1
|
Singam A, Bhattacharya C, Park S. Aging-related changes in the mechanical properties of single cells. Heliyon 2024; 10:e32974. [PMID: 38994100 PMCID: PMC11238009 DOI: 10.1016/j.heliyon.2024.e32974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mechanical properties, along with biochemical and molecular properties, play crucial roles in governing cellular function and homeostasis. Cellular mechanics are influenced by various factors, including physiological and pathological states, making them potential biomarkers for diseases and aging. While several methods such as AFM, particle-tracking microrheology, optical tweezers/stretching, magnetic tweezers/twisting cytometry, microfluidics, and micropipette aspiration have been widely utilized to measure the mechanical properties of single cells, our understanding of how aging affects these properties remains limited. To fill this knowledge gap, we provide a brief overview of the commonly used methods to measure single-cell mechanical properties. We then delve into the effects of aging on the mechanical properties of different cell types. Finally, we discuss the importance of studying cellular viscous and viscoelastic properties as well as aging induced by different stressors to gain a deeper understanding of the aging process and aging-related diseases.
Collapse
Affiliation(s)
- Amarnath Singam
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Chandrabali Bhattacharya
- Department of Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
2
|
Brown SJ, Šoltić D, Synowsky SA, Shirran SL, Chilcott E, Shorrock HK, Gillingwater TH, Yáñez-Muñoz RJ, Schneider B, Bowerman M, Fuller HR. AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice. Hum Mol Genet 2023; 32:2950-2965. [PMID: 37498175 PMCID: PMC10549791 DOI: 10.1093/hmg/ddad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.
Collapse
Affiliation(s)
- Sharon J Brown
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Darija Šoltić
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Silvia A Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Ellie Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| |
Collapse
|
3
|
Bradford WH, Omens JH, Sheikh F. Vinculin at the heart of aging. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:62. [PMID: 28251141 PMCID: PMC5326649 DOI: 10.21037/atm.2017.01.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- William H Bradford
- Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Jeffrey H Omens
- Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Farah Sheikh
- Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Dworatzek E, Baczko I, Kararigas G. Effects of aging on cardiac extracellular matrix in men and women. Proteomics Clin Appl 2015; 10:84-91. [DOI: 10.1002/prca.201500031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Elke Dworatzek
- Institute of Gender in Medicine and Center for Cardiovascular Research; Charite University Hospital; Berlin Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Partner Site; Berlin Germany
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy; University of Szeged; Szeged Hungary
| | - Georgios Kararigas
- Institute of Gender in Medicine and Center for Cardiovascular Research; Charite University Hospital; Berlin Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Partner Site; Berlin Germany
| |
Collapse
|
5
|
Ibrahim BM, Fan M, Abdel-Rahman AA. Oxidative stress and autonomic dysregulation contribute to the acute time-dependent myocardial depressant effect of ethanol in conscious female rats. Alcohol Clin Exp Res 2014; 38:1205-15. [PMID: 24754626 DOI: 10.1111/acer.12363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/23/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND The molecular mechanisms of the acute hypotensive and indirectly assessed cardiac depressant effect of ethanol (EtOH)-evoked myocardial depression and hypotension in female rats are not known. We tested the hypothesis that a time-dependent myocardial depression caused by EtOH is initiated by its direct and indirect (cardiac vagal dominance) effects and is exacerbated by gradual development of oxidative stress. METHODS In conscious female rats, we directly measured left ventricular developed pressure (LVDP), the maximal rise of ventricular pressure over time (dP/dtmax ), blood pressure (BP), heart rate (HR), and sympathovagal activity following intragastric EtOH (1 g/kg) or water over 90 minutes. Catalytic activity of acetaldehyde (ACA)-generating (alcohol dehydrogenase [ADH] and catalase) and eliminating aldehyde dehydrogenase [ALDH2] enzymes along with mediators of oxidative stress were measured in myocardial tissues collected at 30, 60, or 90 minutes after EtOH or water. RESULTS EtOH reduced myocardial function (LVDP and dP/dtmax ) within 5 to 10 minutes before the steady fall in BP in conscious proestrus rats. Further, EtOH shifted the sympathovagal balance, analyzed by spectral analysis of high frequency and low frequency of interbeat intervals, toward vagal dominance. Prior vagal blockade (atropine) or antioxidant (tempol) treatment attenuated EtOH-evoked myocardial depression and hypotension. Ex vivo studies revealed time-dependent: (i) enhancement of ADH, but not ALDH2 activity (indicative of elevated ACA levels), (ii) increases in phosphorylated Akt and ERK1/2, NADPH-oxidase activity, reactive oxygen species, malondialdehyde, and 4-hydroxy-2-nonenal-modified proteins. These molecular responses along with reduced myocardial catalase activity were most evident at 90 minutes post-EtOH when the reductions in cardiac function and BP reached their nadir. CONCLUSIONS Vagal dominance and time-dependent myocardial oxidative stress along with the accumulation of cardiotoxic aldehydes mediate EtOH-evoked myocardial dysfunction and hypotension in conscious proestrus female rats.
