1
|
Li Y, Shteyman DB, Hachem Z, Ulay AA, Fan J, Fu BM. Heparan Sulfate Modulation Affects Breast Cancer Cell Adhesion and Transmigration across In Vitro Blood-Brain Barrier. Cells 2024; 13:190. [PMID: 38275815 PMCID: PMC10813861 DOI: 10.3390/cells13020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The disruption of endothelial heparan sulfate (HS) is an early event in tumor cell metastasis across vascular barriers, and the reinforcement of endothelial HS reduces tumor cell adhesion to endothelium. Our recent study showed that while vascular endothelial growth factor (VEGF) greatly reduces HS at an in vitro blood-brain barrier (BBB) formed by human cerebral microvascular endothelial cells (hCMECs), it significantly enhances HS on a breast cancer cell, MDA-MB-231 (MB231). Here, we tested that this differential effect of VEGF on the HS favors MB231 adhesion and transmigration. We also tested if agents that enhance endothelial HS may affect the HS of MB231 and reduce its adhesion and transmigration. To test these hypotheses, we generated an in vitro BBB by culturing hCMECs on either a glass-bottom dish or a Transwell filter. We first quantified the HS of the BBB and MB231 after treatment with VEGF and endothelial HS-enhancing agents and then quantified the adhesion and transmigration of MB231 across the BBB after pretreatment with these agents. Our results demonstrated that the reduced/enhanced BBB HS and enhanced/reduced MB231 HS increase/decrease MB231 adhesion to and transmigration across the BBB. Our findings suggest a therapeutic intervention by targeting the HS-mediated breast cancer brain metastasis.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (D.B.S.); (A.A.U.)
| | - David B. Shteyman
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (D.B.S.); (A.A.U.)
| | - Zeina Hachem
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (Z.H.); (J.F.)
| | - Afaf A. Ulay
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (D.B.S.); (A.A.U.)
| | - Jie Fan
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, MI 48128, USA; (Z.H.); (J.F.)
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA; (Y.L.); (D.B.S.); (A.A.U.)
| |
Collapse
|
2
|
Sun G, Wang B, Zhu H, Ye J, Liu X. Role of sphingosine 1-phosphate (S1P) in sepsis-associated intestinal injury. Front Med (Lausanne) 2023; 10:1265398. [PMID: 37746079 PMCID: PMC10514503 DOI: 10.3389/fmed.2023.1265398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a widespread lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PRs) to regulate downstream signaling pathways. Sepsis can cause intestinal injury and intestinal injury can aggravate sepsis. Thus, intestinal injury and sepsis are mutually interdependent. S1P is more abundant in intestinal tissues as compared to other tissues, exerts anti-inflammatory effects, promotes immune cell trafficking, and protects the intestinal barrier. Despite the clinical importance of S1P in inflammation, with a very well-defined mechanism in inflammatory bowel disease, their role in sepsis-induced intestinal injury has been relatively unexplored. In addition to regulating lymphocyte exit, the S1P-S1PR pathway has been implicated in the gut microbiota, intestinal epithelial cells (IECs), and immune cells in the lamina propria. This review mainly elaborates on the physiological role of S1P in sepsis, focusing on intestinal injury. We introduce the generation and metabolism of S1P, emphasize the maintenance of intestinal barrier homeostasis in sepsis, and the protective effect of S1P in the intestine. We also review the link between sepsis-induced intestinal injury and S1P-S1PRs signaling, as well as the underlying mechanisms of action. Finally, we discuss how S1PRs affect intestinal function and become targets for future drug development to improve the translational capacity of preclinical studies to the clinic.
Collapse
Affiliation(s)
- Gehui Sun
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- Gannan Medical University, Ganzhou, Jiangxi, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xiaofeng Liu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Campos Muñiz C, Fernández Perrino FJ. Evolution of the Concepts of Architecture and Supramolecular Dynamics of the Plasma Membrane. MEMBRANES 2023; 13:547. [PMID: 37367751 DOI: 10.3390/membranes13060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
The plasma membrane (PM) has undergone important conceptual changes during the history of scientific research, although it is undoubtedly a cellular organelle that constitutes the first defining characteristic of cellular life. Throughout history, the contributions of countless scientists have been published, each one of them with an enriching contribution to the knowledge of the structure-location and function of each structural component of this organelle, as well as the interaction between these and other structures. The first published contributions on the plasmatic membrane were the transport through it followed by the description of the structure: lipid bilayer, associated proteins, carbohydrates bound to both macromolecules, association with the cytoskeleton and dynamics of these components.. The data obtained experimentally from each researcher were represented in graphic configurations, as a language that facilitates the understanding of cellular structures and processes. This paper presents a review of some of the concepts and models proposed about the plasma membrane, emphasizing the components, the structure, the interaction between them and the dynamics. The work is illustrated with resignified 3D diagrams to visualize the changes that occurred during the history of the study of this organelle. Schemes were redrawn in 3D from the original articles...
Collapse
Affiliation(s)
- Carolina Campos Muñiz
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico City 09340, Mexico
| | - Francisco José Fernández Perrino
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
4
|
Weinberg PD. Haemodynamic Wall Shear Stress, Endothelial Permeability and Atherosclerosis-A Triad of Controversy. Front Bioeng Biotechnol 2022; 10:836680. [PMID: 35340842 PMCID: PMC8948426 DOI: 10.3389/fbioe.2022.836680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 01/13/2023] Open
Abstract
A striking feature of atherosclerosis is its patchy distribution within the vascular system; certain arteries and certain locations within each artery are preferentially affected. Identifying the local risk factors underlying this phenomenon may lead to new therapeutic strategies. The large variation in lesion prevalence in areas of curvature and branching has motivated a search for haemodynamic triggers, particular those related to wall shear stress (WSS). The fact that lesions are rich in blood-derived lipids has motivated studies of local endothelial permeability. However, the location of lesions, the underlying haemodynamic triggers, the role of permeability, the routes by which lipids cross the endothelium, and the mechanisms by which WSS affects permeability have all been areas of controversy. This review presents evidence for and against the current consensus that lesions are triggered by low and/or oscillatory WSS and that this type of shear profile leads to elevated entry of low density lipoprotein (LDL) into the wall via widened intercellular junctions; it also evaluates more recent evidence that lesion location changes with age, that multidirectional shear stress plays a key role, that LDL dominantly crosses the endothelium by transcytosis, and that the link between flow and permeability results from hitherto unrecognised shear-sensitive mediators.
