1
|
Cools JMT, Goovaerts BK, Feyen E, Van den Bogaert S, Fu Y, Civati C, Van Fraeyenhove J, Tubeeckx MRL, Ott J, Nguyen L, Wülfers EM, Van Berlo B, De Vries AAF, Vandersickel N, Pijnappels DA, Audenaert D, Roderick HL, De Winter H, De Keulenaer GW, Segers VFM. Small-molecule-induced ERBB4 activation to treat heart failure. Nat Commun 2025; 16:576. [PMID: 39794341 PMCID: PMC11724075 DOI: 10.1038/s41467-024-54908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/25/2024] [Indexed: 01/13/2025] Open
Abstract
Heart failure is a common and deadly disease requiring new treatments. The neuregulin-1/ERBB4 pathway offers cardioprotective benefits, but using recombinant neuregulin-1 as therapy has limitations due to the need for intravenous delivery and lack of receptor specificity. We hypothesize that small-molecule activation of ERBB4 could protect against heart damage and fibrosis. To test this, we conduct a screening of 10,240 compounds and identify eight structurally similar ones (EF-1 to EF-8) that induce ERBB4 dimerization, with EF-1 being the most effective. EF-1 reduces cell death and hypertrophy in cardiomyocytes and decreases collagen production in cardiac fibroblasts in an ERBB4-dependent manner. In wild-type mice, EF-1 inhibits angiotensin-II-induced fibrosis in males and females and reduces heart damage caused by doxorubicin and myocardial infarction in females, but not in Erbb4-null mice. This study shows that small-molecule ERBB4 activation is feasible and may lead to a novel class of drugs for treating heart failure.
Collapse
Grants
- This work was supported by a Geconcerteerde onderzoeksactie grant (GOA, PID36444) of the University of Antwerp; by a Senior Clinical Investigator fellowship (to V.F.S.), a PhD fellowship (to J.MT.C. and C.C.), and research grants of the Fund for Scientific Research Flanders (Application numbers 1842219N, G021019N, G021420N, 1S49323N, and 11PBU24N); VLIR/iBOF Grant 20-VLIR-iBOF-027 (to N.V., V.F.S., H.L.R., and G.W.D.K.).
Collapse
Affiliation(s)
- Julie M T Cools
- Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium
| | - Bo K Goovaerts
- Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium
| | - Eline Feyen
- Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium
| | | | - Yile Fu
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Céline Civati
- Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium
| | | | | | - Jasper Ott
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Long Nguyen
- Screening Core, VIB, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Eike M Wülfers
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Freiburg im Breisbau, Germany and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Benji Van Berlo
- Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium
| | - Antoine A F De Vries
- Laboratory of Experimental Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominique Audenaert
- Screening Core, VIB, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium.
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Wang S, Jin Z, Li Z, Zhu G, Liu B, Zhang D, Tang S, Yao F, Wen J, Zhao Y, Wang X, Jin F, Wang J. An exploration of the optimal combination chemotherapy regimen based on neoadjuvant therapy containing pyrotinib for HER2-positive breast cancer: A multicenter real-world study. Transl Oncol 2025; 51:102173. [PMID: 39504711 PMCID: PMC11570967 DOI: 10.1016/j.tranon.2024.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The combination of pyrotinib (Py) with cytotoxic agents proved to be effective in early human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). However, the optimal chemotherapy regimen is unknown. This study attempts to explore it from real-world research data. METHODS Information was collected from patients with early-stage HER2-positive BC from 23 centers across the country. They were categorized into the anthracycline group (A group) and non-anthracycline group (non-A group). Patients in the non-A group were further categorized into the platinum group and non-platinum group and the short-cycle (≤4 cycles) taxane group and long-cycle (>4 cycles) taxane group. Total pathological complete response (tpCR, ypT0/is ypN0) and breast pathological complete response (bpCR, ypT0/is) rates were assessed. RESULTS A total of 107 patients were enrolled. Postoperative pathology indicated a tpCR rate of 36.8 %, a bpCR rate of 42.1 % in the A group, the non-A group had a tpCR rate of 47.8 %, and a bpCR rate of 53.6 %, with P-values of 0.273 and 0.254, respectively. In the long-cycle taxane group, the tpCR and bpCR rates were 60.8 % and 66.7 %, respectively. In the short-cycle taxane group, the tpCR and bpCR rates were 11.1 % and 16.7 %, respectively (both P<0.001). The platinum group had higher tpCR rate (62.9 % vs. 32.4 %, respectively; P = 0.011) and bpCR rate (65.7 % vs. 41.2 %, respectively; P = 0.041). CONCLUSION As for a neoadjuvant therapy regimen with Py, an anthracycline-free regimen is feasible. Besides, platinum-containing, long-cycle taxane regimens appear to achieve superior efficacy under anthracycline-removed conditions.
Collapse
Affiliation(s)
- Shan Wang
- Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhaohui Li
- Department of Ward Four of Chemotherapy, Anshan Cancer Hospital, Anshan, China
| | - Guolian Zhu
- Department of Breast Surgery, Shenyang the Fifth hospital of people, Shenyang, China
| | - Bin Liu
- Department of Breast Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Dianlong Zhang
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Shuhong Tang
- Department of Oncology, Dalian Fifth People's Hospital, Dalian, China
| | - Fan Yao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolan Wang
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jia Wang
- Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Chevillard PM, Batailler M, Dubois JP, Estienne A, Pillon D, Vaudin P, Piégu B, Blache MC, Dupont J, Just N, Migaud M. Seasonal remodeling of the progenitor pool and its distribution in the ewe mediobasal hypothalamus. Cell Tissue Res 2023:10.1007/s00441-023-03745-x. [PMID: 36795154 DOI: 10.1007/s00441-023-03745-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Recent studies have reported the presence of adult neurogenesis in the arcuate nucleus periventricular space (pvARH) and in the median eminence (ME), two structures involved in reproductive function. In sheep, a seasonal mammal, decreasing daylight in autumn induces a higher neurogenic activity in these two structures. However, the different types of neural stem and progenitor cells (NSCs/NPCs) that populate the arcuate nucleus and median eminence, as well as their location, have not been evaluated. Here, using semi-automatic image analyzing processes, we identified and quantified the different populations of NSCs/NPCs, showing that, during short days, higher densities of [SOX2 +] cells are found in pvARH and ME. In the pvARH, higher densities of astrocytic and oligodendrocitic progenitors mainly contribute to these variations. The different populations of NSCs/NPCs were mapped according to their position relative to the third ventricle and their proximity to the vasculature. We showed that [SOX2 +] cells extended deeper into the hypothalamic parenchyma during short days. Similarly, [SOX2 +] cells were found further from the vasculature in the pvARH and the ME, at this time of year, indicating the existence of migratory signals. The expression levels of neuregulin transcripts (NRGs), whose proteins are known to stimulate proliferation and adult neurogenesis and to regulate progenitor migration, as well as the expression levels of ERBB mRNAs, cognate receptors for NRGs, were assessed. We showed that mRNA expression changed seasonally in pvARH and ME, suggesting that the ErbB-NRG system is potentially involved in the photoperiodic regulation of neurogenesis in seasonal adult mammals.
Collapse
Affiliation(s)
| | - Martine Batailler
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Delphine Pillon
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Vaudin
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Benoît Piégu
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Joelle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Nathalie Just
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Martine Migaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
4
|
Riudavets M, Azarine A, Smaali S, Kim YW, Thomas de Montpréville V, Grecea AM, Naltet C, Gazzah A, Planchard D. Unexpected Cardiotoxicity in Patients With HER2-Mutant NSCLC Treated With Trastuzumab Deruxtecan: A Case Report. JTO Clin Res Rep 2022; 3:100432. [PMID: 36471682 PMCID: PMC9719088 DOI: 10.1016/j.jtocrr.2022.100432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Antibody-drug conjugates targeting receptor tyrosine-protein kinase erbB-2 (ERBB2, HER2) have emerged as promising targeted options for HER2-mutant NSCLC. Among antibody-drug conjugates targeting HER2, trastuzumab deruxtecan was found to have the most impressive efficacy and is a potential new standard of care. Drug-related interstitial lung disease remains a serious unpredictable identified risk for patients treated with trastuzumab deruxtecan, requiring careful monitoring and multidisciplinary management. We report the first two cases of drug-related cardiotoxicity with acute myocarditis that developed after the first trastuzumab deruxtecan cycle. Routine cardiovascular risk screening is advisable, with close collaboration between cardiology specialists and oncologists.
