1
|
Copier JS, Verkerk AO, Lodder EM. HCN4 in the atrioventricular node. Heart Rhythm 2025:S1547-5271(25)00200-0. [PMID: 39988103 DOI: 10.1016/j.hrthm.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) drives the funny current in cardiac pacemaker regions. Its involvement in sinoatrial node pacemaker generation is well known, but its function in the atrioventricular (AV) node (AVN) has not intensively been studied. HCN4 is expressed in the AVN, and its expression within the AVN seems similar across mammalian species with HCN4 presence in the inferior nodal extensions, compact node, and AV bundle. The main direct regulators of HCN4 are cAMP and protein kinase A. In addition, indirect regulators may affect HCN4 via trafficking and localization. However, these effects are underexplored in the AVN. AVN-specific effects in knockout and knockin mice include reduced funny current density and increased AV block. HCN4 expression in the AVN could be affected by aging, exercise, heart failure, and diabetes. This could underlie changes in PR interval, atria-His interval, Wenckebach cycle length, and AVN effective refractory period. Clinical reports link the HCN4 variant G1097W to AV block. Other clinical data come from studies assessing ivabradine, an HCN4 inhibitor. In animals, ivabradine resulted in prolonged PR and atrial-his intervals. To date, uncertainty regarding the role of HCN4 in the AVN remains. However, AVN-focused studies suggest HCN4's importance for AVN function. This review summarizes recent findings and highlights the involvement of HCN4 in normal and pathological AVN function.
Collapse
Affiliation(s)
- Jaël S Copier
- Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; Medical Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Experimental Cardiology, Amsterdam UMC, Amsterdam, The Netherlands; Heart Failure & Arrhythmias, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Zadorozny L, Du J, Supanekar N, Annamalai K, Yu Q, Wang M. Caveolin and oxidative stress in cardiac pathology. Front Physiol 2025; 16:1550647. [PMID: 40041164 PMCID: PMC11876135 DOI: 10.3389/fphys.2025.1550647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Caveolins interact with signaling molecules within caveolae and subcellular membranes. Dysregulation of caveolin function and protein abundance contributes to cardiac pathophysiological processes, driving the development and progression of heart disease. Reactive oxygen species (ROS) play a critical role in maintaining cellular homeostasis and are key contributors to the pathophysiological mechanisms of cardiovascular disorders. Caveolins have been shown to modulate oxidative stress and regulate redox homeostasis. However, the specific roles of caveolins, particularly caveolin-1 and caveolin-3, in regulating ROS production during cardiac pathology remain unclear. This mini-review article highlights the correlation between caveolins and oxidative stress in maintaining cardiovascular health and modulating cardiac diseases, specifically in myocardial ischemia, heart failure, diabetes-induced metabolic cardiomyopathy, and septic cardiomyopathy. A deeper understanding of caveolin-mediated mechanisms may pave the way for innovative therapeutic approaches to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Lauren Zadorozny
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jiayue Du
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Neil Supanekar
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Karthik Annamalai
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qing Yu
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Meijing Wang
- Center for Surgical Sciences, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Maruyama N, Ogata T, Kasahara T, Hamaoka T, Higuchi Y, Tsuji Y, Tomita S, Sakamoto A, Nakanishi N, Matoba S. Loss of Cavin-2 destabilizes phosphatase and tensin homologue and enhances Akt signalling pathway in cardiomyocytes. Cardiovasc Res 2024; 120:1562-1576. [PMID: 38861679 DOI: 10.1093/cvr/cvae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
AIMS Specific cavins and caveolins, known as caveola-related proteins, have been implicated in cardiac hypertrophy and myocardial injury. Cavin-2 forms complexes with other caveola-related proteins, but the role of Cavin-2 in cardiomyocytes (CMs) is poorly understood. Here, we investigated an unknown function of Cavin-2 in CMs. METHODS AND RESULTS Under cardiac stress-free conditions, systemic Cavin-2 knockout (KO) induced mild and significant CM hypertrophy. Cavin-2 KO suppressed phosphatase and tensin homologue (PTEN) associated with Akt signalling, whereas there was no difference in Akt activity between the hearts of the wild-type and the Cavin-2 KO mice under cardiac stress-free conditions. However, after swim training, CM hypertrophy was more facilitated with enhanced phosphoinositide 3-kinase (PI3K)-Akt activity in the hearts of Cavin-2 KO mice. Cavin-2 knockdown neonatal rat CMs (NRCMs) using adenovirus expressing Cavin-2 short hairpin RNA were hypertrophied and resistant to hypoxia and H2O2-induced apoptosis. Cavin-2 knockdown increased Akt phosphorylation in NRCMs, and an Akt inhibitor inhibited Cavin-2 knockdown-induced anti-apoptotic responses in a dose-dependent manner. Cavin-2 knockdown increased phosphatidylinositol-3,4,5-triphosphate production and attenuated PTEN at the membrane fraction of NRCMs. Immunostaining and immunoprecipitation showed that Cavin-2 was associated with PTEN at the plasma membrane of NRCMs. A protein stability assay showed that Cavin-2 knockdown promoted PTEN destabilization in NRCMs. In an Angiotensin II (2-week continuous infusion)-induced pathological cardiac hypertrophy model, CM hypertrophy and CM apoptosis were suppressed in CM-specific Cavin-2 conditional KO (Cavin-2 cKO) mice. Because Cavin-2 cKO mouse hearts showed increased Akt activity but not decreased extracellular signal-regulated kinase activity, suppression of pathological hypertrophy by Cavin-2 loss may be due to increased survival of healthy CMs. CONCLUSION Cavin-2 plays a negative regulator in the PI3K-Akt signalling in CMs through interaction with PTEN. Loss of Cavin-2 enhances Akt activity by promoting PTEN destabilization, which promotes physiological CM hypertrophy and may enhance Akt-mediated cardioprotective effects against pathological CM hypertrophy.
Collapse
Affiliation(s)
- Naoki Maruyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeru Kasahara
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tetsuro Hamaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
4
|
Kong CH, Dries E. Rad protein: An essential player in L-type Ca2+ channel localization and modulation in cardiomyocytes. J Gen Physiol 2024; 156:e202413629. [PMID: 39172109 PMCID: PMC11344166 DOI: 10.1085/jgp.202413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Rad is an emerging key Cav1.2 modulator. In the present issue of JGP, Elmore, Ahern et al. examine how the Rad C-terminus affects its subcellular distribution and Cav1.2 regulation.
