1
|
Gómez Del Val A, Sánchez A, Freire-Agulleiro Ó, Martínez MP, Muñoz M, Olmos L, Medina JS, Comerma-Steffensen SG, Simonsen U, Rivera L, López M, Contreras C, Prieto D. Penile endothelial dysfunction, impaired redox metabolism and blunted mitochondrial bioenergetics in diet-induced obesity: Compensatory role of H 2O 2. Free Radic Biol Med 2025; 230:222-233. [PMID: 39929293 DOI: 10.1016/j.freeradbiomed.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE Erectile dysfunction (ED) is considered an early manifestation of cardiovascular disease (CVD), endothelial dysfunction being the link between CVD and vasculogenic ED. Mitochondrial reactive oxygen species (mtROS) have been involved in the vascular complications of metabolic disorders. The aim of this study was to assess the impact of obesity on endothelial function, redox metabolism and mitochondrial bioenergetics of penile erectile tissue. METHODS Wistar rats were fed a high-fat diet (HFD) or standard diet (STD), and penile vascular function was assessed in microvascular myographs. mtROS levels were measured by mitoSOX (O2.-) and Amplex Red (H2O2) fluorimetry, and the effect of the mitochondrial antioxidant mitoTempo on endothelium-dependent relaxations was tested. Mitochondrial respiration of intact microarteries was assessed with an Agilent Seahorse XF Pro analyzer, and the expression of mitochondria redox regulators was analysed by Western blot. RESULTS Endothelium-dependent relaxations to acetylcholine (ACh) and to the mitoKATP channel activator BMS191095 were reduced in penile arteries from HFD. mtROS levels were significantly increased and associated with upregulation of the endothelial NADPH oxidase 4 (Nox4) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in HFD erectile tissue. MitoTempo inhibited endothelial relaxations in control and HFD penile arteries. The bioenergetic profile was significantly reduced in HFD penile arteries compared to STD rats. CONCLUSIONS Mitochondrial dysfunction with impaired bioenergetics and reduced mitoKATP channel-mediated relaxation underlie endothelial and vascular dysfunction of erectile tissue in obesity, despite a compensatory mechanism that enhances Nox4-derived endothelial vasodilator mtROS. Therapeutic strategies aimed to stabilize mitochondria could restore redox balance and improve mitochondrial bioenergetics thus preventing oxidative stress and vascular dysfunction underlying metabolic disease associated ED.
Collapse
Affiliation(s)
| | - Ana Sánchez
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Óscar Freire-Agulleiro
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Pilar Martínez
- Department of Anatomy and Embriology, Madrid Complutense University, Madrid, Spain
| | - Mercedes Muñoz
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Lucia Olmos
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Luis Rivera
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dolores Prieto
- Department of Physiology, Madrid Complutense University, Madrid, Spain.
| |
Collapse
|
2
|
Gonzales CR, Moca EN, Chandra PK, Busija DW, Rutkai I. Three-dimensional object geometry of mitochondria-associated signal: 3-D analysis pipeline for two-photon image stacks of cerebrovascular endothelial mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H1291-H1303. [PMID: 38517228 PMCID: PMC11630827 DOI: 10.1152/ajpheart.00101.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Increasing evidence indicates the role of mitochondrial and vascular dysfunction in aging and aging-associated pathologies; however, the exact mechanisms and chronological processes remain enigmatic. High-energy demand organs, such as the brain, depend on the health of their mitochondria and vasculature for the maintenance of normal functions, therefore representing vulnerable targets for aging. This methodology article describes an analysis pipeline for three-dimensional (3-D) mitochondria-associated signal geometry of two-photon image stacks of brain vasculature. The analysis methods allow the quantification of mitochondria-associated signals obtained in real time in their physiological environment. In addition, signal geometry results will allow the extrapolation of fission and fusion events under normal conditions, during aging, or in the presence of different pathological conditions, therefore contributing to our understanding of the role mitochondria play in a variety of aging-associated diseases with vascular etiology.NEW & NOTEWORTHY Analysis pipeline for 3-D mitochondria-associated signal geometry of two-photon image stacks of brain vasculature.
Collapse
Affiliation(s)
- Christopher R Gonzales
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Eric N Moca
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
3
|
Gómez Del Val A, Contreras C, Muñoz M, Sáenz-Medina J, Mohamed M, Rivera L, Sánchez A, Prieto D. Activation of mitoK ATP channels induces penile vasodilation and inhibits mitochondrial respiration and ROS production: Role of NO. Free Radic Biol Med 2024; 217:15-28. [PMID: 38522485 DOI: 10.1016/j.freeradbiomed.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Mitochondrial ATP-sensitive K+ (mitoKATP) channels are involved in neuronal and cardiac protection from ischemia and oxidative stress. Penile erection is a neurovascular event mediated by relaxation of the erectile tissue via nitric oxide (NO) released from nerves and endothelium. In the present study, we investigated whether mitoKATP channels play a role in the control of penile vascular tone and mitochondrial dynamics, and the involvement of NO. METHODS The effect of the selective mitoKATP activator BMS191095 was examined on vascular tone, on mitochondrial bioenergetics by real-time measurements with Agilent Seahorse and on ROS production by MitoSOX fluorescence in freshly isolated microarteries. RESULTS BMS191095 and diazoxide relaxed penile arteries, BMS191095 being one order of magnitude more potent. BMS191095-induced relaxations were reduced by mechanical endothelium removal and by inhibitors of the nitric oxide synthase (NOS) and PI3K enzymes. The NO-dependent component of the relaxation to BMS191095 was impaired in penile arteries from insulin resistant obese rats. The blockers of mitoKATP channel 5-HD, sarcolemma KATP (sarcKATP) channel glibenclamide, and large conductance Ca2+-activated K+ (BKCa) channel iberiotoxin, inhibited relaxations to BMS191095 and to the NO donor SNAP. BMS191095 reduced the mitochondrial bioenergetic profile of penile arteries and attenuated mitochondrial ROS production. Blockade of endogenous NO impaired and exogenous NO mimicked, respectively, the inhibitory effects of BMS191095 on basal respiration and oxygen consumed for ATP synthesis. Exogenous NO exhibited dual inhibitory/stimulatory effects on mitochondrial respiration. CONCLUSIONS These results demonstrate that selective activation of mitoKATP channels causes penile vasodilation, attenuates ROS production and inhibits mitochondrial respiration in part by releasing endothelial NO. These mechanisms couple blood flow and metabolism in penile arterial wall and suggest that activation of vascular mitoKATP channels may protect erectile tissue against ischemic injury.