Collapse
|
5
|
Schenck H, Netti E, Teernstra O, De Ridder I, Dings J, Niemelä M, Temel Y, Hoogland G, Haeren R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front Cell Dev Biol 2021; 9:731641. [PMID: 34540844 PMCID: PMC8446455 DOI: 10.3389/fcell.2021.731641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
The glycocalyx is an important constituent of blood vessels located between the bloodstream and the endothelium. It plays a pivotal role in intercellular interactions in neuroinflammation, reduction of vascular oxidative stress, and provides a barrier regulating vascular permeability. In the brain, the glycocalyx is closely related to functions of the blood-brain barrier and neurovascular unit, both responsible for adequate neurovascular responses to potential threats to cerebral homeostasis. An aneurysmal subarachnoid hemorrhage (aSAH) occurs following rupture of an intracranial aneurysm and leads to immediate brain damage (early brain injury). In some cases, this can result in secondary brain damage, also known as delayed cerebral ischemia (DCI). DCI is a life-threatening condition that affects up to 30% of all aSAH patients. As such, it is associated with substantial societal and healthcare-related costs. Causes of DCI are multifactorial and thought to involve neuroinflammation, oxidative stress, neuroinflammation, thrombosis, and neurovascular uncoupling. To date, prediction of DCI is limited, and preventive and effective treatment strategies of DCI are scarce. There is increasing evidence that the glycocalyx is disrupted following an aSAH, and that glycocalyx disruption could precipitate or aggravate DCI. This review explores the potential role of the glycocalyx in the pathophysiological mechanisms contributing to DCI following aSAH. Understanding the role of the glycocalyx in DCI could advance the development of improved methods to predict DCI or identify patients at risk for DCI. This knowledge may also alter the methods and timing of preventive and treatment strategies of DCI. To this end, we review the potential and limitations of methods currently used to evaluate the glycocalyx, and strategies to restore or prevent glycocalyx shedding.
Collapse
Affiliation(s)
- Hanna Schenck
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Onno Teernstra
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Inger De Ridder
- Department of Neurology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jim Dings
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Roel Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Wollborn J, Schlegel N, Schick MA. [Phosphodiesterase 4 inhibition for treatment of endothelial barrier and microcirculation disorders in sepsis]. Anaesthesist 2018; 66:347-352. [PMID: 28429038 DOI: 10.1007/s00101-017-0305-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is commonly associated with loss of microvascular endothelial barrier function (capillary leak) and dysfunctional microcirculation, which both promote organ failure. The development of a distinct therapy of impaired endothelial barrier function and disturbed microcirculation is highly relevant because both of these phenomena constitute crucial processes which critically influence the prognosis of patients. Numerous in vivo and in vitro trials over the past years have fostered a better understanding of the pathophysiology of capillary leak. Furthermore, promising data in animal models show that therapeutic modulation of endothelial barrier function and microcirculation can be achieved by stabilizing endothelial cAMP (cyclic adenosine monophosphate) levels followed by activation of Rho-GTPase Rac1, e. g. by phosphodiesterase 4 inhibitors. This review summarizes and discusses recent findings of cellular mechanisms and in vivo trials.
Collapse
Affiliation(s)
- J Wollborn
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland
| | - N Schlegel
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - M A Schick
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland.
| |
Collapse
|
7
|
Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 2018; 595:5015-5035. [PMID: 28524373 PMCID: PMC5538239 DOI: 10.1113/jp274167] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Key points We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability. Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel. The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth. Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin.
Abstract The endothelial glycocalyx forms a continuous coat over the luminal surface of all vessels, and regulates multiple vascular functions. The contribution of individual components of the endothelial glycocalyx to one critical vascular function, microvascular permeability, remains unclear. We developed novel, real‐time, paired methodologies to study the contribution of sialic acids within the endothelial glycocalyx to the structural and functional permeability properties of the same microvessel in vivo. Single perfused rat mesenteric microvessels were perfused with fluorescent endothelial cell membrane and glycocalyx labels, and imaged with confocal microscopy. A broad range of glycocalyx depth measurements (0.17–3.02 μm) were obtained with different labels, imaging techniques and analysis methods. The distance between peak cell membrane and peak glycocalyx label provided the most reliable measure of endothelial glycocalyx anatomy, correlating with paired, numerically smaller values of endothelial glycocalyx depth (0.078 ± 0.016 μm) from electron micrographs of the same portion of the same vessel. Disruption of sialic acid residues within the endothelial glycocalyx using neuraminidase perfusion decreased endothelial glycocalyx depth and increased apparent solute permeability to albumin in the same vessels in a time‐dependent manner, with changes in all three true vessel wall permeability coefficients (hydraulic conductivity, reflection coefficient and diffusive solute permeability). These novel technologies expand the range of techniques that permit direct studies of the structure of the endothelial glycocalyx and dependent microvascular functions in vivo, and demonstrate that sialic acid residues within the endothelial glycocalyx are critical regulators of microvascular permeability to both water and albumin. We have developed novel techniques for paired, direct, real‐time in vivo quantification of endothelial glycocalyx structure and associated microvessel permeability. Commonly used imaging and analysis techniques yield measurements of endothelial glycocalyx depth that vary by over an order of magnitude within the same vessel. The anatomical distance between maximal glycocalyx label and maximal endothelial cell plasma membrane label provides the most sensitive and reliable measure of endothelial glycocalyx depth. Sialic acid residues of the endothelial glycocalyx regulate glycocalyx structure and microvessel permeability to both water and albumin.