Collapse
Affiliation(s)
- Mariona Riudavets
- Cancer Medicine Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Arshid Azarine
- Radiology Department, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Sondes Smaali
- Cardiology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Young-Wouk Kim
- Radiology Department, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | | | | | - Charles Naltet
- Cancer Medicine Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Annas Gazzah
- Cancer Medicine Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - David Planchard
- Cancer Medicine Department, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
5
|
Das K, Basak M, Mahata T, Kumar M, Kumar D, Biswas S, Chatterjee S, Moniruzzaman M, Saha NC, Mondal K, Kumar P, Das P, Stewart A, Maity B. RGS11-CaMKII complex mediated redox control attenuates chemotherapy-induced cardiac fibrosis. Redox Biol 2022; 57:102487. [PMID: 36228439 PMCID: PMC9557029 DOI: 10.1016/j.redox.2022.102487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Dose limiting cardiotoxicity remains a major limiting factor in the clinical use of several cancer chemotherapeutics including anthracyclines and the antimetabolite 5-fluorouracil (5-FU). Prior work has demonstrated that chemotherapeutics increase expression of R7 family regulator of G protein signaling (RGS) protein-binding partner Gβ5, which drives myocyte cytotoxicity. However, though several R7 family members are expressed in heart, the exact role of each protein in chemotherapy driven heart damage remains unclear. Here, we demonstrate that RGS11, downregulated in the human heart following chemotherapy exposure, possesses potent anti-apoptotic actions, in direct opposition to the actions of fellow R7 family member RGS6. RGS11 forms a direct complex with the apoptotic kinase CaMKII and stress responsive transcription factor ATF3 and acts to counterbalance the ability of CaMKII and ATF3 to trigger oxidative stress, mitochondrial dysfunction, cell death, and release of the cardiokine neuregulin-1 (NRG1), which mediates pathological intercommunication between myocytes and endothelial cells. Doxorubicin triggers RGS11 depletion in the murine myocardium, and cardiac-specific OE of RGS11 decreases doxorubicin-induced fibrosis, myocyte hypertrophy, apoptosis, oxidative stress, and cell loss and aids in the maintenance of left ventricular function. Conversely, RGS11 knockdown in heart promotes cardiac fibrosis associated with CaMKII activation and ATF3/NRG1 induction. Indeed, inhibition of CaMKII largely prevents the fibrotic remodeling resulting from cardiac RGS11 depletion underscoring the functional importance of the RGS11-CaMKII interaction in the pathogenesis of cardiac fibrosis. These data describe an entirely new role for RGS11 in heart and identify RGS11 as a potential new target for amelioration of chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kiran Das
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Madhuri Basak
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Manish Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sayan Biswas
- Forensic Medicine, College of Medicine and Sagore Dutta Hospital, B.T. Road, Kamarhati, Kolkata, West Bengal, 700058, India
| | | | | | | | - Kausik Mondal
- Zoology, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Pranesh Kumar
- Pharmaceutical Sciences, Aryakul College of Pharmacy & Research, Natkur, Aryakul College Road, Lucknow, Uttar Pradesh, 226002, India
| | - Priyadip Das
- Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Adele Stewart
- Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
6
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
7
|
Lin M, Xiong W, Wang S, Li Y, Hou C, Li C, Li G. The Research Progress of Trastuzumab-Induced Cardiotoxicity in HER-2-Positive Breast Cancer Treatment. Front Cardiovasc Med 2022; 8:821663. [PMID: 35097033 PMCID: PMC8789882 DOI: 10.3389/fcvm.2021.821663] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, the incidence of breast cancer has been increasing on an annual basis. Human epidermal growth factor receptor-2 (HER-2) is overexpressed in 15-20% human breast cancers, which is associated with poor prognosis and a high recurrence rate. Trastuzumab is the first humanized monoclonal antibody against HER-2. The most significant adverse effect of trastuzumab is cardiotoxicity, which has become an important factor in limiting the safe use of the drug. Unfortunately, the mechanism causing this cardiotoxicity is still not completely understood, and the use of preventive interventions remains controversial. This article focuses on trastuzumab-induced cardiotoxicity, reviewing the clinical application, potential cardiotoxicity, mechanism and discussing the potential interventions through summarizing related researches over the past tens of years.
Collapse
Affiliation(s)
- Mengmeng Lin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiping Xiong
- Department of Cardiology, Shanghai Putuo District Liqun Hospital, Shanghai, China
| | - Shiyuan Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunying Hou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Kim K, Lee D. ERBB3-dependent AKT and ERK pathways are essential for atrioventricular cushion development in mouse embryos. PLoS One 2021; 16:e0259426. [PMID: 34714866 PMCID: PMC8555822 DOI: 10.1371/journal.pone.0259426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
ERBB family members and their ligands play an essential role in embryonic heart development and adult heart physiology. Among them, ERBB3 is a binding partner of ERBB2; the ERBB2/3 complex mediates downstream signaling for cell proliferation. ERBB3 has seven consensus binding sites to the p85 regulatory subunit of PI3K, which activates the downstream AKT pathway, leading to the proliferation of various cells. This study generated a human ERBB3 knock-in mouse expressing a mutant ERBB3 whose seven YXXM p85 binding sites were replaced with YXXA. Erbb3 knock-in embryos exhibited lethality between E12.5 to E13.5, and showed a decrease in mesenchymal cell numbers and density in AV cushions. We determined that the proliferation of mesenchymal cells in the atrioventricular (AV) cushion in Erbb3 knock-in mutant embryos was temporarily reduced due to the decrease of AKT and ERK1/2 phosphorylation. Overall, our results suggest that AKT/ERK activation by the ERBB3-dependent PI3K signaling is crucial for AV cushion morphogenesis during embryonic heart development.
Collapse
Affiliation(s)
- Kyoungmi Kim
- Department of Physiology and Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail: (KK); (DL)
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- * E-mail: (KK); (DL)
| |
Collapse
|
9
|
Exercise, but Not Metformin Prevents Loss of Muscle Function Due to Doxorubicin in Mice Using an In Situ Method. Int J Mol Sci 2021; 22:ijms22179163. [PMID: 34502073 PMCID: PMC8430759 DOI: 10.3390/ijms22179163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Though effective in treating various types of cancer, the chemotherapeutic doxorubicin (DOX) is associated with skeletal muscle wasting and fatigue. The purpose of this study was to assess muscle function in situ following DOX administration in mice. Furthermore, pre-treatments with exercise (EX) or metformin (MET) were used in an attempt to preserve muscle function following DOX. Mice were assigned to the following groups: control, DOX, DOX + EX, or DOX + MET, and were given a single injection of DOX (15 mg/kg) or saline 3 days prior to sacrifice. Preceding the DOX injection, DOX + EX mice performed 60 min/day of running for 5 days, while DOX + MET mice received 5 daily oral doses of 500 mg/kg MET. Gastrocnemius–plantaris–soleus complex function was assessed in situ via direct stimulation of the sciatic nerve. DOX treatment increased time to half-relaxation following contractions, indicating impaired recovery (p < 0.05). Interestingly, EX prevented any increase in half-relaxation time, while MET did not. An impaired relaxation rate was associated with a reduction in SERCA1 protein content (p = 0.07) and AMPK phosphorylation (p < 0.05). There were no differences between groups in force production or mitochondrial respiration. These results suggest that EX, but not MET may be an effective strategy for the prevention of muscle fatigue following DOX administration in mice.
Collapse
|
10
|
Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sci 2021; 280:119760. [PMID: 34166713 DOI: 10.1016/j.lfs.2021.119760] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Cardiotoxicity is a major side effect of the chemotherapeutic drug doxorubicin (Dox), which is further exacerbated when it is combined with trastuzumab, a standard care approach for Human Epidermal growth factor Receptor-type 2 (HER2) positive cancer patients. However, the molecular mechanisms of the underlying cardiotoxicity of this combination are still mostly elusive. Increased oxidative stress, impaired energetic substrate uses and topoisomerase IIB inhibition are among the biological processes proposed to explain Dox-induced cardiomyocyte dysfunction. Since cardiomyocytes express HER2, trastuzumab can also damage these cells by interfering with neuroregulin-1 signaling and mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt and focal adhesion kinase (FAK)-dependent pathways. Nevertheless, Dox and trastuzumab target other cardiac cell types, such as endothelial cells, fibroblasts, cardiac progenitor cells and leukocytes, which can contribute to the clinical cardiotoxicity observed. This review aims to summarize the current knowledge on the cardiac signaling pathways modulated by these two antineoplastic drugs highly used in the management of breast cancer, not only focusing on cardiomyocytes but also to broaden the knowledge of the potential impact on other cells found in the heart.
