1
|
Marcinek K, Luzak B, Rozalski M. The Effects of Caffeine on Blood Platelets and the Cardiovascular System through Adenosine Receptors. Int J Mol Sci 2024; 25:8905. [PMID: 39201591 PMCID: PMC11354695 DOI: 10.3390/ijms25168905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Caffeine is the most popular and widely consumed behaviourally active substance in the world. This review describes the influence of caffeine on the cardiovascular system, with a special focus on blood platelets. For many years, caffeine was thought to have a negative effect on the cardiovascular system mainly due to increasing blood pressure. However, more recent data suggest that habitual caffeine consumption may reduce the risk of cardiovascular disease and hypertension. This could be a significant finding as cardiovascular disease is the leading cause of death worldwide. Caffeine is known to inhibit A1 adenosine receptors, through which it is believed to modulate inter alia coronary blood flow, total peripheral resistance, diuresis, and heart rate. It has been shown that coffee possesses antiplatelet activity, but depending on the dose and the term of its use, caffeine may stimulate or inhibit platelet reactivity. Also, chronic exposure to caffeine may sensitize or upregulate the adenosine receptors in platelets causing increased cAMP accumulation and anti-aggregatory effects and decrease calcium levels elicited by AR agonists. The search for new, selective, and safe AR agonists is one of the new strategies for improving antiplatelet therapy involving targeting multiple pathways of platelet activation. Therefore, this review examines the AR-dependent impact of caffeine on blood platelets in the presence of adenosine receptor agonists.
Collapse
Affiliation(s)
| | | | - Marcin Rozalski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (K.M.); (B.L.)
| |
Collapse
|
2
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
4
|
Adenosine Receptors Profile in Fibromuscular Dysplasia. Biomedicines 2022; 10:biomedicines10112831. [PMID: 36359350 PMCID: PMC9687922 DOI: 10.3390/biomedicines10112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Fibromuscular dysplasia (FMD) is a non-inflammatory vascular disease that is characterized by unexplained systemic hypertension occurring in young people, associated with arterial stenosis, aneurysm rupture, intracranial/renal infarction, and stroke. Although the gold standard for the diagnosis remains catheter-angiography, biological markers would be helpful due to the delay from first symptom to diagnosis. Adenosine is an ATP derivative, that may be implicated in FMD pathophysiology. We hypothesized that changes in adenosine blood level (ABL) and production of adenosine receptors may be associated with FMD. Using peripheral blood mononuclear cells, we evaluated A1, A2A, and A2B receptor production by Western blot, in 67 patients (17 men and 50 women, mean (range) age 55 (29−77) years and 40 controls, 10 men and 30 women, mean (range) age 56 (37−70)). ABL was evaluated by liquid chromatography, mass spectrometry. ABL was significantly higher in patients vs. controls, mean (range): 1.7 (0.7−3) µmol/L vs. controls 0.6 (0.4−0.8) µmol/L (+180%) p < 0.001. While A1R and A2AR production did not differ in patients and controls, we found an over-production of A2BR in patients: 1.70 (0.90−2.40; arbitrary units) vs. controls = 1.03 (0.70−1.40), mean + 65% (p < 0.001). A2BR production with a cut off of 1.3 arbitrary units, gives a good sensitivity and specificity for the diagnosis. Production measurement of A2BR on monocytes and ABL could help in the diagnosis, especially in atypical or with poor symptoms.
Collapse
|
5
|
Adenosine, Adenosine Receptors and Neurohumoral Syncope: From Molecular Basis to Personalized Treatment. Biomedicines 2022; 10:biomedicines10051127. [PMID: 35625864 PMCID: PMC9138351 DOI: 10.3390/biomedicines10051127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Adenosine is a ubiquitous nucleoside that is implicated in the occurrence of clinical manifestations of neuro-humoral syncope (NHS). NHS is characterized by a drop in blood pressure due to vasodepression together with cardio inhibition. These manifestations are often preceded by prodromes such as headaches, abdominal pain, feeling of discomfort or sweating. There is evidence that adenosine is implicated in NHS. Adenosine acts via four subtypes of receptors, named A1 (A1R), A2A (A2AR), A2B (A2BR) and A3 (A3R) receptors, with all subtypes belonging to G protein membrane receptors. The main effects of adenosine on the cardiovascular system occurs via the modulation of potassium ion channels (IK Ado, K ATP), voltage-gate calcium channels and via cAMP production inhibition (A1R and A3R) or, conversely, through the increased production of cAMP (A2A/BR) in target cells. However, it turns out that adenosine, via the activation of A1R, leads to bradycardia, sinus arrest or atrioventricular block, while the activation of A2AR leads to vasodilation; these same manifestations are found during episodes of syncope. The use of adenosine receptor antagonists, such as theophylline or caffeine, should be useful in the treatment of some forms of NHS. The aim of this review was to summarize the main data regarding the link between the adenosinergic system and NHS and the possible consequences on NHS treatment by means of adenosine receptor antagonists.
Collapse
|
6
|
Cooper SL, Wragg ES, Pannucci P, Soave M, Hill SJ, Woolard J. Regionally selective cardiovascular responses to adenosine A 2A and A 2B receptor activation. FASEB J 2022; 36:e22214. [PMID: 35230706 PMCID: PMC9415116 DOI: 10.1096/fj.202101945r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
Abstract
Adenosine is a local mediator that regulates changes in the cardiovascular system via activation of four G protein-coupled receptors (A1 , A2A , A2B , A3 ). Here, we have investigated the effect of A2A and A2B -selective agonists on vasodilatation in three distinct vascular beds of the rat cardiovascular system. NanoBRET ligand binding studies were used to confirm receptor selectivity. The regional hemodynamic effects of adenosine A2A and A2B selective agonists were investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal artery, mesenteric artery, and the descending abdominal aorta. Cardiovascular responses were measured following intravenous infusion (3 min for each dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1 µg kg-1 min-1 ) or the A2B -selective agonist BAY 60-6583 (4,13.3, 40 µg kg-1 min-1 ) following predosing with the A2A -selective antagonist SCH 58261 (0.1 or 1 mg kg-1 min-1 ), the A2B /A2A antagonist PSB 1115 (10 mg kg-1 min-1 ) or vehicle. The A2A -selective agonist CGS 21680 produced a striking increase in heart rate (HR) and hindquarters vascular conductance (VC) that was accompanied by a significant decrease in mean arterial pressure (MAP) in conscious rats. In marked contrast, the A2B -selective agonist BAY 60-6583 significantly increased HR and VC in the renal and mesenteric vascular beds, but not in the hindquarters. Taken together, these data indicate that A2A and A2B receptors are regionally selective in their regulation of vascular tone. These results suggest that the development of A2B receptor agonists to induce vasodilatation in the kidney may provide a good therapeutic approach for the treatment of acute kidney injury.
Collapse
Affiliation(s)
- Samantha L. Cooper
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Edward S. Wragg
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Patrizia Pannucci
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Mark Soave
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| |
Collapse
|
7
|
Guieu R, Brignole M, Deharo JC, Deharo P, Mottola G, Groppelli A, Paganelli F, Ruf J. Adenosine Receptor Reserve and Long-Term Potentiation: Unconventional Adaptive Mechanisms in Cardiovascular Diseases? Int J Mol Sci 2021; 22:ijms22147584. [PMID: 34299203 PMCID: PMC8303608 DOI: 10.3390/ijms22147584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
While the concept of a receptor reserve (spare receptors) is old, their presence on human cells as an adaptive mechanism in cardiovascular disease is a new suggestion. The presence of spare receptors is suspected when the activation of a weak fraction of receptors leads to maximal biological effects, in other words, when the half-maximal effective concentration (EC50) for a biological effect (cAMP production, for example) is lower than the affinity (KD) of the ligand for a receptor. Adenosine is an ATP derivative that strongly impacts the cardiovascular system via its four membrane receptors, named A1R, A2AR, A2BR, and A3R, with the A1R being more particularly involved in heart rhythm, while the A2AR controls vasodilation. After a general description of the tools necessary to explore the presence of spare receptors, this review focuses on the consequences of the presence of spare adenosine receptors in cardiovascular physiopathology. Finally, the role of the adenosinergic system in the long-term potentiation and its possible consequences on the physiopathology are also mentioned.