Collapse
Affiliation(s)
- Alfonso Gómez Del Val
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222, Majadahonda, Spain
| | - Mariam Mohamed
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
4
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
5
|
Visniauskas B, Reverte V, Abshire CM, Ogola BO, Rosales CB, Galeas-Pena M, Sure VN, Sakamuri SSVP, Harris NR, Kilanowski-Doroh I, Mcnally AB, Horton AC, Zimmerman M, Katakam PVG, Lindsey SH, Prieto MC. High-plasma soluble prorenin receptor is associated with vascular damage in male, but not female, mice fed a high-fat diet. Am J Physiol Heart Circ Physiol 2023; 324:H762-H775. [PMID: 36930656 PMCID: PMC10151046 DOI: 10.1152/ajpheart.00638.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Plasma soluble prorenin receptor (sPRR) displays sexual dimorphism and is higher in women with type 2 diabetes mellitus (T2DM). However, the contribution of plasma sPRR to the development of vascular complications in T2DM remains unclear. We investigated if plasma sPRR contributes to sex differences in the activation of the systemic renin-angiotensin-aldosterone system (RAAS) and vascular damage in a model of high-fat diet (HFD)-induced T2DM. Male and female C57BL/6J mice were fed either a normal fat diet (NFD) or an HFD for 28 wk to assess changes in blood pressure, cardiometabolic phenotype, plasma prorenin/renin, sPRR, and ANG II. After completing dietary protocols, tissues were collected from males to assess vascular reactivity and aortic reactive oxygen species (ROS). A cohort of male mice was used to determine the direct contribution of increased systemic sPRR by infusion. To investigate the role of ovarian hormones, ovariectomy (OVX) was performed at 32 wk in females fed either an NFD or HFD. Significant sex differences were found after 28 wk of HFD, where only males developed T2DM and increased plasma prorenin/renin, sPRR, and ANG II. T2DM in males was accompanied by nondipping hypertension, carotid artery stiffening, and aortic ROS. sPRR infusion in males induced vascular thickening instead of material stiffening caused by HFD-induced T2DM. While intact females were less prone to T2DM, OVX increased plasma prorenin/renin, sPRR, and systolic blood pressure. These data suggest that sPRR is a novel indicator of systemic RAAS activation and reflects the onset of vascular complications during T2DM regulated by sex.NEW & NOTEWORTHY High-fat diet (HFD) for 28 wk leads to type 2 diabetes mellitus (T2DM) phenotype, concomitant with increased plasma soluble prorenin receptor (sPRR), nondipping blood pressure, and vascular stiffness in male mice. HFD-fed female mice exhibiting a preserved cardiometabolic phenotype until ovariectomy revealed increased plasma sPRR and blood pressure. Plasma sPRR may indicate the status of systemic renin-angiotensin-aldosterone system (RAAS) activation and the onset of vascular complications during T2DM in a sex-dependent manner.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
| | - Virginia Reverte
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Caleb M Abshire
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Carla B Rosales
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Michelle Galeas-Pena
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Nicholas R Harris
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Isabella Kilanowski-Doroh
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Margaret Zimmerman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
- Tulane Hypertension and Renal Center of Excellence, New Orleans, Louisiana, United States
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
- Tulane Hypertension and Renal Center of Excellence, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Kelley DP, Albrechet‐Souza L, Cruise S, Maiya R, Destouni A, Sakamuri SSVP, Duplooy A, Hibicke M, Nichols C, Katakam PVG, Gilpin NW, Francis J. Conditioned place avoidance is associated with a distinct hippocampal phenotype, partly preserved pattern separation, and reduced reactive oxygen species production after stress. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12840. [PMID: 36807494 PMCID: PMC10067435 DOI: 10.1111/gbb.12840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
Stress is associated with contextual memory deficits, which may mediate avoidance of trauma-associated contexts in posttraumatic stress disorder. These deficits may emerge from impaired pattern separation, the independent representation of similar experiences by the dentate gyrus-Cornu Ammonis 3 (DG-CA3) circuit of the dorsal hippocampus, which allows for appropriate behavioral responses to specific environmental stimuli. Neurogenesis in the DG is controlled by mitochondrial reactive oxygen species (ROS) production, and may contribute to pattern separation. In Experiment 1, we performed RNA sequencing of the dorsal hippocampus 16 days after stress in rats that either develop conditioned place avoidance to a predator urine-associated context (Avoiders), or do not (Non-Avoiders). Weighted genome correlational network analysis showed that increased expression of oxidative phosphorylation-associated gene transcripts and decreased expression of gene transcripts for axon guidance and insulin signaling were associated with avoidance behavior. Based on these data, in Experiment 2, we hypothesized that Avoiders would exhibit elevated hippocampal (HPC) ROS production and degraded object pattern separation (OPS) compared with Nonavoiders. Stress impaired pattern separation performance in Non-Avoider and Avoider rats compared with nonstressed Controls, but surprisingly, Avoiders exhibited partly preserved pattern separation performance and significantly lower ROS production compared with Non-Avoiders. Lower ROS production was associated with better OPS performance in Stressed rats, but ROS production was not associated with OPS performance in Controls. These results suggest a strong negative association between HPC ROS production and pattern separation after stress, and that stress effects on these outcome variables may be associated with avoidance of a stress-paired context.