Collapse
Affiliation(s)
- Cherrie H.T. Kong
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Xu C, Zhang G, Wang X, Huang X, Zhang J, Han S, Wang J, Hall DD, Xu R, He F, Chang X, Wang F, Xie W, Wu Z, Song LS, Han P. Ptpn23 Controls Cardiac T-Tubule Patterning by Promoting the Assembly of Dystrophin-Glycoprotein Complex. Circulation 2024; 149:1375-1390. [PMID: 38214189 PMCID: PMC11039371 DOI: 10.1161/circulationaha.123.065767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Cardiac transverse tubules (T-tubules) are anchored to sarcomeric Z-discs by costameres to establish a regular spaced pattern. One of the major components of costameres is the dystrophin-glycoprotein complex (DGC). Nevertheless, how the assembly of the DGC coordinates with the formation and maintenance of T-tubules under physiological and pathological conditions remains unclear. METHODS Given the known role of Ptpn23 (protein tyrosine phosphatase, nonreceptor type 23) in regulating membrane deformation, its expression in patients with dilated cardiomyopathy was determined. Taking advantage of Cre/Loxp, CRISPR/Cas9, and adeno-associated virus 9 (AAV9)-mediated in vivo gene editing, we generated cardiomyocyte-specific Ptpn23 and Actn2 (α-actinin-2, a major component of Z-discs) knockout mice. We also perturbed the DGC by using dystrophin global knockout mice (DmdE4*). MM 4-64 and Di-8-ANEPPS staining, Cav3 immunofluorescence, and transmission electron microscopy were performed to determine T-tubule structure in isolated cells and intact hearts. In addition, the assembly of the DGC with Ptpn23 and dystrophin loss of function was determined by glycerol-gradient fractionation and SDS-PAGE analysis. RESULTS The expression level of Ptpn23 was reduced in failing hearts from dilated cardiomyopathy patients and mice. Genetic deletion of Ptpn23 resulted in disorganized T-tubules with enlarged diameters and progressive dilated cardiomyopathy without affecting sarcomere organization. AAV9-mediated mosaic somatic mutagenesis further indicated a cell-autonomous role of Ptpn23 in regulating T-tubule formation. Genetic and biochemical analyses showed that Ptpn23 was essential for the integrity of costameres, which anchor the T-tubule membrane to Z-discs, through interactions with α-actinin and dystrophin. Deletion of α-actinin altered the subcellular localization of Ptpn23 and DGCs. In addition, genetic inactivation of dystrophin caused similar T-tubule defects to Ptpn23 loss-of-function without affecting Ptpn23 localization at Z-discs. Last, inducible Ptpn23 knockout at 1 month of age showed Ptpn23 is also required for the maintenance of T-tubules in adult cardiomyocytes. CONCLUSIONS Ptpn23 is essential for cardiac T-tubule formation and maintenance along Z-discs. During postnatal heart development, Ptpn23 interacts with sarcomeric α-actinin and coordinates the assembly of the DGC at costameres to sculpt T-tubule spatial patterning and morphology.
Collapse
Affiliation(s)
- Chen Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Ge Zhang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xinjian Wang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xiaozhi Huang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Jiayin Zhang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Shuxian Han
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Jinxi Wang
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Duane D. Hall
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ruoqing Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Xing Chang
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Xie
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Zhichao Wu
- Department of Thoracic surgery, People’s hospital of Xinjiang Uyghur autonomous Region, Urumqi, Xinjiang, 830000
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120
| | - Long-Sheng Song
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Peidong Han
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Wang YF, An ZY, Li JW, Dong ZK, Jin WL. MG53/TRIM72: multi-organ repair protein and beyond. Front Physiol 2024; 15:1377025. [PMID: 38681139 PMCID: PMC11046001 DOI: 10.3389/fphys.2024.1377025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
MG53, a member of the tripartite motif protein family, possesses multiple functionalities due to its classic membrane repair function, anti-inflammatory ability, and E3 ubiquitin ligase properties. Initially recognized for its crucial role in membrane repair, the therapeutic potential of MG53 has been extensively explored in various diseases including muscle injury, myocardial damage, acute lung injury, and acute kidney injury. However, further research has revealed that the E3 ubiquitin ligase characteristics of MG53 also contribute to the pathogenesis of certain conditions such as diabetic cardiomyopathy, insulin resistance, and metabolic syndrome. Moreover, recent studies have highlighted the anti-tumor effects of MG53 in different types of cancer, such as small cell lung cancer, liver cancer, and colorectal cancer; these effects are closely associated with their E3 ubiquitin ligase activities. In summary, MG53 is a multifunctional protein that participates in important physiological and pathological processes of multiple organs and is a promising therapeutic target for various human diseases. MG53 plays a multi-organ protective role due to its membrane repair function and its exertion of anti-tumor effects due to its E3 ubiquitin ligase properties. In addition, the controversial aspect of MG53's E3 ubiquitin ligase properties potentially causing insulin resistance and metabolic syndrome necessitates further cross-validation for clarity.
Collapse
Affiliation(s)
- Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jian-Wen Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Liu SM, Zhao Q, Li WJ, Zhao JQ. Advances in the Study of MG53 in Cardiovascular Disease. Int J Gen Med 2023; 16:6073-6082. [PMID: 38152078 PMCID: PMC10752033 DOI: 10.2147/ijgm.s435030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Cardiovascular diseases represent a global health crisis, and understanding the intricate molecular mechanisms underlying cardiac pathology is crucial for developing effective diagnostic and therapeutic strategies. Mitsugumin-53 (MG53) plays a pivotal role in cell membrane repair, has emerged as a multifaceted player in cardiovascular health. MG53, also known as TRIM72, is primarily expressed in cardiac and skeletal muscle and actively participates in membrane repair processes essential for maintaining cardiomyocyte viability. It promotes k-ion currents, ensuring action potential integrity, and actively engages in repairing myocardial and mitochondrial membranes, preserving cardiac function in the face of oxidative stress. This study discusses the dual impact of MG53 on cardiac health, highlighting its cardioprotective role during ischemia/reperfusion injury, its modulation of cardiac arrhythmias, and its influence on cardiomyopathy. MG53's regulation of metabolic pathways, such as lipid metabolism, underlines its role in diabetic cardiomyopathy, while its potential to mitigate the effects of various cardiac disorders, including those induced by antipsychotic medications and alcohol consumption, warrants further exploration. Furthermore, we examine MG53's diagnostic potential as a biomarker for cardiac injury. Research has shown that MG53 levels correlate with cardiomyocyte damage and may predict major adverse cardiovascular events, highlighting its value as a biomarker. Additionally, exogenous recombinant human MG53 (rhMG53) emerges as a promising therapeutic option, demonstrating its ability to reduce infarct size, inhibit apoptosis, and attenuate fibrotic responses. In summary, MG53's diagnostic and therapeutic potential in cardiovascular diseases presents an exciting avenue for improved patient care and outcomes.