Collapse
Affiliation(s)
- Kai B Betteridge
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Kenton P Arkill
- School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK.,Biofisika Institute (CSIC UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country, Spain
| | - Christopher R Neal
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Steven J Harper
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Rebecca R Foster
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Simon C Satchell
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - David O Bates
- School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Andrew H J Salmon
- Bristol Renal, Schools of Clinical Sciences and Physiology & Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK.,Renal Service, Specialist Medicine and Health of Older People, Waitemata DHB, Auckland, New Zealand
| |
Collapse
|
8
|
Zhang L, Zeng M, Fan J, Tarbell JM, Curry FRE, Fu BM. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels. Microcirculation 2018; 23:301-10. [PMID: 27015105 DOI: 10.1111/micc.12278] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVE S1P was found to protect the ESG by inhibiting MMP activity-dependent shedding of ESG in cultured endothelial cell studies. We aimed to further test that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels. METHODS We quantified the ESG in post-capillary venules of rat mesentery and measured the vascular permeability to albumin in the presence and absence of 1 μM S1P. We also measured permeability to albumin in the presence of MMP inhibitors and compared the measured permeability with those predicted by a transport model for the inter-endothelial cleft. RESULTS We found that in the absence of S1P, the fluorescence intensity of the FITC-anti-HS-labeled ESG was ~10% of that in the presence of S1P, whereas the measured permeability to albumin was ~6.5-fold of that in the presence of S1P. Similar results were observed with MMP inhibition. The predictions by the mathematical model further confirmed that S1P maintains microvascular permeability by preserving ESG. CONCLUSIONS Our results show that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels, consistent with parallel observation in cultured endothelial monolayers.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Engineering, The City College of the City University of New York, New York City, New York, USA
| | - Min Zeng
- Department of Biomedical Engineering, The City College of the City University of New York, New York City, New York, USA
| | - Jie Fan
- Department of Biomedical Engineering, The City College of the City University of New York, New York City, New York, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of the City University of New York, New York City, New York, USA
| | - Fitz-Roy E Curry
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York City, New York, USA
| |
Collapse
|
9
|
Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 2018; 222. [PMID: 28231640 DOI: 10.1111/apha.12860] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The endothelial barrier consists of intercellular contacts localized in the cleft between endothelial cells, which is covered by the glycocalyx in a sievelike manner. Both types of barrier-forming junctions, i.e. the adherens junction (AJ) serving mechanical anchorage and mechanotransduction and the tight junction (TJ) sealing the intercellular space to limit paracellular permeability, are tethered to the actin cytoskeleton. Under resting conditions, the endothelium thereby builds a selective layer controlling the exchange of fluid and solutes with the surrounding tissue. However, in the situation of an inflammatory response such as in anaphylaxis or sepsis intercellular contacts disintegrate in post-capillary venules leading to intercellular gap formation. The resulting oedema can cause shock and multi-organ failure. Therefore, maintenance as well as coordinated opening and closure of interendothelial junctions is tightly regulated. The two principle underlying mechanisms comprise spatiotemporal activity control of the small GTPases Rac1 and RhoA and the balance of the phosphorylation state of AJ proteins. In the resting state, junctional Rac1 and RhoA activity is enhanced by junctional components, actin-binding proteins, cAMP signalling and extracellular cues such as sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang-1). In addition, phosphorylation of AJ components is prevented by junction-associated phosphatases including vascular endothelial protein tyrosine phosphatase (VE-PTP). In contrast, inflammatory mediators inhibiting cAMP/Rac1 signalling cause strong activation of RhoA and induce AJ phosphorylation finally leading to endocytosis and cleavage of VE-cadherin. This results in dissolution of TJs the outcome of which is endothelial barrier breakdown.
Collapse
Affiliation(s)
- M. Y. Radeva
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| | - J. Waschke
- Institute of Anatomy and Cell Biology; Ludwig-Maximilians-Universität München; Munich Germany
| |
Collapse
|
10
|
Curry FRE. The Molecular Structure of the Endothelial Glycocalyx Layer (EGL) and Surface Layers (ESL) Modulation of Transvascular Exchange. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:29-49. [DOI: 10.1007/978-3-319-96445-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Flemming S, Burkard N, Meir M, Schick MA, Germer CT, Schlegel N. Sphingosine-1-Phosphate Receptor-1 Agonist Sew2871 Causes Severe Cardiac Side Effects and Does Not Improve Microvascular Barrier Breakdown in Sepsis. Shock 2018; 49:71-81. [PMID: 28538086 DOI: 10.1097/shk.0000000000000908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Endothelial barrier dysfunction is a hallmark in the pathogenesis of sepsis. Sphingosine-1-phosphate (S1P) has been proposed to be critically involved in the maintenance of endothelial barrier function predominately by activating S1P receptor-1 (S1P1). Previous studies have shown that the specific S1P1 agonist SEW2871 improves endothelial barrier function under inflammatory conditions. However, the effectiveness of SEW2871 and potential side effects remained largely unexplored in a clinically relevant model of sepsis. Therefore, this study aimed to evaluate the effects of SEW2871 in the Colon ascendens stent peritonitis (CASP) model. METHODS Polymicrobial sepsis was induced in Sprague-Dawley rats using CASP model that enabled the monitoring of macro-hemodynamic parameters. Twelve hours after surgery, animals received either SEW2871 or sodium chloride. Mesenteric endothelial barrier function was evaluated 24 h after sepsis induction by intravital microscopy. Organ pathology was assessed in lungs. S1P levels, blood gas analyses, and blood values were measured at different time points. In parallel the effect of SEW2871 was evaluated in human dermal microvascular endothelial cells. RESULT In vitro SEW2871 partially stabilized TNF-α-induced endothelial barrier breakdown. However, in vivo SEW2871 caused severe cardiac side effects in septic animals leading to an increased lethality. Sepsis-induced endothelial barrier dysfunction was not attenuated by SEW2871 as revealed by increased FITC-albumin extra-vasation, requirement of intravasal fluid replacement, and pulmonary edema. Interestingly, Sham-operated animals did not present any side effects after SEW2871 treatment. CONCLUSION Our study demonstrates that the application of SEW2871 causes severe cardiac side effects and cannot attenuate the inflammation-induced endothelial barrier breakdown in a clinically relevant sepsis model, suggesting that the time point of administration and the pro-inflammatory milieu play a pivotal role in the therapeutic benefit of SEW2871.
Collapse
Affiliation(s)
- Sven Flemming
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| | - Natalie Burkard
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| | - Michael Meir
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| | - Martin Alexander Schick
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Freiburg, Germany
| | - Christoph-Thomas Germer
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General Visceral, Vascular and Paediatric Surgery (Department of Surgery I), University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Xu S, Li X, LaPenna KB, Yokota SD, Huke S, He P. New insights into shear stress-induced endothelial signalling and barrier function: cell-free fluid versus blood flow. Cardiovasc Res 2017; 113:508-518. [PMID: 28158679 DOI: 10.1093/cvr/cvx021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/27/2017] [Indexed: 02/05/2023] Open
Abstract
Aims Fluid shear stress (SS) is known to regulate endothelial cell (EC) function. Most of the studies, however, focused on the effects of cell-free fluid-generated wall SS on ECs. The objective of this study was to investigate how changes in blood flow altered EC signalling and endothelial function directly through wall SS and indirectly through SS effects on red blood cells (RBCs). Methods and results Experiments were conducted in individually perfused rat venules. We experimentally induced changes in SS that were quantified by measured flow velocity and fluid viscosity. The concomitant changes in EC [Ca2+]i and nitric oxide (NO) were measured with fluorescent markers, and EC barrier function was assessed by fluorescent microsphere accumulation at EC junctions using confocal imaging. EC eNOS activation was evaluated by immunostaining. In response to changes in SS, increases in EC [Ca2+]i and gap formation occurred only in blood or RBC solution perfused vessels, whereas SS-dependent NO production and eNOS-Ser1177 phosphorylation occurred in both plasma and blood perfused vessels. A bioluminescent assay detected SS-dependent ATP release from RBCs. Pharmacological inhibition and genetic modification of pannexin-1 channels on RBCs abolished SS-dependent ATP release and SS-induced increases in EC [Ca2+]i and gap formation. Conclusions SS-induced EC NO production occurs in both cell free fluid and blood perfused vessels, whereas SS-induced increases in EC [Ca2+]i and EC gap formation require the presence of RBCs, attributing to SS-induced pannexin-1 channel dependent release of ATP from RBCs. Thus, changes in blood flow alter vascular EC function through both wall SS and SS exerted on RBCs, and RBC released ATP contributes to SS-induced changes in EC barrier function.