Collapse
Affiliation(s)
- D. Parker Kelley
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Lucas Albrechet‐Souza
- Department of Cell Biology & AnatomyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Shealan Cruise
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Rajani Maiya
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Aspasia Destouni
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | | | - Alexander Duplooy
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Meghan Hibicke
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Charles Nichols
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Prasad V. G. Katakam
- Department of PharmacologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Nicholas W. Gilpin
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Neuroscience Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Southeast Louisiana VA Healthcare System (SLVHCS)New OrleansLouisianaUSA
| | - Joseph Francis
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| |
Collapse
|
7
|
Rutkai I, Merdzo I, Wunnava S, McNulty C, Chandra PK, Katakam PV, Busija DW. Detrimental effects of transient cerebral ischemia on middle cerebral artery mitochondria in female rats. Am J Physiol Heart Circ Physiol 2022; 323:H1343-H1351. [PMID: 36367688 PMCID: PMC9744641 DOI: 10.1152/ajpheart.00346.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial numbers and dynamics in brain blood vessels differ between young male and female rats under physiological conditions, but how these differences are affected by stroke is unclear. In males, we found that mitochondrial numbers, possibly due to mitochondrial fission, in large middle cerebral arteries (MCAs) increased following transient middle cerebral artery occlusion (tMCAO). However, mitochondrial effects of stroke on MCAs of female rats have not been studied. To address this disparity, we conducted morphological, biochemical, and functional studies using electron microscopy, Western blot, mitochondrial respiration, and Ca2+ sparks activity measurements in MCAs of female, naïve or sham Sprague-Dawley rats before and 48 h after 90 min of tMCAO. Adverse changes in mitochondrial characteristics and the relationship between mitochondria and sarcoplasmic reticulum (SR) in MCAs were present on both sides. However, mitochondria and mitochondrial/SR associations were often within the range of normal appearance. Mitochondrial protein levels were similar between ipsilateral (ipsi) and contralateral (contra) sides. Nonrespiratory oxygen consumption, maximal respiration, and spare respiratory capacity were similar between ipsi and contra but were reduced compared with sham. Basal respiration, proton leak, and ATP production were similar among MCAs. Ca2+ sparks activity increased in sham and ipsi MCAs exposed to a mitochondrial ATP-sensitive potassium channel opener: diazoxide. Our results show that tMCAO has effects on mitochondria in MCAs on both the ipsi and contra sides. Mitochondrial responses of cerebral arteries to tMCAO in females are substantially different from responses seen previously in male rats suggesting the need for specific sex-based therapies.NEW & NOTEWORTHY We propose that differences in mitochondrial characteristics of males and females, including mitochondrial morphology, respiration, and calcium sparks activity contribute to sex differences in protective and repair mechanisms in response to transient ischemia-reperfusion.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sanjay Wunnava
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Catherine McNulty
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| |
Collapse
|
8
|
Tracy EP, Nair R, Rowe G, Beare JE, Beyer A, LeBlanc AJ. Adipose stromal vascular fraction reverses mitochondrial dysfunction and hyperfission in aging-induced coronary microvascular disease. Am J Physiol Heart Circ Physiol 2022; 323:H749-H762. [PMID: 36018760 PMCID: PMC9529257 DOI: 10.1152/ajpheart.00311.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Aging is associated with blunted coronary microvascular vasodilatory function. Previously, systemically administered adipose stromal vascular fraction (SVF) therapy reversed aging-induced attenuation of β1-adrenergic- and flow-mediated dilation dependent on reducing mitochondrial reactive oxygen species. We hypothesized that SVF-mediated recovery of microvascular dilatory function is dependent on recovery of mitochondrial function, specifically by reducing mitochondrial hyperfission. Female Fischer-344 rats were allocated into young control, old control, and old + SVF therapy groups. Pressure myography, immunofluorescent staining, Western blot analysis, and RNA sequencing were performed to determine coronary microvascular mitochondrial dynamics and function. Gene and protein expression of fission-mediator DRP-1 was enhanced with aging but reversed by SVF therapy. SVF facilitated an increase in fusion-mediator MFN-1 gene and protein expression. Mitochondrial morphology was characterized as rod-like and densely networked in young controls, isolated circular and punctate with aging, and less circularity with partially restored mitochondrial branch density with SVF therapy. Decreased mitochondrial membrane potential and ATP bioavailability in aged animals at baseline and during flow-mediated dilation were reversed by SVF and accompanied with enhanced oxygen consumption. Dilation to norepinephrine and flow in young controls were dependent on uninhibited mitochondrial fusion, whereas inhibiting fission did not restore aged microvessel response to norepinephrine or flow. SVF-mediated recovery of β-adrenergic function was dependent on uninhibited mitochondrial fusion, whereas recovery of flow-mediated dilation was dependent on maintained mitochondrial fission. Impaired dilation in aging is mitigated by SVF therapy, which recovers mitochondrial function and fission/fusion balance.NEW & NOTEWORTHY We elucidated the consequences of aging on coronary microvascular mitochondrial health as well as SVF's ability to reverse these effects. Aging shifts gene/protein expression and mitochondrial morphology indicating hyperfission, alongside attenuated mitochondrial membrane potential and ATP bioavailability, all reversed using SVF therapy. Mitochondrial membrane potential and ATP levels correlated with vasodilatory efficiency. Mitochondrial dysfunction is a contributing pathological factor in aging that can be targeted by therapeutic SVF to preserve microvascular dilative function.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Rajeev Nair
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Jason E Beare
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Andreas Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda Jo LeBlanc
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
9
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney disease: Challenges and opportunities? Microcirculation 2021; 28:e12661. [PMID: 33025626 PMCID: PMC9990864 DOI: 10.1111/micc.12661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Kidneys are highly vascular organs that despite their relatively small size receive 20% of the cardiac output. The highly intricate, delicately organized structure of renal microcirculation is essential to enable renal function and glomerular filtration rate through the local modulation of renal blood flow and intraglomerular pressure. Not surprisingly, the dysregulation of blood flow within the microvessels (abnormal vasoreactivity), fibrosis driven by disordered vascular-renal cross talk, or the loss of renal microvasculature (rarefaction) is associated with kidney disease. In addition, kidney disease can cause microcirculatory dysfunction in distant organs such as the heart and brain, mediated by mechanisms that remain to be elucidated. The objective of this review is to highlight the role of renal microvasculature in kidney disease. The overview will outline the impetus to study renal microvasculature, the bidirectional relationship between kidney disease and microvascular dysfunction, the key pathways driving microvascular diseases such as vasoreactivity, the cell dynamics coordinating fibrosis, and vessel rarefaction. Finally, we will also briefly highlight new therapies targeting the renal microvasculature to improve renal function.
