Wang
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Zhen Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Mingxing Hou
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214400, China
| |
Collapse
|
5
|
Qiu M, Huang S, Luo C, Wu Z, Liang B, Huang H, Ci Z, Zhang D, Han L, Lin J. Pharmacological and clinical application of heparin progress: An essential drug for modern medicine. Biomed Pharmacother 2021; 139:111561. [PMID: 33848775 DOI: 10.1016/j.biopha.2021.111561] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Heparin is the earliest and most widely used anticoagulant and antithrombotic drug that is still used in a variety of clinical indications. Since it was discovered in 1916, after more than a century of repeated exploration, heparin has not been replaced by other drugs, but a great progress has been made in its basic research and clinical application. Besides anticoagulant and antithrombotic effects, heparin also has antitumor, anti-inflammatory, antiviral, and other pharmacological activities. It is widely used clinically in cardiovascular and cerebrovascular diseases, lung diseases, kidney diseases, cancer, etc., as the first anticoagulant medicine in COVID-19 exerts anticoagulant, anti-inflammatory and antiviral effects. At the same time, however, it also leads to a lot of adverse reactions, such as bleeding, thrombocytopenia, elevated transaminase, allergic reactions, and others. This article comprehensively reviews the modern research progress of heparin compounds; discusses the structure, preparation, and adverse reactions of heparin; emphasizes the pharmacological activity and clinical application of heparin; reveals the possible mechanism of the therapeutic effect of heparin in related clinical applications; provides evidence support for the clinical application of heparin; and hints on the significance of exploring the wider application fields of heparin.
Collapse
Affiliation(s)
- Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shengjie Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Binzhu Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China.
| |
Collapse
|
6
|
Ota S, Sakuraba H, Hiraga H, Yoshida S, Satake M, Akemoto Y, Tanaka N, Watanabe R, Takato M, Murai Y, Ueno K, Niioka T, Hayakari M, Ishiguro Y, Fukuda S. Cyclosporine protects from intestinal epithelial injury by modulating butyrate uptake via upregulation of membrane monocarboxylate transporter 1 levels. Biochem Biophys Rep 2020; 24:100811. [PMID: 33102812 PMCID: PMC7578528 DOI: 10.1016/j.bbrep.2020.100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023] Open
Abstract
Background and aims A relationship between treatment outcomes and intestinal microbiota in patients with inflammatory bowel diseases has been demonstrated. Cyclosporine treatment leads to rapid improvement in severe ulcerative colitis. We hypothesized that the potent effects of cyclosporine would be exerted through relationships between intestinal epithelial cells (IECs) and the host microbiota. The present study was designed to elucidate the effects of cyclosporine on monocarboxylate transporter 1 (MCT1) regulation and butyrate uptake by IECs. Methods Colitis was induced in C57BL6 mice via the administration of 4% dextran sulfate sodium in drinking water, following which body weights, colon lengths, and histological scores were evaluated. To examine the role of butyrate in the protective effects of cyclosporine, MCT1 inhibitor and an antibiotic cocktail was administered and tributyrin (TB; a prodrug of butyrate) was supplemented; MCT1 protein expression and acetylated histone 3 (AcH3) signals in IECs, as well as the MCT1-membrane fraction of Caco-2 cells, were evaluated. To explore butyrate uptake, as s butyrate derivatives, 3-bromopyruvic acid (3-BrPA) and 1-pyrenebutyric acid were used. Results Treatment with cyclosporine inhibited body weight loss and colon length shortening. However, treatment with MCT1 inhibitor and the antibiotic cocktail negated the efficacy of cyclosporine, whereas TB supplementation restored its protective effect. Furthermore, cyclosporine upregulated MCT1 expression in the membrane and the AcH3 signal in IECs, while also inducing higher anti-inflammatory cytokine production compared to that in the vehicle-treated mice. The transcription level of MCT1 mRNA in IECs and Caco-2 cells did not increase with cyclosporine treatment; however, cyclosporine treatment increased membrane MCT1 expression in these cells and uptake of butyrate derivative. Conclusion Cyclosporine treatment modulates butyrate uptake via the post-transcriptional upregulation of membrane MCT1 levels in IECs. The protective effect of cyclosporine needs microbiota-derived butyrate. Cyclosporine increased the fraction of MCT1 at the cell membrane. Cyclosporine enhanced butyrate uptake and regulatory cytokine expression.
