1
|
Handari SD, Rohman MS, Sargowo D, Aulanni’am, Qosimah D, Lestari B, Nugraha RA. Targeting Inflammation with Galectin-3 and PIIINP Modulation Among ST-Segment Elevation Acute Coronary Syndrome Patients Underwent Delayed Percutaneous Coronary Intervention. Biomedicines 2025; 13:259. [PMID: 40002673 PMCID: PMC11851960 DOI: 10.3390/biomedicines13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: ST-segment elevation acute coronary syndrome (STE-ACS) represents a significant global health challenge, with cardiac remodeling and fibrosis critically affecting recovery after percutaneous coronary intervention (PCI). Colchicine, known for its anti-inflammatory effects, may regulate key fibrotic markers such as Procollagen III N-terminal Propeptide (PIIINP) and Galectin-3. This study assesses colchicine's effect on these biomarkers in STE-ACS patients undergoing delayed PCI. Methods: In this multicenter, randomized, double-blind trial, we examined colchicine's impact on Galectin-3 and PIIINP in 164 STE-ACS patients undergoing early or delayed PCI. Patients received colchicine shortly after hospital admission. Biomarker changes were evaluated at 24 h and five days post-treatment using two-way ANOVA. Results: Clinical trials in the early PCI group revealed that Galectin-3 levels decreased significantly on day one (p < 0.01) and further on day five (p < 0.0001), indicating Primary PCI has benefits to inhibition of fibrosis beyond colchicine add-on treatment. But, in the delayed PCI group, Galectin-3 levels significantly increased on day one (p < 0.01), but the decrease observed by day five was not statistically significant. It is related that the benefits of colchicine treatment may exceed PCI implantation in preventing cardiac remodeling. In the delayed PCI group, PIIINP levels showed a significant reduction on day five (p < 0.0001). Conclusions: This Colchicine demonstrates novel efficacy in delayed PCI, with a significant increase in Galectin-3 and a sharp reduction in PIIINP, indicating its ability to control fibrosis. This positions colchicine as a breakthrough therapy for improving outcomes in STE-ACS patients with delayed intervention.
Collapse
Affiliation(s)
- Saskia Dyah Handari
- Medical Faculty, Ciputra University, Surabaya 60271, East Java, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University—Saiful Anwar General Hospital, Malang 65145, East Java, Indonesia; (M.S.R.); (D.S.)
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University—Saiful Anwar General Hospital, Malang 65145, East Java, Indonesia; (M.S.R.); (D.S.)
| | - Djanggan Sargowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University—Saiful Anwar General Hospital, Malang 65145, East Java, Indonesia; (M.S.R.); (D.S.)
| | - Aulanni’am
- Department of Chemistry, Faculty of Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia;
| | - Dahliatul Qosimah
- Laboratory of Microbiology and Immunology, Faculty of Veterinary Medicine, Brawijaya University, Malang 65151, East Java, Indonesia;
| | - Bayu Lestari
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Ricardo Adrian Nugraha
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga—Dr. Soetomo General Hospital, Surabaya 60115, East Java, Indonesia;
| |
Collapse
|
2
|
Blair GA, Depman M, Adams WP, Maisonneuve RO, Hoeker GS, Weinberg SH, Poelzing S. Sequence-Dependent Repolarization Is Modulated by Endogenous Action Potential Duration Gradients Rather Than Electrical Coupling in Ventricular Myocardium. J Am Heart Assoc 2025; 14:e030433. [PMID: 39719415 DOI: 10.1161/jaha.123.030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Previous studies suggest the relationship between activation time (AT) and action potential duration (APD) in the heart is dependent on electrotonic coupling, but this has not been directly tested. This study assessed whether acute changes in electrical coupling, or other determinants of conduction or repolarization, modulate APD heterogeneity. METHODS AND RESULTS Langendorff-perfused guinea pig hearts were epicardially paced and optically mapped after treatment with the gap junction uncoupler carbenoxolone, ephaptic uncoupler mannitol, ephaptic enhancer dextran 2MDa, sodium channel inhibitor flecainide, or rapid component of the delayed rectifier potassium channel inhibitor E4031. SD of APD and the AT-APD slope and coefficient of determination were quantified as metrics of APD heterogeneity. SD of APD increased with carbenoxolone, mannitol, and altered activation sequence. The AT-APD slope was insensitive to carbenoxolone, mannitol, dextran, flecainide, or E4031 but changed in response to activation sequence. The coefficient of determination did not change with carbenoxolone; decreased with mannitol, E4031, and activation sequence; but increased with dextran and flecainide. APD heterogeneity changes were dependent on whether the estimation used SD of APD or the AT-APD relationship. The pacing stimulus increased APD at the site of stimulation, revealing a confounding stimulus effect on APD within the measurement area. Simulations predict that the stimulus artifact and endogenous APD gradients are stronger determinants of APD heterogeneity than AT. CONCLUSIONS APD dependence on conduction is relatively small. Furthermore, APD heterogeneity within a mapping field of view is dependent on endogenous gradients, the stimulus artifact, and the experimental approach, rather than electrical coupling.