Collapse
Affiliation(s)
- Régis Guieu
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Laboratory of Biochemistry, Assistance Publique des Hopitaux, 13005 Marseille, France
- Correspondence: ; Tel.: +33-491-385-650
| | - Michele Brignole
- IRCCS, Istituto Auxologico Italiano, Ospedale San Luca, 13000 Milan, Italy;
| | - Jean Claude Deharo
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Department of Cardiology, CHU Timone, 13005 Marseille, France
| | - Pierre Deharo
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Department of Cardiology, CHU Timone, 13005 Marseille, France
| | - Giovanna Mottola
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Laboratory of Biochemistry, Assistance Publique des Hopitaux, 13005 Marseille, France
| | | | - Franck Paganelli
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Department of Cardiovascular, Neural and Metabolic Sciences, Faint & Fall Programme, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 13000 Milan, Italy
| | - Jean Ruf
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
| |
Collapse
|
8
|
Sayegh MN, Cooney KA, Han WM, Wang L, Strobel F, Hansen LM, García AJ, Levit RD. A Hydrogel Strategy to Augment Tissue Adenosine to Improve Hindlimb Perfusion. Arterioscler Thromb Vasc Biol 2021; 41:e314-e324. [PMID: 33882686 PMCID: PMC8159890 DOI: 10.1161/atvbaha.120.315428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael N. Sayegh
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Kimberly A. Cooney
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Woojin M. Han
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Laura M. Hansen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Andrés J. García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Rebecca D. Levit
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
9
|
Paganelli F, Gaudry M, Ruf J, Guieu R. Recent advances in the role of the adenosinergic system in coronary artery disease. Cardiovasc Res 2020; 117:1284-1294. [PMID: 32991685 DOI: 10.1093/cvr/cvaa275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is an endogenous nucleoside that plays a major role in the physiology and physiopathology of the coronary artery system, mainly by activating its A2A receptors (A2AR). Adenosine is released by myocardial, endothelial, and immune cells during hypoxia, ischaemia, or inflammation, each condition being present in coronary artery disease (CAD). While activation of A2AR improves coronary blood circulation and leads to anti-inflammatory effects, down-regulation of A2AR has many deleterious effects during CAD. A decrease in the level and/or activity of A2AR leads to: (i) lack of vasodilation, which decreases blood flow, leading to a decrease in myocardial oxygenation and tissue hypoxia; (ii) an increase in the immune response, favouring inflammation; and (iii) platelet aggregation, which therefore participates, in part, in the formation of a fibrin-platelet thrombus after the rupture or erosion of the plaque, leading to the occurrence of acute coronary syndrome. Inflammation contributes to the development of atherosclerosis, leading to myocardial ischaemia, which in turn leads to tissue hypoxia. Therefore, a vicious circle is created that maintains and aggravates CAD. In some cases, studying the adenosinergic profile can help assess the severity of CAD. In fact, inducible ischaemia in CAD patients, as assessed by exercise stress test or fractional flow reserve, is associated with the presence of a reserve of A2AR called spare receptors. The purpose of this review is to present emerging experimental evidence supporting the existence of this adaptive adenosinergic response to ischaemia or inflammation in CAD. We believe that we have achieved a breakthrough in the understanding and modelling of spare A2AR, based upon a new concept allowing for a new and non-invasive CAD management.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Department of Cardiology, North Hospital, Chemin des Bourrely, F-13015 Marseille, France
| | - Marine Gaudry
- Department of Vascular Surgery, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Laboratory of Biochemistry, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| |
Collapse
|
10
|
Meriño M, Martín SS, Sandaña P, Herlitz K, Aguayo C, Godoy A, Torres-Vergara P, Gonzalez M, Troncoso F, Acurio J, Escudero C. Deletion of the adenosine A 2A receptor increases the survival rate in a mice model of polymicrobial sepsis. Purinergic Signal 2020; 16:427-437. [PMID: 32808144 DOI: 10.1007/s11302-020-09719-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
We aim to investigate the role of A2A receptor in peritonitis-related sepsis by injection of a fecal solution (FS) as a model of polymicrobial infection. C57/black J6 wild-type (WT) and A2A-deficient mice (A2AKO) were exposed to sepsis induced by intraperitoneal injection of a FS (FS-induced peritonitis) or instead was injected with saline buffer (Sham). Survival rate and sepsis score were measured up to 48 h. The presence of bacteria in tissue homogenates was analyzed. Telemetry and speckle laser Doppler were used for systemic blood pressure and peripheral blood perfusion analysis, respectively. Histological analysis and identification of active caspase 3 were performed in selected organs, including the liver. The survival rate of A2AKO mice exposed to FS-induced peritonitis was significantly higher, and the sepsis score was lower than their respective WT counterpart. Injection of FS increases (50 to 150 folds) the number of colonies forming units in the liver, kidney, blood, and lung in WT mice, while these effects were significantly attenuated in A2AKO mice exposed to FS-induced peritonitis. A significant reduction in both systolic and diastolic blood pressure, as well as in the peripheral perfusion was observed in WT and A2AKO mice exposed to FS-induced peritonitis. Although, these last effects were significantly attenuated in A2AKO mice. Histological analysis showed a large perivascular infiltration of polymorphonuclear in the liver of WT and A2AKO mice exposed to FS-induced peritonitis, but again, this effect was attenuated in A2AKO mice. Finally, high expression of active caspase 3 was found only in the liver of WT mice exposed to FS-induced peritonitis. The absence of the A2A receptor increases the survival rate in mice exposed to polymicrobial sepsis. This outcome was associated with both hemodynamic compensation and enhanced anti-bacterial response.
Collapse
Affiliation(s)
- Miguel Meriño
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
- Facultad de Ciencias de la Salud, Universidad Adventista de Chile, Chillan, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Pedro Sandaña
- Anatomo-pathology Service, Clinical Hospital Herminda Martín, Chillán, Chile
- Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Kurt Herlitz
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
| | - Claudio Aguayo
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Alejandro Godoy
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Marcelo Gonzalez
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Laboratorio de Investigación Materno-Fetal (LIMaf), Department of Obstetrics and Gynecology, Faculty of Medicine, University of Concepción, Concepción, Chile
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, 3780000, Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| |
Collapse
|
11
|
Adenosine and the Cardiovascular System: The Good and the Bad. J Clin Med 2020; 9:jcm9051366. [PMID: 32384746 PMCID: PMC7290927 DOI: 10.3390/jcm9051366] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is a nucleoside that impacts the cardiovascular system via the activation of its membrane receptors, named A1R, A2AR, A2BR and A3R. Adenosine is released during hypoxia, ischemia, beta-adrenergic stimulation or inflammation and impacts heart rhythm and produces strong vasodilation in the systemic, coronary or pulmonary vascular system. This review summarizes the main role of adenosine on the cardiovascular system in several diseases and conditions. Adenosine release participates directly in the pathophysiology of atrial fibrillation and neurohumoral syncope. Adenosine has a key role in the adaptive response in pulmonary hypertension and heart failure, with the most relevant effects being slowing of heart rhythm, coronary vasodilation and decreasing blood pressure. In other conditions, such as altitude or apnea-induced hypoxia, obstructive sleep apnea, or systemic hypertension, the adenosinergic system activation appears in a context of an adaptive response. Due to its short half-life, adenosine allows very rapid adaptation of the cardiovascular system. Finally, the effects of adenosine on the cardiovascular system are sometimes beneficial and other times harmful. Future research should aim to develop modulating agents of adenosine receptors to slow down or conversely amplify the adenosinergic response according to the occurrence of different pathologic conditions.
