1
|
Xiao Z, Li S, Wu X, Chen X, Yan D, He J. GATA-4 overexpressing BMSC-derived exosomes suppress H/R-induced cardiomyocyte ferroptosis. iScience 2024; 27:110784. [PMID: 39391723 PMCID: PMC11466636 DOI: 10.1016/j.isci.2024.110784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes overexpressing GATA-4 (Exosoe-GATA-4) can protect cardiac function. Mitochondrial permeability transition pore (mPTP) has a crucial role in ferroptosis. This study aimed to assess the mechanism of Exosoe-GATA-4 in myocardial ischemia/reperfusion (I/R) injury. Exos were successfully excreted, and 185 differential expression miRNAs were obtained using bioinformatics. The Exosoe-GATA-4 effectively suppressed hypoxia/reoxygenation (H/R)-induced cardiomyocytes' ferroptosis, while the effects were reversed by miR-330-3p inhibitor. miR-330-3p targeted negative regulated BAP1. The effects of miR-330-3p inhibitor were reversed by knock-down BAP1. Also, BAP1 reversed the effects of Exosoe-GATA-4 on H/R-induced cardiomyocytes' ferroptosis by downregulating SLC7A11. Mechanistically, BAP1 interacted with IP3R and increased cardiomyocytes' Ca2+ level, causing mPTP opening and mitochondrial dysfunction, promoting H/R-induced cardiomyocytes' ferroptosis. Moreover, hydrogen sulfide (H2S) content was increased and regulated the keap1/Nrf2 signaling pathway by Exosoe-GATA-4 treated. Exosoe-GATA-4 effectively suppresses H/R-induced cardiomyocytes' ferroptosis by upregulating miR-330-3p, which regulates the BAP1/SLC7A11/IP3R axis and inhibits mPTP opening.
Collapse
Affiliation(s)
- Zhiyuan Xiao
- Department of Medical Intensive Care Unit, the First People′s Hospital of Yunnan Province, No.157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Si Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Xinxin Wu
- Yunnan University of Traditional Chinese Medicine, No.1076 Yuhua Road, Kunming, Yunnan 650500, China
| | - Xinhao Chen
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Dan Yan
- Department of Medical Intensive Care Unit, the First People′s Hospital of Yunnan Province, No.157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Jigang He
- Department of Cardiovascular Surgery, the First People′s Hospital of Yunnan Province, No.157 Jinbi Road, Kunming, Yunnan 650032, China
| |
Collapse
|
2
|
Cong J, Li JY, Zou W. Mechanism and treatment of intracerebral hemorrhage focus on mitochondrial permeability transition pore. Front Mol Neurosci 2024; 17:1423132. [PMID: 39156127 PMCID: PMC11328408 DOI: 10.3389/fnmol.2024.1423132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.
Collapse
Affiliation(s)
- Jing Cong
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing-Yi Li
- The Second School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
4
|
Ragone MI, Bayley M, López S, Díaz RG, Consolini AE. Nebivolol in oral subacute treatment prevents cardiac post-ischemic dysfunction in rats, but hyperthyroidism reduces this protection: mechanisms involved. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3093-3109. [PMID: 37878045 DOI: 10.1007/s00210-023-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Nebivolol could prevent dysfunction in patients suffering myocardial ischemia. However, influence of hyperthyroidism is not known. Consequences and mechanisms of nebivolol treatment were investigated in isolated hearts from euthyroid (EuT) and hyperthyroid (HpT) rats. Rats were orally treated during 1 week with 20 mg/kg/day nebivolol (O-Neb), 30 mg/kg/day atenolol (O-Ate), or not treated (C). Isolated perfused hearts were exposed to global ischemia and reperfusion (I/R) inside a flow calorimeter. Left diastolic ventricular pressure, developed contractile pressure (P), and total heat rate (Ht) were continuously measured, while infarct size was measured after 2-h R. EuT-C and HpT-C hearts developed similarly low post-ischemic contractile recovery and economy (P/Ht). Nebivolol totally prevented dysfunction and reduced infarction size in EuT hearts, but partially improved recovery in HpT rat hearts. Contrarily, oral atenolol totally prevented dysfunction in HpT hearts but partially in EuT hearts. Nebivolol effects were reversed by perfusing L-NAME in both conditions, but partially reduced by aminoguanidine in HpT. However, L-NAME increased P and P/Ht recoveries in EuT-C and HpT-C rat hearts, as well as melatonin. Oral nebivolol prevented post-ischemic dysfunction and infarction in EuT hearts due to adrenergic β1 blockade and activation of iNOS and/or eNOS, but the effect was attenuated in HpT hearts by excessive iNOS-dependent nitrosative pathways.
Collapse
Affiliation(s)
- María Inés Ragone
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, La Plata, Argentina
| | - Matías Bayley
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, La Plata, Argentina
| | - Sofía López
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, La Plata, Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares (CIC-UNLP-CONICET), La Plata, Argentina
| | - Alicia E Consolini
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, La Plata, Argentina.
| |
Collapse
|
5
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Zhang X, Zheng Y, Wang Z, Gan J, Yu B, Lu B, Jiang X. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress. Biomed Pharmacother 2023; 167:115475. [PMID: 37722190 DOI: 10.1016/j.biopha.2023.115475] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Lu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
7
|
Pedriali G, Ramaccini D, Bouhamida E, Wieckowski MR, Giorgi C, Tremoli E, Pinton P. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Front Cell Dev Biol 2022; 10:1082095. [PMID: 36561366 PMCID: PMC9763599 DOI: 10.3389/fcell.2022.1082095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the most common cause of death worldwide and in particular, ischemic heart disease holds the most considerable position. Even if it has been deeply studied, myocardial ischemia-reperfusion injury (IRI) is still a side-effect of the clinical treatment for several heart diseases: ischemia process itself leads to temporary damage to heart tissue and obviously the recovery of blood flow is promptly required even if it worsens the ischemic injury. There is no doubt that mitochondria play a key role in pathogenesis of IRI: dysfunctions of these important organelles alter cell homeostasis and survival. It has been demonstrated that during IRI the system of mitochondrial quality control undergoes alterations with the disruption of the complex balance between the processes of mitochondrial fusion, fission, biogenesis and mitophagy. The fundamental role of mitochondria is carried out thanks to the finely regulated connection to other organelles such as plasma membrane, endoplasmic reticulum and nucleus, therefore impairments of these inter-organelle communications exacerbate IRI. This review pointed to enhance the importance of the mitochondrial network in the pathogenesis of IRI with the aim to focus on potential mitochondria-targeting therapies as new approach to control heart tissue damage after ischemia and reperfusion process.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | | | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| |
Collapse
|
8
|
Hu K, Yan TM, Cao KY, Li F, Ma XR, Lai Q, Liu JC, Pan Y, Kou JP, Jiang ZH. A tRNA-derived fragment of ginseng protects heart against ischemia/reperfusion injury via targeting the lncRNA MIAT/VEGFA pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:672-688. [PMID: 36090756 PMCID: PMC9440274 DOI: 10.1016/j.omtn.2022.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicines (TCMs) have been widely used for treating ischemic heart disease (IHD), and secondary metabolites are generally regarded as their pharmacologically active components. However, the effects of nucleic acids in TCMs remain unclear. We reported for the first time that a 22-mer double-strand RNA consisting of HC83 (a tRNA-derived fragment [tRF] from the 3' end of tRNAGln(UUG) of ginseng) and its complementary sequence significantly promoted H9c2 cell survival after hypoxia/reoxygenation (H/R) in vitro. HC83_mimic could also significantly improve cardiac function by maintaining both cytoskeleton integrity and mitochondrial function of cardiomyocytes. Further in vivo investigations revealed that HC83_mimic is more potent than metoprolol by >500-fold against myocardial ischemia/reperfusion (MI/R) injury. In-depth studies revealed that HC83 directly downregulated a lncRNA known as myocardial infarction-associated transcript (MIAT) that led to a subsequent upregulation of VEGFA expression. These findings provided the first evidence that TCM-derived tRFs can exert miRNA-like functions in mammalian systems, therefore supporting the idea that TCM-derived tRFs are promising RNA drug candidates shown to have extraordinarily potent effects. In summary, this study provides a novel strategy not only for discovering pharmacologically active tRFs from TCMs but also for efficiently exploring new therapeutic targets for various diseases.
