1
|
Tonon CR, Pereira AG, Ferreira NF, Monte MG, Vieira NM, Fujimori ASS, Ballin PDS, de Paiva SAR, Zornoff LAM, Minicucci MF, Polegato BF. The Gut-Heart Axis and Its Role in Doxorubicin-Induced Cardiotoxicity: A Narrative Review. Microorganisms 2025; 13:855. [PMID: 40284691 PMCID: PMC12029146 DOI: 10.3390/microorganisms13040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Doxorubicin is a widely used chemotherapy for the treatment of several types of cancer. However, its application is restricted due to adverse effects, particularly cardiotoxicity, which can progress to heart failure-a chronic and debilitating condition. Several mechanisms have been identified in the pathophysiology of doxorubicin-induced cardiotoxicity, including oxidative stress, mitochondrial dysfunction, inflammation, and disruption of collagen homeostasis. More recently, dysbiosis of the gut microbiota has been implicated in the development and perpetuation of cardiac injury. Studies have reported alterations in the composition and abundance of the microbiota during doxorubicin treatment. Therefore, as of recent, there is a new field of research in order to develop strategies involving the gut microbiota to prevent or attenuate cardiotoxicity since there is no effective therapy at the moment. This narrative review aims to provide an update on the role of gut microbiota and intestinal permeability in the pathophysiology of cardiovascular diseases, and more specifically doxorubicin-induced cardiotoxicity. Additionally, it seeks to establish a foundation for future research targeting gut microbiota to alleviate cardiotoxicity.
Collapse
Affiliation(s)
- Carolina Rodrigues Tonon
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, Brazil (B.F.P.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Yang R, Lv M, Yang X, Zhai S. A Mendelian randomized study of circulating antioxidants in the diet and risk of cardiovascular disease. Sci Rep 2025; 15:10341. [PMID: 40133449 PMCID: PMC11937293 DOI: 10.1038/s41598-025-94369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Cardiovascular diseases (CVD) are a major global mortality cause, heavily impacted by diet and oxidative stress. This study investigates the causal effects of five circulatory antioxidants on various cardiovascular diseases using Mendelian randomization (MR) to mitigate confounding biases.We conducted a two-sample Mendelian Randomization (MR) analysis utilizing summary-level genome-wide association study (GWAS) data from both the UK Biobank and FinnGen. Genetic instrumental variables for antioxidants, including vitamin A, beta-carotene, vitamin C, α-tocopherol, and lycopene, were identified based on rigorous criteria. The outcomes included arrhythmia, cardiomyopathy, heart failure, myocardial infarction, pericarditis, angina pectoris and coronary atherosclerosis.Higher genetically determined levels of α-tocopherol were associated with an increased risk of myocardial infarction (OR 5.10, 95% CI 2.92-8.91, P < 0.001) and cardiac arrhythmias (OR 1.94, 95% CI 1.34-2.83, P = 0.001). Retinol was linked to heightened risks of cardiomyopathy (OR 6.38, 95% CI 1.23-33.20, P = 0.028) and heart failure (OR 2.26, 95% CI 1.01-5.07, P = 0.047). A meta-analysis corroborated the pathogenic effects of α-carotene on arrhythmias (OR, 2.00; 95% CI, 1.39-2.86; P < 0.001) and myocardial infarction (OR, 4.81; 95% CI, 2.84-8.15; P < 0.001), α-tocopherol on angina pectoris (OR: 4.33; 95% CI: 2.07-9.09; P < 0.001) and coronary atherosclerosis (OR: 5.34; 95% CI: 2.81-10.12; P < 0.001).Our study indicates that elevated levels of specific antioxidants, particularly α-tocopherol and retinol, may increase the risk of certain cardiovascular diseases. Further research is necessary to clarify the impact of these antioxidants on cardiovascular health and to explore potential gene-environment interactions.
Collapse
Affiliation(s)
- Ruonan Yang
- Department of Medical Quality Control, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China.
| | - Mingyue Lv
- The Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiujuan Yang
- Department of Medical Quality Control, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Siwei Zhai
- Department of Medical Quality Control, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Al Khafaji AT, Barakat AM, Shayyal AJ, Taan AA, Aboqader Al-Aouadi RF. Managing Doxorubicin Cardiotoxicity: Insights Into Molecular Mechanisms and Protective Strategies. J Biochem Mol Toxicol 2025; 39:e70155. [PMID: 39887483 DOI: 10.1002/jbt.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Cancer ranks as the second leading cause of death in the United States and poses a significant health challenge globally. Numerous therapeutic options exist for treating cancer, with chemotherapy being one of the most prominent. Chemotherapy involves the use of antineoplastic drugs, either alone or in combination with other medications, to target and kill cancer cells. However, these drugs can also adversely affect healthy cells, leading to various side effects. Among the most commonly used chemotherapy agents are anthracyclines, which include doxorubicin, daunorubicin, and epirubicin. Doxorubicin is particularly notable for its effectiveness but is also associated with significant cardiotoxicity, a common concern for patients undergoing chemotherapy. Unfortunately, there is currently no definitive treatment to prevent or reverse this cardiotoxicity. The cardiac effects of doxorubicin can manifest in several ways, including changes in electrocardiograms, arrhythmias, myocarditis, pericarditis, myocardial infarction, cardiomyopathy, heart failure, and congestive heart failure. These complications may arise during treatment, shortly after it concludes, or even weeks later. Various mechanisms have been proposed to explain doxorubicin-induced cardiotoxicity. Key factors include the inhibition of topoisomerase IIβ, mitochondrial damage, reactive oxygen species (ROS) production due to iron metabolism, increased oxidative stress, heightened inflammatory responses, and elevated rates of apoptosis and necrosis within cardiac tissue. This review article will provide a comprehensive overview of the current state of knowledge regarding doxorubicin-induced cardiomyopathy. We will explore the underlying molecular mechanisms contributing to this condition and discuss emerging therapeutic strategies aimed at mitigating its impact on cancer survivors.
Collapse
Affiliation(s)
| | | | | | - Ali Adnan Taan
- Nasr City Hospital for Health Insurance, Ministry of Health, Cairo, Egypt
| | | |
Collapse
|
4
|
Meng C, Wang Y, Zheng T, Rong Z, Lv Z, Wu C, Zhou X, Mao W. A novel approach to the prevention and management of chemotherapy-induced cardiotoxicity: PANoptosis. Chem Biol Interact 2025; 407:111379. [PMID: 39788474 DOI: 10.1016/j.cbi.2025.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
As a fundamental component of antitumor therapy, chemotherapy-induced cardiotoxicity (CIC) has emerged as a leading cause of long-term mortality in patients with malignant tumors. Unfortunately, there are currently no effective therapeutic preventive or treatment strategies, and the underlying pathophysiological mechanisms of CIC remain inadequately understood. A growing number of studies have shown that different mechanisms of cell death, such as apoptosis, pyroptosis, and necroptosis, are essential for facilitating the cardiotoxic effects of chemotherapy. The PANoptosis mode represents a highly synchronized and dynamically balanced programmed cell death (PCD) process that integrates the principal molecular characteristics of necroptosis, apoptosis, and pyroptosis. Recent research has revealed a significant correlation between PANoptosis and the apoptosis of tumor cells. Chemotherapy drugs can activate PANoptosis, which is involved in the development of cardiovascular diseases. These findings suggest that PANoptosis marks the point where the effectiveness of chemotherapy against tumors overlaps with the onset and development of cardiovascular diseases. Furthermore, previous studies have demonstrated that CIC can simultaneously induce pyrodeath, apoptosis, and necrotic apoptosis. Therefore, PANoptosis may represent a potential mechanism and target for the prevention of CIC. This study explored the interactions among the three main mechanisms of PCD, pyroptosis, apoptosis, and necroptosis in CICs and analyzed the relevant literature on PANoptosis and CICs. The purpose of this work is to serve as a reference for future investigations on the role of PANoptosis in the development and mitigation of cardiotoxicity associated with chemotherapy.
Collapse
Affiliation(s)
- Chenchen Meng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Yali Wang
- Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China
| | - Tiantian Zheng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Zheng Rong
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Zhengtian Lv
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Chenxia Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China; Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China
| | - Xinbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 310006, Hangzhou, Zhejiang, China.
| | - Wei Mao
- Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China; Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China; Zhejiang Engineering Research Center for Precise Diagnosis and Innovative Traditional Chinese Medicine for Cardiovascular Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
5
|
Hara A. [Anthracycline-Induced Cardiotoxicity and Exploration of Cardioprotective Drugs]. YAKUGAKU ZASSHI 2025; 145:121-132. [PMID: 39894481 DOI: 10.1248/yakushi.24-00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Many anticancer drugs, including anthracycline drugs, pose a risk of cardiovascular damage as an adverse reaction. This can detrimentally impact the prognosis and quality of life of patients, potentially leading to the interruption of cancer chemotherapy and compromising cancer treatment. Recently, onco-cardiology (or cardio-oncology) has developed as a new interdisciplinary field that focuses on the prevention and treatment of cardiovascular toxicity of anticancer drugs. In this review, we explore the mechanism underlying the cardiotoxicity of anthracyclines and examine pharmacological agents that safeguard the heart from anthracycline-induced damage. Anthracycline-induced cardiotoxicity primarily involves oxidative stress, characterized by radical production in mitochondria and subsequent apoptosis in cardiomyocytes. While various antioxidant agents, such as resveratrol, vitamin E, and melatonin have demonstrated efficacy in reducing anthracycline-induced cardiotoxicity in animal models, their clinical effectiveness remains inconclusive. Alternatively, dexrazoxane, an intracellular iron chelator, along with standard heart failure medications, such as β-blockers, angiotensin-converting enzyme inhibitors, and angiotensin II receptor blockers, reduce anthracycline cardiotoxicity and prevent subsequent heart failure in both animal and human studies. Additionally, statins [hydroxymethylglutaryl (HMG)-CoA reductase inhibitors] and ranolazine have emerged as potential candidates for attenuating anthracycline-induced cardiotoxicity in clinical settings. Notably, recent in vitro findings suggest that everolimus, an autophagy/mitophagy-inducing antitumor drug, may protect cardiomyocytes from anthracycline-induced toxicity without reducing the antitumor effects of anthracycline. Although promising, further clinical research is warranted to validate the potential of everolimus as a safer and more effective anthracycline chemotherapeutic strategy.
Collapse
Affiliation(s)
- Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
6
|
Szponar J, Ciechanski E, Ciechanska M, Dudka J, Mandziuk S. Evolution of Theories on Doxorubicin-Induced Late Cardiotoxicity-Role of Topoisomerase. Int J Mol Sci 2024; 25:13567. [PMID: 39769331 PMCID: PMC11678604 DOI: 10.3390/ijms252413567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Doxorubicin (DOX) has been widely used as a cytotoxic chemotherapeutic. However, DOX has a number of side effects, such as myelotoxicity or gonadotoxicity, the most dangerous of which is cardiotoxicity. Cardiotoxicity can manifest as cardiac arrhythmias, myocarditis, and pericarditis; life-threatening late cardiotoxicity can result in heart failure months or years after the completion of chemotherapy. The development of late cardiomyopathy is not yet fully understood. The most important question is how DOX reprograms the cardiomyocyte, after which DOX is excreted from the body, initially without symptoms. However, clinically overt cardiomyopathy develops over the following months and years. Since the 1980s, DOX-induced disorders in cardiomyocytes have been thought to be related to oxidative stress and dependent on the Fe/reactive oxygen species (ROS) mechanism. That line of evidence was supported by dexrazoxane (DEX) protection, the only Food and Drug Administration (FDA)-approved drug for preventing DOX-induced cardiomyopathy, which complexes iron. Thus, the hypothesis related to Fe/ROS provides a plausible explanation for the induction of the development of late cardiomyopathy via DOX. However, in subsequent studies, DEX was used to identify another important mechanism in DOX-induced cardiomyopathy that is related to topoisomerase 2β (Top2β). Does the Top2β hypothesis explain the mechanisms of the development of DOX-dependent late heart failure? Several of these mechanisms have been identified to date, proving the involvement of Top2β in the regulation of the redox balance, including oxidative stress. Thus, the development of late cardiomyopathy can be explained based on mechanisms related to Top2β. In this review, we highlight free radical theory, iron imbalance, calcium overload, and finally, a theory based on Top2β.