Collapse
Affiliation(s)
- Shinji Ota
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroto Hiraga
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shukuko Yoshida
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Shibata Irika Co.Ltd.Hirosaki, Japan
| | - Miwa Satake
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yui Akemoto
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Nahoko Tanaka
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rina Watanabe
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Maeda Takato
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhisa Murai
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kayo Ueno
- Division of Pharmaceutical Science, Hirosaki University Hospital, Hirosaki, Japan
| | - Takenori Niioka
- Division of Pharmaceutical Science, Hirosaki University Hospital, Hirosaki, Japan
| | - Makoto Hayakari
- Division of Pharmaceutical Science, Hirosaki University Hospital, Hirosaki, Japan
| | - Yoh Ishiguro
- Division of Clinical Research, Hirosaki National Hospital, National Hospital Organization, Hirosaki, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
7
|
Halligan DN, Khan MN, Brown E, Rowan CR, Coulter IS, Doherty GA, Tambuwala MM, Taylor CT. Hypoxia-inducible factor hydroxylase inhibition enhances the protective effects of cyclosporine in colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G90-G97. [PMID: 31070931 DOI: 10.1152/ajpgi.00049.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by epithelial barrier dysfunction with resultant inflammation as the mucosal immune system becomes exposed to luminal antigens. The hydroxylase inhibitor dimethyloxalylglycine (DMOG) reduces symptoms in experimental colitis through the upregulation of genes promoting barrier function and inhibition of epithelial cell apoptosis. The immunosuppressive drug cyclosporine reduces inflammation associated with IBD via suppression of immune cell activation. Given the distinct barrier protective effect of DMOG and the anti-inflammatory properties of cyclosporine, we hypothesized that combining these drugs may provide an enhanced protective effect by targeting both barrier dysfunction and inflammation simultaneously. We used the dextran sulfate sodium model of colitis in C57BL/6 mice to determine the combinatorial efficacy of cyclosporine and DMOG. While cyclosporine and DMOG ameliorated disease progression, in combination they had an additive protective effect that surpassed the level of protection afforded by either drug alone. The ability of DMOG to augment the anti-inflammatory effects of cyclosporine was largely due to preservation of barrier function and at least in part due to zonula occludens-1 regulation. We propose that combining the barrier protective effects of a hydroxylase inhibitor with the anti-inflammatory effects of cyclosporine provides added therapeutic benefit in colitis.NEW & NOTEWORTHY Inflammatory bowel disease is the result of decreased intestinal epithelial barrier function leading to exposure of the mucosal immune system to luminal antigens causing inflammation, which in turn further decreases epithelial barrier function. We demonstrate for the first time that strengthening the epithelial barrier with a hydroxylase inhibitor in combination with the administration of the immunosuppressive cyclosporine provides additive therapeutic advantage in a murine model of colitis.
Collapse
Affiliation(s)
- Doug N Halligan
- The Conway Institute, University College Dublin, Belfield, Dublin, Ireland.,Sigmoid Pharma, The Invent Centre, Dublin City University, Dublin, Ireland
| | - Mohammed N Khan
- The Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, United Kingdom
| | - Eric Brown
- The Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Catherine R Rowan
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - Ivan S Coulter
- Sigmoid Pharma, The Invent Centre, Dublin City University, Dublin, Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - Murtaza M Tambuwala
- The Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, United Kingdom
| | - Cormac T Taylor
- The Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
8
|
Grandi A, Zini I, Palese S, Giorgio C, Tognolini M, Marchesani F, Bruno S, Flammini L, Cantoni AM, Castelli R, Lodola A, Fusari A, Barocelli E, Bertoni S. Targeting the Eph/Ephrin System as Anti-Inflammatory Strategy in IBD. Front Pharmacol 2019; 10:691. [PMID: 31297055 PMCID: PMC6606944 DOI: 10.3389/fphar.2019.00691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 01/18/2023] Open
Abstract
Besides their long-known critical role in embryonic growth and in cancer development and progression, erythropoietin-producing hepatocellular carcinoma type B (EphB) receptor tyrosine kinases and their ephrin-B ligands are involved in the modulation of immune responses and in remodeling and maintaining the integrity of the intestinal epithelial layer. These processes are critically involved in the pathogenesis of inflammatory-based disorders of the gut, like inflammatory bowel diseases (IBDs). Accordingly, our aim was to investigate the role of the EphB/ephrin-B system in intestinal inflammation by assessing the local and systemic effects produced by its pharmacological manipulation in 2,4,6-trinitrobenzenesulfonic acid (TNBS)- (Th1-dependent model) and dextran sulphate sodium (DSS)- (innate response model) induced colitis in mice. To this purpose, we administered chimeric Fc-conjugated proteins, allegedly able to uni-directionally activate either forward (ephrin-B1-Fc) or reverse (EphB1-Fc) signaling, and the soluble monomeric EphB4 extracellular domain protein, that, simultaneously interfering with both signaling pathways, acts as EphB/ephrin-B antagonist.The blockade of the EphB/ephrin-B forward signaling by EphB4 and EphB1-Fc was ineffective against DSS-induced colitis while it evoked remarkable beneficial effects against TNBS colitis: it counteracted all the evaluated inflammatory responses and the changes elicited on splenic T lymphocytes subpopulations, without preventing the appearance of a splice variant of ephrin-B2 gene elicited by the haptenating agent in the colon. Interestingly, EphB4, preferentially displacing EphB4/ephrin-B2 interaction over EphB1/ephrin-B1 binding, was able to promote Tumor Necrosis Factor alpha (TNFα) release by splenic mononuclear cells in vitro. On the whole, the collected results point to a potential role of the EphB/ephrin-B system as a pharmacological target in intestinal inflammatory disorders and suggest that the therapeutic efficacy of its blockade seemingly works through the modulation of immune responses, independent of the changes at the transcriptional and translational level of EphB4 and ephrin-B2 genes.