Collapse
Affiliation(s)
- Grace A Blair
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Madeline Depman
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - William P Adams
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Rowan O Maisonneuve
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Gregory S Hoeker
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
| | - Seth H Weinberg
- Department of Biomedical Engineering Davis Heart and Lung Research Institute, The Ohio State University Columbus OH USA
| | - Steve Poelzing
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech Roanoke VA USA
- Center for Vascular and Heart Research Fralin Biomedical Research Institute at Virginia Tech Carilion Roanoke VA USA
- Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Blacksburg VA USA
| |
Collapse
|
3
|
Mendez MJ, Cherry EM, Hoeker GS, Poelzing S, Weinberg SH. Reconstructing ventricular cardiomyocyte dynamics and parameter estimation using data assimilation. Biophys J 2024; 123:4050-4066. [PMID: 39501559 PMCID: PMC11628846 DOI: 10.1016/j.bpj.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cardiac ventricular myocyte action potential dynamics are regulated by intricate and nonlinear interactions between the cell transmembrane potential and ionic currents and concentrations. Present technology limits the ability to measure transmembrane potential and multiple ionic currents simultaneously, which narrows the scope of experiments to provide a complete snapshot of the cardiac myocyte state. This limitation presents an obstacle for understanding how perturbations can trigger arrhythmias and more broadly how the myocyte responds to different conditions, such as changes in pacing rate or responses to drug treatment. In this study, we demonstrate that a data-assimilation approach can successfully reconstruct and predict the dynamics of a heterogeneous virtual cardiac ventricular myocyte population in the presence of parameter uncertainty. A population of heterogeneous cardiac ventricular myocytes is generated by varying ionic current conductance parameters, and additional observational uncertainty is mimicked by the addition of Gaussian noise to the transmembrane potential. We demonstrate that the data-assimilation approach accurately reconstructs transmembrane potential, with error less than the magnitude of the noise. Further, the data-assimilation approach successfully estimates the conductances of ionic currents generally with high accuracy and requiring low computational time. As a proof of concept, we apply the data-assimilation approach to reconstruct action potential dynamics from optical mapping experiments in an ex vivo isolated guinea pig heart. Critically, we demonstrate that the ionic conductance parameters estimated from a recording at one pacing frequency can accurately predict action potential dynamics at different rates.