Collapse
Affiliation(s)
- Kua Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Kai-Yue Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Fang Li
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao-Rong Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Qiong Lai
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Jin-Cheng Liu
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Jun-Ping Kou
- Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| |
Collapse
|
9
|
Stamerra CA, Di Giosia P, Giorgini P, Ferri C, Sukhorukov VN, Sahebkar A. Mitochondrial Dysfunction and Cardiovascular Disease: Pathophysiology and Emerging Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9530007. [PMID: 35958017 PMCID: PMC9363184 DOI: 10.1155/2022/9530007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Mitochondria ensure the supply of cellular energy through the production of ATP via oxidative phosphorylation. The alteration of this process, called mitochondrial dysfunction, leads to a reduction in ATP and an increase in the production of reactive oxygen species (ROS). Mitochondrial dysfunction can be caused by mitochondrial/nuclear DNA mutations, or it can be secondary to pathological conditions such as cardiovascular disease, aging, and environmental stress. The use of therapies aimed at the prevention/correction of mitochondrial dysfunction, in the context of the specific treatment of cardiovascular diseases, is a topic of growing interest. In this context, the data are conflicting since preclinical studies are numerous, but there are no large randomized studies.
Collapse
Affiliation(s)
- Cosimo Andrea Stamerra
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
- Department of Internal Medicine, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Di Giosia
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
- Department of Internal Medicine, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Giorgini
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
| | - Claudio Ferri
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
| | - Vasily N. Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Zhou Y, Li Z, Zhang D, Zhang B. Screening of bioactive ingredients of Tsantan Sumtang in ameliorating H9c2 cells injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114854. [PMID: 34808301 DOI: 10.1016/j.jep.2021.114854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tsantan Sumtang (TS), a traditional Tibetan medicine, has been used in the clinic for the treatment of myocardial ischemia (MI) for ages, however, the bioactive ingredients that are responsible for improving MI remain unknown. AIM OF THE STUDY This study investigated the chemical components of TS and their medicinal efficacies at cell levels, in order to expound the bioactive ingredients in TS. MATERIALS AND METHODS First, a response-surface methodology was employed to determine the optimum ethanol reflux extraction process of polyphenols in TS (PTS) due to their close correlation with MI improvement. Second, a serum pharmacochemistry technique was used to analyze the compounds of PTS absorbed into the blood of rats. Third, hypoxia-, H2O2-, and adriamycin (ADM)-induced H9c2 cell injury models were used to investigate the cardioprotective effects of these compounds in vitro. Fourth, protective effects of isovitexin, quercitrin, and isoeugenol on mitochondrial function were further tested. RESULTS The optimum extraction conditions for obtaining PTS were an ethanol concentration of 78.22%, an extraction time of 67.4 min, and a material-liquid ratio of 1:72.60 mL/g. Serum pharmacochemistry analysis detected 21 compounds, of which 11 compounds were always present in the blood within 5 h. Cytotoxicity and the protective effect of 11 compounds in hypoxia-, H2O2-, and ADM-induced H9c2 cell injury models shown that isovitexin, quercitrin, and isoeugenol had almost no cytotoxicity, and they could elevate the survival rate in injured H9c2 cells. Furthermore, isovitexin, quercitrin, and isoeugenol could decrease mitochondrial reactive oxygen species (ROS) releasion, inhibite mitochondrial permeability transition pore (mPTP) opening, ameliorate the change of mitochondrial membrane potential (MMP) to exert mitochondrial protection effect. CONCLUSION Isovitexin, quercitrin, and isoeugenol exhibited cardioprotective effect at cell levles, these three compounds might be the bioactive ingredients in TS. These findings elucidate the pharmacodynamic substances and mechanisms of TS, guiding its clinical use.
Collapse
Affiliation(s)
- Yi Zhou
- College of Eco-environmental Engineering, Qinghai University, Xining, 810016, PR China.
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810016, PR China
| | - Dejun Zhang
- College of Eco-environmental Engineering, Qinghai University, Xining, 810016, PR China
| | - Benyin Zhang
- College of Eco-environmental Engineering, Qinghai University, Xining, 810016, PR China
| |
Collapse
|
12
|
Liu Y, Chu G, Shen W, Zhang Y, Xu W, Yu Y. XMU-MP-1 protects heart from ischemia/reperfusion injury in mice through modulating Mst1/AMPK pathway. Eur J Pharmacol 2022; 919:174801. [PMID: 35123978 DOI: 10.1016/j.ejphar.2022.174801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
13
|
Veiga ECDA, Simões RDS, Caviola LL, Abreu LC, Cavalli RC, Cipolla-Neto J, Baracat EC, Soares JM. Melatonin and the cardiovascular system in animals: systematic review and meta-analysis. Clinics (Sao Paulo) 2021; 76:e2863. [PMID: 34644731 PMCID: PMC8478132 DOI: 10.6061/clinics/2021/e2863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/16/2021] [Indexed: 12/09/2022] Open
Abstract
Melatonin, a hormone released by the pineal gland, demonstrates several effects on the cardiovascular system. Herein, we performed a systematic review and meta-analysis to verify the effects of melatonin in an experimental model of myocardial infarction. We performed a systematic review according to PRISMA recommendations and reviewed MEDLINE, Embase, and Cochrane databases. Only articles in English were considered. A systematic review of the literature published between November 2008 and June 2019 was performed. The meta-analysis was conducted using the RevMan 5.3 program provided by the Cochrane Collaboration. In total, 858 articles were identified, of which 13 were included in this review. The main results of this study revealed that melatonin benefits the cardiovascular system by reducing infarct size, improving cardiac function according to echocardiographic and hemodynamic analyses, affords antioxidant effects, improves the rate of apoptosis, decreases lactate dehydrogenase activity, enhances biometric analyses, and improves protein levels, as analyzed by western blotting and quantitative PCR. In the meta-analysis, we observed a statistically significant decrease in infarct size (mean difference [MD], -20.37 [-23.56, -17.18]), no statistical difference in systolic pressure (MD, -1.75 [-5.47, 1.97]), a statistically significant decrease in lactate dehydrogenase in animals in the melatonin group (MD, -4.61 [-6.83, -2.40]), and a statistically significant improvement in the cardiac ejection fraction (MD, -8.12 [-9.56, -6.69]). On analyzing potential bias, we observed that most studies presented a low risk of bias; two parameters were not included in the analysis, and one parameter had a high risk of bias. Melatonin exerts several effects on the cardiovascular system and could be a useful therapeutic target to combat various cardiovascular diseases.
Collapse
Affiliation(s)
- Eduardo Carvalho de Arruda Veiga
- Departamento de Obstetricia e Ginecologia, Hospital das Clinicas HCFMRP-USP, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Ricardo dos Santos Simões
- Departamento de Obstetricia e Ginecologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Leonardo L. Caviola
- Departamento de Obstetricia e Ginecologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Luiz Carlos Abreu
- Disciplina de escrita cientifica, Faculdade de Medicina do ABC, Santo Andre, SP, BR
| | - Ricardo Carvalho Cavalli
- Departamento de Obstetricia e Ginecologia, Hospital das Clinicas HCFMRP-USP, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - José Cipolla-Neto
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas (ICB-USP), Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Edmund Chada Baracat
- Departamento de Obstetricia e Ginecologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - José Maria Soares
- Departamento de Obstetricia e Ginecologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
14
|
Melatonin Enhances the Mitochondrial Functionality of Brown Adipose Tissue in Obese-Diabetic Rats. Antioxidants (Basel) 2021; 10:antiox10091482. [PMID: 34573114 PMCID: PMC8466890 DOI: 10.3390/antiox10091482] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Developing novel drugs/targets remains a major effort toward controlling obesity-related type 2 diabetes (diabesity). Melatonin controls obesity and improves glucose homeostasis in rodents, mainly via the thermogenic effects of increasing the amount of brown adipose tissue (BAT) and increases in mitochondrial mass, amount of UCP1 protein, and thermogenic capacity. Importantly, mitochondria are widely known as a therapeutic target of melatonin; however, direct evidence of melatonin on the function of mitochondria from BAT and the mechanistic pathways underlying these effects remains lacking. This study investigated the effects of melatonin on mitochondrial functions in BAT of Zücker diabetic fatty (ZDF) rats, which are considered a model of obesity-related type 2 diabetes mellitus (T2DM). At five weeks of age, Zücker lean (ZL) and ZDF rats were subdivided into two groups, consisting of control and treated with oral melatonin for six weeks. Mitochondria were isolated from BAT of animals from both groups, using subcellular fractionation techniques, followed by measurement of several mitochondrial parameters, including respiratory control ratio (RCR), phosphorylation coefficient (ADP/O ratio), ATP production, level of mitochondrial nitrites, superoxide dismutase activity, and alteration in the mitochondrial permeability transition pore (mPTP). Interestingly, melatonin increased RCR in mitochondria from brown fat of both ZL and ZDF rats through the reduction of the proton leak component of respiration (state 4). In addition, melatonin improved the ADP/O ratio in obese rats and augmented ATP production in lean rats. Further, melatonin reduced mitochondrial nitrosative and oxidative status by decreasing nitrite levels and increasing superoxide dismutase activity in both groups, as well as inhibited mPTP in mitochondria isolated from brown fat. Taken together, the present data revealed that chronic oral administration of melatonin improved mitochondrial respiration in brown adipocytes, while decreasing oxidative and nitrosative stress and susceptibility of adipocytes to apoptosis in ZDF rats, suggesting a beneficial use in the treatment of diabesity. Further research regarding the molecular mechanisms underlying the effects of melatonin on diabesity is warranted.