Collapse
|
12
|
Arise KK, Kumar P, Garg R, Samivel R, Zhao H, Pandya K, Nguyen C, Lindsey S, Pandey KN. Angiotensin II represses Npr1 expression and receptor function by recruitment of transcription factors CREB and HSF-4a and activation of HDACs. Sci Rep 2020; 10:4337. [PMID: 32152395 PMCID: PMC7062852 DOI: 10.1038/s41598-020-61041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
The two vasoactive hormones, angiotensin II (ANG II; vasoconstrictive) and atrial natriuretic peptide (ANP; vasodilatory) antagonize the biological actions of each other. ANP acting through natriuretic peptide receptor-A (NPRA) lowers blood pressure and blood volume. We tested hypothesis that ANG II plays critical roles in the transcriptional repression of Npr1 (encoding NPRA) and receptor function. ANG II significantly decreased NPRA mRNA and protein levels and cGMP accumulation in cultured mesangial cells and attenuated ANP-mediated relaxation of aortic rings ex vivo. The transcription factors, cAMP-response element-binding protein (CREB) and heat-shock factor-4a (HSF-4a) facilitated the ANG II-mediated repressive effects on Npr1 transcription. Tyrosine kinase (TK) inhibitor, genistein and phosphatidylinositol 3-kinase (PI-3K) inhibitor, wortmannin reversed the ANG II-dependent repression of Npr1 transcription and receptor function. ANG II enhanced the activities of Class I histone deacetylases (HDACs 1/2), thereby decreased histone acetylation of H3K9/14ac and H4K8ac. The repressive effect of ANG II on Npr1 transcription and receptor signaling seems to be transduced by TK and PI-3K pathways and modulated by CREB, HSF-4a, HDACs, and modified histones. The current findings suggest that ANG II-mediated repressive mechanisms of Npr1 transcription and receptor function may provide new molecular targets for treatment and prevention of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Kiran K Arise
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Renu Garg
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Ramachandran Samivel
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Hanqing Zhao
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Krishna Pandya
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Christian Nguyen
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Sarah Lindsey
- Department of Pharmacology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
Martin-Aragon Baudel M, Espinosa-Tanguma R, Nieves-Cintron M, Navedo MF. Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 2020; 11:329. [PMID: 32528416 PMCID: PMC7256624 DOI: 10.3389/fendo.2020.00329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of purinergic receptors by nucleotides and/or nucleosides plays an important role in the control of vascular function, including modulation of vascular smooth muscle excitability, and vascular reactivity. Accordingly, purinergic receptor actions, acting as either ion channels (P2X) or G protein-coupled receptors (GCPRs) (P1, P2Y), target diverse downstream effectors, and substrates to regulate vascular smooth muscle function and vascular reactivity. Both vasorelaxant and vasoconstrictive effects have been shown to be mediated by different purinergic receptors in a vascular bed- and species-specific manner. Purinergic signaling has been shown to play a key role in altering vascular smooth muscle excitability and vascular reactivity following acute and short-term elevations in extracellular glucose (e.g., hyperglycemia). Moreover, there is evidence that vascular smooth muscle excitability and vascular reactivity is severely impaired during diabetes and that this is mediated, at least in part, by activation of purinergic receptors. Thus, purinergic receptors present themselves as important candidates mediating vascular reactivity in hyperglycemia, with potentially important clinical and therapeutic potential. In this review, we provide a narrative summarizing our current understanding of the expression, function, and signaling of purinergic receptors specifically in vascular smooth muscle cells and discuss their role in vascular complications following hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Miguel Martin-Aragon Baudel
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- *Correspondence: Miguel Martin-Aragon Baudel
| | - Ricardo Espinosa-Tanguma
- Departamento de Fisiologia y Biofisca, Universidad Autónoma San Luis Potosí, San Luis Potosí, Mexico
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- Manuel F. Navedo
| |
Collapse
|
14
|
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the Cardiovascular System. Am J Cardiovasc Drugs 2019; 19:449-464. [PMID: 30972618 PMCID: PMC6773474 DOI: 10.1007/s40256-019-00345-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.
Collapse
|
15
|
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS, Hibbert B. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:109-131. [PMID: 30318008 DOI: 10.2174/1871529x18666181011103719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Adenosine, a purine nucleoside, is produced broadly and implicated in the homeostasis of many cells and tissues. It signals predominantly via 4 purinergic adenosine receptors (ADORs) - ADORA1, ADORA2A, ADORA2B and ADOosine signaling, both through design as specific ADOR agonists and antagonists and as offtarget effects of existing anti-platelet medications. Despite this, adenosine has yet to be firmly established as either a therapeutic or a prognostic tool in clinical medicine to date. Herein, we provide a bench-to-bedside review of adenosine biology, highlighting the key considerations for further translational development of this proRA3 in addition to non-ADOR mediated effects. Through these signaling mechanisms, adenosine exerts effects on numerous cell types crucial to maintaining vascular homeostasis, especially following vascular injury. Both in vitro and in vivo models have provided considerable insights into adenosine signaling and identified targets for therapeutic intervention. Numerous pharmacologic agents have been developed that modulate adenmising molecule.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Richard Jung
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Alisha Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | | | - F Daniel Ramirez
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pietro Di Santo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Ian Pitcher
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pouya Motazedian
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, ON, Canada
| | - Chantal Gaudet
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rebecca Rochman
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Jeffrey Marbach
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Paul Boland
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Kiran Sarathy
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Saleh Alghofaili
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Juan J Russo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Etienne Couture
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rob S Beanlands
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Benjamin Hibbert
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| |
Collapse
|
16
|
Adenosine receptor agonists deepen the inhibition of platelet aggregation by P2Y 12 antagonists. Vascul Pharmacol 2018; 113:47-56. [PMID: 30471364 DOI: 10.1016/j.vph.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 11/18/2018] [Indexed: 11/24/2022]
Abstract
Several adenosine receptor (AR) agonists have been shown in the past to possess anti-platelet potential; however, the adjunctive role of AR agonists in anti-platelet therapy with the use of P2Y12 receptor inhibitors has not been elucidated so far. This in vitro aggregation-based study investigates whether the inhibition of platelet function mediated by cangrelor or prasugrel metabolite can be potentiated by AR agonists. It evaluates the effect of non-selective (2-chloroadenosine), A2A-selective (UK 432097, MRE 0094, PSB 0777) and A2B-selective AR agonists (BAY 60-6583) on platelet function in relation to their toxicity, specificity towards adenosine receptor subtypes, structure and solubility. UK 432097, 2-chloroadenosine, MRE 0094 and PSB 0777 were found to be more or less potent inhibitors of ADP-induced platelet aggregation when acting alone, and that they remained non-cytotoxic to the cells. These AR agonists were also effective in the potentiation of the effects exerted by P2Y12 antagonists. Considering the estimated IC50 value, UK 432097, showing a relatively high binding affinity to the A2A adenosine receptor, has been identified as the most potent anti-aggregatory agent. This compound diminished platelet aggregation at nanomolar concentrations and further augmented platelet inhibition by P2Y12 antagonists by approx. 60% (P < .01). Our results indicate the importance of adenosine receptors as therapeutic targets and point out challenges and potential benefits of therapeutic use of a combined therapy of P2Y12 antagonist and AR agonist in cardioprotection. Our comparative analysis of the effects of AR agonists on platelet response in plasma and whole blood may indirectly suggest that other blood morphology elements contribute little to the inhibition of platelet function by AR agonists.
Collapse
|
17
|
Jackson EK, Gillespie DG, Mi Z, Cheng D. Adenosine Receptors Influence Hypertension in Dahl Salt-Sensitive Rats. Hypertension 2018; 72:511-521. [DOI: 10.1161/hypertensionaha.117.10765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/03/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Edwin K. Jackson
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Delbert G. Gillespie
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Zaichuan Mi
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Dongmei Cheng
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
18
|
Labazi H, Teng B, Mustafa SJ. Functional changes in vascular reactivity to adenosine receptor activation in type I diabetic mice. Eur J Pharmacol 2017; 820:191-197. [PMID: 29269016 DOI: 10.1016/j.ejphar.2017.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Abstract
Activation of adenosine receptors has been implicated in several biological functions, including cardiovascular and renal function. Diabetes causes morphological and functional changes in the vasculature, resulting in abnormal responses to various stimuli. Recent studies have suggested that adenosine receptor expression and signaling are altered in disease states such as hypertension, diabetes. Using a streptozotocin (STZ) mouse model of type I diabetes (T1D), we investigated the functional changes in aorta and resistance mesenteric arteries to adenosine receptor agonist activation in T1D. Organ baths and DMT wire myographs were used for muscle tension measurements in isolated vascular rings, and western blotting was used for protein analysis. Concentration response curves to selective adenosine receptor agonists, including CCPA (A1 receptor agonist), Cl-IBMECA (A3 receptor agonist), CGS-21680 (A2A receptor agonist), and BAY 60-6583 (A2B receptor agonist), were performed. We found that diabetes did not affect adenosine receptor agonist-mediated relaxation or contraction in mesenteric arteries. However, aortas from diabetic mice exhibited a significant decrease (P < 0.05) in A1 receptor-mediated vasoconstriction. In addition, the aortas from STZ-treated mice exhibited an increase in phenylephrine-mediated contraction (EC50 7.40 ± 0.08 in STZ vs 6.89 ± 0.14 in vehicle; P < 0.05), while relaxation to A2A receptor agonists (CGS-21680) tended to decrease in aortas from the STZ-treated group (not statistically significant). Our data suggest that changes in adenosine receptor(s) vascular reactivity in T1D is tissue specific, and the decrease in A1 receptor-mediated aortic contraction could be a compensatory mechanism to counterbalance the increased adrenergic vascular contractility observed in aortas from diabetic mice.