Collapse
Affiliation(s)
- Suraj Krishnan
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
11
|
Wu Y, Ding Y, Ramprasath T, Zou MH. Oxidative Stress, GTPCH1, and Endothelial Nitric Oxide Synthase Uncoupling in Hypertension. Antioxid Redox Signal 2021; 34:750-764. [PMID: 32363908 PMCID: PMC7910417 DOI: 10.1089/ars.2020.8112] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Significance: Hypertension has major health consequences, which is associated with endothelial dysfunction. Endothelial nitric oxide synthase (eNOS)-produced nitric oxide (NO) signaling in the vasculature plays an important role in maintaining vascular homeostasis. Considering the importance of NO system, this review aims to provide a brief overview of the biochemistry of members of NO signaling, including GTPCH1 [guanosine 5'-triphosphate (GTP) cyclohydrolase 1], tetrahydrobiopterin (BH4), and eNOS. Recent Advances: Being NO signaling activators and regulators of eNOS signaling, BH4 treatment is getting widespread attention either as potential therapeutic agents or as preventive agents. Recent clinical trials also support that BH4 treatment could be considered a promising therapeutic in hypertension. Critical Issues: Under conditions of BH4 depletion, eNOS-generated superoxides trigger pathological events. Abnormalities in NO availability and BH4 deficiency lead to disturbed redox regulation causing pathological events. This disturbed signaling influences the development of systemic hypertension as well as pulmonary hypertension. Future Directions: Considering the importance of BH4 and NO to improve the translational significance, it is essential to continue research on this field to manipulate BH4 to increase the efficacy for treating hypertension. Thus, this review also examines the current state of knowledge on the effects of eNOS activators on preclinical models and humans to utilize this information for potential therapy.
Collapse
Affiliation(s)
- Yin Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Albuck AL, Sakamuri SSVP, Sperling JA, Evans WR, Kolli L, Sure VN, Mostany R, Katakam PVG. Peroxynitrite decomposition catalyst enhances respiratory function in isolated brain mitochondria. Am J Physiol Heart Circ Physiol 2021; 320:H630-H641. [PMID: 33164581 PMCID: PMC8082788 DOI: 10.1152/ajpheart.00389.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Peroxynitrite (PN), generated from the reaction of nitric oxide (NO) and superoxide, is implicated in the pathogenesis of ischemic and neurodegenerative brain injuries. Mitochondria produce NO from mitochondrial NO synthases and superoxide by the electron transport chain. Our objective was to detect the generation of PN of mitochondrial origin and characterize its effects on mitochondrial respiratory function. Freshly isolated brain nonsynaptosomal mitochondria from C57Bl/6 (wild type, WT) and endothelial NO synthase knockout (eNOS-KO) mice were treated with exogenous PN (0.1, 1, 5 µmol/L) or a PN donor (SIN-1; 50 µmol/L) or a PN scavenger (FeTMPyP; 2.5 µmol/L). Oxygen consumption rate (OCR) was measured using Agilent Seahorse XFe24 analyzer and mitochondrial respiratory parameters were calculated. Mitochondrial membrane potential, superoxide, and PN were determined from rhodamine 123, dihydroethidium, and DAX-J2 PON green fluorescence measurements, respectively. Mitochondrial protein nitrotyrosination was determined by Western blots. Both exogenous PN and SIN-1 decreased respiratory function in WT isolated brain mitochondria. FeTMPyP enhanced state III and state IVo mitochondrial respiration in both WT and eNOS-KO mitochondria. FeTMPyP also elevated state IIIu respiration in eNOS-KO mitochondria. Unlike PN, neither SIN-1 nor FeTMPyP depolarized the mitochondria. Although mitochondrial protein nitrotyrosination was unaffected by SIN-1 or FeTMPyP, FeTMPyP reduced mitochondrial PN levels. Mitochondrial superoxide levels were increased by FeTMPyP but were unaffected by PN or SIN-1. Thus, we present the evidence of functionally significant PN generation in isolated brain mitochondria. Mitochondrial PN activity was physiologically relevant in WT mice and pathologically significant under conditions with eNOS deficiency.NEW & NOTEWORTHY Mitochondria generate superoxide and nitric oxide that could potentially react with each other to produce PN. We observed eNOS and nNOS immunoreactivity in isolated brain and heart mitochondria with pharmacological inhibition of nNOS found to modulate the mitochondrial respiratory function. This study provides evidence of generation of functionally significant PN in isolated brain mitochondria that affects respiratory function under physiological conditions. Importantly, the mitochondrial PN levels and activity were exaggerated in the eNOS-deficient mice, suggesting its pathological significance.
Collapse
Affiliation(s)
- Aaron L Albuck
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jared A Sperling
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Wesley R Evans
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Lahari Kolli
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
- Clinical Neuroscience Research Center, New Orleans, Louisiana
| |
Collapse
|
13
|
GSTM1-null allele predicts rapid disease progression in nondialysis patients and mortality among South Indian ESRD patients. Mol Cell Biochem 2020; 469:21-28. [PMID: 32304007 DOI: 10.1007/s11010-020-03724-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/20/2020] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is one of the main causes of early death in humans worldwide. Glutathione S-Transferases (GSTs) are involved in a series of xenobiotics metabolism and free radical scavenging. The previous studies elucidated the interlink between GST variants and to the development of various diseases. The present case-control study performed to ascertain whether GST polymorphisms are associated with the incidence and advancement of CKD. From the Southern part of India, a total of 392 CKD patients (nondialysis, ND; n = 170, end-stage renal disease, ESRD; n = 222) and 202 healthy individuals were enrolled. Patients were followed-up for 70 months. Serum biochemical parameters were recorded, and the extraction of DNA was done from the patient's blood samples. To genotype study participants, multiplex PCR for GSTM1/T1 was performed. Statistical analysis was carried out to analyze the relationship between gene frequency and sonographic grading, as well as biochemical parameters for disease development. The GSTM1-null genotype showed threefold increased risk (OR = 2.9304; 95% CI 1.8959 to 4.5296; P < 0.0001) to CKD development and twofold increased risk (OR = 1.8379; 95% CI 1.1937 to 2.8299; P = 0.0057) to ESRD progression. During the mean follow-up of 41 months study, multivariate Cox regression analysis revealed that GSTM1-null genotype has 4 times increased the risk for all-cause rapid disease progression to ESRD among ND patients and 3.85-fold increased risk for death among ESRD patients. Survival analysis revealed that patients with GSTM1-present allele showed a significantly diminished risk of mortality compared to patients bearing the GSTM1-null allele among ESRD patients with a hazard ratio of 4.6242 (P < 0.0001). Thus, present data confirm that GSTM1-null genotype increased the risk for all-cause rapid disease progression to ESRD among ND patients. Based on our results, GSTM1-null genotype could be considered as a significant predictor for causing mortality among CKD patients when compared to all other variables.