Collapse
Affiliation(s)
- Andrea Grandi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Irene Zini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Simone Palese
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | | | - Stefano Bruno
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | - Alessio Lodola
- Food and Drug Department, University of Parma, Parma, Italy
| | - Antonella Fusari
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | | | - Simona Bertoni
- Food and Drug Department, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Hoffmann M, Schwertassek U, Seydel A, Weber K, Falk W, Hauschildt S, Lehmann J. A refined and translationally relevant model of chronic DSS colitis in BALB/c mice. Lab Anim 2017; 52:240-252. [PMID: 29192559 DOI: 10.1177/0023677217742681] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing disorders of the gastrointestinal tract. Several mouse models for IBD are available, but the acute dextran sulfate sodium (DSS)-induced colitis model is mostly used for preclinical studies. However, this model lacks chronicity and often leads to significant loss of mice. The aim of this study was to establish a refined and translationally relevant model of DSS chronic colitis in BALB/c mice. In the first part, we compared several standard therapeutic (ST) treatments for IBD in the acute DSS colitis model to identify the optimal treatment control for a DSS colitis model as compared to literature data. In the second part, we tested the two most effective ST treatments in a refined model of chronic DSS colitis. Cyclosporine A (CsA) and 6-thioguanine (6-TG) caused considerable reduction of clinical scores in acute DSS colitis. The clinical outcome was confirmed by the results for colon length and by histopathological evaluation. Moreover, CsA and 6-TG considerably reduced mRNA expression of several pro-inflammatory cytokines in spleen and colon. Both compounds also showed a substantial therapeutic effect in the refined model of chronic DSS colitis with regard to clinical scores and histopathology as well as the expression of inflammatory markers. The refined model of chronic DSS colitis reflects important features of IBD and is well suited to test potential IBD therapeutics.
Collapse
Affiliation(s)
- Maximilian Hoffmann
- 1 Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ulla Schwertassek
- 1 Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Aleksandra Seydel
- 1 Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Werner Falk
- 3 Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Sunna Hauschildt
- 4 Faculty of Biological Sciences, Pharmacy, and Psychology, University of Leipzig, Leipzig, Germany
| | - Jörg Lehmann
- 1 Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
10
|
Royal JM, Matoba N. Therapeutic Potential of Cholera Toxin B Subunit for the Treatment of Inflammatory Diseases of the Mucosa. Toxins (Basel) 2017; 9:toxins9120379. [PMID: 29168738 PMCID: PMC5744099 DOI: 10.3390/toxins9120379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023] Open
Abstract
Cholera toxin B subunit (CTB) is a mucosal immunomodulatory protein that induces robust mucosal and systemic antibody responses. This well-known biological activity has been exploited in cholera prevention (as a component of Dukoral® vaccine) and vaccine development for decades. On the other hand, several studies have investigated CTB's immunotherapeutic potential in the treatment of inflammatory diseases such as Crohn's disease and asthma. Furthermore, we recently found that a variant of CTB could induce colon epithelial wound healing in mouse colitis models. This review summarizes the possible mechanisms behind CTB's anti-inflammatory activity and discuss how the protein could impact mucosal inflammatory disease treatment.
Collapse
Affiliation(s)
- Joshua M Royal
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
11
|
Baldauf KJ, Royal JM, Kouokam JC, Haribabu B, Jala VR, Yaddanapudi K, Hamorsky KT, Dryden GW, Matoba N. Oral administration of a recombinant cholera toxin B subunit promotes mucosal healing in the colon. Mucosal Immunol 2017; 10:887-900. [PMID: 27805617 DOI: 10.1038/mi.2016.95] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/19/2016] [Indexed: 02/04/2023]
Abstract
Cholera toxin B subunit (CTB) is a component of a licensed oral cholera vaccine. However, CTB has pleiotropic immunomodulatory effects whose impacts on the gut are not fully understood. Here, we found that oral administration in mice of a plant-made recombinant CTB (CTBp) significantly increased several immune cell populations in the colon lamina propria. Global gene expression analysis revealed that CTBp had more pronounced impacts on the colon than the small intestine, with significant activation of TGFβ-mediated pathways in the colon epithelium. The clinical relevance of CTBp-induced impacts on colonic mucosa was examined. In a human colon epithelial model using Caco2 cells, CTBp, but not the non-GM1-binding mutant G33D-CTBp, induced TGFβ-mediated wound healing. In a dextran sodium sulfate (DSS) acute colitis mouse model, oral administration of CTBp protected against colon mucosal damage as manifested by mitigated body weight loss, decreased histopathological scores, and blunted escalation of inflammatory cytokine levels while inducing wound healing-related genes. Furthermore, biweekly oral administration of CTBp significantly reduced disease severity and tumorigenesis in the azoxymethane/DSS model of ulcerative colitis and colon cancer. Altogether, these results demonstrate CTBp's ability to enhance mucosal healing in the colon, highlighting its potential application in ulcerative colitis therapy besides cholera vaccination.