Collapse
Affiliation(s)
- Hicham Labazi
- Department of Physiology, Pharmacology and Neuroanatomy, West Virginia University, Morgantown, WV, USA.
| | - Bunyen Teng
- Department of Physiology, Pharmacology and Neuroanatomy, West Virginia University, Morgantown, WV, USA.
| | - S Jamal Mustafa
- Department of Physiology, Pharmacology and Neuroanatomy, West Virginia University, Morgantown, WV, USA; WV Center for Tranlational Science Institute, Morgantown, WV, USA.
| |
Collapse
|
19
|
Alencar AKN, Montes GC, Barreiro EJ, Sudo RT, Zapata-Sudo G. Adenosine Receptors As Drug Targets for Treatment of Pulmonary Arterial Hypertension. Front Pharmacol 2017; 8:858. [PMID: 29255415 PMCID: PMC5722832 DOI: 10.3389/fphar.2017.00858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/09/2017] [Indexed: 01/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a clinical condition characterized by pulmonary arterial remodeling and vasoconstriction, which promote chronic vessel obstruction and elevation of pulmonary vascular resistance. Long-term right ventricular (RV) overload leads to RV dysfunction and failure, which are the main determinants of life expectancy in PAH subjects. Therapeutic options for PAH remain limited, despite the introduction of prostacyclin analogs, endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, and soluble guanylyl cyclase stimulators within the last 15 years. Through addressing the pulmonary endothelial and smooth muscle cell dysfunctions associated with PAH, these interventions delay disease progression but do not offer a cure. Emerging approaches to improve treatment efficacy have focused on beneficial actions to both the pulmonary vasculature and myocardium, and several new targets have been investigated and validated in experimental PAH models. Herein, we review the effects of adenosine and adenosine receptors (A1, A2A, A2B, and A3) on the cardiovascular system, focusing on the A2A receptor as a pharmacological target. This receptor induces pulmonary vascular and heart protection in experimental models, specifically models of PAH. Targeting the A2A receptor could potentially serve as a novel and efficient approach for treating PAH and concomitant RV failure. A2A receptor activation induces pulmonary endothelial nitric oxide synthesis, smooth muscle cell hyperpolarization, and vasodilation, with important antiproliferative activities through the inhibition of collagen deposition and vessel wall remodeling in the pulmonary arterioles. The pleiotropic potential of A2A receptor activation is highlighted by its additional expression in the heart tissue, where it participates in the regulation of intracellular calcium handling and maintenance of heart chamber structure and function. In this way, the activation of A2A receptor could prevent the production of a hypertrophic and dysfunctional phenotype in animal models of cardiovascular diseases.
Collapse
Affiliation(s)
- Allan K N Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme C Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Dobson GP, Arsyad A, Letson HL. The Adenosine Hypothesis Revisited: Modulation of Coupling between Myocardial Perfusion and Arterial Compliance. Front Physiol 2017; 8:824. [PMID: 29104545 PMCID: PMC5654924 DOI: 10.3389/fphys.2017.00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
For over four decades the thoracic aortic ring model has become one of the most widely used methods to study vascular reactivity and electromechanical coupling. A question that is rarely asked, however, is what function does a drug-mediated relaxation (or contraction) in this model serve in the intact system? The physiological significance of adenosine relaxation in rings isolated from large elastic conduit arteries from a wide range of species remains largely unknown. We propose that adenosine relaxation increases aortic compliance in acute stress states and facilitates ventricular-arterial (VA) coupling, and thereby links compliance and coronary artery perfusion to myocardial energy metabolism. In 1963 Berne argued that adenosine acts as a local negative feedback regulator between oxygen supply and demand in the heart during hypoxic/ischemic stress. The adenosine VA coupling hypothesis extends and enhances Berne's "adenosine hypothesis" from a local regulatory scheme in the heart to include conduit arterial function. In multicellular organisms, evolution may have selected adenosine, nitric oxide, and other vascular mediators, to modulate VA coupling for optimal transfer of oxygen (and nutrients) from the lung, heart, large conduit arteries, arterioles and capillaries to respiring mitochondria. Finally, a discussion of the potential clinical significance of adenosine modulation of VA coupling is extended to vascular aging and disease, including hypertension, diabetes, obesity, coronary artery disease and heart failure.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Aryadi Arsyad
- Physiology Department, Medical Faculty, Hasanuddin University, Makassar, Indonesia
| | - Hayley L Letson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
21
|
Khayat MT, Nayeem MA. The Role of Adenosine A 2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1720920. [PMID: 28884118 PMCID: PMC5572598 DOI: 10.1155/2017/1720920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
Abstract
Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
- Department of Pharmaceutical Chemistry, School of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Nayeem
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
22
|
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
23
|
Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A 2B pathway. Sci Rep 2017; 7:44416. [PMID: 28294142 PMCID: PMC5353659 DOI: 10.1038/srep44416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
Neurogenic detrusor overactivity (NDO) is among the most challenging complications of spinal cord injury (SCI). A recent report by us demonstrated an improvement in NDO in SCI rats following chronic systemic treatment with the purine nucleoside inosine. The objective of this study was to investigate the mechanism of action of inosine underlying improvement of NDO. Male Sprague-Dawley rats underwent complete spinal cord transection at T8. Inosine (1 mM) delivered intravesically to SCI rats during conscious cystometry significantly decreased the frequency of spontaneous non-voiding contractions. In isolated tissue assays, inosine (1 mM) significantly decreased the amplitude of spontaneous activity (SA) in SCI bladder muscle strips. This effect was prevented by a pan-adenosine receptor antagonist CGS15943, but not by A1 or A3 receptor antagonists. The A2A antagonist ZM241385 and A2B antagonist PSB603 prevented the effect of inosine. The effect of inosine was mimicked by the adenosine receptor agonist NECA and the A2B receptor agonist BAY60-6583. The inhibition of SA by inosine was not observed in the presence of the BK antagonist, iberiotoxin, but persisted in the presence of KATP and SK antagonists. These findings demonstrate that inosine acts via an A2B receptor-mediated pathway that impinges on specific potassium channel effectors.
Collapse
|
24
|
Wu J, Li N, Liu Y, Li W, He A, Zhu D, Feng X, Liu B, Shi R, Zhang Y, Lv J, Xu Z. Maternal high salt diet altered Adenosine-mediated vasodilatation via PKA/BK channel pathway in offspring rats. Mol Nutr Food Res 2017; 61. [PMID: 28133948 DOI: 10.1002/mnfr.201600963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 11/07/2022]
Abstract
SCOPE High salt (HS) diets are related to cardiovascular diseases, and prenatal HS was suggested to increase risks of coronary artery diseases in the offspring. This study tested the hypothesis that prenatal HS may influence Adenosine-induced vasodilatation via protein kinase A (PKA) pathway in coronary arteries. METHODS AND RESULTS Sprague-Dawley rats were fed with 8% salt diet for gestation, the control was fed with 0.3% salt diet. Coronary arteries from male adult offspring were tested for K+ channels and Adenosine signal pathways. Adenosine-mediated vasodilatation was reduced in coronary arteries in HS. There was no difference in gene expression of A2A receptors between the two groups. After pretreatment with PKA inhibitor, vasodilatation to Adenosine was decreased to a smaller extent in HS than that in control. Forskolin (activator of adenylate cyclase)-mediated vasodilatation was decreased in HS. Iberiotoxin (large-conductance Ca2+ -activated K+ channel [BK channel] inhibitor) attenuated Forskolin-induced vasodilatation in control, not in HS group. Currents of BK channels decreased in coronary artery smooth muscle cells, and PKA-modulated BK channel functions were declined. Protein levels of BK β1 and PKA C-subunits in coronary arteries of HS offspring were reduced. CONCLUSIONS Prenatal HS diets altered Adenosine-mediated coronary artery vasodilatation in the offspring, which was linked to downregulation of cAMP/PKA/BK channel pathway.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine/pharmacology
- Animals
- Animals, Newborn
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Female
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Maternal Nutritional Physiological Phenomena
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A/metabolism
- Signal Transduction
- Sodium Chloride, Dietary/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Jue Wu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Weisheng Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Di Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Ruixiu Shi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yujuan Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
- Center for Prenatal Biology, Loma Linda University, CA 92350, USA
| |
Collapse
|
25
|
Geldenhuys WJ, Khayat MT, Yun J, Nayeem MA. Drug Delivery and Nanoformulations for the Cardiovascular System. RESEARCH & REVIEWS. DRUG DELIVERY 2017; 1:32-40. [PMID: 28713881 PMCID: PMC5507069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Therapeutic delivery to the cardiovascular system may play an important role in the successful treatment of a variety of disease state, including atherosclerosis, ischemic-reperfusion injury and other types of microvascular diseases including hypertension. In this review we evaluate the different options available for the development of suitable delivery systems that include the delivery of small organic compounds [adenosin A2A receptor agonist (CGS 21680), CYP-epoxygenases inhibitor (N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy] benzoic acid), soluble epoxide hydrolase inhibitor (N-methylsulfonyl-12,12-dibromododec-11-enamide), PPARγ agonist (rosiglitazone) and PPARγ antagonist (T0070907)], nanoparticles, peptides, and siRNA to the cardiovascular system. Effective formulations of nanoproducts have significant potential to overcome physiological barriers and improve therapeutic outcomes in patients. As per the literature covering targeted delivery to the cardiovascular system, we found that this area is still at infancy stage, as compare to the more mature fields of tumor cancer or brain delivery (e.g. blood-brain barrier permeability) with fewer publications focused on the targeted drug delivery technologies. Additionally, we show how pharmacology needs to be well understood when considering the cardiovascular system. Therefore, we discussed in this review various receptors agonists, antagonists, activators and inhibitors which will have effects on cardiovascular system.