Collapse
Affiliation(s)
- Shan-Mei Liu
- Bayannur Hospital Department of Cardiology, Bayannur City, Inner Mongolia, 015000, People’s Republic of China
| | - Qin Zhao
- Bayannur Hospital Department of Cardiology, Bayannur City, Inner Mongolia, 015000, People’s Republic of China
| | - Wen-Jun Li
- Tangshan Central Hospital, Tangshan, Hebei, 063008, People’s Republic of China
| | - Jian-Quan Zhao
- Bayannur Hospital Department of Cardiology, Bayannur City, Inner Mongolia, 015000, People’s Republic of China
| |
Collapse
|
8
|
D’Alessio A. Unraveling the Cave: A Seventy-Year Journey into the Caveolar Network, Cellular Signaling, and Human Disease. Cells 2023; 12:2680. [PMID: 38067108 PMCID: PMC10705299 DOI: 10.3390/cells12232680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In the mid-1950s, a groundbreaking discovery revealed the fascinating presence of caveolae, referred to as flask-shaped invaginations of the plasma membrane, sparking renewed excitement in the field of cell biology. Caveolae are small, flask-shaped invaginations in the cell membrane that play crucial roles in diverse cellular processes, including endocytosis, lipid homeostasis, and signal transduction. The structural stability and functionality of these specialized membrane microdomains are attributed to the coordinated activity of scaffolding proteins, including caveolins and cavins. While caveolae and caveolins have been long appreciated for their integral roles in cellular physiology, the accumulating scientific evidence throughout the years reaffirms their association with a broad spectrum of human disorders. This review article aims to offer a thorough account of the historical advancements in caveolae research, spanning from their initial discovery to the recognition of caveolin family proteins and their intricate contributions to cellular functions. Furthermore, it will examine the consequences of a dysfunctional caveolar network in the development of human diseases.
Collapse
Affiliation(s)
- Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Sanchez-Alonso JL, Fedele L, Copier JS, Lucarelli C, Mansfield C, Judina A, Houser SR, Brand T, Gorelik J. Functional LTCC-β 2AR Complex Needs Caveolin-3 and Is Disrupted in Heart Failure. Circ Res 2023; 133:120-137. [PMID: 37313722 PMCID: PMC10321517 DOI: 10.1161/circresaha.123.322508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Beta-2 adrenergic receptors (β2ARs) but not beta-2 adrenergic receptors (β1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and β adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS Global signaling between LTCCs and β adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and β1AR or β2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when β2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and β2AR was lost. Interestingly, local stimulation of β1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via β1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the β2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream β1AR and results in an increase in LTCC current. CONCLUSIONS Regulation of the LTCC activity by proximity coupling mechanisms occurs only via β2AR, but not β1AR. This may explain how β2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.
Collapse
Affiliation(s)
- Jose L. Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Jaël S. Copier
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Carla Lucarelli
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Aleksandra Judina
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Steven R. Houser
- Department of Physiology, Cardiovascular Research Center, Lewis Katz Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, United Kingdom (J.L.S.-A., L.F., J.S.C., C.L., C.M., A.J., T.B., J.G.)
| |
Collapse
|
10
|
Quinn CJ, Dibb KM. The origin of T-tubules. eLife 2023; 12:e88954. [PMID: 37339063 DOI: 10.7554/elife.88954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Ring-like structures made up of caveolae appear to drive the development of membrane invaginations called T-tubules which are important for muscle contraction.
Collapse
Affiliation(s)
- Callum J Quinn
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Huang CLH, Lei M. Cardiomyocyte electrophysiology and its modulation: current views and future prospects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220160. [PMID: 37122224 PMCID: PMC10150219 DOI: 10.1098/rstb.2022.0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Normal and abnormal cardiac rhythms are of key physiological and clinical interest. This introductory article begins from Sylvio Weidmann's key historic 1950s microelectrode measurements of cardiac electrophysiological activity and Singh & Vaughan Williams's classification of cardiotropic targets. It then proceeds to introduce the insights into cardiomyocyte function and its regulation that subsequently emerged and their therapeutic implications. We recapitulate the resulting view that surface membrane electrophysiological events underlying cardiac excitation and its initiation, conduction and recovery constitute the final common path for the cellular mechanisms that impinge upon this normal or abnormal cardiac electrophysiological activity. We then consider progress in the more recently characterized successive regulatory hierarchies involving Ca2+ homeostasis, excitation-contraction coupling and autonomic G-protein signalling and their often reciprocal interactions with the surface membrane events, and their circadian rhythms. Then follow accounts of longer-term upstream modulation processes involving altered channel expression, cardiomyocyte energetics and hypertrophic and fibrotic cardiac remodelling. Consideration of these developments introduces each of the articles in this Phil. Trans. B theme issue. The findings contained in these articles translate naturally into recent classifications of cardiac electrophysiological targets and drug actions, thereby encouraging future iterations of experimental cardiac electrophysiological discovery, and testing directed towards clinical management. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
12
|
Dixon RE, Trimmer JS. Endoplasmic Reticulum-Plasma Membrane Junctions as Sites of Depolarization-Induced Ca 2+ Signaling in Excitable Cells. Annu Rev Physiol 2023; 85:217-243. [PMID: 36202100 PMCID: PMC9918718 DOI: 10.1146/annurev-physiol-032122-104610] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane contact sites between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are found in all eukaryotic cells. In excitable cells they play unique roles in organizing diverse forms of Ca2+ signaling as triggered by membrane depolarization. ER-PM junctions underlie crucial physiological processes such as excitation-contraction coupling, smooth muscle contraction and relaxation, and various forms of activity-dependent signaling and plasticity in neurons. In many cases the structure and molecular composition of ER-PM junctions in excitable cells comprise important regulatory feedback loops linking depolarization-induced Ca2+ signaling at these sites to the regulation of membrane potential. Here, we describe recent findings on physiological roles and molecular composition of native ER-PM junctions in excitable cells. We focus on recent studies that provide new insights into canonical forms of depolarization-induced Ca2+ signaling occurring at junctional triads and dyads of striated muscle, as well as the diversity of ER-PM junctions in these cells and in smooth muscle and neurons.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
13
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
14
|