Collapse
Affiliation(s)
- Miguel Anjos
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Vera M Costa
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mário Santos
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal; UMIB, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
11
|
Nam JK, Kim AR, Choi SH, Kim JH, Choi KJ, Cho S, Lee JW, Cho HJ, Kwon YW, Cho J, Kim KS, Kim J, Lee HJ, Lee TS, Bae S, Hong HJ, Lee YJ. An antibody against L1 cell adhesion molecule inhibits cardiotoxicity by regulating persistent DNA damage. Nat Commun 2021; 12:3279. [PMID: 34078883 PMCID: PMC8172563 DOI: 10.1038/s41467-021-23478-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Targeting the molecular pathways underlying the cardiotoxicity associated with thoracic irradiation and doxorubicin (Dox) could reduce the morbidity and mortality associated with these anticancer treatments. Here, we find that vascular endothelial cells (ECs) with persistent DNA damage induced by irradiation and Dox treatment exhibit a fibrotic phenotype (endothelial-mesenchymal transition, EndMT) correlating with the colocalization of L1CAM and persistent DNA damage foci. We demonstrate that treatment with the anti-L1CAM antibody Ab417 decreases L1CAM overexpression and nuclear translocation and persistent DNA damage foci. We show that in whole-heart-irradiated mice, EC-specific p53 deletion increases vascular fibrosis and the colocalization of L1CAM and DNA damage foci, while Ab417 attenuates these effects. We also demonstrate that Ab417 prevents cardiac dysfunction-related decrease in fractional shortening and prolongs survival after whole-heart irradiation or Dox treatment. We show that cardiomyopathy patient-derived cardiovascular ECs with persistent DNA damage show upregulated L1CAM and EndMT, indicating clinical applicability of Ab417. We conclude that controlling vascular DNA damage by inhibiting nuclear L1CAM translocation might effectively prevent anticancer therapy-associated cardiotoxicity.
Collapse
Affiliation(s)
- Jae-Kyung Nam
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - A-Ram Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seo-Hyun Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Department of Surgery, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Ji-Hee Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Kyu Jin Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seulki Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Jae Won Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Jai Cho
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yoo-Wook Kwon
- Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Tae Sup Lee
- Division of RI Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sangwoo Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyo Jeong Hong
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.
- Scripps Korea Antibody Institute, Chuncheon, Korea.
| | - Yoon-Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
12
|
Pirfenidone and Vitamin D Ameliorate Cardiac Fibrosis Induced by Doxorubicin in Ehrlich Ascites Carcinoma Bearing Mice: Modulation of Monocyte Chemoattractant Protein-1 and Jun N-terminal Kinase-1 Pathways. Pharmaceuticals (Basel) 2020; 13:ph13110348. [PMID: 33126642 PMCID: PMC7693623 DOI: 10.3390/ph13110348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Treatment of breast cancer with doxorubicin causes numerous side effects, of which cardiac fibrosis is considered the main one. This study was designed to investigate the underlying molecular mechanisms for the potential anti-fibrotic effect of pirfenidone and vitamin D against doxorubicin-induced cardiac fibrosis. Seventy mice carrying solid Ehrlich’s ascites carcinoma (EAC) discs on the ventral side were treated with orally administered pirfenidone (500 mg/kg) and intraperitoneal injection of vitamin D (0.5 µg/kg) either individually or in combination with a doxorubicin (15 mg/kg; i.p.) single dose. All treatments commenced one week post-tumor inoculation and continued for 14 days. Compared to control EAC mice, the doxorubicin group showed a significant increase in heart and left ventricle weights, troponin T, and creatinine kinase serum levels. Furthermore, the doxorubicin group depicts a high expression of monocyte chemoattractant protein (MCP-1), nuclear factor-kappa B (NF-κB), transforming growth factor-beta 1 (TGF-β1), smad3, Jun N-terminal Kinase-1 (JNK1), and alpha-smooth muscle actin (α-SMA). Treatment with pirfenidone or vitamin D significantly decreased all of these parameters. Furthermore, the expression of smad7 was downregulated by doxorubicin and improved by pirfenidone or vitamin D. Furthermore, all treated groups showed a marked decrease in tumor weight and volume. Current data demonstrate that pirfenidone and vitamin D represent an attractive approach to ameliorate the cardiac fibrosis produced by doxorubicin through inhibiting both JNK1 signaling and MCP-1 inflammatory pathways, thus preserving heart function. Further, this combination demonstrated an anti-tumor effect to combat breast cancer.
Collapse
|
13
|
Gumà A, Díaz-Sáez F, Camps M, Zorzano A. Neuregulin, an Effector on Mitochondria Metabolism That Preserves Insulin Sensitivity. Front Physiol 2020; 11:696. [PMID: 32655416 PMCID: PMC7324780 DOI: 10.3389/fphys.2020.00696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Abstract
Various external factors modulate the metabolic efficiency of mitochondria. This review focuses on the impact of the growth factor neuregulin and its ErbB receptors on mitochondria and their relationship with several physiopathological alterations. Neuregulin is involved in the differentiation of heart, skeletal muscle, and the neuronal system, among others; and its deficiency is deleterious for the health. Information gathered over the last two decades suggests that neuregulin plays a key role in regulating the mitochondrial oxidative machinery, which sustains cell survival and insulin sensitivity.
Collapse
Affiliation(s)
- Anna Gumà
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Francisco Díaz-Sáez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marta Camps
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
14
|
Potential targets for intervention against doxorubicin-induced cardiotoxicity based on genetic studies: a systematic review of the literature. J Mol Cell Cardiol 2020; 138:88-98. [DOI: 10.1016/j.yjmcc.2019.11.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
|
15
|
FDG-PET Imaging of Doxorubicin-Induced Cardiotoxicity: a New Window on an Old Problem. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
|
17
|
Wang X, Zhuo X, Gao J, Liu H, Lin F, Ma A. Neuregulin-1β Partially Improves Cardiac Function in Volume-Overload Heart Failure Through Regulation of Abnormal Calcium Handling. Front Pharmacol 2019; 10:616. [PMID: 31281251 PMCID: PMC6597678 DOI: 10.3389/fphar.2019.00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Neuregulin (NRG-1), an essential stress-mediated paracrine growth factor, has a cardioprotective effect in failing heart. However, the underlying mechanism remains unclear. The role of NRG-1β in heart failure (HF) rats was examined. Methods and Results: Volume-overload HF rat model was created by aortocaval fistula surgery. The sham-operated (SO) rats received the same surgical intervention without the fistula. Thirty-five HF rats were injected with NRG-1β (NRG, 10 μg/kg·d) via the tail vein for 7 days, whereas 35 HF rats and 20 SO rats were injected with the same dose of saline. The echocardiographic findings showed left ventricular dilatation, systolic and diastolic dysfunction, and QTc interval prolongation in HF rats. The NRG-1β treatment attenuated the ventricular remodeling and shortened the QTc interval. Patch clamp recordings showed ICa-L was significantly decreased in the HF group, and NRG-1β treatment attenuated the decreased ICa-L. No significant differences in the kinetic properties of ICa-L were observed. The expressions of Cav1.2 and SERCA2a were significantly reduced, but the expression level of NCX1 was increased dramatically in the HF group. NRG-1β treatment could partially prevent the decrease of Cav1.2 and SERCA2a, and the increase of NCX1 in HF rats. Conclusions: NRG-1β could partly attenuate the heart function deterioration in the volume-overload model. Reduced function and expression of calcium transportation-related proteins might be the underlying mechanism.
Collapse
Affiliation(s)
- Xuehui Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xiaozhen Zhuo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huibing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Fei Lin
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Abstract
Doxorubicin-induced cardiotoxicity in childhood cancer survivors is a growing problem. The population of patients at risk for cardiovascular disease is steadily increasing, as five-year survival rates for all types of childhood cancers continue to improve. Doxorubicin affects the developing heart differently from the adult heart and in a subset of exposed patients, childhood exposure leads to late, irreversible cardiomyopathy. Notably, the prevalence of late-onset toxicity is increasing in parallel with improved survival. By the year 2020, it is estimated that there will be 500,000 childhood cancer survivors and over 50,000 of them will suffer from doxorubicin-induced cardiotoxicity. The majority of the research to-date, concentrated on childhood cancer survivors, has focused mostly on clinical outcomes through well-designed epidemiological and retrospective cohort studies. Preclinical studies have elucidated many of the cellular mechanisms that elicit acute toxicity in cardiomyocytes. However, more research is needed in the areas of early- and late-onset cardiotoxicity and more importantly improving the scientific understanding of how other cells present in the cardiac milieu are impacted by doxorubicin exposure. The overall goal of this review is to succinctly summarize the major clinical and preclinical studies focused on doxorubicin-induced cardiotoxicity. As the prevalence of patients affected by doxorubicin exposure continues to increase, it is imperative that the major gaps in existing research are identified and subsequently utilized to develop appropriate research priorities for the coming years. Well-designed preclinical research models will enhance our understanding of the pathophysiology of doxorubicin-induced cardiotoxicity and directly lead to better diagnosis, treatment, and prevention. © 2019 American Physiological Society. Compr Physiol 9:905-931, 2019.