Collapse
Affiliation(s)
- Badr M Ibrahim
- Department of Pharmacology and Toxicology (BMI, MF, AAR-R), Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | |
Collapse
|
6
|
Milani-Nejad N, Janssen PML. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 2014; 141:235-49. [PMID: 24140081 PMCID: PMC3947198 DOI: 10.1016/j.pharmthera.2013.10.007] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences.
Collapse
Affiliation(s)
- Nima Milani-Nejad
- Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and D. Davis Heart Lung Institute, College of Medicine, The Ohio State University, OH, USA.
| |
Collapse
|
7
|
Yan L, Gao S, Ho D, Park M, Ge H, Wang C, Tian Y, Lai L, De Lorenzo MS, Vatner DE, Vatner SF. Calorie restriction can reverse, as well as prevent, aging cardiomyopathy. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2177-2182. [PMID: 23334601 PMCID: PMC3825004 DOI: 10.1007/s11357-012-9508-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Calorie restriction (CR) is the most widely studied intervention protecting from the adverse effects of aging. Almost all prior studies have examined the effects of CR initiated in young animals. Studies examining the effects of CR on development of aging cardiomyopathy found only partial prevention. The major goal of this study was to determine whether CR initiated after aging cardiomyopathy developed could reverse the cardiomyopathy. Aging cardiomyopathy in 2-year-old mice was characterized by reduced left ventricular (LV) function, cardiac hypertrophy, and increased cardiac apoptosis and fibrosis. When short-term (2 months) CR was initiated after aging cardiomyopathy developed in 20-month-old mice, the decrease in cardiac function, and increases in LV weight, myocardial fibrosis and apoptosis were reversed, such that the aging hearts in these mice were indistinguishable from those of young mice or mice where CR was initiated in young mice. If apoptosis was the mechanism for protecting against aging cardiomyopathy, then total myocyte numbers should have reverted to normal with CR, but did not. However, the alterations in cytoskeletal proteins, which contribute to aging cardiomyopathy, were no longer observed with CR. This is the first study to demonstrate complete prevention of aging cardiomyopathy by CR and, more importantly, that instituting this intervention even later in life can rapidly correct aging cardiomyopathy, which could have important therapeutic implications.
Collapse
Affiliation(s)
- Lin Yan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liles JT, Ida KK, Joly KM, Chapo J, Plato CF. Age exacerbates chronic catecholamine-induced impairments in contractile reserve in the rat. Am J Physiol Regul Integr Comp Physiol 2011; 301:R491-9. [PMID: 21593430 DOI: 10.1152/ajpregu.00756.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Contractile reserve decreases with advancing age and chronic isoproterenol (ISO) administration is a well-characterized model of cardiac hypertrophy known to impair cardiovascular function. This study evaluated whether nonsenescent, mature adult rats are more susceptible to detrimental effects of chronic ISO administration than younger adult rats. Rats received daily injections of ISO (0.1 mg/kg sc) or vehicle for 3 wk. ISO induced a greater impairment in contractile reserve [maximum of left ventricular pressure development (Δ+dP/dt(max))] in mature adult ISO-treated (MA-ISO) than in young adult ISO-treated rats (YA-ISO) in response to infusions of mechanistically distinct inotropes (digoxin, milrinone; 20-200 μl·kg(-1)·min(-1)), while basal and agonist-induced changes in heart rate and systolic arterial pressure (SAP) were not different across groups. ISO decreased expression of the calcium handling protein, sarco(endo)plasmic reticulum Ca(2+)-ATPase-2a, in MA-ISO compared with YA, YA-ISO, and MA rats. Chronic ISO also induced greater increases in cardiac hypertrophy [left ventricular (LV) index: 33 ± 3 vs. 22 ± 5%] and caspase-3 activity (34 vs. 5%) in MA-ISO relative to YA-ISO rats. Moreover, β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF) mRNA expression was significantly elevated in MA-ISO. These results demonstrate that adult rats develop greater impairments in systolic performance than younger rats when exposed to chronic catecholamine excess. Reduced contractile reserve may result from calcium dysregulation, increased caspase-3 activity, or increased β-MHC and ANF expression. Although several studies report age-related declines in systolic performance in older and senescent animals, the present study demonstrates that catecholamine excess induces reductions in systolic performance significantly earlier in life.