Collapse
|
14
|
Chilian WM, Yin L, Ohanyan V. Step by Step: Advancing the Understanding of Local Vascular Control. Arterioscler Thromb Vasc Biol 2020; 40:498-499. [PMID: 32101473 DOI: 10.1161/atvbaha.120.313811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- William M Chilian
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Liya Yin
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Vahagn Ohanyan
- From the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| |
Collapse
|
15
|
Reverte V, Gogulamudi VR, Rosales CB, Musial DC, Gonsalez SR, Parra-Vitela AJ, Galeas-Pena M, Sure VN, Visniauskas B, Lindsey SH, Katakam PVG, Prieto MC. Urinary angiotensinogen increases in the absence of overt renal injury in high fat diet-induced type 2 diabetic mice. J Diabetes Complications 2020; 34:107448. [PMID: 31761419 PMCID: PMC6981045 DOI: 10.1016/j.jdiacomp.2019.107448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/09/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
AIM OF THE STUDY During type 2 diabetes (T2D) and hypertension there is stimulation of renal proximal tubule angiotensinogen (AGT), but whether urinary excretion of AGT (uAGT) is an indicator of glomerular damage or intrarenal RAS activation is unclear. We tested the hypothesis that elevations in uAGT can be detected in the absence of albuminuria in a mouse model of T2D. METHODS Male C57BL/6 mice (N = 10) were fed a high fat (HFD; 45% Kcal from fat) for 28 weeks, and the metabolic phenotype including body weight, blood pressures, glucose, insulin, ippGTT, HOMA-IR, and cholesterol was examined. In addition, kidney Ang II content and reactive oxygen species (ROS) was measured along with urinary albumin, creatinine, Ang II, and AGT. RESULTS All parameters consistent with T2D were present in mice after 12-14 weeks on the HFD. Systolic BP increased after 18 weeks in HFD but not NFD mice. Intrarenal ROS and Ang II concentrations were also increased in HFD mice. Remarkably, these changes paralleled the augmentation uAGT excretion (3.66 ± 0.50 vs. 0.92 ± 0.13 ng/mg by week 29; P < 0.01), which occurred in the absence of overt albuminuria. CONCLUSIONS In HFD-induced T2D mice, increases in uAGT occur in the absence of overt renal injury, indicating that this biomarker accurately detects early intrarenal RAS activation.
Collapse
Affiliation(s)
- Virginia Reverte
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | | | - Carla B Rosales
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Diego C Musial
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Department of Pharmacology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Sabrina R Gonsalez
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Michelle Galeas-Pena
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Hypertension and Renal Center of Excellence, New Orleans, USA.
| |
Collapse
|
16
|
Merdzo I, Rutkai I, Sure VNLR, Katakam PVG, Busija DW. Effects of prolonged type 2 diabetes on mitochondrial function in cerebral blood vessels. Am J Physiol Heart Circ Physiol 2019; 317:H1086-H1092. [PMID: 31490734 DOI: 10.1152/ajpheart.00341.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the major characteristics of hyperglycemic states such as type 2 diabetes is increased reactive oxygen species (ROS) generation. Since mitochondria are a major source of ROS, it is vital to understand the involvement of these organelles in the pathogenesis of ROS-mediated conditions. Therefore, we investigated mitochondrial function and ROS production in cerebral blood vessels of 21-wk-old Zucker diabetic fatty obese rats and their lean controls. We have previously shown that in the early stages of insulin resistance, and short periods of type 2 diabetes mellitus, only mild differences exist in mitochondrial function. In the present study, we examined mitochondrial respiration, mitochondrial protein expression, and ROS production in large-surface cerebral arteries. We used 21-wk-old animals exposed to peak glucose levels for 7 wk and compared them with our previous studies on younger diabetic animals. We found that the same segments of mitochondrial respiration (basal respiration and proton leak) were diminished in diabetic groups as they were in younger diabetic animals. Levels of rattin, a rat humanin analog, tended to decrease in the diabetic group but did not reach statistical significance (P = 0.08). Other mitochondrial proteins were unaffected, which might indicate the existence of compensatory mechanisms with extension of this relatively mild form of diabetes. Superoxide levels were significantly higher in large cerebral vessels of diabetic animals compared with the control group. In conclusion, prolonged dietary diabetes leads to stabilization, rather than deterioration, of metabolic status in the cerebral circulation, despite continued overproduction of ROS.NEW & NOTEWORTHY We have characterized for the first time the dynamics of mitochondrial function during the progression of type 2 diabetes mellitus with regard to mitochondrial respiration, protein expression, and reactive oxygen species production. In addition, this is the first measurement of rattin levels in the cerebral vasculature, which could potentially lead to novel treatment options.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, University of Mostar, School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N L R Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
17
|
Rutkai I, Merdzo I, Wunnava SV, Curtin GT, Katakam PVG, Busija DW. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J Cereb Blood Flow Metab 2019; 39:1056-1068. [PMID: 29215305 PMCID: PMC6547195 DOI: 10.1177/0271678x17745028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The underlying factors promoting increased mitochondrial proteins, mtDNA, and dilation to mitochondrial-specific agents in male rats following tMCAO are not fully elucidated. Our goal was to determine the morphological and functional effects of ischemia/reperfusion (I/R) on mitochondria using electron microscopy, Western blot, mitochondrial oxygen consumption rate (OCR), and Ca2+ sparks activity measurements in middle cerebral arteries (MCAs) from male Sprague Dawley rats (Naïve, tMCAO, Sham). We found a greatly increased OCR in ipsilateral MCAs (IPSI) compared with contralateral (CONTRA), Sham, and Naïve MCAs. Consistent with our earlier findings, the expression of Mitofusin-2 and OPA-1 was significantly decreased in IPSI arteries compared with Sham and Naïve. Mitochondrial morphology was disrupted in vascular smooth muscle, but morphology with normal and perhaps greater numbers of mitochondria were observed in IPSI compared with CONTRA MCAs. Consistently, there were significantly fewer baseline Ca2+ events in IPSI MCAs compared with CONTRA, Sham, and Naïve. Mitochondrial depolarization significantly increased Ca2+ sparks activity in the IPSI, Sham, Naïve, but not in the CONTRA group. Our data indicate that altered mitochondrial structure and function occur in MCAs exposed to I/R and that these changes impact not only OCR but Ca2+ sparks activity in both IPSI and CONTRA MCAs.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Ivan Merdzo