Collapse
Affiliation(s)
- WJ Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown WV 26506 USA
| | - MT Khayat
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown WV 26506 USA
- Deparment of Pharmaceutical Chemistry, King Abdulaziz University, School of Pharmacy, Jeddah, Saudi Arabia
| | - J Yun
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown OH 44272 USA
| | - MA Nayeem
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown WV 26506 USA
| |
Collapse
|
26
|
Arsyad A, Dobson GP. Adenosine relaxation in isolated rat aortic rings and possible roles of smooth muscle Kv channels, KATP channels and A2a receptors. BMC Pharmacol Toxicol 2016; 17:23. [PMID: 27211886 PMCID: PMC4876563 DOI: 10.1186/s40360-016-0067-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/29/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND An area of ongoing controversy is the role adenosine to regulate vascular tone in conduit vessels that regulate compliance, and the role of nitric oxide (NO), potassium channels and receptor subtypes involved. The aim of our study was to investigate adenosine relaxation in rat thoracic aortic rings, and the effect of inhibitors of NO, prostanoids, Kv, KATP channels, and A2a and A2b receptors. METHODS Aortic rings were freshly harvested from adult male Sprague Dawley rats and equilibrated in an organ bath containing oxygenated, modified Krebs-Henseleit solution, 11 mM glucose, pH 7.4, 37 °C. Isolated rings were pre-contracted sub-maximally with 0.3 μM norepinephrine (NE), and the effect of increasing concentrations of adenosine (1 to 1000 μM) were examined. The drugs L-NAME, indomethacin, 4-aminopyridine (4-AP), glibenclamide, 5-hydroxydecanoate, ouabain, 8-(3-chlorostyryl) caffeine and PSB-0788 were examined in intact and denuded rings. Rings were tested for viability after each experiment. RESULTS Adenosine induced a dose-dependent, triphasic relaxation response, and the mechanical removal of the endothelium significantly deceased adenosine relaxation above 10 μM. Interestingly, endothelial removal significantly decreased the responsiveness (defined as % relaxation per μM adenosine) by two-thirds between 10 and 100 μM, but not in the lower (1-10 μM) or higher (>100 μM) ranges. In intact rings, L-NAME significantly reduced relaxation, but not indomethacin. Antagonists of voltage-dependent Kv (4-AP), sarcolemma KATP (glibenclamide) and mitochondrial KATP channels (5-HD) led to significant reductions in relaxation in both intact and denuded rings, with ouabain having little or no effect. Adenosine-induced relaxation appeared to involve the A2a receptor, but not the A2b subtype. CONCLUSIONS It was concluded that adenosine relaxation in NE-precontracted rat aortic rings was triphasic and endothelium-dependent above 10 μM, and relaxation involved endothelial nitric oxide (not prostanoids) and a complex interplay between smooth muscle A2a subtype and voltage-dependent Kv, SarcKATP and MitoKATP channels. The possible in vivo significance of the regulation of arterial compliance to left ventricular function coupling is discussed.
Collapse
Affiliation(s)
- Aryadi Arsyad
- Physiology Department, Medical Faculty, Hasanuddin University, Jl. Perintis Kemerdekaan, Km. 10, Tamalanrea, Makassar, 90213, Indonesia
| | - Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Queensland, 4811, Australia.
| |
Collapse
|
27
|
Sen A, Kumar P, Garg R, Lindsey SH, Katakam PVG, Bloodworth M, Pandey KN. Transforming growth factor β1 antagonizes the transcription, expression and vascular signaling of guanylyl cyclase/natriuretic peptide receptor A - role of δEF1. FEBS J 2016; 283:1767-81. [PMID: 26934489 DOI: 10.1111/febs.13701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/20/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
The objective of this study was to determine the role of transforming growth factor β1 (TGF-β1) in transcriptional regulation and function of the guanylyl cyclase A/natriuretic peptide receptor A gene (Npr1) and whether cross-talk exists between these two hormonal systems in target cells. After treatment of primary cultured rat thoracic aortic vascular smooth muscle cells and mouse mesangial cells with TGF-β1, the Npr1 promoter construct containing a δ-crystallin enhancer binding factor 1 (δEF1) site showed 85% reduction in luciferase activity in a time- and dose-dependent manner. TGF-β1 also significantly attenuated luciferase activity of the Npr1 promoter by 62%, and decreased atrial natriuretic peptide-mediated relaxation of mouse denuded aortic rings ex vivo. Treatment of cells with TGF-β1 increased the protein levels of δEF1 by 2.4-2.8-fold, and also significantly enhanced the phosphorylation of Smad 2/3, but markedly reduced Npr1 mRNA and receptor protein levels. Over-expression of δEF1 showed a reduction in Npr1 promoter activity by 75%, while deletion or site-directed mutagenesis of δEF1 sites in the Npr1 promoter eliminated the TGF-β1-mediated repression of Npr1 transcription. TGF-β1 significantly increased the expression of α-smooth muscle actin and collagen type I α2 in rat thoracic aortic vascular smooth muscle cells, which was markedly attenuated by atrial natriuretic peptide in cells over-expressing natriuretic peptide receptor A. Together, the present results suggest that an antagonistic cascade exists between the TGF-β1/Smad/δEF1 pathways and Npr1 expression and receptor signaling that is relevant to renal and vascular remodeling, and may be critical in the regulation of blood pressure and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Anagha Sen
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Renu Garg
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Meaghan Bloodworth
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, New Orleans, LA, USA
| |
Collapse
|
28
|
Labazi H, Tilley SL, Ledent C, Mustafa SJ. Role of Adenosine Receptor(s) in the Control of Vascular Tone in the Mouse Pudendal Artery. J Pharmacol Exp Ther 2016; 356:673-80. [PMID: 26718241 PMCID: PMC4767391 DOI: 10.1124/jpet.115.230144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Activation of adenosine receptors (ARs) has been implicated in the modulation of renal and cardiovascular systems, as well as erectile functions. Recent studies suggest that adenosine-mediated regulation of erectile function is mainly mediated through A2BAR activation. However, no studies have been conducted to determine the contribution of AR subtype in the regulation of the vascular tone of the pudendal artery (PA), the major artery supplying and controlling blood flow to the penis. Our aim was to characterize the contribution of AR subtypes and identify signaling mechanisms involved in adenosine-mediated vascular tone regulation in the PA. We used a DMT wire myograph for muscle tension measurements in isolated PAs from wild-type, A2AAR knockout, A2BAR knockout, and A2A/A2BAR double-knockout mice. Real-time reverse transcription-polymerase chain reaction was used to determine the expression of the AR subtypes. Data from our pharmacologic and genetic approaches suggest that AR activation-mediated vasodilation in the PA is mediated by both the A2AAR and A2BAR, whereas neither the A1AR nor A3AR play a role in vascular tone regulation of the PA. In addition, we showed that A2AAR- and A2BAR-mediated vasorelaxation requires activation of nitric oxide and potassium channels; however, only the A2AAR-mediated response requires protein kinase A activation. Our data are complemented by mRNA expression showing the expression of all AR subtypes with the exception of the A3AR. AR signaling in the PA may play an important role in mediating erection and represent a promising therapeutic option for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Hicham Labazi
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, West Virginia (H.L., S.J.M.); Department of Medicine, University of North Carolina, Chapel Hill, North Carolina (S.L.T.); and Université Libre de Bruxelles, Brussels, Belgium (C.L.)
| | - Stephen L Tilley
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, West Virginia (H.L., S.J.M.); Department of Medicine, University of North Carolina, Chapel Hill, North Carolina (S.L.T.); and Université Libre de Bruxelles, Brussels, Belgium (C.L.)
| | - Catherine Ledent
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, West Virginia (H.L., S.J.M.); Department of Medicine, University of North Carolina, Chapel Hill, North Carolina (S.L.T.); and Université Libre de Bruxelles, Brussels, Belgium (C.L.)