Mackrill JJ. Evolution of the cardiac dyad. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210329. [PMID: 36189805 PMCID: PMC9527923 DOI: 10.1098/rstb.2021.0329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiac dyads are the site of communication between the sarcoplasmic reticulum (SR) and infoldings of the sarcolemma called transverse-tubules (TT). During heart excitation-contraction coupling, Ca2+-influx through L-type Ca2+ channels in the TT is amplified by release of Ca2+-from the SR via type 2 ryanodine receptors, activating the contractile apparatus. Key proteins involved in cardiac dyad function are bridging integrator 1 (BIN1), junctophilin 2 and caveolin 3. The work presented here aims to reconstruct the evolutionary history of the cardiac dyad, by surveying the scientific literature for ultrastructural evidence of these junctions across all animal taxa; phylogenetically reconstructing the evolutionary history of BIN1; and by comparing peptide motifs involved in TT formation by this protein across metazoans. Key findings are that cardiac dyads have been identified in mammals, arthropods and molluscs, but not in other animals. Vertebrate BIN1 does not group with members of this protein family from other taxa, suggesting that invertebrate BINs are paralogues rather orthologues of this gene. Comparisons of BIN1 peptide sequences of mammals with those of other vertebrates reveals novel features that might contribute to TT and dyad formation. The analyses presented here suggest that the cardiac dyad evolved independently several times during metazoan evolution: an unexpected observation given the diversity of heart structure and function between different animal taxa. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- John James Mackrill
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Western Road, Cork T12 XF62, Republic of Ireland
| |
Collapse
|
15
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Strimaityte D, Tu C, Yanez A, Itzhaki I, Wu H, Wu JC, Yang H. Contractility and Calcium Transient Maturation in the Human iPSC-Derived Cardiac Microfibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35376-35388. [PMID: 35901275 PMCID: PMC9780031 DOI: 10.1021/acsami.2c07326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are considered immature in the sarcomere organization, contractile machinery, calcium transient, and transcriptome profile, which prevent them from further applications in modeling and studying cardiac development and disease. To improve the maturity of hiPSC-CMs, here, we engineered the hiPSC-CMs into cardiac microfibers (iCMFs) by a stencil-based micropatterning method, which enables the hiPSC-CMs to be aligned in an end-to-end connection for prolonged culture on the hydrogel of physiological stiffness. A series of characterization approaches were performed to evaluate the maturation in iCMFs on both structural and functional levels, including immunohistochemistry, calcium transient, reverse-transcription quantitative PCR, cardiac contractility, and electrical pacing analysis. Our results demonstrate an improved cardiac maturation of hiPSC-CMs in iCMFs compared to micropatterned or random single hiPSC-CMs and hiPSC-CMs in a random cluster at the same cell number of iCMFs. We found an increased sarcomere length, better regularity and alignment of sarcomeres, enhanced contractility, matured calcium transient, and T-tubule formation and improved adherens junction and gap junction formation. The hiPSC-CMs in iCMFs showed a robust calcium cycling in response to the programmed and continuous electrical pacing from 0.5 to 7 Hz. Moreover, we generated the iCMFs with hiPSC-CMs with mutations in myosin-binding protein C (MYBPC3) to have a proof-of-concept of iCMFs in modeling cardiac hypertrophic phenotype. These findings suggest that the multipatterned iCMF connection of hiPSC-CMs boosts the cardiac maturation structurally and functionally, which will reveal the full potential of the application of hiPSC-CM models in disease modeling of cardiomyopathy and cardiac regenerative medicine.
Collapse
Affiliation(s)
- Dovile Strimaityte
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Chengyi Tu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Apuleyo Yanez
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Ilanit Itzhaki
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haodi Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joseph C. Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
17
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
18
|
Abstract
In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca2+ release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies.
Collapse
Affiliation(s)
- Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
19
|
Lang D, Medvedev RY, Ratajczyk L, Zheng J, Yuan X, Lim E, Han OY, Valdivia HH, Glukhov AV. Region-specific distribution of transversal-axial tubule system organization underlies heterogeneity of calcium dynamics in the right atrium. Am J Physiol Heart Circ Physiol 2022; 322:H269-H284. [PMID: 34951544 PMCID: PMC8782648 DOI: 10.1152/ajpheart.00381.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The atrial myocardium demonstrates the highly heterogeneous organization of the transversal-axial tubule system (TATS), although its anatomical distribution and region-specific impact on Ca2+ dynamics remain unknown. Here, we developed a novel method for high-resolution confocal imaging of TATS in intact live mouse atrial myocardium and applied a custom-developed MATLAB-based computational algorithm for the automated analysis of TATS integrity. We observed a twofold higher (P < 0.01) TATS density in the right atrial appendage (RAA) than in the intercaval regions (ICR, the anatomical region between the superior vena cava and atrioventricular junction and between the crista terminalis and interatrial septum). Whereas RAA predominantly consisted of well-tubulated myocytes, ICR showed partially tubulated/untubulated cells. Similar TATS distribution was also observed in healthy human atrial myocardium sections. In both mouse atrial preparations and isolated mouse atrial myocytes, we observed a strong anatomical correlation between TATS distribution and Ca2+ transient synchronization and rise-up time. This region-specific difference in Ca2+ transient morphology disappeared after formamide-induced detubulation. ICR myocytes showed a prolonged action potential duration at 80% of repolarization as well as a significantly lower expression of RyR2 and Cav1.2 proteins but similar levels of NCX1 and Cav1.3 compared with RAA tissue. Our findings provide a detailed characterization of the region-specific distribution of TATS in mouse and human atrial myocardium, highlighting the structural foundation for anatomical heterogeneity of Ca2+ dynamics and contractility in the atria. These results could indicate different roles of TATS in Ca2+ signaling at distinct anatomical regions of the atria and provide mechanistic insight into pathological atrial remodeling.NEW & NOTEWORTHY Mouse and human atrial myocardium demonstrate high variability in the organization of the transversal-axial tubule system (TATS), with more organized TATS expressed in the right atrial appendage. TATS distribution governs anatomical heterogeneity of Ca2+ dynamics and thus could contribute to integral atrial contractility, mechanics, and arrhythmogenicity.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Lucas Ratajczyk
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jingjing Zheng
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Xiaoyu Yuan
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Evi Lim
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Owen Y Han
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Hector H Valdivia
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
20
|
Dixon RE. Nanoscale Organization, Regulation, and Dynamic Reorganization of Cardiac Calcium Channels. Front Physiol 2022; 12:810408. [PMID: 35069264 PMCID: PMC8769284 DOI: 10.3389/fphys.2021.810408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