Collapse
Affiliation(s)
- Mario J Mendez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Elizabeth M Cherry
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Gregory S Hoeker
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics at Virginia Tech, Blacksburg, Virginia
| | - Steven Poelzing
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics at Virginia Tech, Blacksburg, Virginia
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
4
|
Zheng X, Wu H, Zhang M, Yao B. Clinical significance of R-wave amplitude in lead V 1 and inferobasal myocardial infarction in patients with inferior wall myocardial infarction. Ann Noninvasive Electrocardiol 2024; 29:e13114. [PMID: 38563240 PMCID: PMC10985631 DOI: 10.1111/anec.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 02/10/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE To assess electrocardiogram (ECG) for risk stratification in inferior ST-elevation myocardial infarction (STEMI) patients within 24 h. METHODS Three hundred thirty-four patients were divided into four ECG-based groups: Group A: R V1 <0.3 mV with ST-segment elevation (ST↑) V7-V9, Group B: R V1 <0.3 mV without ST↑ V7-V9, Group C: R V1 ≥0.3 mV with ST↑ V7-V9, and Group D: R V1 ≥0.3 mV without ST↑ V7-V9. RESULTS Group A demonstrated the longest QRS duration, followed by Groups B, C, and D. ECG signs for right ventricle (RV) infarction were more common in Groups A and B (p < .01). ST elevation in V6, indicative of left ventricle (LV) lateral injury, was more higher in Group C than in Group A, while the ∑ST↑ V3R + V4R + V5R, representing RV infarction, showed the opposite trend (p < .05). The estimated LV infarct size from ECG was similar between Groups A and C, yet Group A had higher creatine kinase MB isoform (CK-MB; p < .05). Cardiac troponin I (cTNI) was higher in Groups A and C than in B and D (p < .05 and p = .16, respectively). NT-proBNP decreased across groups (p = .20), with the highest left ventricular ejection fraction (LVEF) observed in Group D (p < .05). Group A notably demonstrated more cardiac dysfunction within 4 h post-onset. CONCLUSIONS For inferior STEMI patients, concurrent R V1 <0.3 mV with ST↑ V7-V9 suggests prolonged ventricular activation and notable myocardial damage. RV infarction's dominance over LV lateral injury might explain these observations.
Collapse
Affiliation(s)
- Xiao‐Bin Zheng
- Department of CardiologyShanxi Cardiovascular HospitalTaiyuanChina
| | - Hai‐Yan Wu
- Department of CardiologyShanxi Cardiovascular HospitalTaiyuanChina
| | - Ming Zhang
- Department of CardiologyShanxi Cardiovascular HospitalTaiyuanChina
| | - Bing‐Qi Yao
- Department of CardiologyShanxi Cardiovascular HospitalTaiyuanChina
| |
Collapse
|
5
|
Simon-Chica A, Wülfers EM, Kohl P. Nonmyocytes as electrophysiological contributors to cardiac excitation and conduction. Am J Physiol Heart Circ Physiol 2023; 325:H475-H491. [PMID: 37417876 PMCID: PMC10538996 DOI: 10.1152/ajpheart.00184.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Although cardiac action potential (AP) generation and propagation have traditionally been attributed exclusively to cardiomyocytes (CM), other cell types in the heart are also capable of forming electrically conducting junctions. Interactions between CM and nonmyocytes (NM) enable and modulate each other's activity. This review provides an overview of the current understanding of heterocellular electrical communication in the heart. Although cardiac fibroblasts were initially thought to be electrical insulators, recent studies have demonstrated that they form functional electrical connections with CM in situ. Other NM, such as macrophages, have also been recognized as contributing to cardiac electrophysiology and arrhythmogenesis. Novel experimental tools have enabled the investigation of cell-specific activity patterns in native cardiac tissue, which is expected to yield exciting new insights into the development of novel or improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Simon-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Eike M Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Electrophysiological Changes of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes during Acute Hypoxia and Reoxygenation. Stem Cells Int 2022; 2022:9438281. [PMID: 36579142 PMCID: PMC9792238 DOI: 10.1155/2022/9438281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic heart disease is the most common cardiovascular disease and a major burden for healthcare worldwide. However, its pathophysiology is still not fully understood, and human-based models for disease mechanisms and treatments are needed. Here, we used human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to model acute ischemia-reperfusion in our novel cell culture assembly. The assembly enables exchange of oxygen partial pressure for the cells within minutes, mimicking acute ischemic event. In this study, hypoxia was induced using 0% O2 gas for three hours and reoxygenation with 19% O2 gas for 24 hours in serum- and glucose-free medium. According to electrophysiological recordings, hypoxia decreased the hiPSC-CM-beating frequency and field potential (FP) amplitude. Furthermore, FP depolarization time and propagation slowed down. Most of the electrophysiological changes reverted during reoxygenation. However, immunocytochemical staining of the hypoxic and reoxygenation samples showed that morphological changes and changes in the sarcomere structure did not revert during reoxygenation but further deteriorated. qPCR results showed no significant differences in apoptosis or stress-related genes or in the expression of glycolytic genes. In conclusion, the hiPSC-CMs reproduced many characteristic changes of adult CMs during ischemia and reperfusion, indicating their usefulness as a human-based model of acute cardiac ischemia-reperfusion.