Collapse
|
15
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
16
|
Dhanabalan K, Mzezewa S, Huisamen B, Lochner A. Mitochondrial Oxidative Phosphorylation Function and Mitophagy in Ischaemic/Reperfused Hearts from Control and High-Fat Diet Rats: Effects of Long-Term Melatonin Treatment. Cardiovasc Drugs Ther 2021; 34:799-811. [PMID: 32458321 DOI: 10.1007/s10557-020-06997-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Oxidative stress causes mitochondrial dysfunction in myocardial ischaemia/reperfusion (I/R) as well as in obesity. Mitochondrial depolarization triggers mitophagy to degrade damaged mitochondria, a process important for quality control. The aims of this study were to evaluate (i) the effect of I/R on mitochondrial oxidative phosphorylation and its temporal relationship with mitophagy in hearts from obese rats and their age-matched controls, and (ii) the role of oxidative stress in these processes using melatonin, a free radical scavenger. METHODS Male Wistar rats were divided into 4 groups: control (normal diet ± melatonin) and high-fat sucrose diet (HFSD ± melatonin). Rats received melatonin orally (10 mg/kg/day). After 16 weeks, hearts were removed and subjected to 40-min stabilization, and 25-min global ischaemia/10-min reperfusion for preparation of mitochondria. Mitochondrial oxidative phosphorylation was measured polarographically. Western blotting was used for evaluation of PINK1, Parkin, p62/SQSTM1 (p62) and TOM 70. Infarct size was measured using tetrazolium staining. RESULTS Ischaemia and reperfusion respectively reduced and increased mitochondrial QO2 (state 3) and the ox-phos rate in both control and HFSD mitochondria, showing no major changes between the groups, while melatonin pretreatment had little effect. p62 as indicator of mitophagic flux showed up- and downregulation of mitophagy by ischaemia and reperfusion respectively, with melatonin having no significant effect. Melatonin treatment caused a significant reduction in infarct size in hearts from both control and diet groups. CONCLUSIONS The results suggest that I/R (i) affects mitochondria from control and HFSD hearts similarly and (ii) melatonin-induced cardioprotection is not associated with reversal of mitochondrial dysfunction or changes in the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Karthik Dhanabalan
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Sibonginkosi Mzezewa
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Barbara Huisamen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
17
|
Rodrigo R, González-Montero J, Sotomayor CG. Novel Combined Antioxidant Strategy against Hypertension, Acute Myocardial Infarction and Postoperative Atrial Fibrillation. Biomedicines 2021; 9:620. [PMID: 34070760 PMCID: PMC8228412 DOI: 10.3390/biomedicines9060620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) play a physiological role in the modulation of several functions of the vascular wall; however, increased ROS have detrimental effects. Hence, oxidative stress has pathophysiological impacts on the control of the vascular tone and cardiac functions. Recent experimental studies reported the involvement of increased ROS in the mechanism of hypertension, as this disorder associates with increased production of pro-oxidants and decreased bioavailability of antioxidants. In addition, increased ROS exposure is found in ischemia-reperfusion, occurring in acute myocardial infarction and cardiac surgery with extracorporeal circulation, among other settings. Although these effects cause major heart damage, at present, there is no available treatment. Therefore, it should be expected that antioxidants counteract the oxidative processes, thereby being suitable against cardiovascular disease. Nevertheless, although numerous experimental studies agree with this notion, interventional trials have provided mixed results. A better knowledge of ROS modulation and their specific interaction with the molecular targets should contribute to the development of novel multitarget antioxidant effective therapeutic strategies. The complex multifactorial nature of hypertension, acute myocardial infarction, and postoperative atrial fibrillation needs a multitarget antioxidant strategy, which may give rise to additive or synergic protective effects to achieve optimal cardioprotection.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, CP 8380453 Santiago, Chile;
| | - Jaime González-Montero
- Basic and Clinical Oncology Department, Faculty of Medicine, University of Chile, CP 8380453 Santiago, Chile;
| | - Camilo G. Sotomayor
- Clinical Hospital University of Chile, University of Chile, CP 8380453 Santiago, Chile
| |
Collapse
|
18
|
Akyuz E, Kullu I, Arulsamy A, Shaikh MF. Melatonin as an Antiepileptic Molecule: Therapeutic Implications via Neuroprotective and Inflammatory Mechanisms. ACS Chem Neurosci 2021; 12:1281-1292. [PMID: 33813829 DOI: 10.1021/acschemneuro.1c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a result of unprovoked, uncontrollable, and repetitive outburst of abnormal and excessive electrical discharges, known as seizures, in the neurons. Epilepsy is a devastating neurological condition that affects 70 million people globally. Unfortunately, only two-thirds of epilepsy patients respond to antiepileptic drugs while others become drug resistant and may be more prone to epilepsy comorbidities such as SUDEP. Oxidative stress, mitochondrial dysfunction, imbalance in the excitatory and inhibitory neurotransmitters, and neuroinflammation are some of the common pathologies of neurological disorders and epilepsy. Studies suggests that melatonin, a pineal hormone that governs sleep-wake cycles, may be neuroprotective against neurological disorders and thus may be translated as an antiepileptic as well. Melatonin has been shown to be an antioxidant, antiexcitotoxic, and anti-inflammatory hormone/molecule in neurodegenerative diseases, which may contribute to its antiepileptic and neuroprotective properties in epilepsy as well. In addition, melatonin has evidently been shown to play a regulatory role in the cardiorespiratory system and sleep-wake cycles, which may have positive implications toward epilepsy associated comorbidities, such as SUDEP. However, studies investigating the changes in melatonin release due to epilepsy and melatonin's antiepileptic role have been inconclusive and scarce, respectively. Thus, this comprehensive review aims to summarize and elucidate the potential role of melatonin in the pathogenesis of epilepsy and its comorbidities, in hopes to develop new diagnostic and therapeutic approaches that will improve the lives of epileptic patients, particularly those who are drug resistant.
Collapse
Affiliation(s)
- Enes Akyuz
- University of Health Sciences, International Medicine Faculty, Department of Biophysics, Istanbul, Turkey
| | - Irem Kullu
- Medical School, Yozgat Bozok University, 66100 Yozgat, Turkey
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| |
Collapse
|
19
|
Baburina Y, Lomovsky A, Krestinina O. Melatonin as a Potential Multitherapeutic Agent. J Pers Med 2021; 11:jpm11040274. [PMID: 33917344 PMCID: PMC8067360 DOI: 10.3390/jpm11040274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL) is a hormone produced by the pineal gland that was discovered many years ago. The physiological roles of this hormone in the body are varied. The beneficial effects of MEL administration may be related to its influence on mitochondrial physiology. Mitochondrial dysfunction is considered an important factor in various physiological and pathological processes, such as the development of neurodegenerative and cardiovascular diseases, diabetes, various forms of liver disease, skeletal muscle disorders, and aging. Mitochondrial dysfunction induces an increase in the permeability of the inner membrane, which leads to the formation of a permeability transition pore (mPTP) in the mitochondria. The long-term administration of MEL has been shown to improve the functional state of mitochondria and inhibit the opening of the mPTP during aging. It is known that MEL is able to suppress the initiation, progression, angiogenesis, and metastasis of cancer as well as the sensitization of malignant cells to conventional chemotherapy and radiation therapy. This review summarizes the studies carried out by our group on the combined effect of MEL with chemotherapeutic agents (retinoic acid, cytarabine, and navitoclax) on the HL-60 cells used as a model of acute promyelocytic leukemia. Data on the effects of MEL on oxidative stress, aging, and heart failure are also reported.