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, West Virginia (H.L., S.J.M.); Department of Medicine, University of North Carolina, Chapel Hill, North Carolina (S.L.T.); and Université Libre de Bruxelles, Brussels, Belgium (C.L.)
| |
Collapse
|
29
|
Zhou Z, Rajamani U, Labazi H, Tilley SL, Ledent C, Teng B, Mustafa SJ. Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts. Purinergic Signal 2015; 11:263-73. [DOI: 10.1007/s11302-015-9451-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022] Open
|
30
|
Abstract
High salt (4% NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A(2A) receptor (A(2A)AR). Evidence suggests that A(2A)AR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A(2A)AR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A(2A)AR⁺/⁺, but exaggerates contraction in A(2A)AR⁻/⁻. Organ bath and Western blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A(2A)AR⁺/⁺ and A(2A)AR⁻/⁻ mice aorta. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A(2A)AR⁺/⁺, whereas contraction was observed in A(2A)AR⁻/⁻ mice and this was attenuated by A₁AR antagonist (DPCPX). CGS 21680 (selective A(2A)AR agonist) enhanced relaxation in HS-A(2A)AR⁺/⁺ versus NS-A(2A)AR⁺/⁺, which was blocked by EETs antagonist (14,15-EEZE). Compared with NS, HS significantly upregulated the expression of vasodilators A(2A)AR and cyp2c29, whereas vasoconstrictors A₁AR and cyp4a in A(2A)AR⁺/⁺ were downregulated. In A(2A)AR⁻/⁻ mice, however, HS significantly downregulated the expression of cyp2c29, whereas A₁AR and cyp4a were upregulated compared with A(2A)AR⁺/⁺ mice. Hence, our data suggest that in A(2A)AR⁺/⁺, HS enhances A(2A)AR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A₁AR levels, whereas in A(2A)AR⁻/⁻, HS exaggerates contraction through decreased cyp-epoxygenases and increased A₁AR levels.
Collapse
|
31
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
32
|
Kunduri S, Dick G, Nayeem M, Mustafa S. Adenosine A 1 receptor signaling inhibits BK channels through a PKCα-dependent mechanism in mouse aortic smooth muscle. Physiol Rep 2013; 1. [PMID: 23977428 PMCID: PMC3747964 DOI: 10.1002/phy2.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenosine receptors (AR; A1, A2A, A2B, and A3) contract and relax smooth muscle through different signaling mechanisms. Deciphering these complex responses remains difficult because relationships between AR subtypes and various end-effectors (e.g., enzymes and ion channels) remain to be identified. A1AR stimulation is associated with the production of 20–hydroxyeicosatetraenoic acid (20–HETE) and activation of protein kinase C (PKC). 20–HETE and PKC can inhibit large conductance Ca2+/voltage-sensitive K+ (BK) channels that regulate smooth muscle contraction. We tested the hypothesis that activation of A1AR inhibits BK channels via a PKC-dependent mechanism. Patch clamp recordings and Western blots were performed using aortae of wild type (WT) and A1AR knockout (A1KO) mice. There were no differences in whole-cell K+ current or α and β1 subunits expression between WT and A1KO. 20–HETE (100 nmol/L) inhibited BK current similarly in WT and A1KO mice. NECA (5′–N–ethylcarboxamidoadenosine; 10 μmol/L), a nonselective AR agonist, increased BK current in myocytes from both WT and A1KO mice, but the increase was greater in A1KO (52 ± 15 vs. 17 ± 3%; P < 0.05). This suggests that A1AR signaling negatively regulates BK channel activity. Accordingly, CCPA (2–chloro–N(6)-cyclopentyladenosine; 100 nmol/L), an A1AR-selective agonist, inhibited BK current in myocytes from WT but not A1KO mice (81 ± 4 vs. 100 ± 7% of control; P < 0.05). Gö6976 (100 nmol/L), a PKCα inhibitor, abolished the effect of CCPA to inhibit BK current (99 ± 3% of control). These data lead us to conclude that, in aortic smooth muscle, A1AR inhibits BK channel activity and that this occurs via a mechanism involving PKCα.
Collapse
Affiliation(s)
- Ss Kunduri
- Department of Physiology & Pharmacology, West Virginia University School of Medicine ; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine
| | | | | | | |
Collapse
|
33
|
Chhabra P, Linden J, Lobo P, Okusa MD, Brayman KL. The immunosuppressive role of adenosine A2A receptors in ischemia reperfusion injury and islet transplantation. Curr Diabetes Rev 2012; 8:419-33. [PMID: 22934547 PMCID: PMC4209001 DOI: 10.2174/157339912803529878] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 02/08/2023]
Abstract
Activation of adenosine A2A receptors (A2AR) reduces inflammation by generally inhibiting the activation of pro-inflammatory cells, decreasing endothelial adhesion molecule expression and reducing the release of proinflammatory cytokine mediators. Numerous preclinical studies using selective A2AR agonists, antagonists, A2AR knockout as well as chimeric mice have suggested the therapeutic potential of A2AR agonists for the treatment of ischemia reperfusion injury (IRI) and autoimmune diseases. This review summarizes the immunosuppressive actions of A2AR agonists in murine IRI models of liver, kidney, heart, lung and CNS, and gives details on the cellular effects of A2AR activation in neutrophils, macrophages, dendritic cells, natural killer cells, NKT cells, T effector cells and CD4+CD25+FoxP3+ T regulatory cells. This is discussed in the context of cytokine mediators involved in inflammatory cascades. Whilst the role of adenosine receptor agonists in various models of autoimmune disease has been well-documented, very little information is available regarding the role of A2AR activation in type 1 diabetes mellitus (T1DM). An overview of the pathogenesis of T1DM as well as early islet graft rejection in the immediate peri-transplantation period offers insight regarding the use of A2AR agonists as a beneficial intervention in clinical islet transplantation, promoting islet graft survival, minimizing early islet loss and reducing the number of islets required for successful transplantation, thereby increasing the availability of this procedure to a greater number of recipients. In summary, the use of A2AR agonists as a clinical intervention in IRI and as an adjunct to clinical immunesuppressive regimen in islet transplantation is highlighted.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia School of Medicine, P.O. Box 800709, Charlottesville, VA 22908-0709, USA.