Collapse
Affiliation(s)
- Sulei Xu
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania University, 500 University Drive, Hershey, PA 17033, USA
| | - Xiang Li
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania University, 500 University Drive, Hershey, PA 17033, USA
| | - Kyle Brian LaPenna
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania University, 500 University Drive, Hershey, PA 17033, USA
| | - Stanley David Yokota
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, One Medical Center Drive, Morgantown, WV 26506, USA
| | - Sabine Huke
- Department of Medicine, University of Alabama at Birmingham, 901 19th street South. Birmingham, AL 35294, USA
| | - Pingnian He
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania University, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
13
|
Doggett TM, Alves NG, Yuan SY, Breslin JW. Sphingosine-1-Phosphate Treatment Can Ameliorate Microvascular Leakage Caused by Combined Alcohol Intoxication and Hemorrhagic Shock. Sci Rep 2017; 7:4078. [PMID: 28642485 PMCID: PMC5481382 DOI: 10.1038/s41598-017-04157-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/10/2017] [Indexed: 11/09/2022] Open
Abstract
Fluid resuscitation following hemorrhagic shock is often problematic, with development of prolonged hypotension and edema. In addition, many trauma patients are also intoxicated, which generally worsens outcomes. We directly investigated how alcohol intoxication impacts hemorrhagic shock and resuscitation-induced microvascular leakage using a rat model with intravital microscopic imaging. We also tested the hypothesis that an endothelial barrier-protective bioactive lipid, sphingosine-1-phosphate (S1P), could ameliorate the microvascular leakage following alcohol intoxication plus hemorrhagic shock and resuscitation. Our results show that alcohol intoxication exacerbated hemorrhagic shock and resuscitation-induced hypotension and microvascular leakage. We next found that S1P effectively could reverse alcohol-induced endothelial barrier dysfunction using both cultured endothelial cell monolayer and in vivo models. Lastly, we observed that S1P administration ameliorated hypotension and microvascular leakage following combined alcohol intoxication and hemorrhagic shock, in a dose-related manner. These findings suggest the viability of using agonists that can improve microvascular barrier function to ameliorate trauma-induced hypotension, offering a novel therapeutic opportunity for potentially improving clinical outcomes in patients with multi-hit injuries.
Collapse
Affiliation(s)
- Travis M Doggett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Natascha G Alves
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
14
|
Di Pietro M, Pascuali N, Scotti L, Irusta G, Bas D, May M, Tesone M, Abramovich D, Parborell F. In vivo intrabursal administration of bioactive lipid sphingosine-1-phosphate enhances vascular integrity in a rat model of ovarian hyperstimulation syndrome. Mol Hum Reprod 2017; 23:417-427. [DOI: 10.1093/molehr/gax021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/29/2017] [Indexed: 01/09/2023] Open
|
15
|
Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga, Gomez Peña M, Pomilio C, Saravia F, Tesone M, Abramovich D, Parborell F. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod 2016; 22:852-866. [PMID: 27645281 DOI: 10.1093/molehr/gaw065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Are follicular fluid (FF) sphingosine-1-phosphate (S1P) levels in patients at risk of developing ovarian hyperstimulation syndrome (OHSS) altered and in part responsible for the high vascular permeability observed in these patients. STUDY ANSWER FF S1P levels are lower in FF from patients at risk of OHSS and treatment with S1P may reduce vascular permeability in these patients. WHAT IS KNOWN ALREADY Although advances have been made in the diagnosis, and management of OHSS and in basic knowledge of its development, complete prevention has proven difficult. STUDY DESIGN, SIZE, DURATION A total of 40 FF aspirates were collected from patients undergoing ART. The women (aged 25-39 years old) were classified into a control group (n = 20) or a group at risk of OHSS (n = 20). The EA.hy926 endothelial cell line was used to assess the efffects of FF from patients at risk of OHSS with or without the addition of S1P. An animal model that develops OHSS in immature Sprague-Dawley rats were also used. PARTICIPANTS/MATERIALS, SETTING, METHODS Migration assays, confocal microscopy analysis of actin filaments, immunoblotting and quail chorioallantoic membrane (CAM) assays of in-vivo angiogenesis were performed and statistical comparisons between groups were made. MAIN RESULTS AND THE ROLE OF CHANCE The S1P concentration was significantly lower in FF from patients at risk of OHSS (P = 0.03). The addition of S1P to this FF decreased cell migration (P < 0.05) and prevented VE-cadherin phosphorylation in endothelial cells (P < 0.05). S1P in the FF from patients at risk of OHSS increased the levels of VE-cadherin (P < 0.05), N-cadherin (P < 0.05) and β-catenin (P < 0.05), and partially reversed actin redistribution in endothelial cells. The addition of S1P in FF from patients at risk of OHSS also decreased the levels of vascular endothelial growth factor (VEGF121; P < 0.01) and S1P lyase (SPL; P < 0.05) and increased the levels of S1PR1 (P < 0.05) in endothelial cells. In CAMs incubated with FF from patients at risk of OHSS with S1P, the number of vessel branch points decreased while the periendothelial cell coverage increased. Additionally, in a rat OHSS model, we demonstrated that vascular permeability and VEGF121 and its receptor KDR expression were increased in the OHSS group compared to the control group and that S1P administration decreased these parameters. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The results of this study were generated from an in-vitro system. This model reflects the microvasculature in vivo. Even though the ideal model would be the use of human endothelial cells from the ovary, it is obviously not possible to carry out this kind of approach in ovaries of patients from ART. More studies will be necessary to delineate the effects of S1P in the pathogenesis of OHSS. Hence, clinical studies are needed in order to choose the most appropriate method of prevention and management. WIDER IMPLICATIONS OF THE FINDINGS The use of bioactive sphingolipid metabolites may contribute to finding better and safer therapeutic strategies for the treatment of OHSS and other human diseases that display aberrant vascular leakage. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants ANPCyT (PICT 2012-897), CONICET (PIP 5471), Roemmers and Baron Foundation, Argentina. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- L Scotti
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - M Di Pietro
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - N Pascuali
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - G Irusta
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - I de Zúñiga
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - M Gomez Peña
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - C Pomilio
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - F Saravia
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - M Tesone
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - D Abramovich
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - F Parborell
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| |
Collapse
|
16
|
Curry FRE, Clark JF, Jiang Y, Kim MH, Adamson RH, Simon SI. The role of atrial natriuretic peptide to attenuate inflammation in a mouse skin wound and individually perfused rat mesenteric microvessels. Physiol Rep 2016; 4:4/18/e12968. [PMID: 27670406 PMCID: PMC5037917 DOI: 10.14814/phy2.12968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that the anti‐inflammatory actions of atrial natriuretic peptide (ANP) result from the modulation of leukocyte adhesion to inflamed endothelium and not solely ANP ligation of endothelial receptors to stabilize endothelial barrier function. We measured vascular permeability to albumin and accumulation of fluorescent neutrophils in a full‐thickness skin wound on the flank of LysM‐EGFP mice 24 h after formation. Vascular permeability in individually perfused rat mesenteric microvessels was also measured after leukocytes were washed out of the vessel lumen. Thrombin increased albumin permeability and increased the accumulation of neutrophils. The thrombin‐induced inflammatory responses were attenuated by pretreating the wound with ANP (30 min). During pretreatment ANP did not lower permeability, but transiently increased baseline albumin permeability concomitant with the reduction in neutrophil accumulation. ANP did not attenuate acute increases in permeability to histamine and bradykinin in individually perfused rat microvessels. The hypothesis that anti‐inflammatory actions of ANP depend solely on endothelial responses that stabilize the endothelial barrier is not supported by our results in either individually perfused microvessels in the absence of circulating leukocytes or the more chronic skin wound model. Our results conform to the alternate hypothesis that ANP modulates the interaction of leukocytes with the inflamed microvascular wall of the 24 h wound. Taken together with our previous observations that ANP reduces deformability of neutrophils and their strength of attachment, rolling, and transvascular migration, these observations provide the basis for additional investigations of ANP as an anti‐inflammatory agent to modulate leukocyte–endothelial cell interactions.