Collapse
|
20
|
Pharmacologic Prevention of Myocardial Ischemia-Reperfusion Injury in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. J Cardiovasc Pharmacol 2021; 77:430-449. [PMID: 33416260 DOI: 10.1097/fjc.0000000000000980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Establishing efficient perfusion into the myocardium is the main purpose in patients with acute coronary syndrome, but the process of reperfusion is not without risk and can damage the myocardium paradoxically. Unfortunately, there is no effective treatment for reperfusion injury, and efforts to find an efficient preventive approach are still ongoing. In the past 3 decades, there have been many successful animal studies on how to prevent reperfusion injury; nonetheless, translation to the clinical setting has almost always proven disappointing. In this article, we review clinical studies on the prevention of reperfusion injury in patients with acute coronary syndrome undergoing primary percutaneous coronary intervention in a pharmacologic-based approach. We categorize all the agents that are evaluated for the prevention of myocardial reperfusion injury based on their mechanisms of action into 5 groups: drugs that can reduce oxidative stress, drugs that can affect cellular metabolism, rheological agents that target microvascular obstruction, anti-inflammatory agents, and agents with mixed mechanisms of action. Then, review all the clinical studies of these agents in the setting of primary percutaneous coronary intervention. Finally, we will discuss the possible reasons for the failure in translation of studies into practice and propose potential solutions to overcome this problem.
Collapse
|
21
|
Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8876792. [PMID: 33791076 PMCID: PMC7984894 DOI: 10.1155/2021/8876792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.
Collapse
Affiliation(s)
- Margarita Segovia-Roldan
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| | | | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| |
Collapse
|
22
|
Kopustinskiene DM, Bernatoniene J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics 2021; 13:129. [PMID: 33498316 PMCID: PMC7909293 DOI: 10.3390/pharmaceutics13020129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
Melatonin, an endogenously synthesized indolamine, is a powerful antioxidant exerting beneficial action in many pathological conditions. Melatonin protects from oxidative stress in ischemic/reperfusion injury, neurodegenerative diseases, and aging, decreases inflammation, modulates the immune system, inhibits proliferation, counteracts the Warburg effect, and promotes apoptosis in various cancer models. Melatonin stimulates antioxidant enzymes in the cells, protects mitochondrial membrane phospholipids, especially cardiolipin, from oxidation thus preserving integrity of the membranes, affects mitochondrial membrane potential, stimulates activity of respiratory chain enzymes, and decreases the opening of mitochondrial permeability transition pore and cytochrome c release. This review will focus on the molecular mechanisms of melatonin effects in the cells during normal and pathological conditions and possible melatonin clinical applications.
Collapse
Affiliation(s)
- Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
23
|
Bjørklund G, Dadar M, Aaseth J, Chirumbolo S. Thymosin β4: A Multi-Faceted Tissue Repair Stimulating Protein in Heart Injury. Curr Med Chem 2021; 27:6294-6305. [PMID: 31333080 DOI: 10.2174/0929867326666190716125456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022]
Abstract
Thymosin Beta-4 (Tβ4) is known as a major pleiotropic actin-sequestering protein that is involved in tumorigenesis. Tβ4 is a water-soluble protein that has different promising clinical applications in the remodeling and ulcerated tissues repair following myocardial infarction, stroke, plasticity and neurovascular remodeling of the Peripheral Nervous System (PNS) and the Central Nervous System (CNS). On the other hand, similar effects have been observed for Tβ4 in other kinds of tissues, including cardiac muscle tissue. In recent reports, as it activates resident epicardial progenitor cells and modulates inflammatory-caused injuries, Tβ4 has been suggested as a promoter of the survival of cardiomyocytes. Furthermore, Tβ4 may act in skeletal muscle and different organs in association/synergism with numerous other tissue repair stimulating factors, including melatonin and C-fiber-derived peptides. For these reasons, the present review highlights the promising role of Tβ4 in cardiac healing.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Inland Norway University of Applied Sciences, Elverum, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences,
University of Verona, Verona, Italy
| |
Collapse
|
24
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
25
|
Sun H, Zhou Z, Xuan H, Yan Z. Anti-inflammatory and protective effects of combined treatment with sitagliptin and melatonin in cardiac ischemia reperfusion injury in obese rats: Involvement of TLR-4/NF-κB pathway. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211066201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Obesity is associated with an augmented risk of myocardial ischemia/reperfusion (I/R) injury. Reduction of I/R injury by effective cardioprotective strategies needs to be investigated in obese subjects. This study aimed to evaluate the combined effects of sitagliptin and melatonin on inflammatory response and TLR4/IκBα/NF-κB signaling following cardiac I/R damage in obese rats. Methods: Sixty-six male Wistar rats (180–200 g) were fed a low fat diet (10% Kcal from lipids) or high fat (45% Kcal from lipids) diets for 12 weeks. High fat-fed (obese) rats experienced 30 min left anterior descending occlusion followed by 24 h reperfusion. Obese rats received sitagliptin (20 mg/kg/day) for 1 month before I/R surgery. Melatonin (10 mg/kg) was injected at early reperfusion. Myocardial infarct size (IS), cTn-I release, pro-inflammatory cytokines, myeloperoxidase (MPO), COX-2 and iNOS, and the protein expressions of TLR4, p-NF-κB/p65, and p-IκBα were evaluated. Results: Monotherapies with sitagliptin-preconditioning or melatonin-postconditioning had no cardioprotective effects in obese rats. However, combined therapy with sitagliptin and melatonin significantly reduced IS, and the release of cTn-I, in comparison to untreated obese rats ( p < .01) Moreover, this combination decreased the production of pro-inflammatory cytokines, MPO, COX-2 and iNOS, and the expression of TLR4 and p-NF-κB/p65, while reduced the expression of p-IκBα, in comparison with untreated or monotherapies-received obese rats ( p < .01 for all). Conclusion: Combination therapy with sitagliptin and melatonin was a good cardioprotective strategy to modulate the inflammatory responses and TLR4/NF-κB signaling pathway in obese patients with cardiac I/R injury.
Collapse
Affiliation(s)
- Hailei Sun
- Department of Cardiology,Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong,China
| | - Zhengchun Zhou
- Department of Cardiology,Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong,China
| | - Haiyang Xuan
- Department of Cardiology,Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong,China
| | - Zhongya Yan
- Department of Cardiology,Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong,China
- Department of Cardiology, Anhui Provincial Hospital, Hefei City, Anhui Province, China
| |
Collapse
|
26
|
Ferlazzo N, Andolina G, Cannata A, Costanzo MG, Rizzo V, Currò M, Ientile R, Caccamo D. Is Melatonin the Cornucopia of the 21st Century? Antioxidants (Basel) 2020; 9:antiox9111088. [PMID: 33167396 PMCID: PMC7694322 DOI: 10.3390/antiox9111088] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Melatonin, an indoleamine hormone produced and secreted at night by pinealocytes and extra-pineal cells, plays an important role in timing circadian rhythms (24-h internal clock) and regulating the sleep/wake cycle in humans. However, in recent years melatonin has gained much attention mainly because of its demonstrated powerful lipophilic antioxidant and free radical scavenging action. Melatonin has been proven to be twice as active as vitamin E, believed to be the most effective lipophilic antioxidant. Melatonin-induced signal transduction through melatonin receptors promotes the expression of antioxidant enzymes as well as inflammation-related genes. Melatonin also exerts an immunomodulatory action through the stimulation of high-affinity receptors expressed in immunocompetent cells. Here, we reviewed the efficacy, safety and side effects of melatonin supplementation in treating oxidative stress- and/or inflammation-related disorders, such as obesity, cardiovascular diseases, immune disorders, infectious diseases, cancer, neurodegenerative diseases, as well as osteoporosis and infertility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Caccamo
- Correspondence: ; Tel.: +39-090-221-3386 or +39-090-221-3389
| |
Collapse
|
27
|
Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Apostolopoulos EJ, Melita H, Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med Res Rev 2020; 41:275-313. [PMID: 32959403 DOI: 10.1002/med.21732] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria provide energy to the cell during aerobic respiration by supplying ~95% of the adenosine triphosphate (ATP) molecules via oxidative phosphorylation. These organelles have various other functions, all carried out by numerous proteins, with the majority of them being encoded by nuclear DNA (nDNA). Mitochondria occupy ~1/3 of the volume of myocardial cells in adults, and function at levels of high-efficiency to promptly meet the energy requirements of the myocardial contractile units. Mitochondria have their own DNA (mtDNA), which contains 37 genes and is maternally inherited. Over the last several years, a variety of functions of these organelles have been discovered and this has led to a growing interest in their involvement in various diseases, including cardiovascular (CV) diseases. Mitochondrial dysfunction relates to the status where mitochondria cannot meet the demands of a cell for ATP and there is an enhanced formation of reactive-oxygen species. This dysfunction may occur as a result of mtDNA and/or nDNA mutations, but also as a response to aging and various disease and environmental stresses, leading to the development of cardiomyopathies and other CV diseases. Designing mitochondria-targeted therapeutic strategies aiming to maintain or restore mitochondrial function has been a great challenge as a result of variable responses according to the etiology of the disorder. There have been several preclinical data on such therapies, but clinical studies are scarce. A major challenge relates to the techniques needed to eclectically deliver the therapeutic agents to cardiac tissues and to damaged mitochondria for successful clinical outcomes. All these issues and progress made over the last several years are herein reviewed.