Collapse
Affiliation(s)
- John T Liles
- Gilead Sciences, Inc., 1651 Page Mill Road, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
9
|
Mechanical properties of cells and ageing. Ageing Res Rev 2011; 10:16-25. [PMID: 19897057 DOI: 10.1016/j.arr.2009.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/23/2022]
Abstract
Mechanical properties are fundamental properties of the cells and tissues of living organisms. The mechanical properties of a single cell as a biocomposite are determined by the interdependent combination of cellular components mechanical properties. Quantitative estimate of the cell mechanical properties depends on a cell state, method of measurement, and used theoretical model. Predominant tendency for the majority of cells with ageing is an increase of cell stiffness and a decrease of cell ability to undergo reversible large deformations. The mechanical signal transduction in old cells becomes less effective than that in young cells, and with ageing, the cells lose the ability of the rapid functional rearrangements of cellular skeleton. The article reviews the theoretical and experimental facts touching the age-related changes of the mechanical properties of cellular components and cells in the certain systems of an organism (the blood, the vascular system, the musculoskeletal system, the lens, and the epithelium). In fact, the cell mechanical parameters (including elastic modulii) can be useful as specific markers of cell ageing.
Collapse
|
10
|
Wu M, Fannin J, Rice KM, Wang B, Blough ER. Effect of aging on cellular mechanotransduction. Ageing Res Rev 2011; 10:1-15. [PMID: 19932197 DOI: 10.1016/j.arr.2009.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 12/27/2022]
Abstract
Aging is becoming a critical heath care issue and a burgeoning economic burden on society. Mechanotransduction is the ability of the cell to sense, process, and respond to mechanical stimuli and is an important regulator of physiologic function that has been found to play a role in regulating gene expression, protein synthesis, cell differentiation, tissue growth, and most recently, the pathophysiology of disease. Here we will review some of the recent findings of this field and attempt, where possible, to present changes in mechanotransduction that are associated with the aging process in several selected physiological systems, including musculoskeletal, cardiovascular, neuronal, respiratory systems and skin.
Collapse
|
11
|
Shinmura K, Tamaki K, Sano M, Murata M, Yamakawa H, Ishida H, Fukuda K. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol 2010; 50:117-27. [PMID: 20977912 DOI: 10.1016/j.yjmcc.2010.10.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/05/2010] [Accepted: 10/17/2010] [Indexed: 12/20/2022]
Abstract
Approximately half of older patients with congestive heart failure have normal left ventricular (LV) systolic but abnormal LV diastolic function. In mammalian hearts, aging is associated with LV diastolic dysfunction. Caloric restriction (CR) is expected to retard cellular senescence and to attenuate the physiological decline in organ function. Therefore, the aim of the present study was to investigate the impact of long-term CR on cardiac senescence, in particular the effect of CR on LV diastolic dysfunction associated with aging. Male 8-month-old Fischer344 rats were divided into ad libitum fed and CR (40% energy reduction) groups. LV function was evaluated by echocardiography and cardiac senescence was compared between the two groups at the age of 30-month-old. (1) Echocardiography showed similar LV systolic function, but better LV diastolic function in the CR group. (2) Histological analysis revealed that CR attenuated the accumulation of senescence-associated β-galactosidase and lipofuscin and reduced myocyte apoptosis. (3) In measurements of [Ca(2+)](i) transients, the time to 50% relaxation was significantly smaller in the CR group, whereas F/F(0) was similar. (4) CR attenuated the decrease in sarcoplasmic reticulum calcium ATPase 2 protein with aging. (5) CR suppressed the mammalian target of rapamycin (mTOR) pathway and increased the ratio of conjugated to cytosolic light chain 3, suggesting that autophagy is enhanced in the CR hearts. In conclusion, CR improves diastolic function in the senescent myocardium by amelioration of the age-associated deterioration in intracellular Ca(2+) handling. Enhanced autophagy via the suppression of mTOR during CR may retard cardiac senescence.