Collapse
Affiliation(s)
- Fitz-Roy E Curry
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, California
| | - Joyce F Clark
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, California
| | - Yanyan Jiang
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, California
| | - Min-Ho Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Roger H Adamson
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, California
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| |
Collapse
|
17
|
Curry FRE, Clark JF, Adamson RH. Microperfusion Technique to Investigate Regulation of Microvessel Permeability in Rat Mesentery. J Vis Exp 2015. [PMID: 26436435 DOI: 10.3791/53210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Experiments to measure the permeability properties of individually perfused microvessels provide a bridge between investigation of molecular and cellular mechanisms regulating vascular permeability in cultured endothelial cell monolayers and the functional exchange properties of whole microvascular beds. A method to cannulate and perfuse venular microvessels of rat mesentery and measure the hydraulic conductivity of the microvessel wall is described. The main equipment needed includes an intravital microscope with a large modified stage that supports micromanipulators to position three different microtools: (1) a beveled glass micropipette to cannulate and perfuse the microvessel; (2) a glass micro-occluder to transiently block perfusion and enable measurement of transvascular water flow movement at a measured hydrostatic pressure, and (3) a blunt glass rod to stabilize the mesenteric tissue at the site of cannulation. The modified Landis micro-occlusion technique uses red cells suspended in the artificial perfusate as markers of transvascular fluid movement, and also enables repeated measurements of these flows as experimental conditions are changed and hydrostatic and colloid osmotic pressure difference across the microvessels are carefully controlled. Measurements of hydraulic conductivity first using a control perfusate, then after re-cannulation of the same microvessel with the test perfusates enable paired comparisons of the microvessel response under these well-controlled conditions. Attempts to extend the method to microvessels in the mesentery of mice with genetic modifications expected to modify vascular permeability were severely limited because of the absence of long straight and unbranched microvessels in the mouse mesentery, but the recent availability of the rats with similar genetic modifications using the CRISPR/Cas9 technology is expected to open new areas of investigation where the methods described herein can be applied.
Collapse
Affiliation(s)
- Fitz-Roy E Curry
- Department of Physiology & Membrane Biology, University of California Davis
| | - Joyce F Clark
- Department of Physiology & Membrane Biology, University of California Davis
| | - Roger H Adamson
- Department of Physiology & Membrane Biology, University of California Davis;
| |
Collapse
|
18
|
Golden MH. Nutritional and other types of oedema, albumin, complex carbohydrates and the interstitium - a response to Malcolm Coulthard's hypothesis: Oedema in kwashiorkor is caused by hypo-albuminaemia. Paediatr Int Child Health 2015; 35:90-109. [PMID: 25844980 DOI: 10.1179/2046905515y.0000000010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The various types of oedema in man are considered in relation to Starling's hypothesis of fluid movement from capillaries, with the main emphasis on nutritional oedema and the nephrotic syndrome in children. It is concluded that each condition has sufficient anomalous findings to render Starling's hypothesis untenable. The finding that the endothelial glycocalyx is key to control of fluid movement from and into the capillaries calls for complete revision of our understanding of oedema formation. The factors so far known to affect the function of the glycocalyx are reviewed. As these depend upon sulphated proteoglycans and other glycosaminoglycans, the argument is advanced that the same abnormalities will extend to the interstitial space and that kwashiorkor is fundamentally related to a defect in sulphur metabolism which can explain all the clinical features of the condition, including the formation of oedema.
Collapse
Key Words
- Albumin,
- Aldosterone,
- Angiotensin,
- Beriberi,
- Edema,
- Epidemic dropsy,
- Famine oedema,
- Glycocalyx,
- Glycosaminoglycans,
- Heart failure,
- Hunger oedema,
- Kwashiorkor,
- Malnutrition,
- Nephrotic syndrome,
- Oedema,
- Potassium deficiency,
- Pre-eclampsia,
- Protein-energy malnutrition,
- Proteoglycans,
- Renin,
- Salt,
- Severe acute malnutrition
- Vitamin E deficiency,
- War oedema,
- Water,
Collapse
|
19
|
Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers 2015; 3:e978720. [PMID: 25838983 DOI: 10.4161/21688370.2014.978720] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.