Collapse
Affiliation(s)
- Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | | | | | | | | | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
28
|
Agil A, Chayah M, Visiedo L, Navarro-Alarcon M, Rodríguez Ferrer JM, Tassi M, Reiter RJ, Fernández-Vázquez G. Melatonin Improves Mitochondrial Dynamics and Function in the Kidney of Zücker Diabetic Fatty Rats. J Clin Med 2020; 9:jcm9092916. [PMID: 32927647 PMCID: PMC7564180 DOI: 10.3390/jcm9092916] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity and associated diabetes (diabesity) impair kidney mitochondrial dynamics by augmenting fission and diminishing fusion, which results in mitochondrial and renal dysfunction. Based on available evidence, the antioxidant activities of melatonin may improve impaired renal mitochondrial function in obese diabetic animals by restoring the imbalanced dynamics through inhibiting fission and promoting fusion. Male Zücker diabetic fatty (ZDF) rats and lean littermates (ZL) were orally treated either with melatonin (10 mg/kg BW/day) (M-ZDF and M-ZL) or vehicle (C-ZDF and C-ZL) for 17 weeks. Kidney function was evaluated by measurement of total urine volume, proteinuria, creatinine clearance, and assessment of kidney mitochondrial dynamics and function. C-ZDF exhibited impaired dynamics and function of kidney mitochondria in comparison to C-ZL. Melatonin improved nephropathy of ZDF rats and modulated their mitochondrial dynamics by reducing expression of Drp1 fission marker and increasing that of fusion markers, Mfn2 and Opa1. Furthermore, melatonin ameliorated mitochondrial dysfunction by increasing respiratory control index and electron transfer chain complex IV activity. In addition, it lowered mitochondrial oxidative status. Our findings show that melatonin supplementation improves nephropathy likely via modulation of the mitochondrial fission/fusion balance and function in ZDF rats.
Collapse
Affiliation(s)
- Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (M.C.); (L.V.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-625-143-359
| | - Meriem Chayah
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (M.C.); (L.V.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada, 18016 Granada, Spain
| | - Lucia Visiedo
- Department of Pharmacology and Neurosciences Institute, School of Medicine, University of Granada, 18016 Granada, Spain; (M.C.); (L.V.)
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospital of Granada, 18016 Granada, Spain
| | - Miguel Navarro-Alarcon
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain;
| | | | - Mohamed Tassi
- Service of Microscopy, CIBM, University of Granada, 18016 Granada, Spain;
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX 78229, USA;
| | | |
Collapse
|
29
|
Melatonin as a protective agent in cardiac ischemia-reperfusion injury: Vision/Illusion? Eur J Pharmacol 2020; 885:173506. [PMID: 32858050 DOI: 10.1016/j.ejphar.2020.173506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023]
Abstract
Melatonin, an emphatic endogenous molecule exerts protective effects either via activation of G-protein coupled receptors (Melatonin receptors, MTR 1-3), tumor necrosis factor receptor (TNFR), toll like receptors (TLRS), nuclear receptors (NRS) or by directly scavenging the free radicals. MTRs are extensively expressed in the heart as well as in the coronary vasculature. Accumulating evidences have indicated the existence of a strong correlation between reduction in the circulating level of melatonin and precipitation of heart attack. Apparently, melatonin exhibits cardioprotective effects via modulating inextricably interlinked pathways including modulation of mitochondrial metabolism, mitochondrial permeability transition pore formation, nitric oxide release, autophagy, generation of inflammatory cytokines, regulation of calcium transporters, reactive oxygen species, glycosaminoglycans, collagen accumulation, and regulation of apoptosis. Convincingly, this review shall describe the various signaling pathways involved in salvaging the heart against ischemia-reperfusion injury.
Collapse
|
30
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
31
|
Lan M, Zhang Y, Wan X, Pan MH, Xu Y, Sun SC. Melatonin ameliorates ochratoxin A-induced oxidative stress and apoptosis in porcine oocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113374. [PMID: 31672358 DOI: 10.1016/j.envpol.2019.113374] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Melatonin is a hormone which is generated from pineal gland, and it is responsible for the regulation of wake-sleep cycle. Melatonin is a well-known antioxidant and free radical scavenger to protect against multiple type of tissue damage. While ochratoxin A (OTA) is a mycotoxin found widely in contaminated food and foodstuffs, which causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive damage in humans and animals. In present study we report the toxicity of OTA on porcine oocyte quality and the protective effects of melatonin on OTA-exposed oocytes. Using transcriptome analysis our results show that OTA exposure alters the expression of multiple genes in oocytes, indicating its effect on oocyte maturation. The cellular changes following OTA treatment are examined, and the results show that OTA adversely affects oocyte polar body extrusion, which is confirmed by the delay of Cdc2-mediated cell cycle progression. OTA exposure also disrupts meiotic spindle formation, which is confirmed by altered phosphorylated MAPK expression. RNA-seq screening and further fluorescence staining results show that OTA induces aberrant mitochondria distribution and oxidative phosphorylation defects, which then causes oxidative stress, followed by early apoptosis and autophagy. Treatment with melatonin significantly ameliorates oxidative stress and apoptosis, which further protects cell cycle and spindle formation in OTA-exposed oocytes. Collectively, these results show the protective effects of melatonin against defects induced by OTA during porcine meiotic oocyte maturation.
Collapse
Affiliation(s)
- Mei Lan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and Nicotinamide Mononucleotide Attenuate Myocardial Ischemia/Reperfusion Injury via Modulation of Mitochondrial Function and Hemodynamic Parameters in Aged Rats. J Cardiovasc Pharmacol Ther 2019; 25:240-250. [PMID: 31645107 DOI: 10.1177/1074248419882002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ischemic heart diseases are the major reasons for disability and mortality in elderly individuals. In this study, we tried to examine the combined effects of nicotinamide mononucleotide (NMN) preconditioning and melatonin postconditioning on cardioprotection and mitochondrial function in ischemia/reperfusion (I/R) injury of aged male rats. Sixty aged Wistar rats were randomly allocated to 5 groups, including sham, control, NMN-receiving, melatonin-receiving, and combined therapy (NMN+melatonin). Isolated hearts were mounted on Langendorff apparatus and then underwent 30-minue ligation of left anterior descending coronary artery to induce regional ischemic insult, followed by 60 minutes of reperfusion. Nicotinamide mononucleotide (100 mg/kg/d intraperitoneally) was administered for every other day for 28 days before I/R. Melatonin added to perfusion solution, 5 minutes prior to the reperfusion up to 15 minutes early reperfusion. Myocardial hemodynamic and infarct size (IS) were measured, and the left ventricles samples were obtained to evaluate cardiac mitochondrial function and oxidative stress markers. Melatonin postconditioning and NMN had significant cardioprotective effects in aged rats; they could improve hemodynamic parameters and reduce IS and lactate dehydrogenase release compared to those of control group. Moreover, pretreatment with NMN increased the cardioprotection by melatonin. All treatments reduced oxidative stress and mitochondrial reactive oxygen species (ROS) levels and improved mitochondrial membrane potential and restored NAD+/NADH ratio. The effects of combined therapy on reduction of mitochondrial ROS and oxidative status and improvement of mitochondrial membrane potential were greater than those of alone treatments. Combination of melatonin and NMN can be a promising strategy to attenuate myocardial I/R damages in aged hearts. Restoration of mitochondrial function may substantially contribute to this cardioprotection.