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
- Department of Pharmacology, University
of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Sanjay V Wunnava
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Genevieve T Curtin
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Prasad VG Katakam
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - David W Busija
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| |
Collapse
|
18
|
Bukiya AN. Fetal Cerebral Artery Mitochondrion as Target of Prenatal Alcohol Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091586. [PMID: 31067632 PMCID: PMC6539770 DOI: 10.3390/ijerph16091586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure results in an array of developmental abnormalities known as fetal alcohol spectrum disorders (FASDs). Despite the high prevalence of FASDs, therapeutic interventions against accidental or intended exposure of developing fetuses to alcohol are limited. This review outlines current knowledge about mitochondria in cerebral blood vessels as a potential target for anti-FASDs intervention. First, it describes the multifaceted role of mitochondria in maintaining the cerebral artery diameter as shown in adult tissue. Second, current literature on alcohol-driven damage of mitochondrial morphology and function in several fetal tissues, including liver, heart, and brain is summarized. The functional consequences of alcohol exposure in these organs include morphological enlargement of mitochondria, increased oxidative stress, and alteration of cellular respiration. These studies point to a tissue-specific effect of alcohol on mitochondrial function and a particular vulnerability of fetal mitochondria to alcohol exposure when compared to adult counterparts. Third, recent work from our group describing persistent changes in fetal baboon cerebral artery proteome following three episodes of prenatal alcohol exposure is reviewed. In conclusion, the consequences of prenatal alcohol exposure on cerebral artery mitochondria constitute an open field of investigation and, eventually, a point of therapeutic intervention against FASDs.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
19
|
Ogola BO, Zimmerman MA, Sure VN, Gentry KM, Duong JL, Clark GL, Miller KS, Katakam PVG, Lindsey SH. G Protein-Coupled Estrogen Receptor Protects From Angiotensin II-Induced Increases in Pulse Pressure and Oxidative Stress. Front Endocrinol (Lausanne) 2019; 10:586. [PMID: 31507536 PMCID: PMC6718465 DOI: 10.3389/fendo.2019.00586] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous work showed that the G protein-coupled estrogen receptor (GPER) is protective in the vasculature and kidneys during angiotensin (Ang) II-dependent hypertension by inhibiting oxidative stress. The goal of the current study was to assess the impact of GPER deletion on sex differences in Ang II-induced hypertension and oxidative stress. Male and female wildtype and GPER knockout mice were implanted with radiotelemetry probes for measurement of baseline blood pressure before infusion of Ang II (700 ng/kg/min) for 2 weeks. Mean arterial pressure was increased to the same extent in all groups, but female wildtype mice were protected from Ang II-induced increases in pulse pressure, aortic wall thickness, and Nox4 mRNA. In vitro studies using vascular smooth muscle cells found that pre-treatment with the GPER agonist G-1 inhibited Ang II-induced ROS and NADP/NADPH. Ang II increased while G-1 decreased Nox4 mRNA and protein. The effects of Ang II were blocked by losartan and Nox4 siRNA, while the effects of G-1 were inhibited by adenylyl cyclase inhibition and mimicked by phosphodiesterase inhibition. We conclude that during conditions of elevated Ang II, GPER via the cAMP pathway suppresses Nox4 transcription to limit ROS production and prevent arterial stiffening. Taken together with our previous work, this study provides insight into how acute estrogen signaling via GPER provides cardiovascular protection during Ang II hypertension and potentially other diseases characterized by increased oxidative stress.
Collapse
Affiliation(s)
- Benard O. Ogola
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| | | | - Venkata N. Sure
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| | - Kaylee M. Gentry
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| | - Jennifer L. Duong
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| | - Gabrielle L. Clark
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Kristin S. Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | | | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
- *Correspondence: Sarah H. Lindsey
| |
Collapse
|
20
|
Sure VN, Sakamuri SSVP, Sperling JA, Evans WR, Merdzo I, Mostany R, Murfee WL, Busija DW, Katakam PVG. A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. GeroScience 2018; 40:365-375. [PMID: 30074132 PMCID: PMC6136296 DOI: 10.1007/s11357-018-0037-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral blood flow (CBF) is uniquely regulated by the anatomical design of the cerebral vasculature as well as through neurovascular coupling. The process of directing the CBF to meet the energy demands of neuronal activity is referred to as neurovascular coupling. Microvasculature in the brain constitutes the critical component of the neurovascular coupling. Mitochondria provide the majority of ATP to meet the high-energy demand of the brain. Impairment of mitochondrial function plays a central role in several age-related diseases such as hypertension, ischemic brain injury, Alzheimer's disease, and Parkinson disease. Interestingly, microvessels and small arteries of the brain have been the focus of the studies implicating the vascular mechanisms in several age-related neurological diseases. However, the role of microvascular mitochondrial dysfunction in age-related diseases remains unexplored. To date, high-throughput assay for measuring mitochondrial respiration in microvessels is lacking. The current study presents a novel method to measure mitochondrial respiratory parameters in freshly isolated microvessels from mouse brain ex vivo using Seahorse XFe24 Analyzer. We validated the method by demonstrating impairments of mitochondrial respiration in cerebral microvessels isolated from old mice compared to the young mice. Thus, application of mitochondrial respiration studies in microvessels will help identify novel vascular mechanisms underlying a variety of age-related neurological diseases.