Collapse
Key Words
- AJ, Adherens junctions
- ANG-1, Angiopoietin 1
- AQP, Aquaporins
- BBB, blood brain barrier
- CNS, Central nervous system
- COPD, Chronic obstructive pulmonary disease
- EAE, Experimental autoimmune encephalomyelitis
- EPAC1, Exchange protein activated by cyclic AMP
- ERK1/2, Extracellular signal-regulated kinases 1 and 2
- Endothelial barrier
- FA, Focal adhesions
- FAK, focal adhesion tyrosine kinase
- FoxO1, Forkhead box O1
- GAG, Glycosaminoglycans
- GDNF, Glial cell-derived neurotrophic factor
- GJ, Gap junctions
- GPCR, G-protein coupled receptors
- GTPase, Guanosine 5'-triphosphatase
- HMGB-1, High mobility group box 1
- HRAS, Harvey rat sarcoma viral oncogene homolog
- ICAM-1, Intercellular adhesion molecule 1
- IL-1β, Interleukin 1 beta
- IP3, Inositol 1,4,5-triphosphate
- JAM, Junctional adhesion molecules
- MEK, Mitogen-activated protein kinase kinase
- MLC, Myosin light chain
- MLCK, Myosin light-chain kinase
- MMP, Matrix metalloproteinases
- NO, Nitric oxide
- OSM, Oncostatin M
- PAF, Platelet activating factor
- PDE, Phosphodiesterase
- PKA, Protein kinase A
- PNA, Platelet-neutrophil aggregates
- ROS, Reactive oxygen species
- Rac1, Ras-related C3 botulinum toxin substrate 1
- Rap1, Ras-related protein 1
- RhoA, Ras homolog gene family, member A
- S1P, Sphingosine-1-phosphate
- SCID, Severe combined immunodeficient
- SOCS-3, Suppressors of cytokine signaling 3
- Shp-2, Src homology 2 domain-containing phosphatase 2
- Src, Sarcoma family of protein kinases
- TEER, Transendothelial electrical resistance
- TGF-beta1, Transforming growth factor-beta1
- TJ, Tight junctions
- TNF-, Tumor necrosis factor alpha
- VCAM-1, Vascular cell adhesion molecule 1
- VE, Vascular endothelial
- VE-PTP, Vascular endothelial receptor protein tyrosine phosphatase
- VEGF, Vascular endothelial growth factor
- VVO, Vesiculo-vacuolar organelle
- ZO, Zonula occludens
- cAMP, 3'-5'-cyclic adenosine monophosphate
- erythrocytes
- leukocytes
- pSrc, Phosphorylated Src
- platelets
- vascular permeability
Collapse
Affiliation(s)
- Stephen F Rodrigues
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; University of Sao Paulo ; Sao Paulo, Brazil
| | - D Neil Granger
- Department of Molecular and Cellular Physiology; Louisiana State University Health Sciences Center ; Shreveport, LA USA
| |
Collapse
|
20
|
Li Q, Chen B, Zeng C, Fan A, Yuan Y, Guo X, Huang X, Huang Q. Differential activation of receptors and signal pathways upon stimulation by different doses of sphingosine-1-phosphate in endothelial cells. Exp Physiol 2014; 100:95-107. [PMID: 25557733 DOI: 10.1113/expphysiol.2014.082149] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/21/2014] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the central question of this study? Why do different doses of sphingosine-1-phosphate (S1P) induce distinct biological effects in endothelial cells? What is the main finding and its importance? S1P at physiological concentrations preserved endothelial barrier function by binding to S1P receptor 1, then triggering Ca(2+) release from endoplasmic reticulum through phosphoinositide phospholipase C and inositol triphosphate, and consequently strengthening tight junction and F-actin assembly through Rac1 activation. Excessive S1P induced endothelial malfunction by activating S1P receptor 2 and RhoA/ROCK pathway, causing F-actin and tight junction disorganisation. Extracellular Ca(2+) influx was involved in this process. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid in plasma, and its plasma concentration can be adjusted through a complex metabolic process. The alterations in S1P levels and the activation of receptors collaboratively regulate distinct biological effects. This study was performed to investigate comparatively the effect of different concentrations of S1P on endothelial barrier function and to explore the roles of S1P receptors (S1PRs), Rho GTPases and calcium in S1P-induced endothelial responses. Endothelial barrier function was studied using transendothelial electric resistance and a resistance meter in human umbilical vein endothelial cells. Specific agonists or antagonists were applied to control the activation of S1P receptors and the release of calcium from different cellular compartments. The results indicated that at physiological concentrations, S1P preserved endothelial barrier function by binding with S1PR1. The activation of S1PR1 triggered the release of intracellular Ca(2+) from the endoplasmic reticulum through the PI-phospholipase C and inositol trisphosphate pathways. Consequently, the Rho GTPase Rac1 was activated, strengthening the assembly of tight junction proteins and F-actin. However, excessive S1P induced endothelial barrier dysfunction by activating S1PR2 followed by the RhoA/RhoA kinase pathway, causing the disorganization of F-actin and the disassembly of the tight junction protein ZO-1. An influx of extracellular Ca(2+) was involved in this process. These data suggest that physiological and excessive amounts of S1P induce different responses in human umbilical vein endothelial cells; the activation of the 1PR1-PLC-IP3 R-Ca(2+) -Rac1 pathway governs the low-dose S1P-enhanced endothelial barrier integrity, and the activation of S1PR2-calcium influx-RhoA/ROCK dominates the high-dose S1P-induced endothelial monolayer hyperpermeability response.
Collapse
Affiliation(s)
- Qiang Li
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, 510515, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mammals are endowed with a complex set of mechanisms that sense mechanical forces imparted by blood flow to endothelial cells (ECs), smooth muscle cells, and circulating blood cells to elicit biochemical responses through a process referred to as mechanotransduction. These biochemical responses are critical for a host of other responses, including regulation of blood pressure, control of vascular permeability for maintaining adequate perfusion of tissues, and control of leukocyte recruitment during immunosurveillance and inflammation. This review focuses on the role of the endothelial surface proteoglycan/glycoprotein layer-the glycocalyx (GCX)-that lines all blood vessel walls and is an agent in mechanotransduction and the modulation of blood cell interactions with the EC surface. We first discuss the biochemical composition and ultrastructure of the GCX, highlighting recent developments that reveal gaps in our understanding of the relationship between composition and spatial organization. We then consider the roles of the GCX in mechanotransduction and in vascular permeability control and review the prominent interaction of plasma-borne sphingosine-1 phosphate (S1P), which has been shown to regulate both the composition of the GCX and the endothelial junctions. Finally, we consider the association of GCX degradation with inflammation and vascular disease and end with a final section on future research directions.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031
| | | | | |
Collapse
|
22
|
Oakley R, Tharakan B. Vascular hyperpermeability and aging. Aging Dis 2014; 5:114-25. [PMID: 24729937 DOI: 10.14336/ad.2014.0500114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 12/25/2022] Open
Abstract
Vascular hyperpermeability, the excessive leakage of fluid and proteins from blood vessels to the interstitial space, commonly occurs in traumatic and ischemic injuries. This hyperpermeability causes tissue vasogenic edema, which often leads to multiple organ failure resulting in patient death. Vascular hyperpermeability occurs most readily in small blood vessels as their more delicate physical constitution makes them an easy target for barrier dysfunction. A single layer of endothelial cells, linked to one another by cell adhesion molecules, covers the interior surface of each blood vessel. The cell adhesion molecules play a key role in maintaining barrier functions like the regulation of permeability. Aging is a major risk factor for microvascular dysfunction and hyperpermeability. Apart from age-related remodeling of the vascular wall, endothelial barrier integrity and function declines with the advancement of age. Studies that address the physiological and molecular basis of vascular permeability regulation in aging are currently very limited. There have been many cellular and molecular mechanisms proposed to explain aging-related endothelial dysfunction but their true relationship to barrier dysfunction and hyperpermeability is not clearly known. Among the several mechanisms that promote vascular dysfunction and hyperpermeability, the following are considered major contributors: oxidative stress, inflammation, and the activation of apoptotic signaling pathways. In this review we highlighted (a) the physiological, cellular and molecular changes that occur in the vascular system as a product of aging; (b) the potential mechanisms by which aging leads to barrier dysfunction and vascular hyperpermeability in the peripheral and the blood-brain barrier; (c) the mechanisms by which the age-related increases in oxidative stress, inflammatory markers and apoptotic signaling etc. cause endothelial dysfunction and their relationship to hyperpermeability; and (d) the relationship between aging, vascular permeability and traumatic injuries.