Collapse
Affiliation(s)
- Ken Shinmura
- Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Fares E, Howlett SE. Effect of age on cardiac excitation-contraction coupling. Clin Exp Pharmacol Physiol 2010; 37:1-7. [DOI: 10.1111/j.1440-1681.2009.05276.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Azeloglu EU, Costa KD. Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy. Am J Physiol Heart Circ Physiol 2009; 298:H853-60. [PMID: 20023124 DOI: 10.1152/ajpheart.00427.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study how the dynamic subcellular mechanical properties of the heart relate to the fundamental underlying process of actin-myosin cross-bridge cycling, we developed a novel atomic force microscope elastography technique for mapping spatiotemporal stiffness of isolated, spontaneously beating neonatal rat cardiomyocytes. Cells were indented repeatedly at a rate close but unequal to their contractile frequency. The resultant changes in pointwise apparent elastic modulus cycled at a predictable envelope frequency between a systolic value of 26.2 +/- 5.1 kPa and a diastolic value of 7.8 +/- 4.1 kPa at a representative depth of 400 nm. In cells probed along their major axis, spatiotemporal changes in systolic stiffness displayed a heterogeneous pattern, reflecting the banded sarcomeric structure of underlying myofibrils. Treatment with blebbistatin eliminated contractile activity and resulted in a uniform apparent modulus of 6.5 +/- 4.8 kPa. This study represents the first quantitative dynamic mechanical mapping of beating cardiomyocytes. The technique provides a means of probing the micromechanical effects of disease processes and pharmacological treatments on beating cardiomyocytes, providing new insights and relating subcellular cardiac structure and function.
Collapse
Affiliation(s)
- Evren U Azeloglu
- Department of Biomedical Engineering, Columbia University, New York, NY 10029, USA
| | | |
Collapse
|
14
|
Howlett SE. Age-associated changes in excitation-contraction coupling are more prominent in ventricular myocytes from male rats than in myocytes from female rats. Am J Physiol Heart Circ Physiol 2009; 298:H659-70. [PMID: 19966062 DOI: 10.1152/ajpheart.00214.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated effects of age on components of excitation-contraction (EC) coupling in ventricular myocytes from male and female rats to examine sex differences in mechanisms responsible for age-related contractile dysfunction. Myocytes were isolated from anesthetized young adult (approximately 3 mo) and aged (approximately 24 mo) Fischer 344 rats. Ca(2+) concentrations and contractions were measured simultaneously (37 degrees C, 2 Hz). Fractional shortening declined with age in males (6.7 +/- 0.6% to 2.4 +/- 0.4%; P < 0.05), as did peak Ca(2+) transients (47.7 +/- 4.6 to 28.1 +/- 2.1 nM; P < 0.05) and Ca(2+) current densities (-7.7 +/- 0.7 to -6.2 +/- 0.5 pA/pF; P < 0.05). Although sarcoplasmic reticulum (SR) Ca(2+) content was similar regardless of age in males, EC coupling gain declined significantly with age to 55.8 +/- 7.8% of values in younger males. In contrast with results in males, contraction and Ca(2+) transient amplitudes were unaffected by age in females. Ca(2+) current density declined with age in females (-7.5 +/- 0.5 to -5.1 +/- 0.7 pA/pF; P < 0.05), but SR Ca(2+) content actually increased dramatically (49.0 +/- 7.5 to 147.3 +/- 28.5 nM; P < 0.05). Even so, EC coupling gain was not affected by age in female myocytes. Age also promoted hypertrophy of male myocytes more than female myocytes. Age and sex differences in EC coupling were largely maintained when conditioning pulse frequency was increased to 4 Hz. Contractions, Ca(2+) transients, and EC coupling gain were also smaller in young females than in young males. Thus age-dependent changes are more prominent in myocytes from males than females. Increased SR Ca(2+) content may compensate for reduced Ca(2+) current to preserve contractile function in aged females, which may limit the detrimental effects of age on cardiac contractile function.
Collapse
Affiliation(s)
- Susan E Howlett
- Department of Pharmacology and Division of Geriatric Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|