Collapse
Affiliation(s)
- Jaroslaw Szponar
- Toxicology Clinic, Faculty of Medicine, Medical University of Lublin, Krasnicka 100, 20-718 Lublin, Poland;
- Clinical Department of Toxicology and Cardiology, Regional Specialist Hospital, Krasnicka 100, 20-718 Lublin, Poland
| | - Erwin Ciechanski
- Department of Cardiology, Regional Specialist Hospital, Krasnicka 100, 20-718 Lublin, Poland
| | - Magda Ciechanska
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Antoniego Gebali 6, 20-093 Lublin, Poland
| | - Jaroslaw Dudka
- Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Sławomir Mandziuk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|
7
|
Nayak J, P SV, Sahoo SK, Kumar M, Vashistha VK, Kumar R. Computational insight of antioxidant and doxorubicin combination for effective cancer therapy. J Biomol Struct Dyn 2024; 42:7874-7882. [PMID: 37545163 DOI: 10.1080/07391102.2023.2242507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Doxorubicin (DOX) is the most effective antineoplastic agent, destroys cancer cells by interrupting cellular function. However, the serious side effects on the heart limits its utility. To curb these unwanted side effects, nutritionist recommend antioxidants use along with DOX while chemotherapy. But it was not supported by various oncologists as it can alter the toxicity of DOX towards cancer cells. Therefore, here we explored the in silico pharmacokinetics and combination effect of DOX and antioxidants on topoisomerases-II (Top-II) and cyclophilin D (Cyp-D) therapeutic targets involved in cancer proliferation and post-myocardial infarction, respectively. The molecular docking study was conducted on target proteins and DOX including most prescribed antioxidants (melatonin, N-acetylcysteine (NAC), glutathione (GSH), β-carotene and vitamin C). GSH showed effective binding potential for Top-II and Cyp-D active sites, but other considered antioxidants possess low binding affinity. The highest docked conformations were subjected to molecular dynamics (MD) simulations to understand conformer stability of DOX and GSH with Cyp-D and Top-II for 100 ns. The results revealed that ligands pose at Top-II active sites where DOX showed strong binding affinity to DNA binding pocket and GSH to a buried site. The computational data summarised and proposed the GSH and DOX combination as antagonist effects on Top-II. Conversely, the binding compactness of GSH improved due to surface fit at the active pocket of Cyp-D and completely blocking DOX binding affinity, suppress adverse reactions of post-myocardial infarction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyotsnamayee Nayak
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Seshu Vardhan P
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Manish Kumar
- Department of Chemistry and Chemical Science, School of Physical and Material Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | | | - Rajender Kumar
- Department of Chemistry and Chemical Science, School of Physical and Material Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| |
Collapse
|
8
|
Kuang Z, Ge Y, Cao L, Wang X, Liu K, Wang J, Zhu X, Wu M, Li J. Precision Treatment of Anthracycline-Induced Cardiotoxicity: An Updated Review. Curr Treat Options Oncol 2024; 25:1038-1054. [PMID: 39066853 PMCID: PMC11329674 DOI: 10.1007/s11864-024-01238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Anthracycline (ANT)-induced cardiotoxicity (AIC) is a particularly prominent form of cancer therapy-related cardiovascular toxicity leading to the limitations of ANTs in clinical practice. Even though AIC has drawn particular attention, the best way to treat it is remaining unclear. Updates to AIC therapy have been made possible by recent developments in research on the underlying processes of AIC. We review the current molecular pathways leading to AIC: 1) oxidative stress (OS) including enzymatic-induced and other mechanisms; 2) topoisomerase; 3) inflammatory response; 4) cardiac progenitor cell damage; 5) epigenetic changes; 6) renin-angiotensin-aldosterone system (RAAS) dysregulation. And we systematically discuss current prevention and treatment strategies and novel pathogenesis-based therapies for AIC: 1) dose reduction and change; 2) altering drug delivery methods; 3) antioxidants, dexrezosen, statina, RAAS inhibitors, and hypoglycemic drugs; 4) miRNA, natural phytochemicals, mesenchymal stem cells, and cardiac progenitor cells. We also offer a fresh perspective on the management of AIC by outlining the current dilemmas and challenges associated with its prevention and treatment.
Collapse
Affiliation(s)
- Ziyu Kuang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Yuansha Ge
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xinmiao Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Kexin Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Jiaxi Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xiaojuan Zhu
- The 3rd affiliated hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Min Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| |
Collapse
|
9
|
Telles-Langdon SM, Arya V, Haasbeek PR, Cheung DY, Eekhoudt CR, Mackic L, Bryson AN, Varghese SS, Austria JA, Thliveris JA, Aukema HM, Ravandi A, Singal PK, Jassal DS. Efficacy of Flaxseed Compared to ACE Inhibition in Treating Anthracycline- and Trastuzumab-Induced Cardiotoxicity. CJC Open 2024; 6:925-937. [PMID: 39026621 PMCID: PMC11252538 DOI: 10.1016/j.cjco.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background Although the current combination of surgery, radiation, and chemotherapy is used in the breast-cancer setting, the administration of the anticancer drugs doxorubicin and trastuzumab is associated with an increased risk of developing heart failure. The aim of this study is to determine whether dietary flaxseed is comparable and/or synergistic with the angiotensin-converting enzyme inhibitor perindopril in the treatment of doxorubicin- and trastuzumab-mediated cardiotoxicity. Methods In a chronic in vivo murine model (n = 110), doxorubicin and trastuzumab (8 mg/kg and 3 mg/kg, respectively) were administered weekly for 3 weeks. Following this period, the mice were randomized to daily consumption of a 10% flaxseed supplemented diet, administration of perindopril (3 mg/kg) via oral gavage, or a combination of both flaxseed and perindopril for an additional 3 weeks. Results In mice treated with doxorubicin and trastuzumab, the left ventricular ejection fraction decreased from 74% ± 4% at baseline to 30% ± 2% at week 6. Treatment with either flaxseed or perindopril, or with flaxseed and perindopril improved left ventricular ejection fraction to 52% ± 4%, 54% ± 4%, and 55% ± 3%, respectively (P < 0.05). Although histologic analyses confirmed significant loss of sarcomere integrity and vacuolization in the doxorubicin- and trastuzumab-treated mice, treatment with flaxseed or perindopril, or with flaxseed and perindopril improved myocyte integrity. Finally, the level of Bcl-2 interacting protein 3, high-mobility group box 1 protein expression, and the levels of select oxylipins, were significantly elevated in mice receiving doxorubicin and trastuzumab; these markers were attenuated by treatment with either flaxseed or perindopril, or with flaxseed and perindopril. Conclusions Flaxseed was equivalent to perindopril at improving cardiovascular remodelling by reducing biomarkers of inflammation, mitochondrial damage, and cell death.
Collapse
Affiliation(s)
- Sara M. Telles-Langdon
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vibhuti Arya
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paris R. Haasbeek
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Y.C. Cheung
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cameron R. Eekhoudt
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lana Mackic
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashley N. Bryson
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sonu S. Varghese
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - J. Alejandro Austria
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A. Thliveris
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M. Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, Department of Food and Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Natesh J, Mondal P, Penta D, Mukhlis Y, Haware DJ, Meeran SM. Protective effect of diindolylmethane-enriched dietary cabbage against doxorubicin-induced cardiotoxicity in mice. J Appl Toxicol 2024; 44:874-891. [PMID: 38327044 DOI: 10.1002/jat.4588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Chemotherapy with doxorubicin (Dox) can lead to cardiotoxic effects, presenting a major complication in cancer therapy. Diindolylmethane (DIM), derived from cruciferous vegetables like cabbage, exhibits numerous health benefits. However, its clinical application is limited because of low bioavailability and suboptimal natural concentrations in dietary sources. To address this limitation, we developed a processing methodology, specifically fermentation and boiling, to enhance DIM levels in cabbage. High-performance liquid chromatography (HPLC) analysis revealed a threefold DIM increase in fermented cabbage and a substantial ninefold increase in fermented-boiled cabbage compared to raw cabbage. To evaluate the clinical implications, we formulated a DIM-enriched diet and administered it to mice undergoing Dox treatment. Our in vivo results revealed that Dox treatment led to cardiotoxicity, manifested by changes in body and heart weight, increased mortality, and severe myocardial tissue degeneration. Dietary administration of the DIM-enriched diet enhanced antioxidant defenses and inhibited apoptosis in the cardiac tissue by interfering with mitoptosis and increasing antioxidant enzyme expression. Interestingly, we found that the DIM-enriched diet inhibited the nuclear translocation of NF-kB in cardiac tissue, thereby downregulating the expression of inflammatory mediators such as TNF-α and IL-6. Further, the DIM-enriched diet significantly reduced serum cardiac injury markers elevated by Dox treatment. These results suggest that the DIM-enriched cabbage diet can serve as a complementary dietary intervention for cancer patients undergoing chemotherapy. Further, our research highlights the role of plant-based diets in reducing treatment side effects and improving the quality of life for cancer patients.
Collapse
Affiliation(s)
- Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yahya Mukhlis
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Jaganath Haware
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Food Safety & Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
Huang C, Li X, Li H, Chen R, Li Z, Li D, Xu X, Zhang G, Qin L, Li B, Chu XM. Role of gut microbiota in doxorubicin-induced cardiotoxicity: from pathogenesis to related interventions. J Transl Med 2024; 22:433. [PMID: 38720361 PMCID: PMC11077873 DOI: 10.1186/s12967-024-05232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.
Collapse
Affiliation(s)
- Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China
| | - Hanqing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266033, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao, 266071, China.
| |
Collapse
|
12
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhao HP, Ma Y, Zhang XJ, Guo HX, Yang B, Chi RF, Zhang NP, Wang JP, Li B, Qin FZ, Yang LG. NADPH oxidase 2 inhibitor GSK2795039 prevents doxorubicin-induced cardiac atrophy by attenuating cardiac sympathetic nerve terminal abnormalities and myocyte autophagy. Eur J Pharmacol 2024; 967:176351. [PMID: 38290568 DOI: 10.1016/j.ejphar.2024.176351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Doxorubicin is widely used for the treatment of human cancer, but its clinical use is limited by a cumulative dose-dependent cardiotoxicity. However, the mechanism of doxorubicin-induced cardiac atrophy and failure remains to be fully understood. In this study, we tested whether the specific NADPH oxidase 2 (Nox2) inhibitor GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, leading to the amelioration of cardiac atrophy and dysfunction in chronic doxorubicin-induced cardiomyopathy. Mice were randomized to receive saline, doxorubicin (2.5 mg/kg, every other day, 6 times) or doxorubicin plus GSK2795039 (2.5 mg/kg, twice a day, 9 weeks). Left ventricular (LV) total wall thickness and LV ejection fraction were decreased in doxorubicin-treated mice compared with saline-treated mice and the decreases were prevented by the treatment of the specific Nox2 inhibitor GSK2795039. The ratio of total heart weight to tibia length and myocyte cross-sectional area were decreased in doxorubicin-treated mice, and the decreases were attenuated by the GSK2795039 treatment. In doxorubicin-treated mice, myocardial Nox2 and 4-hydroxynonenal levels were increased, myocardial expression of GAP43, tyrosine hydroxylase and norepinephrine transporter, markers of sympathetic nerve terminals, was decreased, and these changes were prevented by the GSK2795039 treatment. The ratio of LC3 II/I, a marker of autophagy, and Atg5, Atg12 and Atg12-Atg5 conjugate proteins were increased in doxorubicin-treated mice, and the increases were attenuated by the GSK2795039 treatment. These findings suggest that inhibition of Nox2 by GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, thereby ameliorating cardiac atrophy and dysfunction after chronic doxorubicin treatment.