Collapse
Affiliation(s)
- K J Baldauf
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - J M Royal
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, Kentucky, USA
| | - J C Kouokam
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, Kentucky, USA
| | - B Haribabu
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - V R Jala
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - K Yaddanapudi
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - K T Hamorsky
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, Kentucky, USA.,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - G W Dryden
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - N Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, Kentucky, USA
| |
Collapse
|
12
|
Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci 2015; 60:3590-602. [PMID: 26182903 DOI: 10.1007/s10620-015-3807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory bowel disease results from a combination of dysfunction of intestinal epithelial barrier and dysregulation of mucosal immune system. iPLA2β has multiple homeostatic functions and shown to play a role in membrane remodeling, cell proliferation, monocyte chemotaxis, and apoptosis. The latter may render chronic inflammation and susceptibility for acute injury. AIMS We aim to evaluate whether an inactivation of iPLA2β would enhance the pathogenesis of experimental colitis induced by dextran sodium sulfate. METHODS iPLA2β-null male mice were administered dextran sodium sulfate in drinking water for 7 days followed by normal water for 3 days. At day 10, mice were killed, and harvested colon and ileum were subjected for evaluation by histology, immunohistochemistry, and quantitative RT-PCR. RESULTS Dextran sodium sulfate administration caused a significant increase in histological scores and cleaved caspase 3 (+) apoptosis concomitant with a decrease in colon length and crypt cell Ki67 (+) proliferation in iPLA2β-null mice in a greater extent than in control littermates. This sensitization by iPLA2β deficiency was associated with an increase in accumulation of F4/80 (+) macrophages, and expression of proinflammatory cytokines and chemokines, while the number of mucin-containing goblet cells and mucus layer thickness was decreased. Some of these abnormalities were also observed in the ileum. CONCLUSIONS An inactivation of iPLA2β exacerbated pathogenesis of experimental colitis by promoting intestinal epithelial cell apoptosis, inhibiting crypt cell regeneration, and causing damage to mucus barrier allowing an activation of innate immune response. Thus, iPLA2β may represent a susceptible gene for the development of inflammatory bowel disease.
Collapse
|
13
|
Chandler HL, Gervais KJ, Lutz EA, Curto EM, Matusow RB, Wilkie DA, Gemensky-Metzler AJ. Cyclosporine A prevents ex vivo PCO formation through induction of autophagy-mediated cell death. Exp Eye Res 2015; 134:63-72. [PMID: 25839646 DOI: 10.1016/j.exer.2015.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to determine the Cyclosporine A (CsA) dose and minimum drug delivery time needed to prevent posterior capsule opacification (PCO) in an ex vivo canine model and evaluate the mechanism of CsA-induced cell death. Canine lens epithelial cells (LEC) were treated with CsA and changes in cell migration, proliferation, and density were monitored over time. CsA-treated LEC underwent transmission electron microscopy (TEM), immunofluorescence, and immunoblotting in the presence or absence of autophagy inhibitors to evaluate the mechanism of cell death. Lens capsules were harvested from canine cadaver eyes for an ex vivo model of PCO. Lens capsules were treated with CsA for 1, 2, 3, 4, 5, 6, or 7 days, and subsequently maintained in culture for a total of 28 days in the absence of drug. CsA reduced LEC viability in a dose dependent manner. Morphologically, CsA-treated LEC were swollen, had intact nuclei, lacked peripheral chromatin condensation, and demonstrated prominent vacuolization; TEM revealed autophagosomes. LC3-II protein expression and acridine orange fluorescence increased in CsA-treated cells. A small non-significant induction of cleaved caspase-3 was observed in CsA-treated LEC. Lens capsules treated with 5, 6, or 7 days of 10 μg/mL CsA showed a significant decrease in ex vivo PCO formation; 6 days of drug delivery prevented PCO. This study finds that morphologic changes, formation of acidic vesicles, and increased expression of LC3-II supports the hypothesis that CsA mediates LEC death via autophagy; this is a novel finding in the lens. Induction of CsA-induced apoptosis was minimal. Six days of intracapsular CsA drug delivery prevented ex vivo PCO formation.