Collapse
Affiliation(s)
| | - Binu Tharakan
- Department of Surgery, Texas A&M University Health Science Center College of Medicine & Baylor Scott & White Healthcare, Temple, Texas, USA
| |
Collapse
|
23
|
Sphingosine-1-phosphate receptor 3 mediates sphingosine-1-phosphate induced release of weibel-palade bodies from endothelial cells. PLoS One 2014; 9:e91346. [PMID: 24632890 PMCID: PMC3954688 DOI: 10.1371/journal.pone.0091346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/10/2014] [Indexed: 12/28/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is an agonist for five distinct G-protein coupled receptors, that is released by platelets, mast cells, erythrocytes and endothelial cells. S1P promotes endothelial cell barrier function and induces release of endothelial cell-specific storage-organelles designated Weibel-Palade bodies (WPBs). S1P-mediated enhancement of endothelial cell barrier function is dependent on S1P receptor 1 (S1PR1) mediated signaling events that result in the activation of the small GTPase Rac1. Recently, we have reported that Rac1 regulates epinephrine-induced WPB exocytosis following its activation by phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 1 (PREX1). S1P has also been described to induce WPB exocytosis. Here, we confirm that S1P induces release of WPBs using von Willebrand factor (VWF) as a marker. Using siRNA mediated knockdown of gene expression we show that S1PR1 is not involved in S1P-mediated release of WPBs. In contrast depletion of the S1PR3 greatly reduced S1P-induced release of VWF. S1P-mediated enhancement of endothelial barrier function was not affected by S1PR3-depletion whereas it was greatly impaired in cells lacking S1PR1. The Rho kinase inhibitor Y27632 completely abrogated S1P-mediated release of VWF. Also, the calcium chelator BAPTA-AM significantly reduced S1P-induced release of VWF. Our findings indicate that S1P-induced release of haemostatic, inflammatory and angiogenic components stored within WPBs depends on the S1PR3.
Collapse
|
24
|
Adamson RH, Clark JF, Radeva M, Kheirolomoom A, Ferrara KW, Curry FE. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. Am J Physiol Heart Circ Physiol 2014; 306:H1011-7. [PMID: 24531813 DOI: 10.1152/ajpheart.00829.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Removal of plasma proteins from perfusates increases vascular permeability. The common interpretation of the action of albumin is that it forms part of the permeability barrier by electrostatic binding to the endothelial glycocalyx. We tested the alternate hypothesis that removal of perfusate albumin in rat venular microvessels decreased the availability of sphingosine-1-phosphate (S1P), which is normally carried in plasma bound to albumin and lipoproteins and is required to maintain stable baseline endothelial barriers (Am J Physiol Heart Circ Physiol 303: H825-H834, 2012). Red blood cells (RBCs) are a primary source of S1P in the normal circulation. We compared apparent albumin permeability coefficients [solute permeability (Ps)] measured using perfusates containing albumin (10 mg/ml, control) and conditioned by 20-min exposure to rat RBCs with Ps when test perfusates were in RBC-conditioned protein-free Ringer solution. The control perfusate S1P concentration (439 ± 46 nM) was near the normal plasma value at 37 °C and established a stable baseline Ps (0.9 ± 0.4 × 10(-6) cm/s). Ringer solution perfusate contained 52 ± 8 nM S1P and increased Ps more than 10-fold (16.1 ± 3.9 × 10(-6) cm/s). Consistent with albumin-dependent transport of S1P from RBCs, S1P concentrations in RBC-conditioned solutions decreased as albumin concentration, hematocrit, and temperature decreased. Protein-free Ringer solution perfusates that used liposomes instead of RBCs as flow markers failed to maintain normal permeability, reproducing the "albumin effect" in these mammalian microvessels. We conclude that the albumin effect depends on the action of albumin to facilitate the release and transport of S1P from RBCs that normally provide a significant amount of S1P to the endothelium.