The architectural specializations and targeted delivery pathways of cardiomyocytes ensure that L-type Ca2+ channels (CaV1.2) are concentrated on the t-tubule sarcolemma within nanometers of their intracellular partners the type 2 ryanodine receptors (RyR2) which cluster on the junctional sarcoplasmic reticulum (jSR). The organization and distribution of these two groups of cardiac calcium channel clusters critically underlies the uniform contraction of the myocardium. Ca2+ signaling between these two sets of adjacent clusters produces Ca2+ sparks that in health, cannot escalate into Ca2+ waves because there is sufficient separation of adjacent clusters so that the release of Ca2+ from one RyR2 cluster or supercluster, cannot activate and sustain the release of Ca2+ from neighboring clusters. Instead, thousands of these Ca2+ release units (CRUs) generate near simultaneous Ca2+ sparks across every cardiomyocyte during the action potential when calcium induced calcium release from RyR2 is stimulated by depolarization induced Ca2+ influx through voltage dependent CaV1.2 channel clusters. These sparks summate to generate a global Ca2+ transient that activates the myofilaments and thus the electrical signal of the action potential is transduced into a functional output, myocardial contraction. To generate more, or less contractile force to match the hemodynamic and metabolic demands of the body, the heart responds to β-adrenergic signaling by altering activity of calcium channels to tune excitation-contraction coupling accordingly. Recent accumulating evidence suggests that this tuning process also involves altered expression, and dynamic reorganization of CaV1.2 and RyR2 channels on their respective membranes to control the amplitude of Ca2+ entry, SR Ca2+ release and myocardial function. In heart failure and aging, altered distribution and reorganization of these key Ca2+ signaling proteins occurs alongside architectural remodeling and is thought to contribute to impaired contractile function. In the present review we discuss these latest developments, their implications, and future questions to be addressed.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Bhullar S, Shah A, Dhalla N. Mechanisms for the development of heart failure and improvement of cardiac function by angiotensin-converting enzyme inhibitors. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors, which prevent the conversion of angiotensin I to angiotensin II, are well-known for the treatments of cardiovascular diseases, such as heart failure, hypertension and acute coronary syndrome. Several of these inhibitors including captopril, enalapril, ramipril, zofenopril and imidapril attenuate vasoconstriction, cardiac hypertrophy and adverse cardiac remodeling, improve clinical outcomes in patients with cardiac dysfunction and decrease mortality. Extensive experimental and clinical research over the past 35 years has revealed that the beneficial effects of ACE inhibitors in heart failure are associated with full or partial prevention of adverse cardiac remodeling. Since cardiac function is mainly determined by coordinated activities of different subcellular organelles, including sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils, for regulating the intracellular concentration of Ca2+ and myocardial metabolism, there is ample evidence to suggest that adverse cardiac remodelling and cardiac dysfunction in the failing heart are the consequence of subcellular defects. In fact, the improvement of cardiac function by different ACE inhibitors has been demonstrated to be related to the attenuation of abnormalities in subcellular organelles for Ca2+-handling, metabolic alterations, signal transduction defects and gene expression changes in failing cardiomyocytes. Various ACE inhibitors have also been shown to delay the progression of heart failure by reducing the formation of angiotensin II, the development of oxidative stress, the level of inflammatory cytokines and the occurrence of subcellular defects. These observations support the view that ACE inhibitors improve cardiac function in the failing heart by multiple mechanisms including the reduction of oxidative stress, myocardial inflammation and Ca2+-handling abnormalities in cardiomyocytes.
Collapse
|
22
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Ahern BM, Sebastian A, Levitan BM, Goh J, Andres DA, Satin J. L-type channel inactivation balances the increased peak calcium current due to absence of Rad in cardiomyocytes. J Gen Physiol 2021; 153:212476. [PMID: 34269819 PMCID: PMC8289690 DOI: 10.1085/jgp.202012854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
The L-type Ca2+ channel (LTCC) provides trigger calcium to initiate cardiac contraction in a graded fashion that is regulated by L-type calcium current (ICa,L) amplitude and kinetics. Inactivation of LTCC is controlled to fine-tune calcium flux and is governed by voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). Rad is a monomeric G protein that regulates ICa,L and has recently been shown to be critical to β-adrenergic receptor (β-AR) modulation of ICa,L. Our previous work showed that cardiomyocyte-specific Rad knockout (cRadKO) resulted in elevated systolic function, underpinned by an increase in peak ICa,L, but without pathological remodeling. Here, we sought to test whether Rad-depleted LTCC contributes to the fight-or-flight response independently of β-AR function, resulting in ICa,L kinetic modifications to homeostatically balance cardiomyocyte function. We recorded whole-cell ICa,L from ventricular cardiomyocytes from inducible cRadKO and control (CTRL) mice. The kinetics of ICa,L stimulated with isoproterenol in CTRL cardiomyocytes were indistinguishable from those of unstimulated cRadKO cardiomyocytes. CDI and VDI are both enhanced in cRadKO cardiomyocytes without differences in action potential duration or QT interval. To confirm that Rad loss modulates LTCC independently of β-AR stimulation, we crossed a β1,β2-AR double-knockout mouse with cRadKO, resulting in a Rad-inducible triple-knockout mouse. Deletion of Rad in cardiomyocytes that do not express β1,β2-AR still yielded modulated ICa,L and elevated basal heart function. Thus, in the absence of Rad, increased Ca2+ influx is homeostatically balanced by accelerated CDI and VDI. Our results indicate that the absence of Rad can modulate the LTCC without contribution of β1,β2-AR signaling and that Rad deletion supersedes β-AR signaling to the LTCC to enhance in vivo heart function.
Collapse
Affiliation(s)
- Brooke M Ahern
- Department of Physiology, University of Kentucky, Lexington, KY
| | | | - Bryana M Levitan
- Department of Physiology, University of Kentucky, Lexington, KY.,Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY
| | - Jensen Goh
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
24
|
Tyan L, Turner D, Komp KR, Medvedev RY, Lim E, Glukhov AV. Caveolin-3 is required for regulation of transient outward potassium current by angiotensin II in mouse atrial myocytes. Am J Physiol Heart Circ Physiol 2021; 320:H787-H797. [PMID: 33416459 PMCID: PMC8082791 DOI: 10.1152/ajpheart.00569.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023]
Abstract
Angiotensin II (AngII) is a key mediator of the renin-angiotensin system and plays an important role in the regulation of cardiac electrophysiology by affecting various cardiac ion currents, including transient outward potassium current, Ito. AngII receptors and molecular components of Ito, Kv4.2 and Kv4.3 channels, have been linked to caveolae structures. However, their functional interaction and the importance of such proximity within 50- to 100-nm caveolar nanodomains remain unknown. To address this, we studied the mechanisms of Ito regulation by AngII in atrial myocytes of wild-type (WT) and cardiac-specific caveolin-3 (Cav3) conditional knockout (Cav3KO) mice. We showed that in WT atrial myocytes, a short-term (2 h) treatment with AngII (5 µM) significantly reduced Ito density. This effect was prevented 1) by a 30-min pretreatment with a selective antagonist of AngII receptor 1 (Ang1R) losartan (2 µM) or 2) by a selective inhibition of protein kinase C (PKC) by BIM1 (10 µM). The effect of AngII on Ito was completely abolished in Cav3-KO mice, with no change in a baseline Ito current density. In WT atria, Ang1Rs co-localized with Cav3, and the expression of Ang1Rs was significantly decreased in Cav3KO in comparison with WT mice, whereas no change in Kv4.2 and Kv4.3 protein expression was observed. Overall, our findings demonstrate that Cav3 is involved in the regulation of Ang1R expression and is required for the modulation of Ito by AngII in mouse atrial myocytes.NEW & NOTEWORTHY Angiotensin II receptor 1 is associated with caveolae and caveolar scaffolding protein caveolin-3 in mouse atrial myocytes that is required for the regulation of Ito by angiotensin II. Downregulation of caveolae/caveolin-3 disrupts this regulation and may be implicated in pathophysiological atrial remodeling.