Collapse
Affiliation(s)
- Trevi R. Mancilla
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Brian Iskra
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Gregory J. Aune
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
19
|
Colliva A, Braga L, Giacca M, Zacchigna S. Endothelial cell-cardiomyocyte crosstalk in heart development and disease. J Physiol 2019; 598:2923-2939. [PMID: 30816576 PMCID: PMC7496632 DOI: 10.1113/jp276758] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between endothelial cells and cardiomyocytes has emerged as a requisite for normal cardiac development, but also a key pathogenic player during the onset and progression of cardiac disease. Endothelial cells and cardiomyocytes are in close proximity and communicate through the secretion of paracrine signals, as well as through direct cell-to-cell contact. Here, we provide an overview of the endothelial cell-cardiomyocyte interactions controlling heart development and the main processes affecting the heart in normal and pathological conditions, including ischaemia, remodelling and metabolic dysfunction. We also discuss the possible role of these interactions in cardiac regeneration and encourage the further improvement of in vitro models able to reproduce the complex environment of the cardiac tissue, in order to better define the mechanisms by which endothelial cells and cardiomyocytes interact with a final aim of developing novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy.,Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34149, Trieste, Italy
| |
Collapse
|
20
|
Cardiac molecular pathways influenced by doxorubicin treatment in mice. Sci Rep 2019; 9:2514. [PMID: 30792528 PMCID: PMC6385261 DOI: 10.1038/s41598-019-38986-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/14/2019] [Indexed: 11/08/2022] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic with distinct cardiotoxic properties. Understanding the underlying cardiotoxic mechanisms on a molecular level would enable the early detection of cardiotoxicity and implementation of prophylactic treatment. Our goal was to map the patterns of different radiopharmaceuticals as surrogate markers of specific metabolic pathways induced by chemotherapy. Therefore, cardiac distribution of 99mTc-sestamibi, 99mTc-Annexin V, 99mTc-glucaric acid and [18F]FDG and cardiac expression of Bcl-2, caspase-3 and -8, TUNEL, HIF-1α, and p53 were assessed in response to DOX exposure in mice. A total of 80 mice (64 treated, 16 controls) were evaluated. All radiopharmaceuticals showed significantly increased uptake compared to controls, with peak cardiac uptake after one (99mTc-Annexin V), two (99mTc-sestamibi), three ([18F]FDG), or four (99mTc-glucaric acid) cycles of DOX. Strong correlations (p < 0.01) were observed between 99mTc-Annexin V, caspase 3 and 8, and TUNEL, and between [18F]FDG and HIF-1α. This suggests that the cardiac DOX response starts with apoptosis at low exposure levels, as indicated by 99mTc-Annexin V and histological apoptosis markers. Late process membrane disintegration can possibly be detected by 99mTc-sestamibi and 99mTc-glucaric acid. [18F]FDG signifies an early adaptive response to DOX, which can be further exploited clinically in the near future.
Collapse
|
21
|
Nebigil CG, Désaubry L. Updates in Anthracycline-Mediated Cardiotoxicity. Front Pharmacol 2018; 9:1262. [PMID: 30483123 PMCID: PMC6240592 DOI: 10.3389/fphar.2018.01262] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiotoxicity is one of the main adverse effects of chemotheraphy, affecting the completion of cancer therapies and the short- and long-term quality of life. Anthracyclines are currently used to treat many cancers, including the various forms of leukemia, lymphoma, melanoma, uterine, breast, and gastric cancers. World Health Organization registered anthracyclines in the list of essential medicines. However, anthracyclines display a major cardiotoxicity that can ultimately culminate in congestive heart failure. Taking into account the growing rate of cancer survivorship, the clinical significance of anthracycline cardiotoxicity is an emerging medical issue. In this review, we focus on the key progenitor cells and cardiac cells (cardiomyocytes, fibroblasts, and vascular cells), focusing on the signaling pathways involved in cellular damage, and the clinical biomarkers in anthracycline-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Canan G. Nebigil
- CNRS, Laboratory of Biomolecules, UMR 7203, Sorbonne University, Paris, France
| | | |
Collapse
|
22
|
miR-146a Attenuates Sepsis-Induced Myocardial Dysfunction by Suppressing IRAK1 and TRAF6 via Targeting ErbB4 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7163057. [PMID: 30224945 PMCID: PMC6129849 DOI: 10.1155/2018/7163057] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
Abstract
Myocardial dysfunction is a major manifestation of sepsis and closely associated with the increased mortality. MicroRNA-146 is one of the most important microRNAs identified as a potent negative regulator in innate immune and inflammatory responses induced by lipopolysaccharide (LPS). We aimed to identify the role and potential regulatory mechanism of miR-146a in sepsis-induced cardiac dysfunction with the induction of ErbB4 signaling. H9C2 cells were treated with LPS to induce sepsis, and miR-146a overexpression significantly increased the cell viability, reduced the apoptosis and ROS level, and attenuated the release of proinflammatory cytokines including TNF-α and IL-1β. Levels of ErbB4, p-NF-κB, NF-κB, TRAF6, IRAK1, caspase 3, Bcl-2, and Bax were measured by Western blot. The overexpression of miR-146a significantly increased the ErbB4 expression, decreased the expression of TRAF6, IRAK1, caspase 3, and the phosphorylation level of NF-κB, and also increased the Bcl-2/Bax ratio, suggesting the inhibition of inflammation and apoptosis. The protective effects were all abolished by the use of siErbB4. In conclusion, our results demonstrated that the overexpression of miR-146a mitigates myocardial injury by negatively regulating NF-κB activation and inflammatory cytokine production via targeting ErbB4 in LPS-induced sepsis.
Collapse
|
23
|
Wang F, Wang H, Liu X, Yu H, Zuo B, Song Z, Wang N, Huang W, Wang G. Pharmacological postconditioning with Neuregulin-1 mimics the cardioprotective effects of ischaemic postconditioning via ErbB4-dependent activation of reperfusion injury salvage kinase pathway. Mol Med 2018; 24:39. [PMID: 30134819 PMCID: PMC6069706 DOI: 10.1186/s10020-018-0040-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background The protective effect of Neuregulin-1 (NRG-1) on heart failure is well established. In this study, we assessed whether NRG-1 could protect the heart by mimicking the cardioprotective effects of ischaemic postconditioning (IP). Methods We used a myocardial reperfusion injury rat model in vivo to compare the cardioprotective effects of NRG-1(3 μg/kg, iv. at the onset of reperfusion) and IP. In Langendorff isolated heart perfusion experiments, we used the erythroblastic leukaemia viral oncogene homolog 4 (ErbB4) inhibitor AG1478, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and a mitogen-activated protein/extracellular signal regulated kinase (MEK) inhibitor PD98059 to clarify whether the protective effects of NRG-1and IP depend on the NRG-1/ErbB4 signals and the reperfusion injury salvage kinase (RISK) pathway. Infarct size was detected by Evans blue and TTC. Apoptosis was detected by TUNEL assays. The expression of NRG-1/ErbB4 and downstream ERK1/2, AKT, AMPK and p70s6K were detected by western blotting. Hematoxylin/eosin (H&E) staining was used for histological analysis. Results We found that NRG-1 and IP had similar effects on reducing myocardial infarct size and apoptosis in vivo. NRG-1 heart protein levels were upregulated in the IP group. Phosphorylation of AKT, ERK1/2 and ErbB4 were also increased in both the IP and NRG-1 groups. Furthermore, in Langendorff analyses, the ErbB4 inhibitor AG1478 suppressed the phosphorylation of ErbB4 and the RISK pathway and aggravated myocardial edema and fiber fracture, thereby inhibited the cardioprotective effects in both the IP and NRG-1 groups. For assessment of downstream signals, the PI3K inhibitor LY294002 and the MEK inhibitor PD98059 suppressed the phosphorylation of AKT and ERK1/2 respectively and abolished the cardioprotective effects induced by IP and NRG-1. Conclusion In conclusion, both IP and NRG-1 could reduce infarct size and apoptosis through ErbB4-dependent activation of the RISK pathway in the same model; these results indicated the therapeutic potential of NRG-1 as a pharmacological postconditioning agent against myocardial reperfusion injury.