Collapse
Affiliation(s)
- Heather L Chandler
- The Ohio State University, College of Optometry, 320 West 10th Avenue, Columbus, OH 43210, USA; The Ohio State University, College of Veterinary Medicine, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| | - Kristen J Gervais
- The Ohio State University, College of Optometry, 320 West 10th Avenue, Columbus, OH 43210, USA
| | - Elizabeth A Lutz
- The Ohio State University, College of Veterinary Medicine, 601 Vernon Tharp Street, Columbus, OH 43210, USA
| | - Elizabeth M Curto
- The Ohio State University, College of Optometry, 320 West 10th Avenue, Columbus, OH 43210, USA
| | - Rachel B Matusow
- The Ohio State University, College of Optometry, 320 West 10th Avenue, Columbus, OH 43210, USA
| | - David A Wilkie
- The Ohio State University, College of Veterinary Medicine, 601 Vernon Tharp Street, Columbus, OH 43210, USA
| | - Anne J Gemensky-Metzler
- The Ohio State University, College of Veterinary Medicine, 601 Vernon Tharp Street, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Wang Y, Han G, Chen Y, Wang K, Liu G, Wang R, Xiao H, Li X, Hou C, Shen B, Guo R, Li Y, Chen G. Protective role of tumor necrosis factor (TNF) receptors in chronic intestinal inflammation: TNFR1 ablation boosts systemic inflammatory response. J Transl Med 2013; 93:1024-35. [PMID: 23897411 DOI: 10.1038/labinvest.2013.89] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) acts as a key factor for the development of inflammatory bowel diseases (IBDs), whose function is known to be mediated by TNF receptor 1 (TNFR1) or TNFR2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, chronic colitis was established by oral administration of dextran sulfate sodium (DSS) in TNFR1 or TNFR2-/- mice. Unexpectedly, TNFR1 or TNFR2 deficiency led to exacerbation of signs of colitis compared with wild-type (WT) counterparts. Of note, TNFR1 ablation rendered significantly increased mortality compared with TNFR2 and WT mice after DSS. Aggravated pathology of colitis in TNFR1-/- or TNFR2-/- mice correlated with elevated colonic expression of proinflammatory cytokines and chemokines. Importantly, ablation of TNFR1 or TNFR2 increased apoptosis of colonic epithelial cells, which might be due to the heightened ratio of Bax/Bcl-2 and increased expression of caspase-8. Intriguingly, despite comparable intensity of intestinal inflammation in TNFR-deficient mice after DSS, systemic inflammatory response (including splenomegaly and myeloid expansion) was augmented dramatically in TNFR1-/- mice, instead of TNFR2-/- mice. Granulocyte-macrophage colony-stimulating factor (GMCSF) was identified as a key mediator in this process, as neutralization of GMCSF dampened peripheral inflammatory reaction and reduced mortality in TNFR1-/- mice. These data suggest that signaling via TNFR1 or TNFR2 has a protective role in chronic intestinal inflammation, and that lacking TNFR1 augments systemic inflammatory response in GMCSF-dependent manner.
Collapse
Affiliation(s)
- Yi Wang
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cytokine mucosal expression in ulcerative colitis, the relationship between cytokine release and disease activity. J Crohns Colitis 2013; 7:481-9. [PMID: 22974822 DOI: 10.1016/j.crohns.2012.07.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/21/2012] [Accepted: 07/21/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease with conflicting evidence from studies on the roles of TNFα, IL-8, TGFβ and other cytokines and characterised by neutrophil infiltration and tissue destruction. AIM To compare cytokine profiles of inflamed and non-inflamed mucosa in patients with distal UC, and matched controls. METHODS Patients were prospectively recruited, mucosal biopsies at flexible sigmoidoscopy (FS) were taken from UC patients within macroscopically inflamed and non-inflamed proximal mucosa, and from age-sex matched controls undergoing FS. Endoscopic and histological inflammation was graded. Quantitative cytokine analysis for IL-4, TNFα, IL-17A, IL-8, IL-10, TGFβ and IFNγ was carried out on tissue homogenates. Statistical comparison was by Wilcoxon signed rank pair analysis, Mann-Whitney U test and Spearman's correlation. RESULTS 69 active UC patients (54 paired non-inflamed/inflamed mucosa) and 69 controls were compared. In inflamed mucosa, elevation in IL-8 and reduction in TGFβ was measured compared with non-inflamed mucosa (p<0.001; p<0.02) and control mucosa (p<0.001; p<0.001); IL-8 was positively correlated (rs=0.481, p<0.01) and TGFβ inversely correlated (rs=0.462; p<0.01) with grade of inflammation. TNFα concentration was not significantly different. Comparisons of inflamed with non-inflamed mucosa also demonstrate significant reduction in concentration of IFNγ (p<0.001), IL-4 (p<0.005) and IL-17A (p<0.002). CONCLUSION Our findings suggest that IL-8 is elevated and TGFβ is reduced in distal colitis. Lower concentration of IFNγ, IL-4 and IL-17A were also noted. TNFα levels were unchanged. These findings suggest that the inflammatory response in UC may predominantly involve IL-8 mediated neutrophil infiltration and failure of TGFβ mediated tissue healing.
Collapse
|
16
|
Olesen MTJ, Ballarín-González B, Howard KA. The application of RNAi-based treatments for inflammatory bowel disease. Drug Deliv Transl Res 2013; 4:4-18. [DOI: 10.1007/s13346-013-0156-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Li S, Meyer NP, Quarto N, Longaker MT. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts. PLoS One 2013; 8:e58610. [PMID: 23536803 PMCID: PMC3607600 DOI: 10.1371/journal.pone.0058610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022] Open
Abstract
Neural crest-derived (FOb) and mesoderm-derived (POb) calvarial osteoblasts are characterized by distinct differences in their osteogenic potential. We have previously demonstrated that enhanced activation of endogenous FGF and Wnt signaling confers greater osteogenic potential to FOb. Apoptosis, a key player in bone formation, is the main focus of this study. In the current work, we have investigated the apoptotic activity of FOb and POb cells during differentiation. We found that lower apoptosis, as measured by caspase-3 activity is a major feature of neural crest-derived osteoblast which also have higher osteogenic capacity. Further investigation indicated TGF-β signaling as main positive regulator of apoptosis in these two populations of calvarial osteoblasts, while BMP and canonical Wnt signaling negatively regulate the process. By either inducing or inhibiting these signaling pathways we could modulate apoptotic events and improve the osteogenic potential of POb. Taken together, our findings demonstrate that integration of multiple signaling pathways contribute to imparting greater osteogenic potential to FOb by decreasing apoptosis.