Collapse
|
7
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
8
|
King DR, Hardin KM, Hoeker GS, Poelzing S. Re-evaluating methods reporting practices to improve reproducibility: an analysis of methodological rigor for the Langendorff whole-heart technique. Am J Physiol Heart Circ Physiol 2022; 323:H363-H377. [PMID: 35749719 PMCID: PMC9359653 DOI: 10.1152/ajpheart.00164.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent decades, the scientific community has seen an increased interest in rigor and reproducibility. In 2017, concerns of methodological thoroughness and reporting practices were implicated as significant barriers to reproducibility within the preclinical cardiovascular literature, particularly in studies employing animal research. The Langendorff, whole-heart technique has proven to be an invaluable research tool, being modified in a myriad of ways to probe questions across the spectrum of physio- and pathophysiologic function of the heart. As a result, significant variability in the application of the Langendorff technique exists. This literature review quantifies the different methods employed in the implementation of the Langendorff technique and provides brief examples of how individual parametric differences can impact the outcomes and interpretation of studies. From 2017-2020, significant variability of animal models, anesthesia, cannulation time, and perfusate composition, pH, and temperature demonstrate that the technique has diversified to meet new challenges and answer different scientific questions. The review also reveals which individual methods are most frequently reported, even if there is no explicit agreement upon which parameters should be reported. The analysis of methods related to the Langendorff technique suggests a framework for considering methodological approach when interpreting seemingly contradictory results, rather than concluding that results are irreproducible.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program. Virginia Polytechnic Institute and State University. Blacksburg, Virginia.,Dorothy M. Davis Heart and Lunch Research Institute, College of Medicine, The Ohio State University Wexner Medical Center. Columbus, Ohio
| | - Kathryn M Hardin
- Virginia Tech Carilion School of Medicine. Roanoke, Virginia.,Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia
| | - Steven Poelzing
- Virginia Tech Carilion School of Medicine. Roanoke, Virginia.,Center for Heart and Reparative Medicine Research. Fralin Biomedical Research Institute at Virginia Tech Carilion. Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics. Virginia Polytechnic Institute and State University. Blacksburg, Virginia
| |
Collapse
|
9
|
Lin J, Abraham A, George SA, Greer-Short A, Blair GA, Moreno A, Alber BR, Kay MW, Poelzing S. Ephaptic Coupling Is a Mechanism of Conduction Reserve During Reduced Gap Junction Coupling. Front Physiol 2022; 13:848019. [PMID: 35600295 PMCID: PMC9117633 DOI: 10.3389/fphys.2022.848019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Many cardiac pathologies are associated with reduced gap junction (GJ) coupling, an important modulator of cardiac conduction velocity (CV). However, the relationship between phenotype and functional expression of the connexin GJ family of proteins is controversial. For example, a 50% reduction of GJ coupling has been shown to have little impact on myocardial CV due to a concept known as conduction reserve. This can be explained by the ephaptic coupling (EpC) theory whereby conduction is maintained by a combination of low GJ coupling and increased electrical fields generated in the sodium channel rich clefts between neighboring myocytes. At the same time, low GJ coupling may also increase intracellular charge accumulation within myocytes, resulting in a faster transmembrane potential rate of change during depolarization (dV/dt_max) that maintains macroscopic conduction. To provide insight into the prevalence of these two phenomena during pathological conditions, we investigated the relationship between EpC and charge accumulation within the setting of GJ remodeling using multicellular simulations and companion perfused mouse heart experiments. Conduction along a fiber of myocardial cells was simulated for a range of GJ conditions. The model incorporated intercellular variations, including GJ coupling conductance and distribution, cell-to-cell separation in the intercalated disc (perinexal width—WP), and variations in sodium channel distribution. Perfused heart studies having conditions analogous to those of the simulations were performed using wild type mice and mice heterozygous null for the connexin gene Gja1. With insight from simulations, the relative contributions of EpC and charge accumulation on action potential parameters and conduction velocities were analyzed. Both simulation and experimental results support a common conclusion that low GJ coupling decreases and narrowing WP increases the rate of the AP upstroke when sodium channels are densely expressed at the ends of myocytes, indicating that conduction reserve is more dependent on EpC than charge accumulation during GJ uncoupling.