Collapse
Affiliation(s)
- Fuhua Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Huan Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Xuejing Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Haiyi Yu
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Bo Zuo
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Zhu Song
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Ning Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, 38, XueYuan Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Guisong Wang
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education. Beijing Key Laboratory of Cardiovascular Receptors Research, 9, HuaYuanBei Road, HaiDian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
24
|
|
25
|
Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:125-139. [PMID: 29496165 DOI: 10.1016/j.phymed.2018.01.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. PURPOSE We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. METHODS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. RESULTS Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. CONCLUSIONS Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Changxi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, PR China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China.
| |
Collapse
|
26
|
Liao D, Guo Y, Xiang D, Dang R, Xu P, Cai H, Cao L, Jiang P. Dysregulation of Neuregulin-1/ErbB signaling in the hippocampus of rats after administration of doxorubicin. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:231-239. [PMID: 29430172 PMCID: PMC5796460 DOI: 10.2147/dddt.s151511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective Long-term use of doxorubicin (Dox) can cause neurobiological side effects associated with depression, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in neural function, much is still unknown concerning the biological link between the NRG1/ErbB pathway and the Dox-induced neurotoxicity. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the hippocampus of rats following Dox treatment. Materials and methods The drug was administered every 2 days at a dose of 2.5 mg/kg, and the animals in different groups were treated with intraperitoneal injection for three or seven times, respectively. Results Our data showed that the rats treated with Dox for seven times (DoxL group) exhibited depression-like behaviors, whereas the short-term treatment (DoxS group) had no effect on the behavioral changes. Dox treatment also induced the neural apoptosis with more severe neurotoxicity. Intriguingly, the expression of NRG1 and the ratio of pErbB4/ErbB4 and pErbB2/ErbB2 were significantly decreased in the DoxL group, but enhanced activation of ErbB receptors was observed in the DoxS group. In parallel, administration of Dox for seven times suppressed the downstream Akt and ERK phosphorylation, while the Akt phosphorylation was enhanced with the administration of Dox for three times. Conclusion Our data first showed the Dox-induced alterations of the NRG1/ErbB system in the hippocampus, indicating the potential involvement of the NRG1/ErbB pathway in the Dox-induced nervous system dysfunction.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital.,Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Yujin Guo
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Daxiong Xiang
- Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Ruili Dang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Pengfei Xu
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Hualin Cai
- Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Lizhi Cao
- Department of Pharmacy, Hunan Cancer Hospital
| | - Pei Jiang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
27
|
Nakahara T, Tanimoto T, Petrov AD, Ishikawa K, Strauss HW, Narula J. Rat Model of Cardiotoxic Drug-Induced Cardiomyopathy. Methods Mol Biol 2018; 1816:221-232. [PMID: 29987823 DOI: 10.1007/978-1-4939-8597-5_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cardiotoxicity from cancer drugs remains a clinical problem. To find reliable markers of cardiotoxicity, animal models were proposed and potential new diagnostic markers have been actively investigated using these models. Here we describe our protocols, using male Sprague-Dawley rats, for inducing cardiomyopathy by single injection of high-dose doxorubicin (5-10 mg/kg) or multiple injections (2-4 times) of low-dose doxorubicin (2.5 mg/kg) with combined single injection of trastuzumab (10 mg/kg). The cardiotoxicity is evaluated by imaging modalities (echocardiography and nuclear imaging), serum troponin levels, and histopathological analyses.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Molecular Imaging and Therapy Section, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - Takashi Tanimoto
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Wakayama Medical University, Wakayama, Japan
| | - Artiom D Petrov
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H William Strauss
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Imaging and Therapy Section, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur J Pharmacol 2017; 818:241-253. [PMID: 29074412 DOI: 10.1016/j.ejphar.2017.10.043] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
Abstract
Doxorubicin is utilized for anti-neoplastic treatment for several decades. The utility of this drug is limited due to its side effects. Generally, doxorubicin toxicity is originated from the myocardium and then other organs are also ruined. The mechanism of doxorubicin is intercalated with the DNA and inhibits topoisomerase 2. There are various signalling mechanisms involved in doxorubicin cardiotoxicity. First and foremost, the doxorubicin-induced cardiotoxicity is due to oxidative stress. Cardiac mitochondrial damage is supposed after few hours following the revelation of doxorubicin. This has led important new uses for the mechanism of doxorubicin-induced cardiotoxicity and novel avenues of investigation to determine better pharmacotherapies and interventions for the impediment of cardiotoxicity. The idea of this review is to bring up to date the recent findings of the mechanism of doxorubicin cardiomyopathies such as calcium dysregulation, endoplasmic reticulum stress, impairment of progenitor cells, activation of immune, ubiquitous system and some other parameters.
Collapse
|
29
|
Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol 2017; 1:31. [PMID: 29872712 PMCID: PMC5871905 DOI: 10.1038/s41698-017-0034-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
Current oncologic treatments have brought a strong reduction in mortality in cancer patients. However, the cancer therapy-related cardiovascular complications, in particular chemo-therapy and radiation therapy-induced cardiotoxicities are a major cause of morbidity and mortality in people living with or surviving cancer. The simple fact is that all antineoplastic agents and radiation therapy target tumor cells but also result in collateral damage to other tissues including the cardiovascular system. The commonly used anthracycline chemotherapy agents can induce cardiomyopathy and congestive heart failure. Targeted therapies with human epidermal growth factor antibodies, tyrosine kinase inhibitors or vascular endothelial growth factor antibodies, and the antimetabolites also have shown to induce cardiomyopathy and myocardial ischemia. Cardiac arrhythmias and hypertension have been well described with the use of tyrosine kinase inhibitors and antimicrotubule agents. Pericarditis can happen with the use of cyclophosphamide or cytarabine. Mediastinal radiation can cause constrictive pericarditis, myocardial fibrosis, valvular lesions, and coronary artery disease. Despite significant progresses in the understanding of the molecular and pathophysiologic mechanisms behind the cardiovascular toxicity of cancer therapy, there is still lack of evidence-based approach for the monitoring and management of patients. This review will focus mainly on the recent advances in the molecular mechanisms of cardiotoxicity related to common cancer therapies while introducing the concept of cardio-oncology service. Applying the general principles of multi-disciplinary approaches toward the diagnosis, prevention, monitoring, and treatment of cancer therapy-induced cardiomyopathy and heart failure will also be discussed.
Collapse
|
30
|
UVRAG Deficiency Exacerbates Doxorubicin-Induced Cardiotoxicity. Sci Rep 2017; 7:43251. [PMID: 28225086 PMCID: PMC5320807 DOI: 10.1038/srep43251] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug in the treatment of various types of cancers. However, its clinical application has been largely limited by potential development of cardiotoxicity. Previously we have shown that ultra-violet radiation resistance-associated gene (UVRAG), an autophagy-related protein, is essential for the maintenance of autophagic flux in the heart under physiological conditions. Here, we sought to determine the role of UVRAG-mediated autophagy in DOX-induced cardiotoxicity. Mouse models of acute or chronic DOX-induced cardiotoxicity were established. UVRAG deficiency exacerbated DOX-induced mortality and cardiotoxicity manifested by increased cytoplasmic vacuolization, enhanced collagen accumulation, elevated serum activities of lactate dehydrogenase and myocardial muscle creatine kinase, higher ROS levels, aggravated apoptosis and more depressed cardiac function. Autophagic flux was impaired in DOX-induced cardiotoxicity. UVRAG deficiency aggravated impaired autophagic flux in DOX-induced cardiotoxicity. Intermittent fasting restored autophagy and ameliorated pathological alterations of DOX-induced cardiotoxicity. Collectively, our data suggest that UVRAG deficiency exacerbates DOX-induced cardiotoxicity, at least in part, through aggravation of DOX-induced impaired autophagic flux. Intermittent fasting, which restores blunted autophagic flux and ameliorates pathology in the mouse models of DOX-induced cardiotoxicity, may be used as a potential preventive or therapeutic approach for DOX cardiotoxicity.
Collapse
|
31
|
Substantial Increase in Myocardial FDG Uptake on Interim PET/CT May Be an Early Sign of Adriamycin-Induced Cardiotoxicity. Clin Nucl Med 2017; 41:462-3. [PMID: 26909713 DOI: 10.1097/rlu.0000000000001194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cumulative cardiotoxicity is a well-established adverse effect of Adriamycin therapy. Although dose dependent, cardiotoxicity has been recently reported to occur even at lower doses than usually proposed. Conventional imaging detection and/or clinical manifestation of the deterioration in cardiac function occur late in the process; thus, it is desirable to have noninvasive markers to detect toxicity at an early stage. Several biochemical markers including troponin and atrial natriuretic peptide were explored for this purpose. The present case depicts that a significant increase in myocardial FDG uptake on posttherapy PET/CT can be a potential imaging biomarker of Adriamycin-induced cardiotoxicity.
Collapse
|
32
|
Growth factor and co-receptor release by structural regulation of substrate metalloprotease accessibility. Sci Rep 2016; 6:37464. [PMID: 27876763 PMCID: PMC5120278 DOI: 10.1038/srep37464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
Release of cytokines, growth factors and other life-essential molecules from precursors by a-disintegrin-and-metalloproteases (ADAMs) is regulated with high substrate-specificity. We hypothesized that this is achieved by cleavage-regulatory intracellular-domain (ICD)-modifications of the precursors. We show here that cleavage-stimuli-induced specific ICD-modifications cause structural substrate changes that enhance ectodomain sensitivity of neuregulin-1 (NRG1; epidermal-growth-factor) or CD44 (receptor-tyrosine-kinase (RTK) co-receptor) to chymotrypsin/trypsin or soluble ADAM. This inside-out signal transfer required substrate homodimerization and was prevented by cleavage-inhibitory ICD-mutations. In chimeras, regulation could be conferred to a foreign ectodomain, suggesting a common higher-order structure. We predict that substrate-specific protease-accessibility-regulation controls release of numerous ADAM substrates.