Collapse
Affiliation(s)
- Shuli Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Nathaniel P. Meyer
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
- Dipartimento di Scienze Biomediche Avanzate, Universita’ degli Studi di Napoli Federico II, Napoli, Italy
- * E-mail: (NQ); (MTL)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
- * E-mail: (NQ); (MTL)
| |
Collapse
|
18
|
Jia Y, Guan Q, Jiang Y, Salh B, Guo Y, Tu P, Du C. Amelioration of dextran sulphate sodium-induced colitis in mice by echinacoside-enriched extract of Cistanche tubulosa. Phytother Res 2013; 28:110-9. [PMID: 23512684 DOI: 10.1002/ptr.4967] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 01/11/2013] [Accepted: 02/14/2013] [Indexed: 01/21/2023]
Abstract
Echinacoside (ECH) is a major bioactive phenyethanoids in medicinal herba Cistanche and has been reported to have antiinflammatory activity and beneficial effect on wound healing in many experimental studies. This study was to test the efficacy of ECH-enriched extract of Cistanche tubulosa in the treatment of dextran sulphate sodium (DSS)-induced colitis, a preclinical model of ulcerative colitis. Oral administration of ECH extract significantly suppresses the development of acute colitis, indicated by lowering disease activity index (p < 0.0001, n = 8) and preventing colonic damage (p = 0.0336). Histological examinations showed that ECH extract treatment protected intestinal epithelium from inflammatory injury (p = 0.0249) but had less effect on inflammatory cellular infiltration (p = 0.1753). The beneficial effect of ECH extract treatment was associated with upregulation of transforming growth factor (TGF)-β1 as well as with an increase in the number of Ki67(+) proliferating cells in diseased colons (p < 0.0001). In cultured MODE-K cells, the addition of ECH extract enhanced in vitro wound healing that depended on TGF-β1 expression. These data suggest that ECH extract possesses a greater efficacy in preventing DSS-induced colitis in mice, implying the potential of ECH or its derivatives for clinically treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Yamin Jia
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China; Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Senarath-Yapa K, Li S, Meyer NP, Longaker MT, Quarto N. Integration of multiple signaling pathways determines differences in the osteogenic potential and tissue regeneration of neural crest-derived and mesoderm-derived calvarial bones. Int J Mol Sci 2013; 14:5978-97. [PMID: 23502464 PMCID: PMC3634461 DOI: 10.3390/ijms14035978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/24/2022] Open
Abstract
The mammalian skull vault, a product of a unique and tightly regulated evolutionary process, in which components of disparate embryonic origin are integrated, is an elegant model with which to study osteoblast biology. Our laboratory has demonstrated that this distinct embryonic origin of frontal and parietal bones confer differences in embryonic and postnatal osteogenic potential and skeletal regenerative capacity, with frontal neural crest derived osteoblasts benefitting from greater osteogenic potential. We outline how this model has been used to elucidate some of the molecular mechanisms which underlie these differences and place these findings into the context of our current understanding of the key, highly conserved, pathways which govern the osteoblast lineage including FGF, BMP, Wnt and TGFβ signaling. Furthermore, we explore recent studies which have provided a tantalizing insight into way these pathways interact, with evidence accumulating for certain transcription factors, such as Runx2, acting as a nexus for cross-talk.
Collapse
Affiliation(s)
- Kshemendra Senarath-Yapa
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Shuli Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Nathaniel P. Meyer
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Department of Advanced Biomedical Science, University of Studies of Naples Federico II, Naples 80131, Italy
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| |
Collapse
|
20
|
Lim EJ, Chin R, Angus PW, Torresi J. Enhanced apoptosis in post-liver transplant hepatitis C: Effects of virus and immunosuppressants. World J Gastroenterol 2012; 18:2172-9. [PMID: 22611309 PMCID: PMC3351766 DOI: 10.3748/wjg.v18.i18.2172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C (HCV)-infected patients have a poorer survival post-liver transplantation compared to patients transplanted for other indications, since HCV recurrence post-transplant is universal and commonly follows an aggressive course. There is increasing evidence that in the non-transplant setting, induction of hepatocyte apoptosis is one of the main mechanisms by which HCV drives liver inflammation and fibrosis, and that HCV proteins directly promote apoptosis. Recent studies have shown that post-liver transplant, there is a link between high levels of HCV replication, enhanced hepatocyte apoptosis and the subsequent development of rapidly progressive liver fibrosis. Although the responsible mechanisms remain unclear, it is likely that immunosuppressive drugs play an important role. It is well known that immunosuppressants impair immune control of HCV, thereby allowing increased viral replication. However there is also evidence that immunosuppressants may directly induce apoptosis and this may be facilitated by the presence of high levels of HCV replication. Thus HCV and immunosuppressants may synergistically interact to further enhance apoptosis and drive more rapid fibrosis. These findings suggest that modulation of apoptosis within the liver either by changing immunosuppressive therapy or the use of apoptosis inhibitors may help prevent fibrosis progression in patients with post-transplant HCV disease.