Collapse
Affiliation(s)
- Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jared A Sperling
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Wesley R Evans
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pharmacology, University of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, 1430 Tulane Avenue; Room 3554C, 8683, New Orleans, LA, 70112, USA.
| |
Collapse
|
21
|
Behringer EJ. Calcium and electrical signaling in arterial endothelial tubes: New insights into cellular physiology and cardiovascular function. Microcirculation 2018; 24. [PMID: 27801542 DOI: 10.1111/micc.12328] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
Abstract
The integral role of the endothelium during the coordination of blood flow throughout vascular resistance networks has been recognized for several decades now. Early examination of the distinct anatomy and physiology of the endothelium as a signaling conduit along the vascular wall has prompted development and application of an intact endothelial "tube" study model isolated from rodent skeletal muscle resistance arteries. Vasodilatory signals such as increased endothelial cell (EC) Ca2+ ([Ca2+ ]i ) and hyperpolarization take place in single ECs while shared between electrically coupled ECs through gap junctions up to distances of millimeters (≥2 mm). The small- and intermediate-conductance Ca2+ activated K+ (SKCa /IKCa or KCa 2.3/KCa 3.1) channels function at the interface of Ca2+ signaling and hyperpolarization; a bidirectional relationship whereby increases in [Ca2+ ]i activate SKCa /IKCa channels to produce hyperpolarization and vice versa. Further, the spatial domain of hyperpolarization among electrically coupled ECs can be finely tuned via incremental modulation of SKCa /IKCa channels to balance the strength of local and conducted electrical signals underlying vasomotor activity. Multifunctional properties of the voltage-insensitive SKCa /IKCa channels of resistance artery endothelium may be employed for therapy during the aging process and development of vascular disease.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
22
|
Vadzyuk OB, Kosterin SO. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel. Saudi J Biol Sci 2018; 25:551-557. [PMID: 29686518 PMCID: PMC5910642 DOI: 10.1016/j.sjbs.2016.01.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/10/2015] [Accepted: 01/31/2016] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate) we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel) – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate). Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species) and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane.
Collapse
Affiliation(s)
- Olga B Vadzyuk
- Department of Muscles Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovych str. 9, 01601 Kyiv, Ukraine
| | - Serhiy O Kosterin
- Department of Muscles Biochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovych str. 9, 01601 Kyiv, Ukraine
| |
Collapse
|
23
|
Behringer EJ, Segal SS. Impact of Aging on Calcium Signaling and Membrane Potential in Endothelium of Resistance Arteries: A Role for Mitochondria. J Gerontol A Biol Sci Med Sci 2017; 72:1627-1637. [PMID: 28510636 DOI: 10.1093/gerona/glx079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Impaired blood flow to peripheral tissues during advanced age is associated with endothelial dysfunction and diminished bioavailability of nitric oxide (NO). However, it is unknown whether aging impacts coupling between intracellular calcium ([Ca2+]i) signaling and small- and intermediate K+ channel (SKCa/IKCa) activity during endothelium-derived hyperpolarization (EDH), a signaling pathway integral to dilation of the resistance vasculature. To address the potential impact of aging on EDH, Fura-2 photometry and intracellular recording were applied to evaluate [Ca2+]i and membrane potential of intact endothelial tubes (width, 60 µm; length, 1-3 mm) freshly isolated from superior epigastric arteries of young (4-6 mo) and old (24-26 mo) male C57BL/6 mice. In response to acetylcholine, intracellular release of Ca2+ from the endoplasmic reticulum (ER) was enhanced with aging. Further, treatment with the mitochondrial uncoupler FCCP evoked a significant increase of [Ca2+]i with membrane hyperpolarization in an SKCa/IKCa-dependent manner in the endothelium of old but not young mice. We conclude that the ability of resistance artery endothelium to release Ca2+ from intracellular stores (ie, ER and mitochondria) and hyperpolarize Vm via SKCa/IKCa activation is augmented as compensation for reduced NO bioavailability during advanced age.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, Loma Linda University, California.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia.,Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
24
|
Martínez-Revelles S, García-Redondo AB, Avendaño MS, Varona S, Palao T, Orriols M, Roque FR, Fortuño A, Touyz RM, Martínez-González J, Salaices M, Rodríguez C, Briones AM. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK. Antioxid Redox Signal 2017; 27:379-397. [PMID: 28010122 PMCID: PMC5563924 DOI: 10.1089/ars.2016.6642] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022]
Abstract
AIMS Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H2O2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. RESULTS Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H2O2 and O2.- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H2O2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. INNOVATION We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. CONCLUSION LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27, 379-397.
Collapse
Affiliation(s)
- Sonia Martínez-Revelles
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| | - Ana B. García-Redondo
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| | - María S. Avendaño
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Saray Varona
- CIBER de Enfermedades Cardiovasculares, Spain
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Teresa Palao
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mar Orriols
- CIBER de Enfermedades Cardiovasculares, Spain
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Fernanda R. Roque
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Ana Fortuño
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, Spain
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Spain
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - Ana M. Briones
- Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| |
Collapse
|
25
|
Merdzo I, Rutkai I, Sure VNLR, McNulty CA, Katakam PVG, Busija DW. Impaired Mitochondrial Respiration in Large Cerebral Arteries of Rats with Type 2 Diabetes. J Vasc Res 2017; 54:1-12. [PMID: 28095372 DOI: 10.1159/000454812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/27/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction has been suggested as a potential underlying cause of pathological conditions associated with type 2 diabetes (T2DM). We have previously shown that mitochondrial respiration and mitochondrial protein levels were similar in the large cerebral arteries of insulin-resistant Zucker obese rats and their lean controls. In this study, we extend our investigations into the mitochondrial dynamics of the cerebral vasculature of 14-week-old Zucker diabetic fatty obese (ZDFO) rats with early T2DM. Body weight and blood glucose levels were significantly higher in the ZDFO group, and basal mitochondrial respiration and proton leak were significantly decreased in the large cerebral arteries of the ZDFO rats compared with the lean controls (ZDFL). The expression of the mitochondrial proteins total manganese superoxide dismutase (MnSOD) and voltage-dependent anion channel (VDAC) were significantly lower in the cerebral microvessels, and acetylated MnSOD levels were significantly reduced in the large arteries of the ZDFO group. Additionally, superoxide production was significantly increased in the microvessels of the ZDFO group. Despite evidence of increased oxidative stress in ZDFO, exogenous SOD was not able to restore mitochondrial respiration in the ZDFO rats. Our results show, for the first time, that mitochondrial respiration and protein levels are compromised during the early stages of T2DM.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
26
|
Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 2017; 312:H1-H20. [PMID: 27793855 PMCID: PMC5283909 DOI: 10.1152/ajpheart.00581.2016] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined.