Collapse
Affiliation(s)
- Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, United States
- *Correspondence: Joyce Lin, ; Steven Poelzing,
| | - Anand Abraham
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Sharon A. George
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Amara Greer-Short
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Grace A. Blair
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Angel Moreno
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Bridget R. Alber
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Matthew W. Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Steven Poelzing
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- *Correspondence: Joyce Lin, ; Steven Poelzing,
| |
Collapse
|
10
|
Wei N, Tolkacheva EG. Mechanisms of arrhythmia termination during acute myocardial ischemia: Role of ephaptic coupling and complex geometry of border zone. PLoS One 2022; 17:e0264570. [PMID: 35290386 PMCID: PMC8923475 DOI: 10.1371/journal.pone.0264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial ischemia occurs when blood flow to the heart is reduced, preventing the heart muscle from receiving enough oxygen required for survival. Several anatomical and electrophysiological changes occur at the ischemic core (IC) and border zone (BZ) during myocardial ischemia, for example, gap junctional remodeling, changes in ionic channel kinetics and electrophysiologic changes in cell excitability, which promote the development of cardiac arrhythmia. Ephaptic coupling (EpC), which is an electrical field effect developed in the shared cleft space between adjacent cells, has been suggested to rescue the conduction when gap junctions are impaired, such as myocardial ischemia. In this manuscript, we explored the impact of EpC, electrophysiological and anatomical components of myocardial ischemia on reentry termination during non-ischemic and ischemic condition. Our results indicated that EpC and BZ with complex geometry have opposite effects on the reentry termination. In particular, the presence of homogeneous EpC terminates reentry, whereas BZ with complex geometry alone facilitates reentry by producing wave break-up and alternating conduction block. The reentry is terminated in the presence of homogeneous or heterogeneous EpC despite the presence of complex geometry of the BZ, independent of the location of BZ. The inhibition of reentry can be attributed to a current-to-load mismatch. Our results points to an antiarrhythmic role of EpC and a pro-arrhythmic role of BZ with complex geometry.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
11
|
Wu X, Hoeker GS, Blair GA, King DR, Gourdie RG, Weinberg SH, Poelzing S. Hypernatremia and intercalated disc edema synergistically exacerbate long-QT syndrome type 3 phenotype. Am J Physiol Heart Circ Physiol 2021; 321:H1042-H1055. [PMID: 34623182 DOI: 10.1152/ajpheart.00366.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac voltage-gated sodium channel gain-of-function prolongs repolarization in the long-QT syndrome type 3 (LQT3). Previous studies suggest that narrowing the perinexus within the intercalated disc, leading to rapid sodium depletion, attenuates LQT3-associated action potential duration (APD) prolongation. However, it remains unknown whether extracellular sodium concentration modulates APD prolongation during sodium channel gain-of-function. We hypothesized that elevated extracellular sodium concentration and widened perinexus synergistically prolong APD in LQT3. LQT3 was induced with sea anemone toxin (ATXII) in Langendorff-perfused guinea pig hearts (n = 34). Sodium concentration was increased from 145 to 160 mM. Perinexal expansion was induced with mannitol or the sodium channel β1-subunit adhesion domain antagonist (βadp1). Epicardial ventricular action