Collapse
|
21
|
Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. J Transl Med 2012; 92:636-45. [PMID: 22330343 PMCID: PMC3397682 DOI: 10.1038/labinvest.2012.7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages have an important role in the pathogenesis of most chronic inflammatory diseases. A means of non-invasively quantifying macrophage migration would contribute significantly towards our understanding of chronic inflammatory processes and aid the evaluation of novel therapeutic strategies. We describe the use of a perfluorocarbon tracer reagent and in vivo (19)F magnetic resonance imaging (MRI) to quantify macrophage burden longitudinally. We apply these methods to evaluate the severity and three-dimensional distribution of macrophages in a murine model of inflammatory bowel disease (IBD). MRI results were validated by histological analysis, immunofluorescence and quantitative real-time polymerase chain reaction. Selective depletion of macrophages in vivo was also performed, further validating that macrophage accumulation of perfluorocarbon tracers was the basis of (19)F MRI signals observed in the bowel. We tested the effects of two common clinical drugs, dexamethasone and cyclosporine A, on IBD progression. Whereas cyclosporine A provided mild therapeutic effect, unexpectedly dexamethasone enhanced colon inflammation, especially in the descending colon. Overall, (19)F MRI can be used to evaluate early-stage inflammation in IBD and is suitable for evaluating putative therapeutics. Due to its high macrophage specificity and quantitative ability, we envisage (19)F MRI having an important role in evaluating a wide range of chronic inflammatory conditions mediated by macrophages.
Collapse
Affiliation(s)
- Deepak K Kadayakkara
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sarangarajan Ranganathan
- Department of Pathology, University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh, One Children’s Hospital Drive, Pittsburgh, PA, USA
| | - Won-Bin Young
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric T Ahrens
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Youn H, Hong KJ. In vivo Noninvasive Small Animal Molecular Imaging. Osong Public Health Res Perspect 2012; 3:48-59. [PMID: 24159487 PMCID: PMC3738683 DOI: 10.1016/j.phrp.2012.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 12/16/2022] Open
Abstract
The remarkable efforts that are made on molecular imaging technologies demonstrate its potential importance and range of applications. The generation of disease-specific animal models, and the developments of target-specific probes and genetically encoded reporters are another important component. Continued improvements in the instrumentation, the identification of novel targets and genes, and the availability of improved imaging probes should be made. Multimodal imaging probes should provide easier transitions between laboratory studies, including small animal studies and clinical applications. Here, we reviewed basic strategies of noninvasive in vivo imaging methods in small animals to introducing the concept of molecular imaging.
Collapse
Affiliation(s)
- Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Cancer Hospital, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kee-Jong Hong
- Division of High-Risk Pathogen Research, Korea National Institute of Health, Osong, Korea
| |
Collapse
|
23
|
ErbB2 and ErbB3 regulate recovery from dextran sulfate sodium-induced colitis by promoting mouse colon epithelial cell survival. J Transl Med 2012; 92:437-50. [PMID: 22157714 PMCID: PMC3289719 DOI: 10.1038/labinvest.2011.192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
ErbB2 and ErbB3 receptor tyrosine kinases are key regulators of proliferation, migration, differentiation and cell survival; however, their roles in gastrointestinal biology remain poorly defined. We hypothesized that ErbB2 and ErbB3 promote colon epithelial cell survival in the context of the wound-healing response following colitis. In this study, mice bearing intestinal epithelial-specific deletion of ErbB2 or ErbB3 were treated with dextran sulfate sodium (DSS). Colon sections were examined for injury, cytokine expression, epithelial cell proliferation and apoptosis. Deletion of epithelial ErbB2 did not affect the extent of intestinal injury in response to DSS, whereas deletion of ErbB3 slightly increased injury. However, the roles of both receptors were more apparent during recovery from DSS colitis, in which ErbB2 or ErbB3 epithelial deletion resulted in greater inflammation and crypt damage during the early reparative period. Moreover, loss of ErbB3 prevented normal epithelial regeneration in the long term, with damage persisting for at least 6 weeks following a single round of DSS. Delayed recovery in mice with epithelial deletion of ErbB2 or ErbB3 was associated with increased colonic expression of tumor necrosis factor alpha and increased epithelial apoptosis. Furthermore, epithelial ErbB3 deletion increased apoptosis at baseline and during DSS injury. Additionally, epithelial cell hyperproliferation during recovery was exacerbated by deletion of either ErbB2 or ErbB3. These results suggest that ErbB2 and ErbB3 have important cytoprotective and reparative roles in the colonic epithelium following injury, by promoting colon epithelial cell survival.