| | | | | | | | | |
Collapse
|
34
|
Ponnoth DS, Nayeem MA, Tilley SL, Ledent C, Jamal Mustafa S. CYP-epoxygenases contribute to A2A receptor-mediated aortic relaxation via sarcolemmal KATP channels. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1003-10. [PMID: 23019210 DOI: 10.1152/ajpregu.00335.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) mediates aortic relaxation via cytochrome P-450 (CYP)-epoxygenases. However, the signaling mechanism is not understood properly. We hypothesized that ATP-sensitive K(+) (K(ATP)) channels play an important role in A(2A)AR-mediated relaxation. Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Aortic rings from WT and A(2A) knockout (KO) mice were precontracted with submaximal dose of phenylephrine (PE, 10(-6) M), and concentration-response curves for pinacidil, cromakalim (nonselective K(ATP) openers), and diazoxide (mitochondrial K(ATP) opener) were obtained. Diazoxide did not have any relaxation effect on PE-precontracted tissues, whereas relaxation to pinacidil (48.09 ± 5.23% in WT vs. 25.41 ± 2.73% in A(2A)KO; P < 0.05) and cromakalim (51.19 ± 2.05% in WT vs. 38.50 ± 2.26% in A(2A)KO; P < 0.05) was higher in WT than A(2A)KO aorta. This suggested the involvement of sarcolemmal rather than mitochondrial K(ATP) channels. Endothelium removal, treatment with SCH 58651 (A(2A)AR antagonist; 10(-6) M), N(G)-nitro-l-arginine methyl ester (l-NAME, nitric oxide synthase inhibitor) and methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH, CYP-epoxygenases inhibitor; 10(-5) M) significantly reduced pinacidil-induced relaxation in WT compared with controls, whereas these treatments did not have any effect in A(2A)KO aorta. Glibenclamide (K(ATP) channel inhibitor, 10(-5) M) blocked 2-p-(2-carboxyethyl)phenethylamino-5'N-ethylcarboxamido adenosine hydrochloride (CGS 21680, A(2A)AR agonist)-induced relaxation in WT and changed 5'-N-ethylcarboxamide (NECA) (nonselective adenosine analog)-induced response to higher contraction in WT and A(2A)KO. 5-Hydroxydecanoate (5-HD, mitochondrial K(ATP) channel inhibitor, 10(-4) M) had no effect on CGS 21680-mediated response in WT aorta. Our data suggest that A(2A)AR-mediated vasorelaxation occurs through opening of sarcolemmal K(ATP) channels via CYP-epoxygenases and possibly, nitric oxide, contributing to pinacidil-induced responses.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Dept of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia Univ., Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
35
|
Riksen NP, Rongen GA. Targeting adenosine receptors in the development of cardiovascular therapeutics. Expert Rev Clin Pharmacol 2012; 5:199-218. [PMID: 22390562 DOI: 10.1586/ecp.12.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine receptor stimulation has negative inotropic and dromotropic actions, reduces cardiac ischemia-reperfusion injury and remodeling, and prevents cardiac arrhythmias. In the vasculature, adenosine modulates vascular tone, reduces infiltration of inflammatory cells and generation of foam cells, and may prevent the development of atherosclerosis as a result. Modulation of insulin sensitivity may further add to the anti-atherosclerotic properties of adenosine signaling. In the kidney, adenosine plays an important role in tubuloglomerular feedback and modulates tubular sodium reabsorption. The challenge is to take advantage of the beneficial actions of adenosine signaling while preventing its potential adverse effects, such as salt retention and sympathoexcitation. Drugs that interfere with adenosine formation and elimination or drugs that allosterically enhance specific adenosine receptors seem to be most promising to meet this challenge.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Pharmacology-Toxicology 149 and Internal Medicine 463, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
36
|
Ponnoth DS, Nayeem MA, Kunduri SS, Tilley SL, Zeldin DC, Ledent C, Mustafa SJ. Role of ω-hydroxylase in adenosine-mediated aortic response through MAP kinase using A2A-receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 2012; 302:R400-8. [PMID: 22160543 PMCID: PMC3293507 DOI: 10.1152/ajpregu.00481.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/29/2011] [Indexed: 01/23/2023]
Abstract
Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) knockout mice (KO) have increased contraction to adenosine. The signaling mechanism(s) for A(2A)AR is still not fully understood. In this study, we hypothesize that, in the absence of A(2A)AR, ω-hydroxylase (Cyp4a) induces vasoconstriction through mitogen-activated protein kinase (MAPK) via upregulation of adenosine A(1) receptor (A(1)AR) and protein kinase C (PKC). Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Isolated aortic rings from WT and A(2A)KO mice were precontracted with submaximal dose of phenylephrine (10(-6) M), and concentration responses for selective A(1)AR, A(2A)AR agonists, angiotensin II and cytochrome P-450-epoxygenase, 20-hydroxyeicosatrienoic acid (20-HETE) PKC, PKC-α, and ERK1/2 inhibitors were obtained. 2-p-(2-Carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, A(2A)AR agonist) induced concentration-dependent relaxation in WT, which was blocked by methylsulfonyl-propargyloxyphenylhexanamide (cytochrome P-450-epoxygenase inhibitor; 10(-5) M) and also with removal of endothelium. A(1) agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) produced higher contraction in A(2A)KO aorta than WT (49.2 ± 8.5 vs. 27 ± 5.9% at 10(-6) M, P < 0.05). 20-HETE produced higher contraction in A(2A)KO than WT (50.6 ± 8.8 vs. 21.1 ± 3.3% at 10(-7) M, P < 0.05). Contraction to CCPA in WT and A(2A)KO aorta was inhibited by PD-98059 (p42/p44 MAPK inhibitor; 10(-6) M), chelerythrine chloride (nonselective PKC blocker; 10(-6) M), Gö-6976 (selective PKC-α inhibitor; 10(-7) M), and HET0016 (20-HETE inhibitor; 10(-5) M). Also, contraction to 20-HETE in WT and A(2A)KO aorta was inhibited by PD-98059 and Gö-6976. Western blot analysis indicated the upregulation of A(1)AR, Cyp4a, PKC-α, and phosphorylated-ERK1/2 in A(2A)KO compared with WT (P < 0.05), while expression of Cyp2c29 was significantly higher in WT. CCPA (10(-6) M) increased the protein expression of PKC-α and phosphorylated-ERK1/2, while HET0016 significantly reduced the CCPA-induced increase in expression of these proteins. These data suggest that, in the absence of A(2A)AR, Cyp4a induces vasoconstriction through MAPK via upregulation of A(1)AR and PKC-α.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Dept. of Physiology and Pharmacology, School of Medicine, West Virginia Univ., Morgantown, WV 26506, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ. Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol 2011; 301:H2322-33. [PMID: 21949117 DOI: 10.1152/ajpheart.00052.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine plays a role in physiological and pathological conditions, and A(2) adenosine receptor (AR) expression is modified in many cardiovascular disorders. In this study, we elucidated the role of the A(2B)AR and its relationship to the A(2A)AR in coronary flow (CF) changes using A(2B) single-knockout (KO) and A(2A/2B) double-KO (DKO) mice in a Langendorff setup. We used two approaches: 1) selective and nonselective AR agonists and antagonists and 2) A(2A)KO and A(2B)KO and A(2A/2B)DKO mice. BAY 60-6583 (a selective A(2B) agonist) had no effect on CF in A(2B)KO mice, whereas it significantly increased CF in wild-type (WT) mice (maximum of 23.3 ± 9 ml·min(-1)·g(-1)). 5'-N-ethylcarboxamido adenosine (NECA; a nonselective AR agonist) increased CF in A(2B)KO mice (maximum of 34.6 ± 4.7 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Also, CGS-21680 (a selective A(2A) agonist) increased CF in A(2B)KO mice (maximum of 29 ± 1.9 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 25.1 ± 2.3 ml·min(-1)·g(-1)). SCH-58261 (an A(2A)-selective antagonist) inhibited the NECA-induced increase in CF to a significantly higher degree in A(2B)KO mice (19.3 ± 1.6 vs. 0.5 ± 0.4 ml·min(-1)·g(-1)) compared with WT mice (19 ± 3.5 vs. 3.6 ± 0.5 ml·min(-1)·g(-1)). NECA did not induce any increase in CF in A(2A/2B)DKO mice, whereas a significant increase was observed in WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Furthermore, the mitochondrial ATP-sensitive K(+) (K(ATP)) channel blocker 5-hydroxydecanoate had no effect on the NECA-induced increase in CF in WT mice, whereas the NECA-induced increase in CF in WT (17.6 ± 2 ml·min(-1)·g(-1)), A(2A)KO (12.5 ± 2.3 ml·min(-1)·g(-1)), and A(2B)KO (16.2 ± 0.8 ml·min(-1)·g(-1)) mice was significantly blunted by the K(ATP) channel blocker glibenclamide (to 0.7 ± 0.7, 2.3 ± 1.1, and 0.9 ± 0.4 ml·min(-1)·g(-1), respectively). Also, the CGS-21680-induced (22 ± 2.3 ml·min(-1)·g(-1)) and BAY 60-6583-induced (16.4 ± 1.60 ml·min(-1)·g(-1)) increase in CF in WT mice was significantly blunted by glibenclamide (to 1.2 ± 0.4 and 1.8 ± 1.2 ml·min(-1)·g(-1), respectively). In conclusion, this is the first evidence supporting the compensatory upregulation of A(2A)ARs in A(2B)KO mice and demonstrates that both A(2A)ARs and A(2B)ARs induce CF changes through K(ATP) channels. These results identify AR-mediated CF responses that may lead to better therapeutic approaches for the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Maryam Sharifi Sanjani
- Department of Physiology and Pharmacology, Center for Cardiovascular Respiratory Sciences, West Virginia University, Morgantown, USA
| | | | | | | | | | | |
Collapse
|
38
|
Andersen H, Jaff MG, Høgh D, Vanhoutte P, Hansen PB. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A2A receptors. Acta Physiol (Oxf) 2011; 203:197-207. [PMID: 21062422 DOI: 10.1111/j.1748-1716.2010.02218.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Adenosine plays an important role in the regulation of heart rate (HR) and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, this study investigated the effect of the nucleoside on mean arterial blood pressure (MAP) and HR in conscious mice. METHODS Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knockout (eNOS(-/-)) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis, involvement of adenosine receptors was investigated in human and mouse renal blood vessels. RESULTS Bolus infusion of 0.5 mg kg(-1) adenosine elicited significant transient decreases in MAP (99.3 ± 2.3 to 70.4 ± 4.5 mmHg) and HR (603.2 ± 18.3 to 364.3 ± 49.2 min(-1)), which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation of adenosine A(2A) receptors with CGS 21680 (0.02 mg kg(-1)) caused a significant reduction in MAP from 99.6 ± 1.2 to 73.1 ± 3.6 mmHg accompanied by tachycardia (610.5 ± 9.3 to 677.5 ± 9.5 min(-1)). The reduction in MAP observed after adenosine or CGS 21680 administrations was not significantly different in WT and eNOS(-/-) mice. In isolated human and mouse intrarenal arteries, adenosine caused a relaxation dependent on A(2A) adenosine receptor activation. A(2A) receptors were present in both human and mouse arteries whereas A(1) and A(2B) receptors were only present in mouse arteries. CONCLUSION In conclusion, acute adenosine administration and selective stimulation of adenosine A(2A) receptors results in an immediate, transient eNOS-independent reduction in MAP. A(2A) receptor activation causes relaxation of human and mouse arteries.