Collapse
Affiliation(s)
- Hui-Ping Zhao
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Yuan Ma
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Xiao-Juan Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Hong-Xia Guo
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Bin Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Nian-Ping Zhang
- Shanxi Datong University School of Medicine, Datong, 037009, Shanxi, PR China
| | - Jia-Pu Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China.
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi, PR China
| |
Collapse
|
14
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
15
|
Aktay I, Bitirim CV, Olgar Y, Durak A, Tuncay E, Billur D, Akcali KC, Turan B. Cardioprotective role of a magnolol and honokiol complex in the prevention of doxorubicin-mediated cardiotoxicity in adult rats. Mol Cell Biochem 2024; 479:337-350. [PMID: 37074505 DOI: 10.1007/s11010-023-04728-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/02/2023] [Indexed: 04/20/2023]
Abstract
Doxorubicin (DOXO) induces marked cardiotoxicity, though increased oxidative stress while there are some documents related with cardioprotective effects of some antioxidants against organ-toxicity during cancer treatment. Although magnolia bark has some antioxidant-like effects, its action in DOXO-induced heart dysfunction has not be shown clearly. Therefore, here, we aimed to investigate the cardioprotective action of a magnolia bark extract with active component magnolol and honokiol complex (MAHOC; 100 mg/kg) in DOXO-treated rat hearts. One group of adult male Wistar rats was injected with DOXO (DOXO-group; a cumulative dose of 15 mg/kg in 2-week) or saline (CON-group). One group of DOXO-treated rats was administered with MAHOC before DOXO (Pre-MAHOC group; 2-week) while another group was administered with MAHOC following the 2-week DOXO (Post-MAHOC group). MAHOC administration, before or after DOXO, provided full survival of animals during 12-14 weeks, and significant recoveries in the systemic parameters of animals such as plasma levels of manganese and zinc, total oxidant and antioxidant statuses, and also systolic and diastolic blood pressures. This treatment also significantly improved heart function including recoveries in end-diastolic volume, left ventricular end-systolic volume, heart rate, cardiac output, and prolonged P-wave duration. Furthermore, the MAHOC administrations improved the structure of left ventricles such as recoveries in loss of myofibrils, degenerative nuclear changes, fragmentation of cardiomyocytes, and interstitial edema. Biochemical analysis in the heart tissues provided the important cardioprotective effect of MAHOC on the redox regulation of the heart, such as improvements in activities of glutathione peroxidase and glutathione reductase, and oxygen radical-absorbing capacity of the heart together with recoveries in other systemic parameters of animals, while all of these benefits were observed in the Pre-MAHOC treatment group, more prominently. Overall, one can point out the beneficial antioxidant effects of MAHOC in chronic heart diseases as a supporting and complementing agent to the conventional therapies.
Collapse
Affiliation(s)
- Irem Aktay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ceylan Verda Bitirim
- Stem Cell Institute, Ankara University, Ankara, Turkey
- Ankara University Stem cell Institute, Ankara, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Kamil Can Akcali
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
16
|
Guo X, Liu M, Han B, Zheng Y, Zhang K, Bao G, Gao C, Shi H, Sun Q, Zhao Z. Upregulation of TRIM16 mitigates doxorubicin-induced cardiotoxicity by modulating TAK1 and YAP/Nrf2 pathways in mice. Biochem Pharmacol 2024; 220:116009. [PMID: 38154547 DOI: 10.1016/j.bcp.2023.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
The clinic application of doxorubicin (DOX) is severely limited by its severe cardiotoxicity. Tripartite motif-containing protein 16 (TRIM16) has E3 ubiquitin ligase activity and is upregulated in cardiomyocytes under pathological stress, yet its role in DOX-induced cardiotoxicity remains elusive. This study aims to investigate the role and mechanism of TRIM16 in DOX cardiotoxicity. Following TRIM16 overexpression in hearts with AAV9-TRIM16, mice were intravenously administered DOX at a dose of 4 mg/kg/week for 4 weeks to assess the impact of TRIM16 on doxorubicin-induced cardiotoxicity. Transfection of OE-TRIM16 plasmids and siRNA-TRIM16 was performed in neonatal rat cardiomyocytes (NRCMs). Our results revealed that DOX challenge elicited a significant upregulation of TRIM16 proteins in cardiomyocytes. TRIM16 overexpression efficiently ameliorated cardiac function while suppressing inflammation, ROS generation, apoptosis and fibrosis provoked by DOX in the myocardium. TRIM16 knockdown exacerbated these alterations caused by DOX in NRCMs. Mechanistically, OE-TRIM16 augmented the ubiquitination and degradation of p-TAK1, thereby arresting JNK and p38MAPK activation evoked by DOX in cardiomyocytes. Furthermore, DOX enhanced the interaction between p-TAK1 and YAP1 proteins, resulting in a reduction in YAP and Nrf2 proteins in cardiomyocytes. OE-TRIM16 elevated YAP levels and facilitated its nuclear translocation, thereby promoting Nrf2 expression and mitigating oxidative stress and inflammation. This effect was nullified by siTRIM16 or TAK1 inhibitor Takinib. Collectively, the current study elaborates that upregulating TRIM16 mitigates DOX-induced cardiotoxicity through anti-inflammation and anti-oxidative stress by modulating TAK1-mediated p38 and JNK as well as YAP/Nrf2 pathways, and targeting TRIM16 may provide a novel strategy to treat DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bing Han
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yeqing Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kaina Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Gaowa Bao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chenying Gao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hongwen Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
17
|
Yang Y, Yang H, Yang C. Circ-AMOTL1 enhances cardiac fibrosis through binding with EIF4A3 and stabilizing MARCKS expression in diabetic cardiomyopathy. Cell Signal 2023; 111:110853. [PMID: 37586467 DOI: 10.1016/j.cellsig.2023.110853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To evaluate the effects and possible mechanisms of circular RNAs (circRNAs) on diabetic myocardial fibrosis (DMF). METHODS We used an in vivo mice model of streptozotocin (STZ)-induced diabetes and conducted in vitro studies using cultured mouse cardiac fibroblast cells (CFs). RESULTS We found that the expression of circ-AMOTL1 was significantly upregulated in the myocardial tissue of diabetic mice compared to that in normal tissues. Inhibition of circ-AMOTL1 improved cardiac function in mice with type I diabetes and significantly repressed STZ-induced myocardial mesenchymal and perivascular fibrosis. In addition, silencing circ-AMOTL1 inhibited cell proliferation, decreased the expression levels of TGF-β1, collagen 1, collagen III, and α-SMA, and reduced the levels of ROS and NO in HG-treated CFs. Our data also indicated that silencing circ-AMOTL1 significantly reduced the expression of myristoylated alanine-rich C-kinase substrate (MARCKS). Finally, circ-AMOTL1 combined with the RNA-binding protein EIF4A3 to improve MARCKS stability. Moreover, co-transfection with si-circ-AMOTL1 and MARCKS reversed the effects of si-circ-AMOTL1 on cell proliferation, fibrotic marker proteins, and ROS and NO levels in vitro. CONCLUSION Our data suggest that circ-AMOTL1 plays a key role in STZ-induced DMF by modulating MARCKS, and that targeting circ-AMOTL1 may be a potential strategy to treat DMF.
Collapse
Affiliation(s)
- Yang Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Huan Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Chong Yang
- Cardiology department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China.
| |
Collapse
|
18
|
Chen X, Xie K, Zhang X, Gu X, Wu Y, Su S. Bradykinin receptor participates in doxorubicin-induced cardiotoxicity by modulating iNOS signal pathway. J Biochem Mol Toxicol 2023; 37:e23393. [PMID: 37409694 DOI: 10.1002/jbt.23393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Doxorubicin (DOX), an effective and broad-spectrum anthracycline antibiotic, is widely used in the treatment of numerous malignancies. However, dose-dependent cardiotoxicity limits the clinical application of DOX, and the molecular mechanisms are still unknown. In this study, we used the BK receptor B1/B2 double-knockout (B1B2 -/- ) mice to observe the role of BK receptor in cardiotoxicity induced by DOX and the underlying mechanisms. DOX induced myocardial injury with increased serum levels of AST, CK, and LDH, upregulated tissue expression of bradykinin B1/B2 receptor, FABP4 and iNOS, and downregulated expression of eNOS. However, these altered releases of myocardial enzyme and the expression level of iNOS were significantly prevented in the B1B2-/- mice. We concluded that the activation of both B1 and B2 receptors of BK were involved in the DOX-induced acute myocardial injury, possibly mediated through iNOS signaling pathways.
Collapse
Affiliation(s)
- Xueyan Chen
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| | - Kerang Xie
- Department of Pharmacy, Shijiazhuang people's hospital, Shijiazhuang, P. R. China
| | - Xiaofei Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - Yi Wu
- State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
19
|
Zhang L, Jiang Q, Wang X, Jaisi A, Olatunji OJ. Boesenbergia rotunda displayed anti-inflammatory, antioxidant and anti-apoptotic efficacy in doxorubicin-induced cardiotoxicity in rats. Sci Rep 2023; 13:11398. [PMID: 37452121 PMCID: PMC10349041 DOI: 10.1038/s41598-023-38560-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
This study evaluated the cardioprotective properties of Boesenbergia rotunda extract (BrE) against doxorubicin (DOX) induced cardiotoxicity. Rats received oral gavage of BrE for 28 days and DOX (5 mg/kg/week for 3 weeks). Thereafter the animals were sacrificed, blood and cardiac samples were collected for biochemical, histological and immunohistochemical analyses. The results indicated that BrE attenuated DOX triggered body and cardiac weight loss and prevented against cardiac injury by mitigating histopathological alterations in cardiac tissues as well as serum cardiac function enzymes. BrE significantly reduced serum levels of aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), troponin T (TnT) and creatine kinase-MB (CK-MB) in DOX-treated rats. Furthermore, BrE alleviated cardiotoxicity by reducing DOX instigated oxidative stress and potentiating the level of glutathione, as well as the activities superoxide dismutase and catalase in cardiac tissues. In addition, BrE significantly decreased the characteristic indices of DOX-induced cardiac inflammation and apoptosis. Immuno-histochemical analysis revealed that BrE decreased the stain intensity of p53 and myeloperoxidase (MPO) proteins compared to the DXB alone group. In conclusion, our results indicated that BrE modulated oxidative stress, inflammation and apoptosis to attenuate DOX-induced cardiac damage.
Collapse
Affiliation(s)
- Linye Zhang
- The Second Peoples Hospital of Wuhu, Wuhu City, 241001, Anhui, China
| | - Qihong Jiang
- The Second Peoples Hospital of Wuhu, Wuhu City, 241001, Anhui, China
| | - Xiuming Wang
- The Second Peoples Hospital of Wuhu, Wuhu City, 241001, Anhui, China
| | - Amit Jaisi
- School of Pharmacy, Walailak University, Thasala, 80160, Nakhon Si Thammarat, Thailand
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, 43150, Ben Guerir, Morocco.