Collapse
|
24
|
Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 2011; 12:1063-70. [PMID: 21983832 PMCID: PMC4140245 DOI: 10.1038/ni.2113] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/19/2011] [Indexed: 12/19/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been identified by genome-wide association studies as being encoded by a major susceptibility gene for Crohn's disease. Here we found that LRRK2 deficiency conferred enhanced susceptibility to experimental colitis in mice. Mechanistic studies showed that LRRK2 was a potent negative regulator of the transcription factor NFAT and was a component of a complex that included the large noncoding RNA NRON (an NFAT repressor). Furthermore, the risk-associated allele encoding LRRK2 Met2397 identified by a genome-wide association study for Crohn's disease resulted in less LRRK2 protein post-translationally. Severe colitis in LRRK2-deficient mice was associated with enhanced nuclear localization of NFAT1. Thus, our study defines a new step in the control of NFAT activation that involves an immunoregulatory function of LRRK2 and has important implications for inflammatory bowel disease.
Collapse
Affiliation(s)
- Zhihua Liu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinwoo Lee
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott Krummey
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Cai
- Unit of Transgenesis; Laboratory of Neurogenetics; National Institute on Aging, National Institutes of Health; Bethesda, MD 20892 USA
| | - Michael J. Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Furumatsu K, Nishiumi S, Kawano Y, Ooi M, Yoshie T, Shiomi Y, Kutsumi H, Ashida H, Fujii-Kuriyama Y, Azuma T, Yoshida M. A role of the aryl hydrocarbon receptor in attenuation of colitis. Dig Dis Sci 2011; 56:2532-44. [PMID: 21374063 DOI: 10.1007/s10620-011-1643-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 02/14/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The aryl hydrocarbon receptor (AhR), which is a member of the basic helix-loop-helix/Per-Arnt-Sim homology superfamily, plays an important role in multiple biological functions, and AhR knockout (AhR KO) animals suffer from a variety of organ disorders including a decline in the efficacy of their immune system. In addition, AhR activation is known to aid the maintenance of homeostasis in vivo. In this study, we investigated whether AhR is functionally associated with intestinal immunity. METHODS AND RESULTS In in vivo experiments, it was found that dextran sodium sulfate (DSS)-evoked colitis was more severe in AhR KO mice than in C57BL/6J wild type mice. It was also revealed that the administration of DSS increased the expression levels of AhR and CYP1A1 mRNA in the colon epithelium. In addition, oral administration of β-naphthoflavone (βNF), a non-toxic agonist of AhR, suppressed the pathogenesis of DSS-induced colitis. βNF also attenuated DSS-induced colitis. In cell culture experiments, downregulation of AhR in human colon carcinoma SW480 cells enhanced the inflammatory responses evoked by lipopolysaccharide (LPS), and furthermore, AhR activation attenuated LPS-induced inflammatory responses, suggesting that AhR expressing intestinal epithelial cells are involved in the prevention of colitis. CONCLUSIONS Our findings about the potential role of AhR activators in epithelial immune regulation aid our understanding of mucosal homeostasis and inflammatory bowl disease (IBD) and suggest that AhR activation has therapeutic value for the treatment of IBD.
Collapse
Affiliation(s)
- Keisuke Furumatsu
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1, Chuo-ku, Kusunoki-cho, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sobral LM, Aseredo F, Agostini M, Bufalino A, Pereira MCC, Graner E, Coletta RD. Molecular events associated with ciclosporin A-induced gingival overgrowth are attenuated by Smad7 overexpression in fibroblasts. J Periodontal Res 2011; 47:149-58. [DOI: 10.1111/j.1600-0765.2011.01412.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Triantafillidis JK, Merikas E, Georgopoulos F. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther 2011; 5:185-210. [PMID: 21552489 PMCID: PMC3084301 DOI: 10.2147/dddt.s11290] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Indexed: 12/14/2022] Open
Abstract
During the last decade a large number of biological agents against tumor necrosis factor-α (TNF-α), as well as many biochemical substances and molecules specifically for the medical treatment of patients with inflammatory bowel disease (IBD), have been developed. This enormous progress was a consequence of the significant advances in biotechnology along with the increased knowledge of the underlying pathophysiological mechanisms involved in the pathogenesis of IBD. However, conventional therapies remain the cornerstone of treatment for most patients. During recent years conventional and biologic IBD therapies have been optimized. Newer mesalazine formulations with a reduced pill size and only one dose per day demonstrate similar efficacy to older formulations. New corticosteroids retain the efficacy of older corticosteroids while exhibiting a higher safety profile. The role of antibiotics and probiotics has been further clarified. Significant progress in understanding thiopurine metabolism has improved the effective dose along with adjunctive therapies. Quite a large number of substances and therapies, including biologic agents other than TNF-α inhibitors, unfractionated or low-molecular-weight heparin, omega-3 polyunsaturated fatty acids, microbes and microbial products, leukocytapheresis, and other substances under investigation, could offer important benefits to our patients. In this paper we review the established and emerging therapeutic strategies in patients with Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- John K Triantafillidis
- Department of Gastroenterology, Center for Inflammatory Bowel Disease, "Saint Panteleimon" General Hospital, Nicea, Greece.
| | | | | |
Collapse
|