Collapse
Affiliation(s)
- Leila Hosseini
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Manouchehr S Vafaee
- Department of Psychiatry, Odense University Hospital, Odense, Denmark.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.,Department of Nuclear Medicine, Odense University Hospital, Odense Denmark.,Department of Clinical Research, BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense-Denmark
| | - Reza Badalzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.,Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| |
Collapse
|
33
|
Naryzhnaya NV, Maslov LN, Oeltgen PR. Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res 2019; 80:1013-1030. [PMID: 31823411 DOI: 10.1002/ddr.21593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Natalia V. Naryzhnaya
- Laboratory of Experimental CardiologyCardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science Tomsk Russia
| | - Leonid N. Maslov
- Laboratory of Experimental CardiologyCardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science Tomsk Russia
| | - Peter R. Oeltgen
- Department of PathologyUniversity of Kentucky College of Medicine Lexington Kentucky
| |
Collapse
|
34
|
Misaka T, Yoshihisa A, Yokokawa T, Sato T, Oikawa M, Kobayashi A, Yamaki T, Sugimoto K, Kunii H, Nakazato K, Takeishi Y. Plasma levels of melatonin in dilated cardiomyopathy. J Pineal Res 2019; 66:e12564. [PMID: 30715754 PMCID: PMC6593840 DOI: 10.1111/jpi.12564] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/05/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Melatonin is a multifunctional indolamine and has a cardioprotective role in a variety of cardiovascular processes via antioxidant, anti-inflammatory, antihypertensive, antithrombotic, and antilipemic effects. It has been reported that lower levels of circulating melatonin are significantly associated with a higher risk of acute myocardial infarction (AMI) and later cardiac remodeling. However, levels of melatonin in patients with dilated cardiomyopathy (DCM) and associations between melatonin levels and cardiac function remain unclear. METHODS AND RESULTS We measured and compared plasma levels of melatonin in 61 control subjects, 81 AMI patients, and 77 DCM patients. Plasma levels of melatonin were progressively decreased from 71.9 pg/mL in the control group to 52.6 pg/mL in the DCM group and 21.9 pg/mL in the AMI group. Next, we examined associations of melatonin levels with parameters of laboratory data, echocardiography, and right-heart catheterization. In the DCM patients, circulating melatonin showed significant correlations with both high-sensitivity troponin T (R = -0.422, P < 0.001) and cardiac output (R = 0.431, P = 0.003), but not with B-type natriuretic peptide (BNP), left ventricular ejection fraction (LVEF), pulmonary artery wedge pressure, or pulmonary artery pressure. CONCLUSION Patients with not only AMI but also DCM had lower circulating melatonin levels. Circulating melatonin levels appear to correlate with myocardial injury and cardiac output in DCM patients.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
- Department of Advanced Cardiac TherapeuticsFukushima Medical UniversityFukushimaJapan
| | - Akiomi Yoshihisa
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
- Department of Advanced Cardiac TherapeuticsFukushima Medical UniversityFukushimaJapan
| | - Tetsuro Yokokawa
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
- Department of Pulmonary HypertensionFukushima Medical UniversityFukushimaJapan
| | - Takamasa Sato
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
| | - Masayoshi Oikawa
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
| | - Atsushi Kobayashi
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
| | - Takayoshi Yamaki
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
| | - Koichi Sugimoto
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
- Department of Pulmonary HypertensionFukushima Medical UniversityFukushimaJapan
| | - Hiroyuki Kunii
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
| | - Kazuhiko Nakazato
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
| | - Yasuchika Takeishi
- Department of Cardiovascular MedicineFukushima Medical UniversityFukushimaJapan
| |
Collapse
|
35
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
36
|
Kleszczyński K, Bilska B, Stegemann A, Flis DJ, Ziolkowski W, Pyza E, Luger TA, Reiter RJ, Böhm M, Slominski AT. Melatonin and Its Metabolites Ameliorate UVR-Induced Mitochondrial Oxidative Stress in Human MNT-1 Melanoma Cells. Int J Mol Sci 2018; 19:ijms19123786. [PMID: 30487387 PMCID: PMC6320988 DOI: 10.3390/ijms19123786] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Melatonin (Mel) is the major biologically active molecule secreted by the pineal gland. Mel and its metabolites, 6-hydroxymelatonin (6(OH)Mel) and 5-methoxytryptamine (5-MT), possess a variety of functions, including the scavenging of free radicals and the induction of protective or reparative mechanisms in the cell. Their amphiphilic character allows them to cross cellular membranes and reach subcellular organelles, including the mitochondria. Herein, the action of Mel, 6(OH)Mel, and 5-MT in human MNT-1 melanoma cells against ultraviolet B (UVB) radiation was investigated. The dose of 50 mJ/cm2 caused a significant reduction of cell viability up to 48%, while investigated compounds counteracted this deleterious effect. UVB exposure increased catalase activity and led to a simultaneous Ca++ influx (16%), while tested compounds prevented these disturbances. Additional analysis focused on mitochondrial respiration performed in isolated mitochondria from the liver of BALB/cJ mice where Mel, 6(OH)Mel, and 5-MT significantly enhanced the oxidative phosphorylation at the dose of 10−6 M with lower effects seen at 10−9 or 10−4 M. In conclusion, Mel, 6(OH)Mel and 5-MT protect MNT-1 cells, which express melatonin receptors (MT1 and MT2) against UVB-induced oxidative stress and mitochondrial dysfunction, including the uncoupling of oxidative phosphorylation.
Collapse
Affiliation(s)
- Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Bernadetta Bilska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Damian Jozef Flis
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Górski Str. 1, 80-336 Gdańsk, Poland.
| | - Wieslaw Ziolkowski
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, Górski Str. 1, 80-336 Gdańsk, Poland.
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Thomas A Luger
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany.
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35249, USA.
| |
Collapse
|
37
|
Singhanat K, Apaijai N, Chattipakorn SC, Chattipakorn N. Roles of melatonin and its receptors in cardiac ischemia-reperfusion injury. Cell Mol Life Sci 2018; 75:4125-4149. [PMID: 30105616 PMCID: PMC11105249 DOI: 10.1007/s00018-018-2905-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
Acute myocardial infarction (AMI) has been an economic and health burden in most countries around the world. Reperfusion is a standard treatment for AMI as it can actively restore blood supply to the ischemic site. However, reperfusion itself can cause additional damage; a process known as cardiac ischemia/reperfusion (I/R) injury. Although several pharmacological interventions have been shown to reduce tissue damage during I/R injury, they usually have undesirable effects. Therefore, endogenous substances such as melatonin have become a field of active investigation. Melatonin is a hormone that is produced by the pineal gland, and it plays an important role in regulating many physiological functions in human body. Accumulated data from studies carried out in vitro, ex vivo, in vivo, and also from clinical studies have provided information regarding possible beneficial effects of melatonin on cardiac I/R such as attenuated cell death, and increased cell survival, leading to reduced infarct size and improved left-ventricular function. This review comprehensively discusses and summarizes those effects of melatonin on cardiac I/R. In addition, consistent and inconsistent reports regarding the effects of melatonin in cases of cardiac I/R together with gaps in surrounding knowledge such as the appropriate onset and duration of melatonin administration are presented and discussed. From this review, we hope to provide important information which could be used to warrant more clinical studies in the future to explore the clinical benefits of melatonin in AMI patients.
Collapse
Affiliation(s)
- Kodchanan Singhanat
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
38
|
Hu S, Zhu P, Zhou H, Zhang Y, Chen Y. Melatonin-Induced Protective Effects on Cardiomyocytes Against Reperfusion Injury Partly Through Modulation of IP3R and SERCA2a Via Activation of ERK1. Arq Bras Cardiol 2018. [PMID: 29538523 PMCID: PMC5831301 DOI: 10.5935/abc.20180008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Melatonin is a neuroendocrine hormone synthesized primarily by the pineal
gland that is indicated to effectively prevent myocardial reperfusion
injury. It is unclear whether melatonin protects cardiac function from
reperfusion injury by modulating intracellular calcium homeostasis. Objective Demonstrate that melatonin protect against myocardial reperfusion injury
through modulating IP3R and SERCA2a to maintain calcium homeostasis via
activation of ERK1 in cardiomyocytes. Methods In vitro experiments were performed using H9C2 cells undergoing simulative
hypoxia/reoxygenation (H/R) induction. Expression level of ERK1, IP3R and
SERCA2a were assessed by Western Blots. Cardiomyocytes apoptosis was
detected by TUNEL. Phalloidin-staining was used to assess alteration of
actin filament organization of cardiomyocytes. Fura-2 /AM was used to
measure intracellular Ca2+ concentration. Performing in vivo
experiments, myocardial expression of IP3R and SERCA2a were detected by
immunofluorescence staining using myocardial ischemia/ reperfusion (I/R)
model in rats. Results In vitro results showed that melatonin induces ERK1 activation in
cardiomyocytes against H/R which was inhibited by PD98059 (ERK1 inhibitor).