Collapse
|
33
|
Abstract
The dual role of ErbB2 (or HER-2) in tumor growth and in physiological adaptive reactions of the heart positions ErbB2 at the intersection between cancer and chronic heart failure. Accordingly, ErbB2-targeted inhibitory therapy of cancer may lead to ventricular dysfunction, and activation of ErbB2 for heart failure therapy may induce malignancy. The molecular processes leading to the activation of ErbB2 in tumors and cardiac cells are, however, fundamentally different from each other. Thus, it must be feasible to design drugs that specifically target either physiological or malignant ErbB2 signaling, to activate ErbB2 signaling in heart failure with no increased risk for cancer, and to inhibit ErbB2 signaling in cancer with no increased risk for heart failure. In this review, we present a state-of-the-art on how ErbB2 is regulated in physiological conditions and in tumor cells and how this knowledge translates into smart drug design. This leads to a new generation of drugs interfering with ErbB2 in a unique way tailored for a specific clinical goal. These exciting developments at the crossing between cancer and heart failure are an elegant example of interdisciplinary collaborations between clinicians, physiologists, pharmacologists, and molecular biologists.
Collapse
|
34
|
Affiliation(s)
- Ronald M Witteles
- From Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (R.M.W.); Cardiology Department, Cardiovascular Institute, Hospital Clinic, Barcelona, Spain (X.B.); and Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain (X.B.)
| | - Xavier Bosch
- From Division of Cardiovascular Medicine, Stanford University School of Medicine, CA (R.M.W.); Cardiology Department, Cardiovascular Institute, Hospital Clinic, Barcelona, Spain (X.B.); and Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain (X.B.).
| |
Collapse
|
35
|
Wang Y, Zhang Y, An T, Zhang R, Zhao X, Liu N, Yin S, Gan T, Liang T, Huang Y, Zhou Q, Zhang J. ErbB4 Gene Polymorphism Is Associated With the Risk and Prognosis of Congestive Heart Failure in a Northern Han Chinese Population. J Card Fail 2016; 22:700-9. [PMID: 26844763 DOI: 10.1016/j.cardfail.2016.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/08/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND There has been no research evaluating the association between human Neuregulin (NRG) 1/ErbB2/ErbB4 gene polymorphisms and heart failure risk. METHODS AND RESULTS Genotyping of 13 single nucleotide polymorphisms (SNPs) in the NRG-1/ErbB2/ErbB4 genes was performed in 569 unrelated heart failure patients and 682 healthy controls from a Northern Han Chinese population with the use of iPlex SNP Genotyping analysis on a Sequenom Massarray System. In the ErbB4 gene, the variants rs10932374 and rs1595064 were associated with reduced risk of heart failure under allelic, recessive and additive genetic models, and the variants rs13003941 and rs1595065 were associated with increased risk of heart failure under allelic, dominant, and additive models. The G-G-C-C-T haplotype of rs10932374-rs13003941-rs1595064-rs1595065-rs3748960 in the ErbB4 gene increased the risk of heart failure (odd ratio 1.35, 95% confidence interval [CI] 1.06-1.70; P = .014). The T variant of rs13003941 was associated with larger left ventricle (dominant model, P = .014; additive model, P = .048), and increased risk of overall death (relative risk [RR] 1.48, 95% CI 1.01-2.18; P = .045) and cardiovascular death (RR 1.56, 95% CI 1.04-2.33; P = .03) after adjusting for age and sex. NRG-1/ErbB2 gene polymorphisms were not associated with heart failure risk or prognosis. CONCLUSION ErbB4 gene polymorphisms were associated with the risk, severity, and prognosis of heart failure in a Northern Han Chinese population.
Collapse
Affiliation(s)
- Yunhong Wang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Tao An
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Rongcheng Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xuemei Zhao
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Nini Liu
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shijie Yin
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Tianyi Gan
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Tuo Liang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Huang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiong Zhou
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
36
|
New signal transduction paradigms in anthracycline-induced cardiotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1916-25. [PMID: 26828775 DOI: 10.1016/j.bbamcr.2016.01.021] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/06/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
Abstract
Anthracyclines, such as doxorubicin, are the most potent and widely used chemotherapeutic agents for the treatment of a variety of human cancers, including solid tumors and hematological malignancies. However, their clinical use is hampered by severe cardiotoxic side effects and cancer therapy-related heart disease has become a leading cause of morbidity and mortality among cancer survivors. The identification of therapeutic strategies limiting anthracycline cardiotoxicity with preserved antitumor efficacy thus represents the current challenge of cardio-oncologists. Anthracycline cardiotoxicity has been originally ascribed to the ability of this class of drugs to disrupt iron metabolism and generate excess of reactive oxygen species (ROS). However, small clinical trials with iron chelators and anti-oxidants failed to provide any benefit and suggested that doxorubicin cardiotoxicity is not solely due to redox cycling. New emerging explanations include anthracycline-dependent regulation of major signaling pathways controlling DNA damage response, cardiomyocyte survival, cardiac inflammation, energetic stress and gene expression modulation. This review will summarize recent studies unraveling the complex web of mechanisms of doxorubicin-mediated cardiotoxicity, and identifying new druggable players for the prevention of heart disease in cancer patients. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
|
37
|
Sysa-Shah P, Tocchetti CG, Gupta M, Rainer PP, Shen X, Kang BH, Belmonte F, Li J, Xu Y, Guo X, Bedja D, Gao WD, Paolocci N, Rath R, Sawyer DB, Naga Prasad SV, Gabrielson K. Bidirectional cross-regulation between ErbB2 and β-adrenergic signalling pathways. Cardiovasc Res 2015; 109:358-73. [PMID: 26692570 DOI: 10.1093/cvr/cvv274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
AIMS Despite the observation that ErbB2 regulates sensitivity of the heart to doxorubicin or ErbB2-targeted cancer therapies, mechanisms that regulate ErbB2 expression and activity have not been studied. Since isoproterenol up-regulates ErbB2 in kidney and salivary glands and β2AR and ErbB2 complex in brain and heart, we hypothesized that β-adrenergic receptors (AR) modulate ErbB2 signalling status. METHODS AND RESULTS ErbB2 transfection of HEK293 cells up-regulates β2AR, and β2AR transfection of HEK293 up-regulates ErbB2. Interestingly, cardiomyocytes isolated from myocyte-specific ErbB2-overexpressing (ErbB2(tg)) mice have amplified response to selective β2-agonist zinterol, and right ventricular trabeculae baseline force generation is markedly reduced with β2-antagonist ICI-118 551. Consistently, receptor binding assays and western blotting demonstrate that β2ARs levels are markedly increased in ErbB2(tg) myocardium and reduced by EGFR/ErbB2 inhibitor, lapatinib. Intriguingly, acute treatment of mice with β1- and β2-AR agonist isoproterenol resulted in myocardial ErbB2 increase, while inhibition with either β1- or β2-AR antagonist did not completely prevent isoproterenol-induced ErbB2 expression. Furthermore, inhibition of ErbB2 kinase predisposed mice hearts to injury from chronic isoproterenol treatment while significantly reducing isoproterenol-induced pAKT and pERK levels, suggesting ErbB2's role in transactivation in the heart. CONCLUSION Our studies show that myocardial ErbB2 and βAR signalling are linked in a feedback loop with βAR activation leading to increased ErbB2 expression and activity, and increased ErbB2 activity regulating β2AR expression. Most importantly, ErbB2 kinase activity is crucial for cardioprotection in the setting of β-adrenergic stress, suggesting that this mechanism is important in the pathophysiology and treatment of cardiomyopathy induced by ErbB2-targeting antineoplastic drugs.
