1
|
Yuan X, Bhat OM, Zou Y, Zhang Y, Li PL. Contribution of Hepatic Steatosis-Intensified Extracellular Vesicle Release to Aggravated Inflammatory Endothelial Injury in Liver-Specific Asah1 Gene Knockout Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:493-508. [PMID: 36638912 PMCID: PMC10123522 DOI: 10.1016/j.ajpath.2022.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023]
Abstract
To study the mechanism by which nonalcoholic fatty liver disease (NAFLD) contributes to vascular endothelial Nod-like receptor pyrin domain 3 (NLRP3) inflammasome activation and neointima hyperplasia, NAFLD was established in high-fat diet (HFD)-treated Asah1fl/fl/Albcre (liver-specific deletion of the acid ceramidase gene Asah1) mice. Compared with Asah1 flox [Asah1fl/fl/wild type (WT)] and wild-type (WT/WT) mice, Asah1fl/fl/Albcre mice exhibited significantly enhanced ceramide levels and lipid deposition on HFD in the liver. Moreover, Asah1fl/fl/Albcre mice showed enhanced expression of extracellular vesicle (EV) markers, CD63 and annexin II, but attenuated lysosome-multivesicular body fusion. All these changes were accompanied by significantly increased EV counts in the plasma. In a mouse model of neointima hyperplasia, liver-specific deletion of the Asah1 gene enhanced HFD-induced neointima proliferation, which was associated with increased endothelial NLRP3 inflammasome formation and activation and more severe endothelial damage. The EVs isolated from plasma of Asah1fl/fl/Albcre mice on HFD were found to markedly enhance NLRP3 inflammasome formation and activation in primary cultures of WT/WT endothelial cells compared with those isolated from WT/WT mice or normal diet-treated Asah1fl/fl/Albcre mice. These results suggest that the acid ceramidase/ceramide signaling pathway controls EV release from the liver, and its deficiency aggravates NAFLD and intensifies hepatic EV release into circulation, which promotes endothelial NLRP3 inflammasome activation and consequent neointima hyperplasia in the mouse carotid arteries.
Collapse
Affiliation(s)
- Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Yao Zou
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
2
|
Moigneu C, Abdellaoui S, Ramos-Brossier M, Pfaffenseller B, Wollenhaupt-Aguiar B, de Azevedo Cardoso T, Camus C, Chiche A, Kuperwasser N, Azevedo da Silva R, Pedrotti Moreira F, Li H, Oury F, Kapczinski F, Lledo PM, Katsimpardi L. Systemic GDF11 attenuates depression-like phenotype in aged mice via stimulation of neuronal autophagy. NATURE AGING 2023; 3:213-228. [PMID: 37118117 PMCID: PMC10154197 DOI: 10.1038/s43587-022-00352-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Cognitive decline and mood disorders increase in frequency with age. Many efforts are focused on the identification of molecules and pathways to treat these conditions. Here, we demonstrate that systemic administration of growth differentiation factor 11 (GDF11) in aged mice improves memory and alleviates senescence and depression-like symptoms in a neurogenesis-independent manner. Mechanistically, GDF11 acts directly on hippocampal neurons to enhance neuronal activity via stimulation of autophagy. Transcriptomic and biochemical analyses of these neurons reveal that GDF11 reduces the activity of mammalian target of rapamycin (mTOR), a master regulator of autophagy. Using a murine model of corticosterone-induced depression-like phenotype, we also show that GDF11 attenuates the depressive-like behavior of young mice. Analysis of sera from young adults with major depressive disorder (MDD) reveals reduced GDF11 levels. These findings identify mechanistic pathways related to GDF11 action in the brain and uncover an unknown role for GDF11 as an antidepressant candidate and biomarker.
Collapse
Affiliation(s)
- Carine Moigneu
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Soumia Abdellaoui
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | | - Claire Camus
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Aurélie Chiche
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Nicolas Kuperwasser
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | | | - Han Li
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Franck Oury
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | - Flávio Kapczinski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pierre-Marie Lledo
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
| | - Lida Katsimpardi
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Abstract
Aging is known to be associated with a decline in memory and mood, but the molecular mechanisms that underlie these changes remain unclear. Moigneu, Abdellaoui and colleagues show that growth differentiation factor 11 reverses deficits in these functions in aged mice, pointing the way towards a novel pro-mnemonic and antidepressant therapeutic target.