Collapse
Affiliation(s)
- R H Adamson
- Department of Physiology and Membrane Biology, University of California, Davis, California; and
| | | | | | | | | | | |
Collapse
|
25
|
Review: Novel insights into the regulation of vascular tone by sphingosine 1-phosphate. Placenta 2014; 35 Suppl:S86-92. [DOI: 10.1016/j.placenta.2013.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/17/2022]
|
26
|
Schlegel N, Waschke J. cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation. Cell Tissue Res 2013; 355:587-96. [PMID: 24322391 DOI: 10.1007/s00441-013-1755-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022]
Abstract
cAMP is one of the most potent signaling molecules to stabilize the endothelial barrier, both under resting conditions as well as under challenge of barrier-destabilizing mediators. The two main signaling axes downstream of cAMP are activation of protein kinase A (PKA) as well as engagement of exchange protein directly activated by cAMP (Epac) and its effector GTPase Rap1. Interestingly, both pathways activate GTP exchange factors for Rac1, such as Tiam1 and Vav2 and stabilize the endothelial barrier via Rac1-mediated enforcement of adherens junctions and strengthening of the cortical actin cytoskeleton. On the level of Rac1, cAMP signaling converges with other barrier-enhancing signaling cues induced by sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang1) rendering Rac1 as an important signaling hub. Moreover, activation of Rap1 and inhibition of RhoA also contribute to barrier stabilization, emphasizing that regulation of small GTPases is a central mechanism in this context. The relevance of cAMP/Rac1-mediated barrier protection under pathophysiologic conditions can be concluded from data showing that inflammatory mediators causing multi-organ failure in systemic inflammation or sepsis interfere with this signaling axis on the level of cAMP or Rac1. This is in line with the well-known efficacy of cAMP to abrogate the barrier breakdown in response to most barrier-compromising stimuli. New is the notion that the tight endothelial barrier under resting conditions is maintained by (1) continuous cAMP formation induced by hormones such as epinephrine or (2) by activation of Rac1 downstream of S1P that is secreted by erythrocytes and activated platelets.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General-, Visceral, Vascular and Pediatric surgery, University Hospital Wuerzburg, Oberduerrbacherstrasse 6, 97080, Wuerzburg, Germany
| | | |
Collapse
|
27
|
Zeng Y, Adamson RH, Curry FRE, Tarbell JM. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol 2013; 306:H363-72. [PMID: 24285115 DOI: 10.1152/ajpheart.00687.2013] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial cells (ECs) are covered by a surface glycocalyx layer that forms part of the barrier and mechanosensing functions of the blood-tissue interface. Removal of albumin in bathing media induces collapse or shedding of the glycocalyx. The electrostatic interaction between arginine residues on albumin, and negatively charged glycosaminoglycans (GAGs) in the glycocalyx have been hypothesized to stabilize the glycocalyx structure. Because albumin is one of the primary carriers of the phospholipid sphingosine-1-phosphate (S1P), we evaluated the alternate hypothesis that S1P, acting via S1P1 receptors, plays the primary role in stabilizing the endothelial glycocalyx. Using confocal microscopy on rat fat-pad ECs, we demonstrated that heparan sulfate (HS), chondroitin sulfate (CS), and ectodomain of syndecan-1 were shed from the endothelial cell surface after removal of plasma protein but were retained in the presence of S1P at concentrations of >100 nM. S1P1 receptor antagonism abolished the protection of the glycocalyx by S1P and plasma proteins. S1P reduced GAGs released after removal of plasma protein. The mechanism of protection from loss of glycocalyx components by S1P-dependent pathways was shown to be suppression of metalloproteinase (MMP) activity. General inhibition of MMPs protected against loss of CS and syndecan-1. Specific inhibition of MMP-9 and MMP-13 protected against CS loss. We conclude that S1P plays a critical role in protecting the glycocalyx via S1P1 and inhibits the protease activity-dependent shedding of CS, HS, and the syndecan-1 ectodomain. Our results provide new insight into the role for S1P in protecting the glycocalyx and maintaining vascular homeostasis.
Collapse
Affiliation(s)
- Ye Zeng
- Department of Biomedical Engineering, The City College of New York, New York, New York; and
| | | | | | | |
Collapse
|
28
|
Adamson RH, Sarai RK, Altangerel A, Clark JF, Weinbaum S, Curry FE. Microvascular permeability to water is independent of shear stress, but dependent on flow direction. Am J Physiol Heart Circ Physiol 2013; 304:H1077-84. [PMID: 23417864 PMCID: PMC3625907 DOI: 10.1152/ajpheart.00956.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/11/2013] [Indexed: 11/22/2022]
Abstract
Endothelial cells in a cultured monolayer change from a "cobblestone" configuration when grown under static conditions to a more elongated shape, aligned with the direction of flow, after exposure to sustained uniform shear stress. Sustained blood flow acts to protect regions of large arteries from injury. We tested the hypothesis that the stable permeability state of individually perfused microvessels is also characteristic of flow conditioning. In individually perfused rat mesenteric venular microvessels, microvascular permeability, measured as hydraulic conductivity (Lp), was stable [mean 1.0 × 10(-7) cm/(s × cmH2O)] and independent of shear stress (3-14 dyn/cm(2)) for up to 3 h. Vessels perfused opposite to the direction of normal blood flow exhibited a delayed Lp increase [ΔLp was 7.6 × 10(-7) cm/(s × cmH2O)], but the increase was independent of wall shear stress. Addition of chondroitin sulfate and hyaluronic acid to perfusates increased the shear stress range, but did not modify the asymmetry in response to flow direction. Increased Lp in reverse-perfused vessels was associated with numerous discontinuities of VE-cadherin and occludin, while both proteins were continuous around the periphery of forward-perfused vessels. The results are not consistent with a general mechanism for graded shear-dependent permeability increase, but they are consistent with the idea that a stable Lp under normal flow contributes to prevention of edema formation and also enables physiological regulation of shear-dependent small solute permeabilities (e.g., glucose). The responses during reverse flow are consistent with reports that disturbed flows result in a less stable endothelial barrier in venular microvessels.
Collapse
Affiliation(s)
- R. H. Adamson
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| | - R. K. Sarai
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| | - A. Altangerel
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| | - J. F. Clark
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| | - S. Weinbaum
- Department of Biomedical Engineering, The City College of The City University of New York, New York, New York
| | - F. E. Curry
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, Davis, California; and
| |
Collapse
|
29
|
Curry FRE, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol (Oxf) 2013; 207:628-49. [PMID: 23374222 PMCID: PMC4054936 DOI: 10.1111/apha.12076] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022]
Abstract
Our major theme is that the layered structure of the endothelial barrier requires continuous activation of signalling pathways regulated by sphingosine-1-phosphate (S1P) and intracellular cAMP. These pathways modulate the adherens junction, continuity of tight junction strands, and the balance of synthesis and degradation of glycocalyx components. We evaluate recent evidence that baseline permeability is maintained by constant activity of mechanisms involving the small GTPases Rap1 and Rac1. In the basal state, the barrier is compromised when activities of the small GTPases are reduced by low S1P supply or delivery. With inflammatory stimulus, increased permeability can be understood in part as the action of signalling to reduce Rap1 and Rac1 activation. With the hypothesis that microvessel permeability and selectivity under both normal and inflammatory conditions are regulated by mechanisms that are continuously active, it follows that when S1P or intracellular cAMP are elevated at the time of inflammatory stimulus, they can buffer changes induced by inflammatory agents and maintain normal barrier stability. When endothelium is exposed to inflammatory conditions and subsequently exposed to elevated S1P or intracellular cAMP, the same processes restore the functional barrier by first re-establishing the adherens junction, then modulating tight junctions and glycocalyx. In more extreme inflammatory conditions, loss of the inhibitory actions of Rac1-dependent mechanisms may promote expression of more inflammatory endothelial phenotypes by contributing to the up-regulation of RhoA-dependent contractile mechanisms and the sustained loss of surface glycocalyx allowing access of inflammatory cells to the endothelium.
Collapse
Affiliation(s)
- F-R E Curry
- Department of Physiology & Membrane Biology, School of Medicine, University of California at Davis, Davis, CA 95616, USA.
| | | |
Collapse
|