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
20
|
Morsy MA, Abdel-Gaber SA, Mokhemer SA, Kandeel M, Sedik WF, Nair AB, Venugopala KN, Khalil HE, Al-Dhubiab BE, Mohamed MZ. Pregnenolone Inhibits Doxorubicin-Induced Cardiac Oxidative Stress, Inflammation, and Apoptosis-Role of Matrix Metalloproteinase 2 and NADPH Oxidase 1. Pharmaceuticals (Basel) 2023; 16:ph16050665. [PMID: 37242448 DOI: 10.3390/ph16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical usefulness of doxorubicin (DOX) is limited by its serious adverse effects, such as cardiotoxicity. Pregnenolone demonstrated both anti-inflammatory and antioxidant activity in animal models. The current study aimed to investigate the cardioprotective potential of pregnenolone against DOX-induced cardiotoxicity. After acclimatization, male Wistar rats were randomly grouped into four groups: control (vehicle-treated), pregnenolone (35 mg/kg/d, p.o.), DOX (15 mg/kg, i.p, once), and pregnenolone + DOX. All treatments continued for seven consecutive days except DOX, which was administered once on day 5. The heart and serum samples were harvested one day after the last treatment for further assays. Pregnenolone ameliorated the DOX-induced increase in markers of cardiotoxicity, namely, histopathological changes and elevated serum levels of creatine kinase-MB and lactate dehydrogenase. Moreover, pregnenolone prevented DOX-induced oxidative changes (significantly lowered cardiac malondialdehyde, total nitrite/nitrate, and NADPH oxidase 1, and elevated reduced glutathione), tissue remodeling (significantly decreased matrix metalloproteinase 2), inflammation (significantly decreased tumor necrosis factor-α and interleukin 6), and proapoptotic changes (significantly lowered cleaved caspase-3). In conclusion, these findings show the cardioprotective effects of pregnenolone in DOX-treated rats. The cardioprotection achieved by pregnenolone treatment can be attributed to its antioxidant, anti-inflammatory, and antiapoptotic actions.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sahar A Mokhemer
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Wael F Sedik
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Bandar E Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
21
|
Zhang XJ, Li L, Wang AL, Guo HX, Zhao HP, Chi RF, Xu HY, Yang LG, Li B, Qin FZ, Wang JP. GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis in doxorubicin-induced heart failure through inhibition of NADPH oxidase-derived oxidative stress. Toxicol Appl Pharmacol 2023; 463:116412. [PMID: 36764612 DOI: 10.1016/j.taap.2023.116412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Doxorubicin (DOX), which is widely used for the treatment of cancer, induces cardiomyopathy associated with NADPH oxidase-derived reactive oxygen species. GSK2795039 is a novel small molecular NADPH oxidase 2 (Nox2) inhibitor. In this study, we investigated whether GSK2795039 prevents receptor-interacting protein kinase 1 (RIP1)-RIP3-mixed lineage kinase domain-like protein (MLKL)-mediated cardiomyocyte necroptosis in DOX-induced heart failure through NADPH oxidase inhibition. Eight-week old mice were randomly divided into 4 groups: control, GSK2795039, DOX and DOX plus GSK2795039. H9C2 cardiomyocytes were treated with DOX and GSK2795039. In DOX-treated mice, the survival rate was reduced, left ventricular (LV) end-systolic dimension was increased and LV fractional shortening was decreased, and these alterations were attenuated by the GSK2795039 treatment. GSK2795039 inhibited not only myocardial NADPH oxidase subunit gp91phox (Nox2) protein, but also p22phox, p47phox and p67phox proteins and prevented oxidative stress 8-hydroxy-2'-deoxyguanosine levels in DOX-treated mice. RIP3 protein and phosphorylated RIP1 (p-RIP1), p-RIP3 and p-MLKL proteins, reflective of their respective kinase activities, markers of necroptosis, were markedly increased in DOX-treated mice, and the increases were prevented by GSK2795039. GSK2795039 prevented the increases in serum lactate dehydrogenase and myocardial fibrosis in DOX-treated mice. Similarly, in DOX-treated cardiomyocytes, GSK2795039 improved cell viability, attenuated apoptosis and necrosis and prevented the increases in p-RIP1, p-RIP3 and p-MLKL expression. In conclusion, GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis through inhibition of NADPH oxidase-derived oxidative stress, leading to the improvement of myocardial remodeling and function in DOX-induced heart failure. These findings suggest that GSK2795039 may have implications for the treatment of DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| | - Lu Li
- Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Ai-Ling Wang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hong-Xia Guo
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hui-Ping Zhao
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hui-Yu Xu
- Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Jia-Pu Wang
- Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| |
Collapse
|
22
|
Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal 2023; 21:61. [PMID: 36918950 PMCID: PMC10012797 DOI: 10.1186/s12964-023-01077-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX) is a powerful and commonly used chemotherapeutic drug, used alone or in combination in a variety of cancers, while it has been found to cause serious cardiac side effects in clinical application. More and more researchers are trying to explore the molecular mechanisms of DOX-induced cardiomyopathy (DIC), in which oxidative stress and inflammation are considered to play a significant role. This review summarizes signaling pathways related to oxidative stress and inflammation in DIC and compounds that exert cardioprotective effects by acting on relevant signaling pathways, including the role of Nrf2/Keap1/ARE, Sirt1/p66Shc, Sirt1/PPAR/PGC-1α signaling pathways and NOS, NOX, Fe2+ signaling in oxidative stress, as well as the role of NLRP3/caspase-1/GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/NF-κB pathways in DOX-induced inflammation. Hence, we attempt to explain the mechanisms of DIC in terms of oxidative stress and inflammation, and to provide a theoretical basis or new idea for further drug research on reducing DIC. Video Abstract.
Collapse
Affiliation(s)
- Saixian Shi
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ye Chen
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhijian Luo
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Chengdu, 610000, Sichuan Province, China
| | - Yan Dai
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
23
|
In vitro to clinical translational pharmacokinetic/pharmacodynamic modeling of doxorubicin (DOX) and dexrazoxane (DEX) interactions: Safety assessment and optimization. Sci Rep 2023; 13:3100. [PMID: 36813809 PMCID: PMC9947016 DOI: 10.1038/s41598-023-29964-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Despite high anticancer activity, doxorubicin (DOX)-induced cardiotoxicity (DIC) limits the extensive utility of DOX in a clinical setting. Amongst various strategies explored, dexrazoxane (DEX) remains the only cardioprotective agent to be approved for DIC. In addition, altering the dosing regimen of DOX has also proved to be somewhat beneficial in decreasing the risk of DIC. However, both approaches have limitations and further studies are required to better optimize them for maximal beneficial effects. In the present work, we quantitatively characterized DIC as well as the protective effects of DEX in an in vitro model of human cardiomyocytes, by means of experimental data and mathematical modeling and simulation (M&S) approaches. We developed a cellular-level, mathematical toxicodynamic (TD) model to capture the dynamic in vitro drug-drug interaction, and relevant parameters associated with DIC and DEX cardio-protection were estimated. Subsequently, we executed in vitro-in vivo translation by simulating clinical PK profiles for different dosing regimens of DOX alone and in combinations with DEX and using the simulated PK profiles to drive the cell-based TD models to evaluate the effects of long-term, clinical dosing regimens of these drugs on the relative cell viability of AC16 and to determine optimal drug combinations with minimal cellular toxicity. Here, we identified that the Q3W (once every three weeks) DOX regimen with 10:1 DEX:DOX dose ratio over three cycles (nine weeks) may offer maximal cardio-protection. Overall, the cell-based TD model can be effectively used to better design subsequent preclinical in vivo studies aimed for further optimizing safe and effective DOX and DEX combinations to mitigate DIC.
Collapse
|
24
|
Protection against Doxorubicin-Induced Cardiotoxicity by Ergothioneine. Antioxidants (Basel) 2023; 12:antiox12020320. [PMID: 36829879 PMCID: PMC9951880 DOI: 10.3390/antiox12020320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Background: Anthracyclines such as doxorubicin remain a primary treatment for hematological malignancies and breast cancers. However, cardiotoxicity induced by anthracyclines, possibly leading to heart failure, severely limits their application. The pathological mechanisms of anthracycline-induced cardiac injury are believed to involve iron-overload-mediated formation of reactive oxygen species (ROS), mitochondrial dysfunction, and inflammation. The dietary thione, ergothioneine (ET), is avidly absorbed and accumulated in tissues, including the heart. Amongst other cytoprotective properties, ET was shown to scavenge ROS, decrease proinflammatory mediators, and chelate metal cations, including Fe2+, preventing them from partaking in redox activities, and may protect against mitochondrial damage and dysfunction. Plasma ET levels are also strongly correlated to a decreased risk of cardiovascular events in humans, suggesting a cardioprotective role. This evidence highlights ET's potential to counteract anthracycline cardiotoxicity. Methods and Findings: We investigated whether ET supplementation can protect against cardiac dysfunction in mice models of doxorubicin-induced cardiotoxicity and revealed that it had significant protective effects. Moreover, ET administration in a mouse breast cancer model did not exacerbate the growth of the tumor or interfere with the chemotherapeutic efficacy of doxorubicin. Conclusion: These results suggest that ET could be a viable co-therapy to alleviate the cardiotoxic effects of anthracyclines in the treatment of cancers.
Collapse
|
25
|
Martins D, Garcia LR, Queiroz DAR, Lazzarin T, Tonon CR, Balin PDS, Polegato BF, de Paiva SAR, Azevedo PS, Minicucci MF, Zornoff L. Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants (Basel) 2022; 11:antiox11122371. [PMID: 36552578 PMCID: PMC9774406 DOI: 10.3390/antiox11122371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiac remodeling is defined as a group of molecular, cellular, and interstitial changes that clinically manifest as changes in the heart's size, mass, geometry, and function after different stimuli. It is important to emphasize that remodeling plays a pathophysiological role in the onset and progression of ventricular dysfunction and subsequent heart failure. Therefore, strategies to mitigate this process are critical. Different factors, including neurohormonal activation, can regulate the remodeling process and increase cell death, alterations in contractile and regulatory proteins, alterations in energy metabolism, changes in genomics, inflammation, changes in calcium transit, metalloproteases activation, fibrosis, alterations in matricellular proteins, and changes in left ventricular geometry, among other mechanisms. More recently, the role of reactive oxygen species and oxidative stress as modulators of remodeling has been gaining attention. Therefore, this review assesses the role of oxidative stress as a therapeutic target of cardiac remodeling.
Collapse
Affiliation(s)
- Danilo Martins
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Leonardo Rufino Garcia
- Surgery and Orthopedics Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Diego Aparecido Rios Queiroz
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Taline Lazzarin
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Carolina Rodrigues Tonon
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Paola da Silva Balin
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Bertha Furlan Polegato
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Sergio Alberto Rupp de Paiva
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Paula Schmidt Azevedo
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Marcos Ferreira Minicucci
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
| | - Leonardo Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 01049-010, Brazil
- Correspondence:
| |
Collapse
|
26
|
Lee B, An HJ, Kim DH, Lee MK, Jeong HH, Chung KW, Go Y, Seo AY, Kim IY, Seong JK, Yu BP, Lee J, Im E, Lee IK, Lee MS, Yamada KI, Chung HY. SMP30-mediated synthesis of vitamin C activates the liver PPARα/FGF21 axis to regulate thermogenesis in mice. Exp Mol Med 2022; 54:2036-2046. [PMID: 36434042 PMCID: PMC9723126 DOI: 10.1038/s12276-022-00888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
The vitamin-C-synthesizing enzyme senescent marker protein 30 (SMP30) is a cold resistance gene in Drosophila, and vitamin C concentration increases in brown adipose tissue post-cold exposure. However, the roles of SMP30 in thermogenesis are unknown. Here, we tested the molecular mechanism of thermogenesis using wild-type (WT) and vitamin C-deficient SMP30-knockout (KO) mice. SMP30-KO mice gained more weight than WT mice without a change in food intake in response to short-term high-fat diet feeding. Indirect calorimetry and cold-challenge experiments indicated that energy expenditure is lower in SMP30-KO mice, which is associated with decreased thermogenesis in adipose tissues. Therefore, SMP30-KO mice do not lose weight during cold exposure, whereas WT mice lose weight markedly. Mechanistically, the levels of serum FGF21 were notably lower in SMP30-KO mice, and vitamin C supplementation in SMP30-KO mice recovered FGF21 expression and thermogenesis, with a marked reduction in body weight during cold exposure. Further experiments revealed that vitamin C activates PPARα to upregulate FGF21. Our findings demonstrate that SMP30-mediated synthesis of vitamin C activates the PPARα/FGF21 axis, contributing to the maintenance of thermogenesis in mice.