Collapse
Affiliation(s)
- Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Carlo G Tocchetti
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Manveen Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Peter P Rainer
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Byung-Hak Kang
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Frances Belmonte
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jian Li
- Clinical Laboratory, Chinese PLA General Hospital, Beijing, China
| | - Yi Xu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Rutwik Rath
- Cardiovascular Services, Maine Medical Center, Portland, ME, USA
| | - Douglas B Sawyer
- Cardiovascular Services, Maine Medical Center, Portland, ME, USA
| | | | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, MRB 807, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Brown SA, Sandhu N, Herrmann J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol 2015; 12:718-31. [PMID: 26462128 DOI: 10.1038/nrclinonc.2015.168] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased awareness of the cardiovascular toxic effects of chemotherapy has led to the emergence of cardio-oncology (or onco-cardiology), which focuses on screening, monitoring and treatment of patients with cardiovascular dysfunctions resulting from chemotherapy. Anthracyclines, such as doxorubicin, and HER2 inhibitors, such as trastuzumab, both have cardiotoxic effects. The biological rationale, mechanisms of action and cardiotoxicity profiles of these two classes of drugs, however, are completely different, suggesting that cardiotoxic effects can occur in a range of different ways. Advances in genomics and proteomics have implicated several genomic variants and biological pathways that can influence the susceptibility to cardiotoxicity from these, and other drugs. Established pathways include multidrug resistance proteins, energy utilization pathways, oxidative stress, cytoskeletal regulation and apoptosis. Gene-expression profiles that have revealed perturbed pathways have vastly increased our knowledge of the complex processes involved in crosstalk between tumours and cardiac function. Utilization of mathematical and computational modelling can complement pharmacogenomics and improve individual patient outcomes. Such endeavours should enable identification of variations in cardiotoxicity, particularly in those patients who are at risk of not recovering, even with the institution of cardioprotective therapy. The application of systems biology holds substantial potential to advance our understanding of chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sherry-Ann Brown
- Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nicole Sandhu
- Division of General Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joerg Herrmann
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Distinct Intracellular Domain Substrate Modifications Selectively Regulate Ectodomain Cleavage of NRG1 or CD44. Mol Cell Biol 2015. [PMID: 26217011 DOI: 10.1128/mcb.00500-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ectodomain cleavage by A-disintegrin and -metalloproteases (ADAMs) releases many important biologically active substrates and is therefore tightly controlled. Part of the regulation occurs on the level of the enzymes and affects their cell surface abundance and catalytic activity. ADAM-dependent proteolysis occurs outside the plasma membrane but is mostly controlled by intracellular signals. However, the intracellular domains (ICDs) of ADAM10 and -17 can be removed without consequences for induced cleavage, and so far it is unclear how intracellular signals address cleavage. We therefore explored whether substrates themselves could be chosen for proteolysis via ICD modification. We report here that CD44 (ADAM10 substrate), a receptor tyrosine kinase (RTK) coreceptor required for cellular migration, and pro-NRG1 (ADAM17 substrate), which releases the epidermal growth factor (EGF) ligand neuregulin required for axonal outgrowth and myelination, are indeed posttranslationally modified at their ICDs. Tetradecanoyl phorbol acetate (TPA)-induced CD44 cleavage requires dephosphorylation of ICD serine 291, while induced neuregulin release depends on the phosphorylation of several NRG1-ICD serines, in part mediated by protein kinase Cδ (PKCδ). Downregulation of PKCδ inhibits neuregulin release and reduces ex vivo neurite outgrowth and myelination of trigeminal ganglion explants. Our results suggest that specific selection among numerous substrates of a given ADAM is determined by ICD modification of the substrate.
Collapse
|
40
|
Baik I, Seo HS, Yoon D, Kim SH, Shin C. Associations of Sleep Apnea, NRG1 Polymorphisms, Alcohol Consumption, and Cerebral White Matter Hyperintensities: Analysis with Genome-Wide Association Data. Sleep 2015; 38:1137-43. [PMID: 25325441 DOI: 10.5665/sleep.4830] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/25/2014] [Indexed: 12/27/2022] Open
Abstract
STUDY OBJECTIVE There are few studies on gene-environment interactions with obstructive sleep apnea (OSA). Our study aimed to explore genetic polymorphisms associated with OSA using genome-wide association (GWA) data and evaluate the effects of relevant polymorphisms on the association between risk factors, including obesity and alcohol consumption, and OSA. We also investigated on these associations in relation to cerebral white matter hyperintensities (WMH) on magnetic resonance images. DESIGN A cross-sectional design. SETTING A polysomnography study embedded in a population-based cohort from the Korean Genome Epidemiology Study was conducted in 2011-2013. PARTICIPANTS 1,763 participants aged 48-78 years. RESULTS 251 individuals were identified to have OSA with an apnea-hypopnea index ≥ 15. A common polymorphism of neuregulin-1 gene (NRG1), rs10097555, was selected as the most suggestive locus associated with OSA (P value < 10(-5)) based on the results of GWA analysis in a matched case-control subsample (n = 470). Among 1,763 participants, we found that the presence of the NRG1 polymorphism is inversely associated with OSA (P value < 0.01) even after taking into account potential risk factors; the multivariate odds ratio (95% confidence interval) for the mutant alleles was 0.57 (0.39-0.82) compared with the wild-type. We observed that this association is modified by alcohol consumption (P < 0.05), not by obesity. We also observed that WMH are positively associated with OSA independent of the NRG1 polymorphism and alcohol consumption (P < 0.05). CONCLUSIONS These findings suggest that the neuregulin-1 gene (NRG1) may be involved in the etiological mechanisms of obstructive sleep apnea (OSA) and that carriers of a particular NRG1 mutation may be less likely to have OSA if they do not drink alcoholic beverages.
Collapse
Affiliation(s)
- Inkyung Baik
- Department of Foods and Nutrition, College of Natural Sciences, Kookmin University, Seoul, Republic of Korea
| | - Hyung Suk Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Daewui Yoon
- Institute of Human Genomic Study, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Seong Hwan Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Chol Shin
- Institute of Human Genomic Study, Korea University Ansan Hospital, Ansan, Republic of Korea.,Division of Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| |
Collapse
|
41
|
Lindsey ML, Lange RA, Parsons H, Andrews T, Aune GJ. The tell-tale heart: molecular and cellular responses to childhood anthracycline exposure. Am J Physiol Heart Circ Physiol 2014; 307:H1379-89. [PMID: 25217655 DOI: 10.1152/ajpheart.00099.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the modern era of cancer chemotherapy that began in the mid-1940s, survival rates for children afflicted with cancer have steadily improved from 10% to current rates that approach 80% (60). Unfortunately, many long-term survivors of pediatric cancer develop chemotherapy-related health effects; 25% are afflicted with a severe or life-threatening medical condition, with cardiovascular disease being a primary risk (96). Childhood cancer survivors have markedly elevated incidences of stroke, congestive heart failure (CHF), coronary artery disease, and valvular disease (96). Their cardiac mortality is 8.2 times higher than expected (93). Anthracyclines are a key component of most curative chemotherapeutic regimens used in pediatric cancer, and approximately half of all childhood cancer patients are exposed to them (78). Numerous epidemiologic and observational studies have linked childhood anthracycline exposure to an increased risk of developing cardiomyopathy and CHF, often decades after treatment. The acute toxic effects of anthracyclines on cardiomyocytes are well described; however, myocardial tissue is comprised of additional resident cell types, and events occurring in the cardiomyocyte do not fully explain the pathological processes leading to late cardiomyopathy and CHF. This review will summarize the current literature regarding the cellular and molecular responses to anthracyclines, with an important emphasis on nonmyocyte cardiac cell types as well as those that mediate the myocardial injury response.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Jackson Center for Heart Research, Mississippi Medical Center, Jackson, Mississippi
| | - Richard A Lange
- Division of Cardiology, Department of Medicine, San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Helen Parsons
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Thomas Andrews
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Gregory J Aune
- Division of Hematology-Oncology, Department of Pediatrics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
42
|
Leucker TM, Jones SP. Endothelial dysfunction as a nexus for endothelial cell-cardiomyocyte miscommunication. Front Physiol 2014; 5:328. [PMID: 25206341 PMCID: PMC4144117 DOI: 10.3389/fphys.2014.00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/08/2014] [Indexed: 12/16/2022] Open
Abstract
Most studies of the heart focus on cardiomyocytes (CM) at the exclusion of other cell types such as myocardial endothelial cells (EC). Such mono-cellular approaches propagate the presumption that EC provide a mere “passive lining” or supportive role. In fact, EC contribute to a dynamic network regulating vascular tone, cardiac development, and repair. Two distinct EC types, vascular EC and epicardial EC, possess important structural and signaling properties within both the healthy and diseased myocardium. In this review, we address EC-CM interactions in mature, healthy myocardium, followed by a discussion of diseases characterized by EC dysfunction. Finally, we consider strategies to reverse EC-CM “miscommunication” to improve patients' outcomes in various cardiovascular diseases.