Collapse
Affiliation(s)
- Leonid Tyan
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Daniel Turner
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Karlie R Komp
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Roman Y Medvedev
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Evi Lim
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alexey V Glukhov
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
25
|
Li J, Hua Y, Miyagawa S, Zhang J, Li L, Liu L, Sawa Y. hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. Int J Mol Sci 2020; 21:E8893. [PMID: 33255277 PMCID: PMC7727666 DOI: 10.3390/ijms21238893] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Relevant, predictive normal, or disease model systems are of vital importance for drug development. The difference between nonhuman models and humans could contribute to clinical trial failures despite ideal nonhuman results. As a potential substitute for animal models, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) provide a powerful tool for drug toxicity screening, modeling cardiovascular diseases, and drug discovery. Here, we review recent hiPSC-CM disease models and discuss the features of hiPSC-CMs, including subtype and maturation and the tissue engineering technologies for drug assessment. Updates from the international multisite collaborators/administrations for development of novel drug discovery paradigms are also summarized.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
- Department of Cell Design for Tissue Construction, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Lingjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
- Department of Design for Tissue Regeneration, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| |
Collapse
|
26
|
Abstract
Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - William Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans 2020; 48:165-177. [PMID: 32010944 DOI: 10.1042/bst20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.
Collapse
|
28
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
29
|
Glucocorticoids preserve the t-tubular system in ventricular cardiomyocytes by upregulation of autophagic flux. Basic Res Cardiol 2019; 114:47. [PMID: 31673803 DOI: 10.1007/s00395-019-0758-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
A major contributor to contractile dysfunction in heart failure is remodelling and loss of the cardiomyocyte transverse tubular system (t-system), but underlying mechanisms and signalling pathways remain elusive. It has been shown that dexamethasone promotes t-tubule development in stem cell-derived cardiomyocytes and that cardiomyocyte-specific glucocorticoid receptor (GR) knockout (GRKO) leads to heart failure. Here, we studied if the t-system is altered in GRKO hearts and if GR signalling is required for t-system preservation in adult cardiomyocytes. Confocal and 3D STED microscopy of myocardium from cardiomyocyte-specific GRKO mice revealed decreased t-system density and increased distances between ryanodine receptors (RyR) and L-type Ca2+ channels (LTCC). Because t-system remodelling and heart failure are intertwined, we investigated the underlying mechanisms in vitro. Ventricular cardiomyocytes from failing human and healthy adult rat hearts cultured in the absence of glucocorticoids (CTRL) showed distinctively lower t-system density than cells treated with dexamethasone (EC50 1.1 nM) or corticosterone. The GR antagonist mifepristone abrogated the effect of dexamethasone. Dexamethasone improved RyR-LTCC coupling and synchrony of intracellular Ca2+ release, but did not alter expression levels of t-system-associated proteins junctophilin-2 (JPH2), bridging integrator-1 (BIN1) or caveolin-3 (CAV3). Rather, dexamethasone upregulated LC3B and increased autophagic flux. The broad-spectrum protein kinase inhibitor staurosporine prevented dexamethasone-induced upregulation of autophagy and t-system preservation, and autophagy inhibitors bafilomycin A and chloroquine accelerated t-system loss. Conversely, induction of autophagy by rapamycin or amino acid starvation preserved the t-system. These findings suggest that GR signalling and autophagy are critically involved in t-system preservation and remodelling in the heart.
Collapse
|
30
|
Raza A, Xie Z, Chan EC, Chen WS, Scott LM, Robin Eisch A, Krementsov DN, Rosenberg HF, Parikh SM, Blankenhorn EP, Teuscher C, Druey KM. A natural mouse model reveals genetic determinants of systemic capillary leak syndrome (Clarkson disease). Commun Biol 2019; 2:398. [PMID: 31701027 PMCID: PMC6823437 DOI: 10.1038/s42003-019-0647-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
The systemic capillary leak syndrome (SCLS, Clarkson disease) is a disorder of unknown etiology characterized by recurrent episodes of vascular leakage of proteins and fluids into peripheral tissues, resulting in whole-body edema and hypotensive shock. The pathologic mechanisms and genetic basis for SCLS remain elusive. Here we identify an inbred mouse strain, SJL, which recapitulates cardinal features of SCLS, including susceptibility to histamine- and infection-triggered vascular leak. We named this trait "Histamine hypersensitivity" (Hhs/Hhs) and mapped it to Chromosome 6. Hhs is syntenic to the genomic locus most strongly associated with SCLS in humans (3p25.3), revealing that the predisposition to develop vascular hyperpermeability has a strong genetic component conserved between humans and mice and providing a naturally occurring animal model for SCLS. Genetic analysis of Hhs may reveal orthologous candidate genes that contribute not only to SCLS, but also to normal and dysregulated mechanisms underlying vascular barrier function more generally.
Collapse
Affiliation(s)
- Abbas Raza
- Departments of Medicine and Pathology, University of Vermont School of Medicine, Burlington, VT 05405 USA
| | - Zhihui Xie
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Eunice C. Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Wei-Sheng Chen
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Linda M. Scott
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - A. Robin Eisch
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont School of Medicine, Burlington, VT 05405 USA
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| | - Samir M. Parikh
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215 USA
| | - Elizabeth P. Blankenhorn
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Cory Teuscher
- Departments of Medicine and Pathology, University of Vermont School of Medicine, Burlington, VT 05405 USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
31
|
Kitmitto A, Baudoin F, Cartwright EJ. Cardiomyocyte damage control in heart failure and the role of the sarcolemma. J Muscle Res Cell Motil 2019; 40:319-333. [PMID: 31520263 PMCID: PMC6831538 DOI: 10.1007/s10974-019-09539-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023]
Abstract
The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell's first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key 'wound-healing' proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.