potentials were optically mapped. Individual and combined effects of varying clefts and sodium concentrations were simulated in a computational model. With ATXII, both mannitol and βadp1 significantly widened the perinexus and prolonged APD, respectively. The elevated sodium concentration alone significantly prolonged APD as well. Importantly, the combination of elevated sodium concentration and perinexal widening synergistically prolonged APD. Computational modeling results were consistent with animal experiments. Concurrently elevating extracellular sodium and increasing intercalated disc edema prolongs repolarization more than the individual interventions alone in LQT3. This synergistic effect suggests an important clinical implication that hypernatremia in the presence of cardiac edema can markedly increase LQT3-associated APD prolongation. Therefore, to our knowledge, this is the first study to provide evidence of a tractable and effective strategy to mitigate LQT3 phenotype by means of managing sodium levels and preventing cardiac edema in patients.NEW & NOTEWORTHY This is the first study to demonstrate that the long-QT syndrome type 3 (LQT3) phenotype can be exacerbated or concealed by regulating extracellular sodium concentrations and/or the intercalated disc separation. The animal experiments and computational modeling in the current study reveal a critically important clinical implication: sodium dysregulation in the presence of edema within the intercalated disc can markedly increase the risk of arrhythmia in LQT3. These findings strongly suggest that maintaining extracellular sodium within normal physiological limits may be an effective and inexpensive therapeutic option for patients with congenital or acquired sodium channel gain-of-function diseases.
Collapse
Affiliation(s)
- Xiaobo Wu
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
| | - Robert G Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Seth H Weinberg
- Department of Biomedical Engineering, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, Virginia.,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
12
|
Lv X, Sun Y, Tan W, Liu Y, Wen N, Fu S, Yu L, Liu T, Qi X, Shu N, Du Y, Zhang W, Meng Y. NONMMUT140591.1 may serve as a ceRNA to regulate Gata5 in UT-B knockout-induced cardiac conduction block. Open Life Sci 2021; 16:1240-1251. [PMID: 34901457 PMCID: PMC8627919 DOI: 10.1515/biol-2021-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
We intended to explore the potential molecular mechanisms underlying the cardiac conduction block inducted by urea transporter (UT)-B deletion at the transcriptome level. The heart tissues were harvested from UT-B null mice and age-matched wild-type mice for lncRNA sequencing analysis. Based on the sequencing data, the differentially expressed mRNAs (DEMs) and lncRNAs (DELs) between UT-B knockout and control groups were identified, followed by function analysis and mRNA-lncRNA co-expression analysis. The miRNAs were predicted, and then the competing endogenous RNA (ceRNA) network was constructed. UT-B deletion results in the aberrant expression of 588 lncRNAs and 194 mRNAs. These DEMs were significantly enriched in the inflammation-related pathway. A lncRNA-mRNA co-expression network and a ceRNA network were constructed on the basis of the DEMs and DELs. The complement 7 (C7)-NONMMUT137216.1 co-expression pair had the highest correlation coefficient in the co-expression network. NONMMUT140591.1 had the highest degree in the ceRNA network and was involved in the ceRNA of NONMMUT140591.1-mmu-miR-298-5p-Gata5 (GATA binding protein 5). UT-B deletion may promote cardiac conduction block via inflammatory process. The ceRNA NONMMUT140591.1-mmu-miR-298-5p-Gata5 may be a potential molecular mechanism of UT-B knockout-induced cardiac conduction block.