The results showed melatonin inhibit apoptosis of cardiomyocytes and improve
actin filament organization in cardiomyocytes against H/R, because both
could be reversed by PD98059. Melatonin was showed to reduce calcium
overload, further to inhibit IP3R expression and promote SERCA2a expression
via ERK1 pathway in cardiomyocytes against H/R. Melatonin induced lower IP3R
and higher SERCA2a expression in myocardium that were reversed by
PD98059. Conclusion melatonin-induced cardioprotection against reperfusion injury is at least
partly through modulation of IP3R and SERCA2a to maintain intracellular
calcium homeostasis via activation of ERK1.
Collapse
Affiliation(s)
- Shunying Hu
- Chinese PLA General Hospital, Beijing - China
| | - Pingjun Zhu
- Chinese PLA General Hospital, Beijing - China
| | - Hao Zhou
- Chinese PLA General Hospital, Beijing - China
| | - Ying Zhang
- Chinese PLA General Hospital, Beijing - China
| | - Yundai Chen
- Chinese PLA General Hospital, Beijing - China
| |
Collapse
|
39
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection. Am J Physiol Heart Circ Physiol 2018; 315:H1341-H1352. [PMID: 30095969 DOI: 10.1152/ajpheart.00028.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondrial dysfunction plays a central role in myocardial ischemia-reperfusion (I/R) injury. Increased reactive oxygen species production, impaired electron transport chain activity, aberrant mitochondrial dynamics, Ca2+ overload, and opening of the mitochondrial permeability transition pore have been proposed as major contributory factors to mitochondrial dysfunction during myocardial I/R injury. Cardiolipin (CL), a mitochondria-specific phospholipid, plays a pivotal role in multiple mitochondrial bioenergetic processes, including respiration and energy conversion, in mitochondrial morphology and dynamics as well as in several steps of the apoptotic process. Changes in CL levels, species composition, and degree of oxidation may have deleterious consequences for mitochondrial function with important implications in a variety of pathophysiological conditions, including myocardial I/R injury. In this review, we focus on the role played by CL alterations in mitochondrial dysfunction in myocardial I/R injury. Pharmacological strategies to prevent myocardial injury during I/R targeting mitochondrial CL are also examined.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari , Bari , Italy
| | | | - Francesca Maria Ruggiero
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari , Bari , Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council , Bari , Italy
| |
Collapse
|
40
|
Melatonin Receptor Agonist Ramelteon Reduces Ischemia-Reperfusion Injury Through Activation of Mitochondrial Potassium Channels. J Cardiovasc Pharmacol 2018; 72:106-111. [DOI: 10.1097/fjc.0000000000000600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Wu Y, Si F, Luo L, Yi Q. Serum levels of melatonin may contribute to the pathogenesis of heart failure in children with median age of 1 year. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2018. [DOI: 10.1016/j.jpedp.2017.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Wu Y, Si F, Luo L, Yi Q. Serum levels of melatonin may contribute to the pathogenesis of heart failure in children with median age of 1 year. J Pediatr (Rio J) 2018; 94:446-452. [PMID: 29111293 DOI: 10.1016/j.jped.2017.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/13/2017] [Accepted: 06/14/2017] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Melatonin has a protective role in adults with cardiovascular disease, but the effects of melatonin in children with cardiac dysfunction are not well understood. This study was designed to explore the variations in melatonin, myeloperoxidase, and caspase-3 levels in children suffering from heart failure. METHODS Seventy-two pediatric patients with heart failure and twelve healthy children were enrolled in this study. A modified Ross scoring system was used to evaluate clinical cardiac function. Patients with a score of >2 points were included in the study and were divided into three groups according to severity of heart failure: mild (score: 3-6), moderate (score: 7-9), and severe (score: 10-12). Echocardiographic parameters, laboratory data, and serum levels of melatonin, myeloperoxidase, and caspase-3 were measured and analyzed in all patients. RESULTS Compared with patients with mild and moderate heart failure, patients in the severe heart failure group had significantly decreased left ventricular ejection fraction (p<0.001), and significantly increased serum melatonin levels (p=0.013) and myeloperoxidase levels (p<0.001). Serum melatonin levels were positively correlated with serum caspase-3 levels (p<0.001). The optimal cutoff values of serum melatonin levels for the diagnosis of severe heart failure and primary cardiomyopathy in pediatric patients with heart failure were 54.14pg/mL and 32.88pg/mL, respectively. CONCLUSIONS Serum melatonin and myeloperoxidase levels were increased in children with severe heart failure. It is likely that increasing melatonin levels may act as a compensatory mechanism in pediatric children with heart failure.
Collapse
Affiliation(s)
- Yao Wu
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China; Children's Hospital of Chongqing Medical University, Department of Cardiovascular Medicine, Chongqing, China
| | - Feifei Si
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China; Children's Hospital of Chongqing Medical University, Department of Cardiovascular Medicine, Chongqing, China
| | - Li Luo
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China; Children's Hospital of Chongqing Medical University, Department of Cardiovascular Medicine, Chongqing, China
| | - Qijian Yi
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China; Children's Hospital of Chongqing Medical University, Department of Cardiovascular Medicine, Chongqing, China.
| |
Collapse
|
43
|
Zuo YH, Han QB, Dong GT, Yue RQ, Ren XC, Liu JX, Liu L, Luo P, Zhou H. Panax ginseng Polysaccharide Protected H9c2 Cardiomyocyte From Hypoxia/Reoxygenation Injury Through Regulating Mitochondrial Metabolism and RISK Pathway. Front Physiol 2018; 9:699. [PMID: 29962955 PMCID: PMC6013582 DOI: 10.3389/fphys.2018.00699] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background and Objective: Ischemic heart disease (IHD) has been the major issue of public health. Panax ginseng (ginseng) has been verified as an effective traditional Chinese medicines and exerted cardioprotective effect. This study aimed to investigate the polysaccharide fraction of ginseng on hypoxia/reoxygenation (H/R) injury in cardiomyocytes and the underlying mechanisms. Methods: Ginseng was extracted by ethanol and fractionated by high-speed counter current chromatography (HSCCC) and column separation. The cardioprotective effect was evaluated in H9c2 cardiomyocytes underwent H/R treatment. The cell viability, apoptosis and mitochondrial respiration were examined. Results: An acid polysaccharides fraction of ginseng (AP1) was identified the most effective fraction in protecting cardiomyocytes from H/R injury. AP1 restored the mitochondrial function by maintaining mitochondrial membrane potential (MMP), blocking the release of cytochrome C, and increasing the ATP generation and oxygen consumption rate (OCR) of cardiomyocytes. Meanwhile, AP1 induced the expression of glucocorticoid receptor (GR) and estrogen receptor (ER) which further activated reperfusion injury salvage kinase (RISK) pathway. Finally, AP1 increased nitric oxide (NO) production and regulated endothelial function by increasing endothelial NO synthase (eNOS) expression and decreasing inducible NOS (iNOS) expression in H/R injury. Conclusion: The results suggested that AP1 exerted a protective effect in myocardial H/R injury mainly through maintaining myocardial mitochondrial function, thereby inhibiting myocardial H/R caused apoptosis and increasing the expressions of GR and ER, which in turn mediated the activation of RISK pathway and eNOS-dependent mechanism to resist the reperfusion injury.
Collapse
Affiliation(s)
- Yi-Han Zuo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Geng-Ting Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Rui-Qi Yue
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xue-Cong Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jian-Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,College of Pharmacy, Hunan University of Medicine, Huaihua, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Pei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,International Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
Desnoyers M, Gilbert K, Madingou N, Gagné MA, Daneault C, Des Rosiers C, Rousseau G. A high omega-3 fatty acid diet rapidly changes the lipid composition of cardiac tissue and results in cardioprotection. Can J Physiol Pharmacol 2018; 96:916-921. [PMID: 29806983 DOI: 10.1139/cjpp-2018-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study was designed to ascertain the effects of 3 diets with different omega-3/6 fatty acid ratios on infarct size and the modifications that these diets induce in the lipid composition of cardiac tissue. Sprague-Dawley rats were fed omega-3/6 fatty acid diets with 1:1, 1:5, or 1:20 ratios for at least 10 days, followed by occlusion of the left anterior descending artery for 40 min and 24 h of reperfusion. Infarct size was significantly smaller in the 1:1 group than in the other groups. Significantly higher concentrations of the omega-3 fatty acids eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid were found in the 1:1 group than in the other groups. Omega-6 polyunsaturated fatty acid levels were similar between groups, although they were higher in the 1:5 and 1:20 groups than in the 1:1 group. Margaric acid concentrations were higher in the 1:1 group than in the other groups. Docosahexaenoic acid levels in cardiac tissue and infarct size were significantly correlated with no other significant links being apparent. The present study indicated that a 1:1 omega-3/6 fatty acid ratio protected against ischemia and was associated with increased omega-3 fatty acid composition of cardiac tissue.