Collapse
Affiliation(s)
- Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK.
| | - Florence Baudoin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| |
Collapse
|
32
|
Nader M. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Eur J Pharmacol 2019; 858:172491. [PMID: 31233748 DOI: 10.1016/j.ejphar.2019.172491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022]
Abstract
The excitation-contraction (E-C) module involves a harmonized correspondence between the sarcolemma and the sarcoplasmic reticulum. This is provided by membrane proteins, which primarily shape the caveolae, the T-tubule/Sarcoplasmic reticulum (TT/SR) junction, and the intercalated discs (ICDs). Distortion of either one of these structures impairs myocardial contraction, and subsequently translates into cardiac failure. Thus, detailed studies on the molecular cues of the E-C module are becoming increasingly necessary to pharmacologically eradicate cardiac failure Herein we reviewed the organization of caveolae, TT/SR junctions, and the ICDs in the heart, with special attention to the Sarcolemma Membrane Associated Protein (SLMAP) and striatin (STRN) in cardiac membranes biology and cardiomyocyte contraction. We emphasized on their in vivo and in vitro signaling in cardiac function/dysfunction. SLMAP is a cardiac membrane protein that plays an important role in E-C coupling and the adrenergic response of the heart. Similarly, STRN is a dynamic protein that is also involved in cardiac E-C coupling and ICD-related cardiomyopathies. Both SLMAP and STRN are linked to cardiac conditions, including heart failure, and their role in cardiomyocyte function was elucidated in our laboratory. They interact together in a protein complex that holds therapeutic potentials for cardiac dysfunction. This review is the first of its kind to conceptualize the role of the SLMAP/STRN complex in cardiac function and failure. It provides in depth information on the signaling of these two proteins and projects their interaction as a novel therapeutic target for cardiac failure.
Collapse
Affiliation(s)
- Moni Nader
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, 11533, P.O. Box 50927, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Ren X, Lamb GD, Murphy RM. Distribution and activation of matrix metalloproteinase-2 in skeletal muscle fibers. Am J Physiol Cell Physiol 2019; 317:C613-C625. [PMID: 31241984 DOI: 10.1152/ajpcell.00113.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A substantial intracellular localization of matrix metalloproteinase 2 (MMP2) has been reported in cardiomyocytes, where it plays a role in the degradation of the contractile apparatus following ischemia-reperfusion injury. Whether MMP2 may have a similar function in skeletal muscle is unknown. This study determined that the absolute amount of MMP2 is similar in rat skeletal and cardiac muscle and human muscle (~10-18 nmol/kg muscle wet wt) but is ~50- to 100-fold less than the amount of calpain-1. We compared mechanically skinned muscle fibers, where the extracellular matrix (ECM) is completely removed, with intact fiber segments and found that ~30% of total MMP2 was associated with the ECM, whereas ~70% was inside the muscle fibers. Concordant with whole muscle fractionation, further separation of skinned fiber segments into cytosolic, membranous, and cytoskeletal and nuclear compartments indicated that ~57% of the intracellular MMP2 was freely diffusible, ~6% was associated with the membrane, and ~37% was bound within the fiber. Under native zymography conditions, only 10% of MMP2 became active upon prolonged (17 h) exposure to 20 μM Ca2+, a concentration that would fully activate calpain-1 in seconds to minutes; full activation of MMP2 would require ~1 mM Ca2+. Given the prevalence of intracellular MMP2 in skeletal muscle, it is necessary to investigate its function using physiological conditions, including isolation of any potential functional relevance of MMP2 from that of the abundant protease calpain-1.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Bourcier A, Barthe M, Bedioune I, Lechêne P, Miled HB, Vandecasteele G, Fischmeister R, Leroy J. Imipramine as an alternative to formamide to detubulate rat ventricular cardiomyocytes. Exp Physiol 2019; 104:1237-1249. [PMID: 31116459 DOI: 10.1113/ep087760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can imipramine, an antidepressant agent that is a cationic amphiphilic drug that interferes with the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system, be validated as a new detubulating tool? What is the main finding and its importance? Imipramine was validated as a more efficient and less toxic detubulating agent of cardiomyocytes than formamide. New insights are provided on how PI(4,5)P2 is crucial to maintaining T-tubule attachment to the cell surface and on the cardiotoxic effects of imipramine overdoses. ABSTRACT Cardiac T-tubules are membrane invaginations essential for excitation-contraction coupling (ECC). Imipramine, like other cationic amphiphilic drugs, interferes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system connected to the cell surface. Our main purpose was to validate imipramine as a new detubulating agent in cardiomyocytes. Staining adult rat ventricular myocytes (ARVMs) with di-4-ANEPPS, we showed that unlike formamide, imipramine induces a complete detubulation with no impact on cell viability. Using the patch-clamp technique, we observed a ∼40% decrease in cell capacitance after imipramine pretreatment and a reduction of ICa,L amplitude by ∼72%. These parameters were not affected in atrial cells, excluding direct side effects of imipramine. β-Adrenergic receptor (β-AR) stimulation of the remaining ICa,L with isoproterenol (Iso) was still effective. ECC was investigated in ARVMs loaded with Fura-2 and paced at 1 Hz, allowing simultaneous measurement of the Ca2+ transient (CaT) and sarcomere shortening (SS). Amplitude of both CaT and SS was decreased by imipramine and partially restored by Iso. Furthermore, detubulated cells exhibited Ca2+ homeostasis perturbations. Real-time cAMP variations induced by Iso using a Förster resonance energy transfer biosensor revealed ∼27% decreased cAMP elevation upon β-AR stimulation. To conclude, we validated a new cardiomyocyte detubulation method using imipramine, which is more efficient and less toxic than formamide. This antidepressant agent induces the hallmark effects of detubulation on ECC and its β-AR stimulation. Besides, we provide new insights on how an imipramine overdose may affect cardiac function and suggest that PI(4,5)P2 is crucial for maintaining T-tubule structure.