Collapse
Affiliation(s)
- Xuejiao Lv
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Yuxin Sun
- Department of Otolaryngology, Jilin University, Changchun, Jilin, 130021, China
| | - Wenxi Tan
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Yang Liu
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Naiyan Wen
- Department of Nursing, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Shuang Fu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Lanying Yu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Tiantian Liu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Xiaocui Qi
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Nanqi Shu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yanwei Du
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Wenfeng Zhang
- Department of Prescriptions, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yan Meng
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| |
Collapse
|
13
|
Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021; 86:110070. [PMID: 34217833 PMCID: PMC8963383 DOI: 10.1016/j.cellsig.2021.110070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Regulation of cell-to-cell communication in the heart by the gap junction protein Connexin43 (Cx43) involves modulation of Cx43 phosphorylation state by protein kinases, and dephosphorylation by protein phosphatases. Dephosphorylation of Cx43 has been associated with impaired intercellular coupling and enhanced arrhythmogenesis in various pathologic states. While there has been extensive study of the protein kinases acting on Cx43, there has been limited studies of the protein phosphatases that may underlie Cx43 dephosphorylation. The focus of this review is to introduce serine-threonine protein phosphatase regulation of Cx43 phosphorylation state and cell-to-cell communication, and its impact on arrhythmogenesis in the setting of chronic heart failure and myocardial ischemia, as well as on atrial fibrillation. We also discuss the therapeutic potential of modulating protein phosphatases to treat arrhythmias in these clinical settings.
Collapse
Affiliation(s)
- Xun Ai
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Jiajie Yan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
14
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
15
|
King DR, Entz M, Blair GA, Crandell I, Hanlon AL, Lin J, Hoeker GS, Poelzing S. The conduction velocity-potassium relationship in the heart is modulated by sodium and calcium. Pflugers Arch 2021; 473:557-571. [PMID: 33660028 PMCID: PMC7940307 DOI: 10.1007/s00424-021-02537-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/27/2023]
Abstract
The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Michael Entz
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Medicine, Virginia Tech Carilion, Roanoke, VA, USA.
| |
Collapse
|
16
|
King DR, Padget RL, Perry J, Hoeker G, Smyth JW, Brown DA, Poelzing S. Elevated perfusate [Na +] increases contractile dysfunction during ischemia and reperfusion. Sci Rep 2020; 10:17289. [PMID: 33057157 PMCID: PMC7560862 DOI: 10.1038/s41598-020-74069-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies revealed that relatively small changes in perfusate sodium ([Na+]o) composition significantly affect cardiac electrical conduction and stability in contraction arrested ex vivo Langendorff heart preparations before and during simulated ischemia. Additionally, [Na+]o modulates cardiomyocyte contractility via a sodium-calcium exchanger (NCX) mediated pathway. It remains unknown, however, whether modest changes to [Na+]o that promote electrophysiologic stability similarly improve mechanical function during baseline and ischemia-reperfusion conditions. The purpose of this study was to quantify cardiac mechanical function during ischemia-reperfusion with perfusates containing 145 or 155 mM Na+ in Langendorff perfused isolated rat heart preparations. Relative to 145 mM Na+, perfusion with 155 mM [Na+]o decreased the amplitude of left-ventricular developed pressure (LVDP) at baseline and accelerated the onset of ischemic contracture. Inhibiting NCX with SEA0400 abolished LVDP depression caused by increasing [Na+]o at baseline and reduced the time to peak ischemic contracture. Ischemia-reperfusion decreased LVDP in all hearts with return of intrinsic activity, and reperfusion with 155 mM [Na+]o further depressed mechanical function. In summary, elevating [Na+]o by as little as 10 mM can significantly modulate mechanical function under baseline conditions, as well as during ischemia and reperfusion. Importantly, clinical use of Normal Saline, which contains 155 mM [Na+]o, with cardiac ischemia may require further investigation.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rachel L Padget
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Justin Perry
- Department of Human Nutrition, Virginia Polytechnic Institute and State University, Foods, and Exercise, Blacksburg, VA, USA
| | - Gregory Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - James W Smyth
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - David A Brown
- Department of Human Nutrition, Virginia Polytechnic Institute and State University, Foods, and Exercise, Blacksburg, VA, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. .,Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA. .,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA. .,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|