Collapse
Affiliation(s)
- Mélissa Desnoyers
- a CIUSSS du nord de l'île de Montréal, Hôpital Sacré-Cœur, Montréal, QC H4J 1C5, Canada.,b Département de pharmacologie et de physiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Kim Gilbert
- a CIUSSS du nord de l'île de Montréal, Hôpital Sacré-Cœur, Montréal, QC H4J 1C5, Canada
| | - Ness Madingou
- a CIUSSS du nord de l'île de Montréal, Hôpital Sacré-Cœur, Montréal, QC H4J 1C5, Canada
| | - Marc-André Gagné
- a CIUSSS du nord de l'île de Montréal, Hôpital Sacré-Cœur, Montréal, QC H4J 1C5, Canada.,b Département de pharmacologie et de physiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Caroline Daneault
- c Institut de cardiologie de Montréal, Montréal, QC H1T 1C8, Canada.,d Département de nutrition, Université de Montréal, Montréal, QC H3T 1A8, Canada
| | - Christine Des Rosiers
- c Institut de cardiologie de Montréal, Montréal, QC H1T 1C8, Canada.,d Département de nutrition, Université de Montréal, Montréal, QC H3T 1A8, Canada
| | - Guy Rousseau
- a CIUSSS du nord de l'île de Montréal, Hôpital Sacré-Cœur, Montréal, QC H4J 1C5, Canada.,b Département de pharmacologie et de physiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
45
|
Effect of Melatonin on Rat Heart Mitochondria in Acute Heart Failure in Aged Rats. Int J Mol Sci 2018; 19:ijms19061555. [PMID: 29882895 PMCID: PMC6032417 DOI: 10.3390/ijms19061555] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Excessive generation of reactive oxygen species (ROS) in mitochondria and the opening of the nonselective mitochondrial permeability transition pore are important factors that promote cardiac pathologies and dysfunction. The hormone melatonin (MEL) is known to improve the functional state of mitochondria via an antioxidant effect. Here, the effect of MEL administration on heart mitochondria from aged rats with acute cardiac failure caused by isoprenaline hydrochloride (ISO) was studied. A histological analysis revealed that chronic intake of MEL diminished the age-dependent changes in the structure of muscle fibers of the left ventricle, muscle fiber swelling, and injury zones characteristic of acute cardiac failure caused by ISO. In acute heart failure, the respiratory control index (RCI) and the Ca2+ retention capacity in isolated rat heart mitochondria (RHM) were reduced by 30% and 40%, respectively, and mitochondrial swelling increased by 34%. MEL administration abolished the effect of ISO. MEL partially prevented ISO-induced changes at the subunit level of respiratory complexes III and V and drastically decreased the expression of complex I subunit NDUFB8 both in control RHM and in RHM treated with ISO, which led to the inhibition of ROS production. MEL prevents the mitochondrial dysfunction associated with heart failure caused by ISO. It was shown that the level of 2′,3′-cyclicnucleotide-3′-phosphodiasterase (CNPase), which is capable of protecting cells in aging, increased in acute heart failure. MEL also retained the CNPase content in RHM both in control experiments and after ISO-induced heart damage. We concluded that an increase in the CNPase level promotes cardioprotection.
Collapse
|
46
|
Jiki Z, Lecour S, Nduhirabandi F. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality? Front Physiol 2018; 9:528. [PMID: 29867569 PMCID: PMC5967231 DOI: 10.3389/fphys.2018.00528] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
The role of the diet as well as the impact of the dietary habits on human health and disease is well established. Apart from its sleep regulatory effect, the indoleamine melatonin is a well-established antioxidant molecule with multiple health benefits. Convincing evidence supports the presence of melatonin in plants and foods with the intake of such foods affecting circulating melatonin levels in humans. While numerous actions of both endogenous melatonin and melatonin supplementation are well described, little is known about the influence of the dietary melatonin intake on human health. In the present review, evidence for the cardiovascular health benefits of melatonin supplementation and dietary melatonin is discussed. Current knowledge on the biological significance as well as the underlying physiological mechanism of action of the dietary melatonin is also summarized. Whether dietary melatonin constitutes an alternative preventive treatment for cardiovascular disease is addressed.
Collapse
Affiliation(s)
- Zukiswa Jiki
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Mubarak HA, Mahmoud MM, Shoukry HS, Merzeban DH, Sayed SS, Rashed LA. Protective effects of melatonin and glucagon-like peptide-1 receptor agonist (liraglutide) on gastric ischaemia-reperfusion injury in high-fat/sucrose-fed rats. Clin Exp Pharmacol Physiol 2018; 45:934-942. [PMID: 29697857 DOI: 10.1111/1440-1681.12956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/18/2018] [Accepted: 04/18/2018] [Indexed: 01/13/2023]
Abstract
Ischaemia-reperfusion (I-R) injury is a serious pathology that is often encountered with thrombotic events, during surgery when blood vessels are cross-clamped, and in organs for transplantation. Increased oxidative stress is the main pathology in I-R injury, as assessed in studies on the heart, kidney, and brain with little data available on gastric I-R (GI-R). Liraglutide is a GLP-1 receptor agonist that has insulinotropic and weight reducing actions, and melatonin that has been much studied as a chronotropic hormone; have also studied as being anti-oxidative stress agents. Herein, we aimed to explore the effects of liraglutide and melatonin on GI-R injury with high-fat/sucrose diet. Rats were divided into six groups; two diet-control, two melatonin- and two liraglutide-pretreated groups. All rats were subjected to 30 minutes of gastric ischaemia followed by 1 hour of reperfusion. Gastric tissues were assessed for the percentage of DNA fragmentation, myeloperoxidase activity, total oxidant status, total antioxidant capacity, oxidative stress index, BMI and histopathological examination. We showed that high-fat feeding for four weeks prior to GI-R significantly increased BMI, oxidative stress indices and decreased total antioxidant capacity, with a neutral effect on apoptosis compared to controls. Pretreatment with either melatonin (10 mg/kg per day orally) or liraglutide (25 μg/kg per day ip) reverses these effects. Furthermore, both drugs reduced weight only in HFS-fed rats. Both liraglutide and melatonin have nearly similar protective effects on gastric I-R injury through decreasing the oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hanan A Mubarak
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manal M Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba S Shoukry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina H Merzeban
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Safinaz S Sayed
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
48
|
Krestinina OV, Baburina YL, Odinokova IV, Azarashvili TS, Akatov VS. Melatonin Modulates Phosphorylation of 2′,3′-Cyclic Nucleotide-3′-Phosphodiesterase in the Presence of Protoporphyrin IX in the Brain Mitochondria of Rats during the Functioning of the Non-Specific Mitochondrial Pore. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y. Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res 2018; 64. [PMID: 29363153 DOI: 10.1111/jpi.12471] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of mortality and disability worldwide. In patients with MI, the treatment option for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PCI). However, the procedure of reperfusion itself induces cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. Recent evidence has depicted a promising role of melatonin, which possesses powerful antioxidative and anti-inflammatory properties, in the prevention of ischemia-reperfusion (IR) injury and the protection against cardiomyocyte death. A number of reports explored the mechanism of action behind melatonin-induced beneficial effects against myocardial IR injury. In this review, we summarize the research progress related to IR injury and discuss the unique actions of melatonin as a protective agent. Furthermore, the possible mechanisms responsible for the myocardial benefits of melatonin against reperfusion injury are listed with the prospect of the use of melatonin in clinical application.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
50
|
Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle. Int J Mol Sci 2018; 19:ijms19020417. [PMID: 29385043 PMCID: PMC5855639 DOI: 10.3390/ijms19020417] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/14/2018] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion (IR), present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS). Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activation of the mitochondrial permeability transition pore. Elevated ROS levels can also decrease myofibrillar Ca2+ sensitivity, thereby compromising muscle contractile function. Low levels of ROS can act as signaling molecules involved in the protective pathways of ischemic preconditioning (IPC). By scavenging ROS, antioxidant therapies aim to prevent IR injuries with positive treatment outcomes. Novel therapies such as postconditioning and pharmacological interventions that target IPC pathways hold great potential in attenuating IR injuries. Factors such as aging and diabetes could have a significant impact on the severity of IR injuries. The current paper aims to provide a comprehensive review on the multifaceted roles of ROS in IR injuries, with a focus on cardiac and skeletal muscle, as well as recent advancement in ROS-related therapies.
Collapse
Affiliation(s)
- Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Evan R Prather
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Davis E Garrison
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|