Collapse
Affiliation(s)
- H Andersen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|
39
|
Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Microcirculation 2011; 17:600-7. [PMID: 21044214 DOI: 10.1111/j.1549-8719.2010.00054.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was designed to elucidate the contribution of adenosine A(2A) and A(2B) receptors to coronary reactive hyperemia and downstream K(+) channels involved. Coronary blood flow was measured in open-chest anesthetized dogs. Adenosine dose-dependently increased coronary flow from 0.72 ± 0.1 to 2.6 ± 0.5 mL/minute/g under control conditions. Inhibition of A(2A) receptors with SCH58261 (1 μm) attenuated adenosine-induced dilation by ∼50%, while combined administration with the A(2B) receptor antagonist alloxazine (3 μm) produced no additional effect. SCH58261 significantly reduced reactive hyperemia in response to a transient 15 second occlusion; debt/repayment ratio decreased from 343 ± 63 to 232 ± 44%. Alloxazine alone attenuated adenosine-induced increases in coronary blood flow by ∼30% but failed to alter reactive hyperemia. A(2A) receptor agonist CGS21680 (10 μg bolus) increased coronary blood flow by 3.08 ± 0.31 mL/minute/g. This dilator response was attenuated to 0.76 ± 0.14 mL/minute/g by inhibition of K(V) channels with 4-aminopyridine (0.3mm) and to 0.11 ± 0.31 mL/minute/g by inhibition of K(ATP) channels with glibenclamide (3 mg/kg). Combined administration abolished vasodilation to CGS21680. These data indicate that A(2A) receptors contribute to coronary vasodilation in response to cardiac ischemia via activation of K(V) and K(ATP) channels.
Collapse
Affiliation(s)
- Zachary C Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
40
|
Feldman AM, Cheksis-Feiner E, Hamad E, Chan T. Adenosine receptor subtypes and the heart failure phenotype: translating lessons from mice to man. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2011; 122:198-214. [PMID: 21686225 PMCID: PMC3116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Adenosine plays an important role in the pathophysiology of heart failure and in myocardial protection during ischemia and reperfusion. The action of adenosine in the heart is mediated by four G-protein-coupled receptors: A(1)-AR and A(3)-AR, which act via Gα(1), and A(2A)-AR and A(2B)-AR, which act via Gα(s). Understanding of cellular signaling pathways triggered by adenosine has been complicated by the availability of only partially specific adenosine agonists/antagonists. Adenosine signaling appears to be at times redundant in receptor function, and cellular signaling pathways for adenosine are multiple, parallel, and interrelated. Data obtained about the specific role of individual adenosine receptors, through the genetic modulation of receptors in murine hearts have provided important information about the role of adenosine receptors in the heart. Here we review existing data and present new results that clarify the function of individual adenosine receptors in the heart and their role in the development of left ventricular dysfunction, and about the downstream signaling systems that are modified by adenosine receptor activation.
Collapse
Affiliation(s)
- Arthur M Feldman
- Jefferson Medical College, Department of Medicine, 1025 Walnut Street, Suite 822, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
41
|
Thakur S, Du J, Hourani S, Ledent C, Li JM. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem 2010; 285:40104-13. [PMID: 20940302 PMCID: PMC3000993 DOI: 10.1074/jbc.m110.184606] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs) express a Nox2 enzyme, which, by generating reactive oxygen species (ROS), contributes to EC redox signaling and angiotensin II (AngII)-induced endothelial dysfunction. ECs also express abundantly an adenosine A(2A) receptor (A(2A)R), but its role in EC ROS production remains unknown. In this study, we investigated the role of A(2A)R in the regulation of Nox2 activity and signaling in ECs with or without acute AngII stimulation. In cultured ECs (SVEC4-10), AngII (100 nm, 30 min) significantly increased Nox2 membrane translocation and association with A(2A)R. These were accompanied by p47(phox), ERK1/2, p38 MAPK, and Akt phosphorylation and an increased ROS production (169 ± 0.04%). These AngII effects were inhibited back to the control levels by a specific A(2A)R antagonist (SCH58261), or adenosine deaminase, or by knockdown of A(2A)R or Nox2 using specific siRNAs. Knockdown of A(2A)R, as determined by Western blotting, decreased Nox2 and p47(phox) expression. In wild-type mouse aorta, SCH58261 significantly reduced acute AngII-induced ROS production and preserved endothelium-dependent vessel relaxation to acetylcholine. These results were further confirmed by using aortas from A(2A)R knock-out mice. In conclusion, A(2A)R is involved in the regulation of EC ROS production by Nox2. Inhibition or blockade of A(2A)R protects ECs from acute AngII-induced oxidative stress, MAPK activation, and endothelium dysfunction.
Collapse
Affiliation(s)
- Sapna Thakur
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Ponnoth DS, Jamal Mustafa S. Adenosine receptors and vascular inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1429-34. [PMID: 20832387 DOI: 10.1016/j.bbamem.2010.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have shown a positive correlation between poor lung function and respiratory disorders like asthma and the development of adverse cardiovascular events. Increased adenosine (AD) levels are associated with lung inflammation which could lead to altered vascular responses and systemic inflammation. There is relatively little known about the cardiovascular effects of adenosine in a model of allergy. We have shown that A(1) adenosine receptors (AR) are involved in altered vascular responses and vascular inflammation in allergic mice. Allergic A(1)wild-type mice showed altered vascular reactivity, increased airway responsiveness and systemic inflammation. Our data suggests that A(1) AR is pro-inflammatory systemically in this model of asthma. There are also reports of the A(2B) receptor having anti-inflammatory effects in vascular stress; however its role in allergy with respect to vascular effects has not been fully explored. In this review, we have focused on the role of adenosine receptors in allergic asthma and the cardiovascular system and possible mechanism(s) of action.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Department of Physiology and Pharmacology, West Virginia University. Morgantown, WV, USA
| | | |
Collapse
|
43
|
Tanimura Y, Vaziri S, Lewis MH. Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists. Behav Brain Res 2010; 210:116-22. [PMID: 20178817 DOI: 10.1016/j.bbr.2010.02.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 11/18/2022]
Abstract
Repetitive behaviors are diagnostic for autism and common in related neurodevelopmental disorders. Despite their clinical importance, underlying mechanisms associated with the expression of these behaviors remain poorly understood. Our lab has previously shown that the rates of spontaneous stereotypy in deer mice (Peromyscus maniculatus) were negatively correlated with enkephalin content, a marker of striatopallidal but not striatonigral neurons. To investigate further the role of the indirect basal ganglia pathway, we examined neuronal activation of the subthalamic nucleus (STN) using cytochrome oxidase (CO) histochemistry in high- and low-stereotypy mice. CO activity in STN was significantly lower in high-stereotypy mice and negatively correlated with the frequency of stereotypy. In addition, exposure to environmental enrichment, which attenuated stereotypy, normalized the activity of STN. Co-administration of the adenosine A(2A) receptor agonist CGS21680 and the A(1) receptor agonist CPA attenuated stereotypy dose-dependently. The significant reduction associated with the lowest dose of the drug combination tested was due to its effects on mice with lower baseline levels of stereotypy. Higher doses of the drug combination were required to show robust behavioral effects, and presumably requisite activation of the indirect pathway, in high-stereotypy mice. These findings support that decreased indirect pathway activity is linked to the expression of high levels of stereotypy in deer mice and that striatal A(1) and A(2A) receptors may provide promising therapeutic targets for the treatment of repetitive behaviors in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yoko Tanimura
- Departments of Psychiatry and Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|