Collapse
Affiliation(s)
- Bonggi Lee
- grid.412576.30000 0001 0719 8994Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, South Korea
| | - Hye Jin An
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Dae Hyun Kim
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - Min-Kyeong Lee
- grid.412576.30000 0001 0719 8994Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, South Korea
| | - Hyeon Hak Jeong
- grid.412576.30000 0001 0719 8994Department of Smart Green Technology Engineering, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, 48513 South Korea
| | - Ki Wung Chung
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Younghoon Go
- grid.418980.c0000 0000 8749 5149Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Arnold Y. Seo
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Il Yong Kim
- grid.31501.360000 0004 0470 5905Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Plus Program for Creative Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- grid.31501.360000 0004 0470 5905Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Plus Program for Creative Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul, South Korea
| | - Byung Pal Yu
- grid.267309.90000 0001 0629 5880Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Jaewon Lee
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - Eunok Im
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - In-Kyu Lee
- grid.258803.40000 0001 0661 1556Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Myung-Shik Lee
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute and Department of Internal Medicine Yonsei University College of Medicine, Seoul, South Korea
| | - Ken-ichi Yamada
- grid.177174.30000 0001 2242 4849Department of Bio-functional Science, Kyushu University, Fukuoka, Japan
| | - Hae Young Chung
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| |
Collapse
|
27
|
Guida F, Masetti R, Andreozzi L, Zama D, Fabi M, Meli M, Prete A, Lanari M. The Role of Nutrition in Primary and Secondary Prevention of Cardiovascular Damage in Childhood Cancer Survivors. Nutrients 2022; 14:3279. [PMID: 36014785 PMCID: PMC9415958 DOI: 10.3390/nu14163279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative therapeutic strategies in childhood cancer led to a significant reduction in cancer-related mortality. Cancer survivors are a growing fragile population, at risk of long-term side effects of cancer treatments, thus requiring customized clinical attention. Antineoplastic drugs have a wide toxicity profile that can limit their clinical usage and spoil patients' life, even years after the end of treatment. The cardiovascular system is a well-known target of antineoplastic treatments, including anthracyclines, chest radiotherapy and new molecules, such as tyrosine kinase inhibitors. We investigated nutritional changes in children with cancer from the diagnosis to the end of treatment and dietary habits in cancer survivors. At diagnosis, children with cancer may present variable degrees of malnutrition, potentially affecting drug tolerability and prognosis. During cancer treatment, the usage of corticosteroids can lead to rapid weight gain, exposing children to overweight and obesity. Moreover, dietary habits and lifestyle often dramatically change in cancer survivors, who acquire sedentary behavior and weak adherence to dietary guidelines. Furthermore, we speculated on the role of nutrition in the primary prevention of cardiac damage, investigating the potential cardioprotective role of diet-derived compounds with antioxidative properties. Finally, we summarized practical advice to improve the dietary habits of cancer survivors and their families.
Collapse
Affiliation(s)
- Fiorentina Guida
- Specialty School of Paediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Riccardo Masetti
- Paediatric Oncology and Haematology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Andreozzi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Daniele Zama
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Matteo Meli
- Specialty School of Paediatrics, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Arcangelo Prete
- Paediatric Oncology and Haematology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
28
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
29
|
Ren J, Liang J, Wang J, Yin B, Zhang F, Li X, Zhu S, Tian H, Cui Q, Song J, Liu G, Ling W, Ma Y. Vascular benefits of vitamin C supplementation against fine particulate air pollution in healthy adults: A double-blind randomised crossover trial. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113735. [PMID: 35689890 DOI: 10.1016/j.ecoenv.2022.113735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Evidence on the health benefits of vitamin C supplementation in highly polluted areas has not been evaluated. We aimed to evaluate whether dietary vitamin C supplementation can improve vascular health linked to particulate matter (PM) exposure. A randomised double-blind crossover trial involving 58 health young adults was performed in Shijiazhuang, China in 2018. All subjects were randomly assigned to the vitamin C supplementation group (2000 mg/d) or placebo group for a week alternating with a 2 week washout period. Fifteen circulating biomarkers were measured. Linear mixed-effect model was applied to evaluate the effect of vitamin C supplementation on health outcomes. The average concentrations of PM2.5 and PM10 were 164.91 and 327.05 μg/m3, respectively. Vitamin C supplementation was significantly associated with a 19.47% decrease in interleukin-6 (IL-6), 17.30% decrease in tumour necrosis factor-a (TNF-α), 34.01% decrease in C-reactive protein (CRP), 3.37% decrease in systolic blood pressure (SBP) and 6.03% decrease in pulse pressure (PP). Furthermore, glutathione peroxidase (GSH-Px) was significantly increased by 7.15%. Sex-subgroup analysis showed that vitamin C significantly reduced TNF-α by 27.85% in male participants and significantly increased APOB by 6.28% and GSH-Px by 14.47% only in female participants. This study indicated that vitamin C supplementation may protect vascular vessels against PM exposure among healthy young adults in China.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jufeng Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jiaqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Siqi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianshi Song
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Gang Liu
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Wenhua Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China; Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
30
|
Elnoury HA, Elgendy SA, Baloza SH, Ghamry HI, Soliman M, Abdel-Aziz EAM. Synergistic impacts of Montelukast and Klotho against doxorubicin-induced cardiac toxicity in Rats. Toxicol Res (Camb) 2022; 11:592-604. [DOI: 10.1093/toxres/tfac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 04/02/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Doxorubicin (DOX) is a powerful antitumor agent with a well-known cardiaotoxic side effects. In the current study, the ameliorative combined impacts of montelukast (Mont) and Klotho against doxorubicin-induced cardiac toxicity were examined. Fifty-six adult male rats (2 months age and weighting 150–200 g) were grouped into 7 groups (8 rats per group). Animals received doxorubicin alone or in combination with either Mont or Klotho. After 2 weeks of treatments, serum samples were examined to assess the changes in cardiac activity biomarkers such as LDH, CK-MB, cardiac troponin-I (cTn-I), and heart fatty acid binding protein (H-FABP). Serum changes of IL-6, inducible nitric oxide synthase (iNOS), and caspase-3 levels were assayed. The oxidative stress biomarkers such as total antioxidant capacity (TAC) and inflammatory (rat IL-1β and rat TNF-α,) and anti-inflammatory (rat IL-10) cytokines were examined. Heart histology and transforming growth factor-β1 (TGF-β1) immunoreactivity were measured. DOX induced cardiomyopathy, which was reflected by the increases in all examined cardiac parameters. Real-time PCR confirmed that DOX upregulated the expression of TNF-α and IL-1β and decreased the expression of IL-10. Moreover, DOX showed marked elevation in the ST segment T wave complex, causing profound tachycardia. Heart histology assessments showed cardiac cell necrosis, inflammatory cell infiltration, interstitial congestion, and increased TGF-β1 immunoreactivity. Montelukast and Klotho administration ameliorated all the altered parameters when administered alone or in combination to DOX-intoxicated rats. Klotho was more effective compared with montelukast in terms of reductions in heart rate, ST segment T wave complex elevation, cardiac enzymes (lactate dehydrogenase; LDH, creatine kinase-MB; CK-MB, cardiac troponin I; cTn-I, heart fatty acid binding protein; H-FABP) cardiac histology, and caspase-3 levels and increases in TAC activity. Montelukast was more effective in reducing serum levels of IL6 and iNOS, expression of TNF-α and IL-1β, and the upregulation of IL-10 expression. The co-administration of both drugs led to significantly more synergistic results in terms of reducing cardiac toxicity. In conclusion, montelukast and Klotho either alone or in combination were confirmed to be effective in suppressing DOX-induced cardiac toxicity in rats.
Collapse
Affiliation(s)
- Heba A Elnoury
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering , Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Heba I Ghamry
- Department of Home Economics , College of Home Economics, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department , Turabah University College, Taif University, 21995, Saudi Arabia
| | | |
Collapse
|
31
|
Vuong JT, Stein-Merlob AF, Cheng RK, Yang EH. Novel Therapeutics for Anthracycline Induced Cardiotoxicity. Front Cardiovasc Med 2022; 9:863314. [PMID: 35528842 PMCID: PMC9072636 DOI: 10.3389/fcvm.2022.863314] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
Anthracyclines remain an essential component of the treatment of many hematologic and solid organ malignancies, but has important implications on cardiovascular disease. Anthracycline induced cardiotoxicity (AIC) ranges from asymptomatic LV dysfunction to highly morbid end- stage heart failure. As cancer survivorship improves, the detection and treatment of AIC becomes more crucial to improve patient outcomes. Current treatment modalities for AIC have been largely extrapolated from treatment of conventional heart failure, but developing effective therapies specific to AIC is an area of growing research interest. This review summarizes the current evidence behind the use of neurohormonal agents, dexrazoxane, and resynchronization therapy in AIC, evaluates the clinical outcomes of advanced therapy and heart transplantation in AIC, and explores future horizons for treatment utilizing gene therapy, stem cell therapy, and mechanism-specific targets.
Collapse
Affiliation(s)
- Jacqueline T. Vuong
- Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
| | - Ashley F. Stein-Merlob
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
| | - Richard K. Cheng
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Eric H. Yang
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Eric H. Yang,
| |
Collapse
|
32
|
Eekhoudt CR, Bortoluzzi T, Varghese SS, Cheung DYC, Christie S, Eastman S, Mittal I, Austria JA, Aukema HM, Ravandi A, Thliveris J, Singal PK, Jassal DS. Comparing Flaxseed and Perindopril in the Prevention of Doxorubicin and Trastuzumab-Induced Cardiotoxicity in C57Bl/6 Mice. Curr Oncol 2022; 29:2941-2953. [PMID: 35621631 PMCID: PMC9139942 DOI: 10.3390/curroncol29050241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Two anti-cancer agents, doxorubicin (DOX) and trastuzumab (TRZ), are commonly used in the management of breast cancer in women. Despite their efficacy in reducing the morbidity and mortality of individuals with breast cancer, the use of these agents is limited by adverse cardiotoxic side effects. Both the nutraceutical agent flaxseed (FLX) and the pharmaceutical drug perindopril (PER) have been studied individually in the prevention of chemotherapy-mediated cardiac dysfunction. The objective of this study was to determine whether the prophylactic administration of FLX is comparable and/or synergistic with PER in preventing DOX + TRZ-induced cardiotoxicity. Methods: Over a six-week period, 81 wild-type C57Bl/6 female mice (8–12 weeks old) were randomized to receive regular chow (RC) or 10% FLX-supplemented diets with or without PER (3 mg/kg/week; oral gavage). Starting at week 4, mice were randomized to receive a weekly injection of saline or DOX (8 mg/kg) + TRZ (3 mg/kg). Serial echocardiography was conducted weekly and histological and biochemical analyses were performed at the end of the study. Results: In mice treated with RC + DOX + TRZ, left ventricular ejection (LVEF) decreased from 75 ± 2% at baseline to 37 ± 3% at week 6. However, prophylactic treatment with either FLX, PER, or FLX + PER partially preserved left ventricular systolic function with LVEF values of 61 ± 2%, 62 ± 2%, and 64 ± 2%, respectively. The administration of FLX, PER, or FLX + PER was also partially cardioprotective in preserving cardiomyocyte integrity and attenuating the expression of the inflammatory biomarker NF-κB due to DOX + TRZ administration. Conclusion: FLX was equivalent to PER at preventing DOX + TRZ-induced cardiotoxicity in a chronic in vivo murine model.