Collapse
Affiliation(s)
- Thorsten M Leucker
- Division of Cardiology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Steven P Jones
- Department of Medicine - Cardiovascular, Institute of Molecular Cardiology, and Diabetes and Obesity Center, School of Medicine, University of Louisville Louisville, KY, USA
| |
Collapse
|
43
|
Vasti C, Hertig CM. Neuregulin-1/erbB activities with focus on the susceptibility of the heart to anthracyclines. World J Cardiol 2014; 6:653-662. [PMID: 25068025 PMCID: PMC4110613 DOI: 10.4330/wjc.v6.i7.653] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neuregulin-1 (NRG1) signaling through the tyrosine kinase receptors erbB2 and erbB4 is required for cardiac morphogenesis, and it plays an essential role in maintaining the myocardial architecture during adulthood. The tyrosine kinase receptor erbB2 was first linked to the amplification and overexpression of erbb2 gene in a subtype of breast tumor cells, which is indicative of highly proliferative cells and likely a poor prognosis following conventional chemotherapy. The development of targeted therapies to block the survival of erbB2-positive cancer cells revealed that impaired NRG1 signaling through erbB2/erbB4 heterodimers combined with anthracycline chemotherapy may lead to dilated cardiomyopathy in a subpopulation of treated patients. The ventricular-specific deletion of either erbb2 or erbb4 manifested dilated cardiomyopathy, which is aggravated by the administration of doxorubicin. Based on the exacerbated toxicity displayed by the combined treatment, it is expected that the relevant pathways would be affected in a synergistic manner. This review examines the NRG1 activities that were monitored in different model systems, focusing on the emerging pathways and molecular targets, which may aid in understanding the acquired dilated cardiomyopathy that occurs under the conditions of NRG1-deficient signaling.
Collapse
|
44
|
Hulanicka M, Garncarz M, Parzeniecka-Jaworska M, Jank M. The transcriptomic profile of peripheral blood nuclear cells in dogs with heart failure. BMC Genomics 2014; 15:509. [PMID: 24952741 PMCID: PMC4092214 DOI: 10.1186/1471-2164-15-509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 06/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background In recent years advances have been made in the investigative methods of molecular background of canine heart disease. Studies have been conducted to identify specific genes which, when pathologically expressed, could lead to the dysfunction of the canine heart or are correlated with heart failure. For this purpose genome wide microarray experiments on tissues from failing hearts have been performed. In the presented study a whole genome microarray analysis was used for the first time to describe the transcription profile of peripheral blood nuclear cells in dogs with heart failure. Dogs with recognized heart disease were classified according the ISACHC (International Small Animal Cardiac Health Council) classification scheme as class 1 (asymptomatic) - 13 dogs, class 2 (mild to moderate heart failure) - 13 dogs and class 3 (severe heart failure) - 12 dogs. The control group consisted of 14 healthy dogs. The clinical picture of the animals included: animal history, clinical examination, echocardiographic examination and where applicable electrocardiographic and radiographic examinations. Results In the present study we identified four sets of differentially expressed genes, namely heart-failure-specific genes and ISACHC1-specific genes, ISACHC2-sepcific genes and ISACHC-3 specific genes. The most important set consisted of genes differentially expressed in all dogs with heart failure, despite the ISACHC stage. We identified 71 heart-failure-specific genes which were involved in two statistically significant receptor signalling pathways, namely angiotensinR - > CREB/ELK-SRF/TP53 signalling and ephrinR - > actin signalling. The number of ISACHC1-specific genes was 83; ISACHC2-specific genes - 1247 and ISACHC3-specific - 200. Conclusions The transcriptomic profile of peripheral blood nuclear cells in dogs with heart failure seems to reflect the presence of clinical signs of the disease in patients based on the observation that the largest number of differentially expressed genes was identified in ISACHC 2 group of patients. This group consists of dogs just starting to show clinical signs of heart failure. A set of genes was also found to have changed expression in all dogs with heart failure, despite the stage of the disease. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-509) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Hulanicka
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska str, 159c, 02-776 Warsaw, Poland.
| | | | | | | |
Collapse
|
45
|
Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc 2014; 3:e000665. [PMID: 24755151 PMCID: PMC4187516 DOI: 10.1161/jaha.113.000665] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/26/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Virginia Shalkey Hahn
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (V.S.H., B.K.)
| | - Daniel J. Lenihan
- Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (D.J.L.)
| | - Bonnie Ky
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (V.S.H., B.K.)
- Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (B.K.)
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (B.K.)
| |
Collapse
|
46
|
|
47
|
Brix DM, Clemmensen KKB, Kallunki T. When Good Turns Bad: Regulation of Invasion and Metastasis by ErbB2 Receptor Tyrosine Kinase. Cells 2014; 3:53-78. [PMID: 24709902 PMCID: PMC3980748 DOI: 10.3390/cells3010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 12/18/2022] Open
Abstract
Overexpression and activation of ErbB2 receptor tyrosine kinase in breast cancer is strongly linked to an aggressive disease with high potential for invasion and metastasis. In addition to inducing very aggressive, metastatic cancer, ErbB2 activation mediates processes such as increased cancer cell proliferation and survival and is needed for normal physiological activities, such as heart function and development of the nervous system. How does ErbB2 activation make cancer cells invasive and when? Comprehensive understanding of the cellular mechanisms leading to ErbB2-induced malignant processes is necessary for answering these questions. Here we present current knowledge about the invasion-promoting function of ErbB2 and the mechanisms involved in it. Obtaining detailed information about the "bad" behavior of ErbB2 can facilitate development of novel treatments against ErbB2-positive cancers.
Collapse
Affiliation(s)
- Ditte Marie Brix
- Unit of Cell Death and Metabolism, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | - Knut Kristoffer Bundgaard Clemmensen
- Unit of Cell Death and Metabolism, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | - Tuula Kallunki
- Unit of Cell Death and Metabolism, Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
48
|
Ky B, Vejpongsa P, Yeh ETH, Force T, Moslehi JJ. Emerging paradigms in cardiomyopathies associated with cancer therapies. Circ Res 2013; 113:754-64. [PMID: 23989717 DOI: 10.1161/circresaha.113.300218] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cardiovascular care of cancer patients (cardio-oncology) has emerged as a new discipline in clinical medicine, given recent advances in cancer therapy, and is driven by the cardiovascular complications that occur as a direct result of cancer therapy. Traditional therapies such as anthracyclines and radiation have been recognized for years to have cardiovascular complications. Less expected were the cardiovascular effects of targeted cancer therapies, which were initially thought to be specific to cancer cells and would spare any adverse effects on the heart. Cancers are typically driven by mutations, translocations, or overexpression of protein kinases. The majority of these mutated kinases are tyrosine kinases, though serine/threonine kinases also play key roles in some malignancies. Several agents were developed to target these kinases, but many more are in development. Major successes have been largely restricted to agents targeting human epidermal growth factor receptor-2 (mutated or overexpressed in breast cancer), BCR-ABL (chronic myelogenous leukemia and some cases of acute lymphoblastic leukemia), and c-Kit (gastrointestinal stromal tumor). Other agents targeting more complex malignancies, such as advanced solid tumors, have had successes, but have not extended life to the degree seen with chronic myelogenous leukemia. Years before the first targeted therapy, Judah Folkman correctly proposed that to address solid tumors one had to target the inherent neoangiogenesis. Unfortunately, emerging evidence confirms that angiogenesis inhibitors cause cardiac complications, including hypertension, thrombosis, and heart failure. And therein lies the catch-22. Nevertheless, cardio-oncology has the potential to be transformative as the human cardiomyopathies that arise from targeted therapies can provide insights into the normal function of the heart.
Collapse
Affiliation(s)
- Bonnie Ky
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
49
|
Mendes-Ferreira P, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Therapeutic potential of neuregulin-1 in cardiovascular disease. Drug Discov Today 2013; 18:836-42. [DOI: 10.1016/j.drudis.2013.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
|
50
|
Relationship between clinical data and gene expression in the HER2/ErbB2-dependent signaling pathway in patients with acute heart failure. J Appl Genet 2013; 54:447-53. [PMID: 23975515 PMCID: PMC3825501 DOI: 10.1007/s13353-013-0164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/07/2022]
Abstract
Anticancer treatment with the human epidermal growth factor receptor (HER) 2 inhibitors can lead to significant myocardial dysfunction. The primary aim of the study was to estimate the possible association between gene expression in the ErbB signaling pathway and selected clinical event data in patients with acute heart failure. Twenty-four patients (19 males), aged 68.6 ± 12.3 years, were diagnosed and treated due to acute heart failure. The globaltest method was used for the correlation between blood nuclear cells’ gene expression in the ErbB pathway (KEGG pathway id 04012) and important clinical data. Decreased expression of ErbB2/HER2 was found to be associated with the release of troponin and the need for inotropic support, whereas decreased neuregulin 1 (NRG1) expression was found to be associated with a decrease of ejection fraction below 40 % (globaltest p-value < 0.05). In summary, the ErbB signaling pathway and, especially, HER2/ErbB2 receptor expression are significantly associated with some of the recognized, clinically significant parameters of patients with acute heart failure. Evaluation of the molecular function of the HER2 receptor may be essential for the prognosis and targeted therapy of heart diseases.
Collapse
|