Collapse
Affiliation(s)
- Aurelia Bourcier
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Marion Barthe
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Ibrahim Bedioune
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Patrick Lechêne
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Hela Ben Miled
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Grégoire Vandecasteele
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Rodolphe Fischmeister
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Jérôme Leroy
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| |
Collapse
|
35
|
Kong CHT, Bryant SM, Watson JJ, Roth DM, Patel HH, Cannell MB, James AF, Orchard CH. Cardiac-specific overexpression of caveolin-3 preserves t-tubular I Ca during heart failure in mice. Exp Physiol 2019; 104:654-666. [PMID: 30786093 PMCID: PMC6488395 DOI: 10.1113/ep087304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the cellular basis of the protection conferred on the heart by overexpression of caveolin-3 (Cav-3 OE) against many of the features of heart failure normally observed in vivo? What is the main finding and its importance? Cav-3 overexpression has little effect in normal ventricular myocytes but reduces cellular hypertrophy and preserves t-tubular ICa , but not local t-tubular Ca2+ release, in heart failure induced by pressure overload in mice. Thus Cav-3 overexpression provides specific but limited protection following induction of heart failure, although other factors disrupt Ca2+ release. ABSTRACT Caveolin-3 (Cav-3) is an 18 kDa protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. During cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted and excitation-contraction coupling (ECC) is impaired. Previous work has suggested that Cav-3 overexpression (OE) is cardio-protective, but the effect of Cav-3 OE on these cellular changes is unknown. We therefore investigated whether Cav-3 OE in mice is protective against the cellular effects of pressure overload induced by 8 weeks' transverse aortic constriction (TAC). Cav-3 OE mice developed cardiac dilatation, decreased stroke volume and ejection fraction, and hypertrophy and pulmonary congestion in response to TAC. These changes were accompanied by cellular hypertrophy, a decrease in t-tubule regularity and density, and impaired local Ca2+ release at the t-tubules. However, the extent of cardiac and cellular hypertrophy was reduced in Cav-3 OE compared to WT mice, and t-tubular Ca2+ current (ICa ) density was maintained. These data suggest that Cav-3 OE helps prevent hypertrophy and loss of t-tubular ICa following TAC, but that other factors disrupt local Ca2+ release.
Collapse
Affiliation(s)
- Cherrie H. T. Kong
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Simon M. Bryant
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Judy J. Watson
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - David M. Roth
- VA San Diego Healthcare System and Department of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Hemal H. Patel
- VA San Diego Healthcare System and Department of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Mark B. Cannell
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Andrew F. James
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Clive H. Orchard
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
36
|
Lang D, Glukhov AV. Functional Microdomains in Heart's Pacemaker: A Step Beyond Classical Electrophysiology and Remodeling. Front Physiol 2018; 9:1686. [PMID: 30538641 PMCID: PMC6277479 DOI: 10.3389/fphys.2018.01686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Spontaneous beating of the sinoatrial node (SAN), the primary pacemaker of the heart, is initiated, sustained, and regulated by a complex system that integrates ion channels and transporters on the cell membrane surface (often referred to as "membrane clock") with subcellular calcium handling machinery (by parity of reasoning referred to as an intracellular "Ca2+ clock"). Stable, rhythmic beating of the SAN is ensured by a rigorous synchronization between these two clocks highlighted in the coupled-clock system concept of SAN timekeeping. The emerging results demonstrate that such synchronization of the complex pacemaking machinery at the cellular level depends on tightly regulated spatiotemporal signals which are restricted to precise sub-cellular microdomains and associated with discrete clusters of different ion channels, transporters, and regulatory receptors. It has recently become evident that within the microdomains, various proteins form an interacting network and work together as a part of a macromolecular signaling complex. These protein-protein interactions are tightly controlled and regulated by a variety of neurohormonal signaling pathways and the diversity of cellular responses achieved with a limited pool of second messengers is made possible through the organization of essential signal components in particular microdomains. In this review, we highlight the emerging understanding of the functionality of distinct subcellular microdomains in SAN myocytes and their functional role in the accumulation and neurohormonal regulation of proteins involved in cardiac pacemaking. We also demonstrate how changes in scaffolding proteins may lead to microdomain-targeted remodeling and regulation of pacemaker proteins contributing to SAN dysfunction.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexey V Glukhov
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
37
|
Vaidyanathan R, Reilly L, Eckhardt LL. Caveolin-3 Microdomain: Arrhythmia Implications for Potassium Inward Rectifier and Cardiac Sodium Channel. Front Physiol 2018; 9:1548. [PMID: 30473666 PMCID: PMC6238080 DOI: 10.3389/fphys.2018.01548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
In human cardiac ventricular myocytes, caveolin-3 functions as a scaffolding and regulatory protein for signaling molecules and compartmentalizes ion channels. Our lab has recently explored this sub-cellular microdomain and found that potassium inward rectifier Kir2.x is found in association with caveolin-3. The three cardiac Kir2.x isoforms (Kir2.1, Kir2.2, and Kir2.3) are the molecular correlates of IK1 in the heart, of which Kir2.1 is the dominant isoform in the ventricle. Kir2.1 channels assemble with Kir2.2 and Kir2.3 forming hetero-tetramers that modulate IK1. IK1 sets the resting membrane potential and assists with terminal phase 3 ventricular repolarization. In our studies using native human ventricular tissue, Kir2.x co-localizes with caveolin-3 and significance of the association between Kir2.x and caveolin-3 is emphasized in relation to mutations in the gene which encodes caveolin-3, CAV3, associated with Long QT Syndrome 9 (LQT9). LQT9-associated CAV3 mutations cause decreased current density in Kir2.1 and Kir2.2 as homomeric and heteromeric channels, which affects repolarization and membrane potential stability. A portion of Kir2.1 cardiac localization parallels that of the cardiac sodium channel (Nav1.5). This may have implications for Long QT9 in which CAV3 mutations cause an increase in the late current of Nav1.5 (INa-L) via nNOS mediated nitrosylation of Nav1.5. In iPS-CMs, expression of LQT9 CAV3 mutations resulted in action potential duration (APD) prolongation and early-after depolarizations (EADs), supporting the arrhythmogenicity of LQT9. To evaluate the combined effect of the CAV3 mutants on INa-L and IK1, we studied both ventricular and Purkinje myocyte mathematical modeling. Interestingly, mathematical ventricular myocytes, similar to iPS-CMs, demonstrated EADs but no sustained arrhythmia. In contrast, Purkinje modeling demonstrated delayed-after depolarizations (DADs) driven mechanism for sustained arrhythmia, dependent on the combined loss of IK1 and gain of INa-L. This finding changes the overall assumed arrhythmia phenotype for LQT9. In future studies, we are exploring caveolar micro-domain disruption in heart failure and how this effects Kir2.x and Nav1.5. Here we review the caveolae cardiac microdomain of Kir2.x and Nav1.5 and explore some of the downstream effects of caveolin-3 and caveolae disruption in specific clinical scenarios.
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|