Collapse
Affiliation(s)
- Cameron R. Eekhoudt
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Tessa Bortoluzzi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Sonu S. Varghese
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - David Y. C. Cheung
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Simon Christie
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
| | - Skyler Eastman
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Ishika Mittal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - J. Alejandro Austria
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Harold M. Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, Department of Food and Human Nutritional Sciences, University of Manitoba, Room W573 Duff Roblin Building, Winnipeg, MB R3T 2N2, Canada;
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
| | - James Thliveris
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 130 Basic Medical Science Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada;
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GA216, 820 Sherbrook Street, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-(204)-258-1290; Fax: +1-(204)-233-2157
| |
Collapse
|
33
|
Xing W, Wen C, Wang D, Shao H, Liu C, He C, Olatunji OJ. Cardiorenal Protective Effect of Costunolide against Doxorubicin-Induced Toxicity in Rats by Modulating Oxidative Stress, Inflammation and Apoptosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072122. [PMID: 35408518 PMCID: PMC9000510 DOI: 10.3390/molecules27072122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Doxorubicin (DXB) is one of the most commonly used anticancer agents for treating solid and hematological malignancies; however, DXB-induced cardiorenal toxicity presents a limiting factor to its clinical usefulness in cancer patients. Costunolide (COST) is a naturally occurring sesquiterpene lactone with excellent anti-inflammatory, antioxidant and antiapoptotic properties. This study evaluated the effect of COST on DXB-induced cardiorenal toxicity in rats. Rats were orally treated with COST for 4 weeks and received weekly 5 mg/kg doses of DXB for three weeks. Cardiorenal biochemical biomarkers, lipid profile, oxidative stress, inflammatory cytokines, histological and immunohistochemical analyses were evaluated. DXB-treated rats displayed significantly increased levels of lipid profiles, markers of cardiorenal dysfunction (aspartate aminotransferase, creatine kinase, lactate dehydrogenase, troponin T, blood urea nitrogen, uric acid and creatinine). In addition, DXB markedly upregulated cardiorenal malondialdehyde, tumor necrosis factor-α, interleukin-1β, interleukin-6 levels and decreased glutathione, superoxide dismutase and catalase activities. COST treatment significantly attenuated the aforementioned alterations induced by DXB. Furthermore, histopathological and immunohistochemical analyses revealed that COST ameliorated the histopathological features and reduced p53 and myeloperoxidase expression in the treated rats. These results suggest that COST exhibits cardiorenal protective effects against DXB-induced injury presumably via suppression of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Wen Xing
- Department of Gerontology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China; (W.X.); (D.W.)
| | - Chaoling Wen
- Anhui Traditional Chinese Medicine College, Wuhu 241001, China;
| | - Deguo Wang
- Department of Gerontology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China; (W.X.); (D.W.)
| | - Hui Shao
- Department of Clinical Laboratory, East China Normal University Affiliated Wuhu Hospital, Wuhu 241001, China;
| | - Chunhong Liu
- The Second Peoples Hospital of Wuhu City, Wuhu 241001, China;
| | - Chunling He
- Department of Endocrinology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China
- Correspondence: (C.H.); (O.J.O.)
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence: (C.H.); (O.J.O.)
| |
Collapse
|
34
|
Hemilä H, Chalker E, de Man AME. Vitamin C May Improve Left Ventricular Ejection Fraction: A Meta-Analysis. Front Cardiovasc Med 2022; 9:789729. [PMID: 35282368 PMCID: PMC8913583 DOI: 10.3389/fcvm.2022.789729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Background Vitamin C deprivation can lead to fatigue, dyspnea, oedema and chest pain, which are also symptoms of heart failure (HF). In animal studies vitamin C has improved contractility and mechanical efficiency of the heart. Compared with healthy people, patients with HF have lower vitamin C levels, which are not explained by differences in dietary intake levels, and more severe HF seems to be associated with lower plasma vitamin C levels. This meta-analysis looks at the effect of vitamin C on left ventricular ejection fraction (LVEF). Methods We searched for trials reporting the effects of vitamin C on LVEF. We assessed the quality of the trials, and pooled selected trials using the inverse variance, fixed effect options. We used meta-regression to examine the association between the effect of vitamin C on LVEF level and the baseline LVEF level. Results We identified 15 trials, three of which were excluded from our meta-analysis. In six cardiac trials with 246 patients, vitamin C increased LVEF on average by 12.0% (95% CI 8.1–15.9%; P < 0.001). In six non-cardiac trials including 177 participants, vitamin C increased LVEF on average by 5.3% (95% CI 2.0–8.5%; P = 0.001). In meta-regression analysis we found that the effect of vitamin C was larger in trials with the lowest baseline LVEF levels with P = 0.001 for the test of slope. The meta-regression line crossed the null effect level at a baseline LVEF level close to 70%, with progressively greater benefit from vitamin C with lower LVEF levels. Some of the included trials had methodological limitations. In a sensitivity analysis including only the four most methodologically sound cardiac trials, the effect of vitamin C was not substantially changed. Conclusions In this meta-analysis, vitamin C increased LVEF in both cardiac and non-cardiac patients, with a strong negative association between the size of the vitamin C effect and the baseline LVEF. Further research on vitamin C and HF should be carried out, particularly in patients who have low LVEF together with low vitamin C intake or low plasma levels. Different dosages and different routes of administration should be compared.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, Helsinki, Finland
- *Correspondence: Harri Hemilä
| | - Elizabeth Chalker
- Biological Data Science Institute, Australian National University, Canberra, ACT, Australia
| | - Angelique M. E. de Man
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
35
|
Bagchi AK, Malik A, Akolkar G, Jassal DS, Singal PK. Endoplasmic Reticulum Stress Promotes iNOS/NO and Influences Inflammation in the Development of Doxorubicin-Induced Cardiomyopathy. Antioxidants (Basel) 2021; 10:antiox10121897. [PMID: 34943000 PMCID: PMC8750247 DOI: 10.3390/antiox10121897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (Dox) is known to cause heart failure in some cancer patients. Despite extensive studies over the past half century, the subcellular basis of Dox-induced cardiomyopathy (DIC) is still elusive. Earlier, we suggested that Dox causes a delayed activation of unfolded protein response (UPR) which may promote mitochondrial Bax activity leading to cardiomyocyte death. As a follow up, using NO donor, S-Nitroso-N-acetyl-d,l-penicillamine (SNAP), and/or NOS inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), we now show that endoplasmic reticulum (ER) stress promotes inflammation through iNOS/NO-induced TLR2 activation. In vivo Dox treatment increased mitochondrial iNOS to promote ER stress as there was an increase in Bip (Grp78) response, proapoptotic CHOP (DDIT3) and ER-mediated Caspase 12 activation. Increased iNOS activity is associated with an increase in TLR2 and TNF-α receptor associated factor 2 (TRAF2). These two together with NF-κB p105/50 expression and a synergistic support through ER stress, promote inflammatory response in the myocardium leading to cell death and ultimately fostering DIC conditions. In the presence of NOS inhibitor, such detrimental effects of Dox were inhibited, suggesting iNOS/NO as key mediators of Dox-induced inflammatory as well as apoptotic responses.
Collapse
Affiliation(s)
- Ashim K. Bagchi
- St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.K.B.); (A.M.); (D.S.J.)
| | - Akshi Malik
- St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.K.B.); (A.M.); (D.S.J.)
| | - Gauri Akolkar
- Cardio-Renal Division, Therapeutic Products Directorate, Ottawa, ON K1A 0K9, Canada;
| | - Davinder S. Jassal
- St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.K.B.); (A.M.); (D.S.J.)
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K. Singal
- St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.K.B.); (A.M.); (D.S.J.)
- Correspondence: ; Tel.: +1-204-235-3416; Fax: +1-204-233-6723
| |
Collapse
|
36
|
NETosis in ischemic/reperfusion injuries: An organ-based review. Life Sci 2021; 290:120158. [PMID: 34822798 DOI: 10.1016/j.lfs.2021.120158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Neutrophil extracellular trap (NETosis), the web-like structures induced by neutrophil death, is an important inflammatory mechanism of the immune system leading to reactive oxygen species production/coagulopathy, endothelial dysfunction, atherosclerosis, and ischemia. NETosis exerts its role through different mechanisms such as triggering Toll-like receptors, inflammatory cytokines, platelet aggregation, neutrophil activation/infiltration, and vascular impairment. NETosis plays a key role in the prognosis of coronary artery disease, ischemic injury of kidney, lung, gastrointestinal tract and skeletal muscles. In this review, we explored the molecular mechanisms involved in NETosis, and ischemic/reperfusion injuries in body organs.
Collapse
|
37
|
Yun W, Qian L, Yuan R, Xu H. Periplocymarin Alleviates Doxorubicin-Induced Heart Failure and Excessive Accumulation of Ceramides. Front Cardiovasc Med 2021; 8:732554. [PMID: 34869633 PMCID: PMC8639694 DOI: 10.3389/fcvm.2021.732554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin-driven cardiotoxicity could result in dilated cardiomyopathy and heart failure (HF). Previously, we showed that periplocymarin exerted a cardiotonic role by promoting calcium influx and attenuating myocardial fibrosis induced by isoproterenol (ISO) by improving the metabolism of cardiomyocytes. However, the impact of periplocymarin on doxorubicin (DOX)-triggered cardiomyopathy has not been investigated. In the current study, C57BL/6 mice were randomly divided into three groups, namely, the control, DOX, and DOX+periplocymarin groups. The cardiac function and apoptosis were measured. Our results revealed that periplocymarin administration greatly improved the DOX-induced cardiac dysfunction manifested by the ejection fraction (EF%), fractional shortening (FS%), left ventricular posterior wall thickness (LVPW), left ventricular anterior wall thickness (LVAW), left ventricular (LV) mass, and attenuated DOX-induced cardiomyocyte apoptosis assessed by hematoxylin and eosin (H&E) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and western blotting. Further study using H9c2 cells revealed that the pretreatment of periplocymarin suppressed DOX-induced apoptosis evidenced by annexin V staining. Moreover, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that DOX lead to an accumulation in serum ceramide, and the pre-treatment of periplocymarin could reverse this phenomenon. Network pharmacology also demonstrated that ceramide metabolism was involved in the process. Consistently, real-time PCR showed that periplocymarin significantly abolished the induction of the genes involved in the de novo synthesis of ceramide, i.e., CerS2, CerS4, CerS5, and CerS6, and the induction was attributed to the treatment of DOX. Collectively, these results suggested that periplocymarin reduced cardiomyocyte apoptosis to protect hearts from DOX-induced cardiotoxicity and the de novo synthesis of ceramides was involved in this process.
Collapse
Affiliation(s)
| | | | | | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Neres-Santos RS, Junho CVC, Panico K, Caio-Silva W, Pieretti JC, Tamashiro JA, Seabra AB, Ribeiro CAJ, Carneiro-Ramos MS. Mitochondrial Dysfunction in Cardiorenal Syndrome 3: Renocardiac Effect of Vitamin C. Cells 2021; 10:3029. [PMID: 34831251 PMCID: PMC8616479 DOI: 10.3390/cells10113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a pathological link between the kidneys and heart, in which an insult in a kidney or heart leads the other organ to incur damage. CRS is classified into five subtypes, and type 3 (CRS3) is characterized by acute kidney injury as a precursor to subsequent cardiovascular changes. Mitochondrial dysfunction and oxidative and nitrosative stress have been reported in the pathophysiology of CRS3. It is known that vitamin C, an antioxidant, has proven protective capacity for cardiac, renal, and vascular endothelial tissues. Therefore, the present study aimed to assess whether vitamin C provides protection to heart and the kidneys in an in vivo CRS3 model. The unilateral renal ischemia and reperfusion (IR) protocol was performed for 60 min in the left kidney of adult mice, with and without vitamin C treatment, immediately after IR or 15 days after IR. Kidneys and hearts were subsequently collected, and the following analyses were conducted: renal morphometric evaluation, serum urea and creatinine levels, high-resolution respirometry, amperometry technique for NO measurement, gene expression of mitochondrial dynamic markers, and NOS. The analyses showed that the left kidney weight was reduced, urea and creatinine levels were increased, mitochondrial oxygen consumption was reduced, NO levels were elevated, and Mfn2 expression was reduced after 15 days of IR compared to the sham group. Oxygen consumption and NO levels in the heart were also reduced. The treatment with vitamin C preserved the left kidney weight, restored renal function, reduced NO levels, decreased iNOS expression, elevated constitutive NOS isoforms, and improved oxygen consumption. In the heart, oxygen consumption and NO levels were improved after vitamin C treatment, whereas the three NOS isoforms were overexpressed. These data indicate that vitamin C provides protection to the kidneys and some beneficial effects to the heart after IR, indicating it may be a preventive approach against cardiorenal insults.