Collapse
Affiliation(s)
- Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Pecs, Hungary; and
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
27
|
Almukhtar H, Garle M, Smith P, Roberts R. Effect of simvastatin on vascular tone in porcine coronary artery: Potential role of the mitochondria. Toxicol Appl Pharmacol 2016; 305:176-185. [DOI: 10.1016/j.taap.2016.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/08/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
|
28
|
Busija DW, Rutkai I, Dutta S, Katakam PV. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone. Compr Physiol 2016; 6:1529-48. [PMID: 27347901 DOI: 10.1002/cphy.c150051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
29
|
Katakam PVG, Dutta S, Sure VN, Grovenburg SM, Gordon AO, Peterson NR, Rutkai I, Busija DW. Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide. Am J Physiol Heart Circ Physiol 2016; 310:H1097-106. [PMID: 26945078 DOI: 10.1152/ajpheart.00759.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/07/2016] [Indexed: 11/22/2022]
Abstract
The diverse signaling events following mitochondrial depolarization in neurons are not clear. We examined for the first time the effects of mitochondrial depolarization on mitochondrial function, intracellular calcium, neuronal nitric oxide synthase (nNOS) activation, and nitric oxide (NO) production in cultured neurons and perivascular nerves. Cultured rat primary cortical neurons were studied on 7-10 days in vitro, and endothelium-denuded cerebral arteries of adult Sprague-Dawley rats were studied ex vivo. Diazoxide and BMS-191095 (BMS), activators of mitochondrial KATP channels, depolarized mitochondria in cultured neurons and increased cytosolic calcium levels. However, the mitochondrial oxygen consumption rate was unaffected by mitochondrial depolarization. In addition, diazoxide and BMS not only increased the nNOS phosphorylation at positive regulatory serine 1417 but also decreased nNOS phosphorylation at negative regulatory serine 847. Furthermore, diazoxide and BMS increased NO production in cultured neurons measured with both fluorescence microscopy and electron spin resonance spectroscopy, which was sensitive to inhibition by the selective nNOS inhibitor 7-nitroindazole (7-NI). Diazoxide also protected cultured neurons against oxygen-glucose deprivation, which was blocked by NOS inhibition and rescued by NO donors. Finally, BMS induced vasodilation of endothelium denuded, freshly isolated cerebral arteries that was diminished by 7-NI and tetrodotoxin. Thus pharmacological depolarization of mitochondria promotes activation of nNOS leading to generation of NO in cultured neurons and endothelium-denuded arteries. Mitochondrial-induced NO production leads to increased cellular resistance to lethal stress by cultured neurons and to vasodilation of denuded cerebral arteries.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Samuel M Grovenburg
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Angellica O Gordon
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Nicholas R Peterson
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
30
|
Merdzo I, Rutkai I, Tokes T, Sure VNLR, Katakam PVG, Busija DW. The mitochondrial function of the cerebral vasculature in insulin-resistant Zucker obese rats. Am J Physiol Heart Circ Physiol 2016; 310:H830-8. [PMID: 26873973 DOI: 10.1152/ajpheart.00964.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/03/2016] [Indexed: 12/24/2022]
Abstract
Little is known about mitochondrial functioning in the cerebral vasculature during insulin resistance (IR). We examined mitochondrial respiration in isolated cerebral arteries of male Zucker obese (ZO) rats and phenotypically normal Zucker lean (ZL) rats using the Seahorse XFe24 analyzer. We investigated mitochondrial morphology in cerebral blood vessels as well as mitochondrial and nonmitochondrial protein expression levels in cerebral arteries and microvessels. We also measured reactive oxygen species (ROS) levels in cerebral microvessels. Under basal conditions, the mitochondrial respiration components (nonmitochondrial respiration, basal respiration, ATP production, proton leak, and spare respiratory capacity) showed similar levels among the ZL and ZO groups with the exception of maximal respiration, which was higher in the ZO group. We examined the role of nitric oxide by measuring mitochondrial respiration following inhibition of nitric oxide synthase with N(ω)-nitro-l-arginine methyl ester (l-NAME) and mitochondrial activation after administration of diazoxide (DZ). Both ZL and ZO groups showed similar responses to these stimuli with minor variations.l-NAME significantly increased the proton leak, and DZ decreased nonmitochondrial respiration in the ZL group. Other components were not affected. Mitochondrial morphology and distribution within vascular smooth muscle and endothelium as well as mitochondrial protein levels were similar in the arteries and microvessels of both groups. Endothelial nitric oxide synthase (eNOS) and ROS levels were increased in cerebral microvessels of the ZO. Our study suggests that mitochondrial function is not significantly altered in the cerebral vasculature of young ZO rats, but increased ROS production might be due to increased eNOS in the cerebral microcirculation during IR.
Collapse
Affiliation(s)
- Ivan Merdzo
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tunde Tokes
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Venkata N L R Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
31
|
Rutkai I, Dutta S, Katakam PV, Busija DW. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries. Am J Physiol Heart Circ Physiol 2015; 309:H1490-500. [PMID: 26276815 DOI: 10.1152/ajpheart.00231.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
Abstract
Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
32
|
Dutta S, Rutkai I, Katakam PVG, Busija DW. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons. J Neurochem 2015; 134:845-56. [PMID: 26016889 DOI: 10.1111/jnc.13181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/27/2022]
Abstract
We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets.
Collapse
Affiliation(s)
- Somhrita Dutta
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V G Katakam
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - David W Busija
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|