Collapse
Affiliation(s)
- Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Carolina Victoria Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Karine Panico
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Wellington Caio-Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Joana Claudio Pieretti
- Laboratory BioNanoMetals, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (J.C.P.); (A.B.S.)
| | - Juliana Almeida Tamashiro
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| | - Amedea Barozzi Seabra
- Laboratory BioNanoMetals, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (J.C.P.); (A.B.S.)
| | | | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (R.S.N.-S.); (C.V.C.J.); (K.P.); (W.C.-S.); (J.A.T.)
| |
Collapse
|
39
|
Farahmand F, Malik A, Sharma A, Bagchi AK, Singal PK. Role of oxidative stress versus lipids in monocrotaline-induced pulmonary hypertension and right heart failure. Physiol Rep 2021; 9:e15090. [PMID: 34816616 PMCID: PMC8611258 DOI: 10.14814/phy2.15090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension (PH) is a global health issue with a prevalence of 10% in ages >65 years. Right heart failure (RHF) is the main cause of death in PH. We have previously shown that monocrotaline (MCT)-induced PH and RHF are due to an increase in oxidative stress. In this study, probucol (PROB), a strong antioxidant with a lipid-lowering property, versus lovastatin (LOV), a strong lipid-lowering drug with some antioxidant effects, were evaluated for their effects on the MCT-induced RHF. Rats were treated (I.P.) with PROB (10 mg/kg ×12) or LOV (4 mg/kg ×12), daily 6 days before and 6 days after a single MCT injection (60 mg/kg). Serial echocardiography was performed and at 4-week post-MCT, lung wet-to-dry weight, hemodynamics, RV glutathione peroxidase (GSHPx), superoxide dismutase (SOD), catalase, lipid peroxidation, and myocardial as well as plasma lipids were examined. MCT increased RV systolic and diastolic pressures, wall thickness, RV end diastolic diameter, mortality, and decreased ejection fraction as well as pulmonary artery acceleration time. These changes were mitigated by PROB while LOV had no effect. Furthermore, PROB prevented lipid peroxidation, lowered lipids, and increased GSHPx and SOD in RV myocardium. LOV did decrease the lipids but had no effect on antioxidants and lipid peroxidation. A reduction in oxidative stress and not the lipid-lowering effect of PROB may explain the prevention of MCT-induced PH, RHF, and mortality. Thus targeting of oxidative stress as an adjuvant therapy is suggested.
Collapse
Affiliation(s)
| | - Akshi Malik
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| | - Anita Sharma
- Research and Graduate StudiesThompson Rivers UniversityKamloopsCanada
| | - Ashim K. Bagchi
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| | - Pawan K. Singal
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| |
Collapse
|
40
|
Waz S, Matouk AI. Cardioprotective effect of allyl isothiocyanate in a rat model of doxorubicin acute toxicity. Toxicol Mech Methods 2021; 32:194-203. [PMID: 34635025 DOI: 10.1080/15376516.2021.1992064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOX) is an effective anthracycline chemotherapeutic drug. Nevertheless, the cardiotoxicity adverse effect restricts its clinical benefit. Allyl isothiocyanate (AITC) is a natural antioxidant and anti-inflammatory agent. In the present study, we investigated the effect of AITC on cardiotoxicity of DOX. Thirty-two adult male albino rats were divided into four groups; control, AITC, DOX, and AITC + DOX. AITC was administrated orally (25 mg/kg/day) for 7 days, and DOX was given as a single i.p. injection (15 mg/kg) on the third day. Mortality rate was observed during the experiment. Cardiac toxicity markers (lactate dehydrogenase (LDH), creatine kinase (CK-MB), and cardiac Troponin I (cTn-I)) were evaluated in serum samples obtained from all groups after 48 hours of DOX injection. DOX-treated group showed 40% mortality and a significant increase in cardiac enzymes. This increase was accompanied by degenerated cardiomyocytes, and inflammatory cells infiltrates. Interestingly, AITC administration alleviated myocardial oxidative stress induced by DOX as attenuated the increase in malondialdehyde (MDA), and nitric oxide (NO) while resulted in elevations of the antioxidant reduced glutathione (GSH) level as well as superoxide dismutase (SOD) activity. Furthermore, the inflammatory cytokine, TNF-α, was reduced upon administration of AITC with DOX. The cardio-protection of AITC is attributed to increase the expression of cytoprotective nuclear factor erythroid 2-related factor 2 (Nrf2). Subsequently, heme oxygenase 1 (HO-1) level was elevated by AITC to correct the oxidative stress induced by DOX in the heart. Accordingly, AITC ameliorated acute cardiotoxicity associated with DOX treatment via attenuation of oxidative stress and the induced-tissue inflammatory injury. Abbreviations: DOX: doxrubicin; Nrf2: nuclear factor erythroid 2-related factor 2; HO-1: heme oxygenase 1; AITC: ally isothiocyanate; MDA: malondialdehyde; SOD: superoxide dismutase; GSH: reduced glutathione; TNF-α: tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
41
|
Rodrigo R, Prieto JC, Aguayo R, Ramos C, Puentes Á, Gajardo A, Panieri E, Rojas-Solé C, Lillo-Moya J, Saso L. Joint Cardioprotective Effect of Vitamin C and Other Antioxidants against Reperfusion Injury in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Molecules 2021; 26:molecules26185702. [PMID: 34577176 PMCID: PMC8468345 DOI: 10.3390/molecules26185702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Percutaneous coronary intervention (PCI) has long remained the gold standard therapy to restore coronary blood flow after acute myocardial infarction (AMI). However, this procedure leads to the development of increased production of reactive oxygen species (ROS) that can exacerbate the damage caused by AMI, particularly during the reperfusion phase. Numerous attempts based on antioxidant treatments, aimed to reduce the oxidative injury of cardiac tissue, have failed in achieving an effective therapy for these patients. Among these studies, results derived from the use of vitamin C (Vit C) have been inconclusive so far, likely due to suboptimal study designs, misinterpretations, and the erroneous conclusions of clinical trials. Nevertheless, recent clinical trials have shown that the intravenous infusion of Vit C prior to PCI-reduced cardiac injury biomarkers, as well as inflammatory biomarkers and ROS production. In addition, improvements of functional parameters, such as left ventricular ejection fraction (LVEF) and telediastolic left ventricular volume, showed a trend but had an inconclusive association with Vit C. Therefore, it seems reasonable that these beneficial effects could be further enhanced by the association with other antioxidant agents. Indeed, the complexity and the multifactorial nature of the mechanism of injury occurring in AMI demands multitarget agents to reach an enhancement of the expected cardioprotection, a paradigm needing to be demonstrated. The present review provides data supporting the view that an intravenous infusion containing combined safe antioxidants could be a suitable strategy to reduce cardiac injury, thus improving the clinical outcome, life quality, and life expectancy of patients subjected to PCI following AMI.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- Correspondence:
| | - Juan Carlos Prieto
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Rubén Aguayo
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Cristóbal Ramos
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Ángel Puentes
- Cardiology Unit, Department of Medicine, Occident Division, San Juan de Dios Hospital, Avenida Portales 3239, Santiago 8500000, Chile; (R.A.); (Á.P.)
| | - Abraham Gajardo
- University of Chile Clinical Hospital, Campus Norte, Carlos Lorca Tobar 999, Independencia, Santiago 8380456, Chile; (C.R.); (A.G.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Campus Norte, Institute of Biomedical Sciences, University of Chile, Avda. Independencia 1027, Santiago 8380000, Chile; (J.C.P.); (C.R.-S.); (J.L.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| |
Collapse
|
42
|
Sacks B, Onal H, Martorana R, Sehgal A, Harvey A, Wastella C, Ahmad H, Ross E, Pjetergjoka A, Prasad S, Barsotti R, Young LH, Chen Q. Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. BMC Pharmacol Toxicol 2021; 22:49. [PMID: 34530934 PMCID: PMC8447656 DOI: 10.1186/s40360-021-00518-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Preconditioning of the heart ameliorates doxorubicin (Dox)-induced cardiotoxicity. We tested whether pretreating cardiomyocytes by mitochondrial-targeted antioxidants, mitoquinone (MitoQ) or SKQ1, would provide better protection against Dox than co-treatment. METHODS We investigated the dose-response relationship of MitoQ, SKQ1, and vitamin C on Dox-induced damage on H9c2 cardiomyoblasts when drugs were given concurrently with Dox (e.g., co-treatment) or 24 h prior to Dox (e.g., pretreatment). Moreover, their effects on intracellular and mitochondrial oxidative stress were evaluated by 2,7-dichlorofluorescin diacetate and MitoSOX, respectively. RESULTS Dox (0.5-50 μM, n = 6) dose-dependently reduced cell viability. By contrast, co-treatment of MitoQ (0.05-10 μM, n = 6) and SKQ1 (0.05-10 μM, n = 6), but not vitamin C (1-2000 μM, n = 3), significantly improved cell viability only at intermediate doses (0.5-1 μM). MitoQ (1 μM) and SKQ1 (1 μM) significantly increased cell viability to 1.79 ± 0.12 and 1.59 ± 0.08 relative to Dox alone, respectively (both p < 0.05). Interestingly, when given as pretreatment, only higher doses of MitoQ (2.5 μM, n = 9) and SKQ1 (5 μM, n = 7) showed maximal protection and improved cell viability to 2.19 ± 0.13 and 1.65 ± 0.07 relative to Dox alone, respectively (both p < 0.01), which was better than that of co-treatment. Moreover, the protective effects were attributed to the significant reduction in Dox-induced intracellular and mitochondrial oxidative stress. CONCLUSION The data suggest that MitoQ and SKQ1, but not vitamin C, mitigated DOX-induced damage. Moreover, MitoQ pretreatment showed significantly higher cardioprotection than its co-treatment and SKQ1, which may be due to its better antioxidant effects.
Collapse
Affiliation(s)
- Brian Sacks
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Halil Onal
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Rose Martorana
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Amogh Sehgal
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Amanda Harvey
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Catherine Wastella
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Hafsa Ahmad
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Erin Ross
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Adona Pjetergjoka
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Sachin Prasad
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Robert Barsotti
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Lindon H Young
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Qian Chen
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
43
|
Yarmohammadi F, Karbasforooshan H, Hayes AW, Karimi G. Inflammation suppression in doxorubicin-induced cardiotoxicity: natural compounds as therapeutic options. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2003-2011. [PMID: 34350498 DOI: 10.1007/s00210-021-02132-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent; however, the accompanying cardiotoxicity is a significant complication of the usefulness of treatment with DOX. Multiple mechanisms have been suggested for this often fatal side effect, one of which is inflammation. Several pathways with different targets have been reported to result in DOX-induced heart inflammation. Some natural occurring compounds (NCs) have been reported to interact with the DOX-induced cardiotoxicity through targeting one or more of several pathways, including the Nrf2/NF-kB, TLR-4/NF-kB, MAPK/NF-kB, and NLRP3 inflammasome pathways. This article reviews several of these pathways and the potential protective effect of some NCs against the cardiac inflammation induced by DOX.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedyieh Karbasforooshan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Herradón E, González C, González A, Uranga JA, López-Miranda V. Cardiovascular Toxicity Induced by Chronic Vincristine Treatment. Front Pharmacol 2021; 12:692970. [PMID: 34366848 PMCID: PMC8333869 DOI: 10.3389/fphar.2021.692970] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Vincristine is an effective anticancer agent for treating leukemias, lymphomas, and other solid tumors. Vincristine's better-known severe side effects include bone marrow depression, hyponatremia, peripheral neuropathy, and gastrointestinal distress. In recent years, cardiovascular damage also has been described during vincristine treatments. However, the vascular toxicity induced by vincristine is little studied. The aim of the present is to evaluate whether these alterations remain after the suspension of chemotherapy treatment (sequelae) and the possible mechanisms involved in this vascular damage. Adult male Wistar rats were used. The animals were divided into four treatment groups: two groups of saline (0.9% NaCl; saline, sequelae saline) and two groups of vincristine (100 μg/kg; vincristine, sequelae vincristine). Saline or vincristine was administered intraperitoneally in two cycles of 5 days each, leaving a rest period between cycles of 2 days. The final cumulative vincristine dose administered was 1 mg/kg. Sequelae groups correspond to 2 weeks after stopping treatment with the antitumor agent. At the end of the different experimental protocols, cardiac and vascular functions were analyzed. Alterations in the expression of different proteins in the cardiovascular tissues were also investigated. Chronic treatment with vincristine did not produce significant changes in basal cardiac function but provoked significant endothelial dysfunction in the aorta and a significant decrease in the mesenteric contractile function. These cardiovascular functional alterations disappeared 2 weeks after the suspension of chemotherapy treatment. Vincristine treatment caused a significant increase in the expression of tumor necrosis factor-alpha (TNFα), endothelial and inducible nitric oxide synthases (eNOS and iNOS), and connexin 43 in cardiac tissue. In the aorta, the chronic treatment with vincristine caused a slight non-significant increase in TNFα expression, a significant increase in eNOS and iNOS, and a significant decrease in connexin 43. After 2 weeks of vincristine treatment (sequelae group), the expression of TNFα increased and eNOS and iNOS expressions disappeared, but a significant decrease in the expression of connexin 43 was still observed in the aorta. In mesenteric arteries, similar data to those found in the aorta were observed. In conclusion, chronic treatment with vincristine causes functional alterations in the vascular function of both conductance and resistance vessels and changes in the expressions of TNFα, eNOS, iNOS, and connexin 43 in cardiovascular tissues, implicating direct toxicity during its treatment. These functional alterations are transitory and disappear after the suspension of its treatment.
Collapse
Affiliation(s)
- Esperanza Herradón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| | - Cristina González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Antonio González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| | - Jose Antonio Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain
| | - Visitación López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| |
Collapse
|
45
|
Zhang H, Wang Z, Liu Z, Du K, Lu X. Protective Effects of Dexazoxane on Rat Ferroptosis in Doxorubicin-Induced Cardiomyopathy Through Regulating HMGB1. Front Cardiovasc Med 2021; 8:685434. [PMID: 34336950 PMCID: PMC8318065 DOI: 10.3389/fcvm.2021.685434] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Dexrazoxane (DXZ) reduces cytotoxicity caused by Doxorubicin (DOX). However, the mechanism of DXZ in ferroptosis and cardiomyopathy remains unclear. This research, therefore, explores the role and mechanism of DXZ in DOX-induced ferroptosis and cardiomyopathy in rats. Kaplan–Meier survival analysis was performed in rats treated by DOX in combination with ferroptosis inhibitor (FER-1) or other cell death–associated inhibitors. The ferroptosis, cardiotoxicity, and expression of high mobility group box 1 (HMGB1) in rats treated by DOX in combination with FER-1 or with DXZ were determined by hematoxylin and eosin staining, echocardiographic analysis, and quantitative real-time PCR. The ferroptosis in DOX-treated rats that received HMGB1 knockdown or overexpression was further detected using molecular experiments. Finally, the viability, level of malondialdehyde (MDA), and expressions of ferroptosis-related markers (PTGS2, GPX4, and FTH1) of rat cardiomyocyte H9c2 exposed to DOX combined with FER-1, zVAD (an apoptosis inhibitor), DXZ, or not were detected by performing molecular experiments. FER-1 increased the survival of the rats induced by DOX. The DOX-induced ferroptosis and cardiotoxicity could be reversed by FER-1 or DXZ. HMGB1 was induced by DOX but was inhibited by DXZ or FER-1. Overexpression of HMGB1 promoted the ferroptosis and cardiotoxicity induced by DOX in the rats although silencing of HMGB1 showed opposite effects. The data indicate that DOX suppressed the viability and increased the MDA level in H9c2 cells in a dose-dependent manner. Moreover, DOX-induced increase of PTGS2 and decrease of GPX4 and FTH1 in H9c2 cells was reversed by DXZ or FER-1. Therefore, DXZ has protective effects on ferroptosis and cardiomyopathy in rats through regulating HMGB1.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Wang
- Department of Blood Transfusion, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Kang Du
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Fabiani I, Aimo A, Grigoratos C, Castiglione V, Gentile F, Saccaro LF, Arzilli C, Cardinale D, Passino C, Emdin M. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Fail Rev 2021; 26:881-890. [PMID: 33319255 PMCID: PMC8149360 DOI: 10.1007/s10741-020-10063-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/04/2022]
Abstract
Chemotherapy with anthracycline-based regimens remains a cornerstone of treatment of many solid and blood tumors but is associated with a significant risk of cardiotoxicity, which can manifest as asymptomatic left ventricular dysfunction or overt heart failure. These effects are typically dose-dependent and cumulative and may require appropriate screening strategies and cardioprotective therapies in order to minimize changes to anticancer regimens or even their discontinuation. Our current understanding of cardiac damage by anthracyclines includes a central role of oxidative stress and inflammation. The identification of these processes through circulating biomarkers or imaging techniques might then be helpful for early diagnosis and risk stratification. Furthermore, therapeutic strategies relieving oxidative stress and inflammation hold promise to prevent heart failure development or at least to mitigate cardiac damage, although further evidence is needed on their efficacy, either alone or as part of combination therapies with neurohormonal antagonists, which are the current adopted standard.
Collapse
Affiliation(s)
- Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| | | | | | | | - Luigi F Saccaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Daniela Cardinale
- Cardioncology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - Claudio Passino
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
47
|
Ikewuchi JC, Ikewuchi CC, Ifeanacho MO, Jaja VS, Okezue EC, Jamabo CN, Adeku KA. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114004. [PMID: 33727109 DOI: 10.1016/j.jep.2021.114004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chromolaena odorata (L) King and Robinson and Tridax procumbens Linn are used in traditional medicine in the treatment of diabetes mellitus and hypertension. AIM OF THE STUDY This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against cardiotoxicity induced by doxorubicin. MATERIALS AND METHODS To this end, their impact on plasma markers of cardiac integrity, cardiac markers of oxidative stress, cardiac lipids and electrolyte profiles, and activities of cardiac ATPases, lactate dehydrogenase and creatine kinase, were monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and both extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while cardiotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally, once on the 12th day of study). RESULTS The plasma activities of creatine kinase, lactate dehydrogenase and AST of Test control were significantly (p < 0.05) higher than those of the other groups. Also, the cardiac malondialdehyde, calcium, chloride, sodium, cholesterol and triglyceride concentrations of Test control were significantly (p < 0.05) higher than those of the others. However, the cardiac concentrations of ascorbic acid, reduced glutathione, magnesium and potassium, and cardiac activities of catalase, glutathione peroxidase, superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase, Na+,K+-ATPase, creatine kinase and lactate dehydrogenase of Test control were significantly (p < 0.05) lower than those of the others. CONCLUSIONS Pre-treatment with the extracts and metformin elicited a cardioprotective effect, as indicated by the prevention of doxorubicin-induced cardiac oxidative stress and prevention of adverse alterations in plasma cardiac markers, cardiac lipids and electrolyte profiles, as well as improvement of the activities of cardiac ATPases, creatine kinase and lactate dehydrogenase.
Collapse
Affiliation(s)
- Jude C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Catherine C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Mercy O Ifeanacho
- Department of Food Science, Faculty of Agriculture, University of Port Harcourt, Nigeria.
| | - Victoria S Jaja
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Esther C Okezue
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Caius N Jamabo
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Kehinde A Adeku
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| |
Collapse
|
48
|
Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sci 2021; 280:119760. [PMID: 34166713 DOI: 10.1016/j.lfs.2021.119760] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Cardiotoxicity is a major side effect of the chemotherapeutic drug doxorubicin (Dox), which is further exacerbated when it is combined with trastuzumab, a standard care approach for Human Epidermal growth factor Receptor-type 2 (HER2) positive cancer patients. However, the molecular mechanisms of the underlying cardiotoxicity of this combination are still mostly elusive. Increased oxidative stress, impaired energetic substrate uses and topoisomerase IIB inhibition are among the biological processes proposed to explain Dox-induced cardiomyocyte dysfunction. Since cardiomyocytes express HER2, trastuzumab can also damage these cells by interfering with neuroregulin-1 signaling and mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt and focal adhesion kinase (FAK)-dependent pathways. Nevertheless, Dox and trastuzumab target other cardiac cell types, such as endothelial cells, fibroblasts, cardiac progenitor cells and leukocytes, which can contribute to the clinical cardiotoxicity observed. This review aims to summarize the current knowledge on the cardiac signaling pathways modulated by these two antineoplastic drugs highly used in the management of breast cancer, not only focusing on cardiomyocytes but also to broaden the knowledge of the potential impact on other cells found in the heart.
Collapse
Affiliation(s)
- Miguel Anjos
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Vera M Costa
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mário Santos
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal; UMIB, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
49
|
Alhamoudi KM, Barhoumi T, Al-Eidi H, Asiri A, Nashabat M, Alaamery M, Alharbi M, Alhaidan Y, Tabarki B, Umair M, Alfadhel M. A homozygous nonsense mutation in DCBLD2 is a candidate cause of developmental delay, dysmorphic features and restrictive cardiomyopathy. Sci Rep 2021; 11:12861. [PMID: 34145321 PMCID: PMC8213761 DOI: 10.1038/s41598-021-92026-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
DCBLD2 encodes discodin, CUB and LCCL domain-containing protein 2, a type-I transmembrane receptor that is involved in intracellular receptor signalling pathways and the regulation of cell growth. In this report, we describe a 5-year-old female who presented severe clinical features, including restrictive cardiomyopathy, developmental delay, spasticity and dysmorphic features. Trio-whole-exome sequencing and segregation analysis were performed to identify the genetic cause of the disease within the family. A novel homozygous nonsense variant in the DCBLD2 gene (c.80G > A, p.W27*) was identified as the most likely cause of the patient's phenotype. This nonsense variant falls in the extracellular N-terminus of DCBLD2 and thus might affect proper protein function of the transmembrane receptor. A number of in vitro investigations were performed on the proband's skin fibroblasts compared to normal fibroblasts, which allowed a comprehensive assessment resulting in the functional characterization of the identified DCBLD2 nonsense variant in different cellular processes. Our data propose a significant association between the identified variant and the observed reduction in cell proliferation, cell cycle progression, intracellular ROS, and Ca2 + levels, which would likely explain the phenotypic presentation of the patient as associated with lethal restrictive cardiomyopathy.
Collapse
Affiliation(s)
- Kheloud M Alhamoudi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Hamad Al-Eidi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Asiri
- Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, 225, Bisha, 67714, Kingdom of Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Masheal Alharbi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia. .,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| |
Collapse
|
50
|
Cavalcanti IDL, Soares JCS, Medeiros SMDFRDS, Cavalcanti IMF, Lira Nogueira MCDB. Can antioxidant vitamins avoid the cardiotoxicity of doxorubicin in treating breast cancer? PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|