Collapse
Affiliation(s)
- Patrick T Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
GDF11 Is a Novel Protective Factor Against Vascular Calcification. J Cardiovasc Pharmacol 2022; 80:852-860. [PMID: 36027600 DOI: 10.1097/fjc.0000000000001357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/31/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Vascular calcification (VC) occurs via an active cell-mediated process, which involves osteogenic differentiation, apoptosis, and phenotypic transformation of vascular smooth muscle cells (VSMCs). As a member of the transforming growth factor-β family, growth differentiation factor 11 (GDF11) can inhibit apoptosis and osteogenic differentiation and maintain the stability of atherosclerotic plaques. In this study, coronary artery calcium score (CACS) of participants with GDF11 measurements was measured using computed tomography angiography and was scored according to the Agatston score. β-glycerophosphate (10 mM), dexamethasone (100 nM), and l -ascorbic acid (50 µg/mL) [osteogenic medium (OM)] were used to induce calcification of human aortic smooth muscle cells. We found that CACS was negatively correlated with serum GDF11 levels in patients and GDF11 was a strong predictor of elevated CACS (OR = 0.967, 95% CI: 0.945-0.991; P = 0.006), followed by age (OR = 1.151, 95% CI: 1.029-1.286; P = 0.014), triglycerides (OR = 4.743, 95% CI: 1.170-19.236; P = 0.029), C-reactive protein (OR = 1.230, 95% CI: 1.010-1.498; P = 0.04), and hypertension (OR = 7.264, 95% CI: 1.099-48.002; P = 0.04). Furthermore, exogenous GDF11 inhibited OM-induced calcification by inhibiting osteogenic differentiation, the phenotypic transformation and apoptosis of human aortic smooth muscle cells. Our study demonstrates that GDF11 plays a crucial role in reducing vascular calcification and serves as a potential intervention target to vascular calcification.
Collapse
|
5
|
Gatica D, Chiong M, Lavandero S, Klionsky DJ. The role of autophagy in cardiovascular pathology. Cardiovasc Res 2022; 118:934-950. [PMID: 33956077 PMCID: PMC8930074 DOI: 10.1093/cvr/cvab158] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic recycling pathway in which cytoplasmic components are sequestered, degraded, and recycled to survive various stress conditions. Autophagy dysregulation has been observed and linked with the development and progression of several pathologies, including cardiovascular diseases, the leading cause of death in the developed world. In this review, we aim to provide a broad understanding of the different molecular factors that govern autophagy regulation and how these mechanisms are involved in the development of specific cardiovascular pathologies, including ischemic and reperfusion injury, myocardial infarction, cardiac hypertrophy, cardiac remodelling, and heart failure.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| | - Mario Chiong
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
| | - Sergio Lavandero
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), 926 JF Gonzalez, Santiago 7860201, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
6
|
Li L, Gao Y, Liu Z, Dong C, Wang W, Wu K, Gu S, Zhou Y. GDF11 alleviates neointimal hyperplasia in a rat model of artery injury by regulating endothelial NLRP3 inflammasome activation and rapid re-endothelialization. J Transl Med 2022; 20:28. [PMID: 35033112 PMCID: PMC8760779 DOI: 10.1186/s12967-022-03229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background Neointimal hyperplasia induced by interventional surgery can lead to progressive obliteration of the vascular lumen, which has become a major factor affecting prognosis. The rate of re-endothelialization is known to be inversely related to neointima formation. Growth differentiation factor 11 (GDF11) is a secreted protein with anti-inflammatory, antioxidant, and antiaging properties. Recent reports have indicated that GDF11 can improve vascular remodeling by maintaining the differentiated phenotypes of vascular smooth muscle cells. However, it is not known whether and how GDF11 promotes re-endothelialization in vascular injury. The present study was performed to clarify the influence of GDF11 on re-endothelialization after vascular injury. Methods An adult Sprague–Dawley rat model of common carotid artery balloon dilatation injury was surgically established. A recombinant adenovirus carrying GDF11 was delivered into the common carotid artery to overexpress GDF11. Vascular re-endothelialization and neointima formation were assessed in harvested carotid arteries through histomolecular analysis. CCK-8 analysis, LDH release and Western blotting were performed to investigate the effects of GDF11 on endothelial NLRP3 inflammasome activation and relevant signaling pathways in vitro. Results GDF11 significantly enhanced re-endothelialization and reduced neointima formation in rats with balloon-dilatation injury by suppressing the activation of the NLRP3 inflammasome. Administration of an endoplasmic reticulum stress (ER stress) inhibitor, 4PBA, attenuated endothelial NLRP3 inflammasome activation induced by lysophosphatidylcholine. In addition, upregulation of LOX-1 expression involved elevated ER stress and could result in endothelial NLRP3 inflammasome activation. Moreover, GDF11 significantly inhibited NLRP3 inflammasome-mediated endothelial cell pyroptosis by negatively regulating LOX-1-dependent ER stress. Conclusions We conclude that GDF11 improves re-endothelialization and can attenuate vascular remodeling by reducing endothelial NLRP3 inflammasome activation. These findings shed light on new treatment strategies to promote re-endothelialization based on GDF11 as a future target. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03229-6.
Collapse
Affiliation(s)
- Lei Li
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yan Gao
- Department of Respiratory and Critical Care Medicine, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223001, China
| | - Zhenchuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Chenglai Dong
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wenli Wang
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kaiqin Wu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shaorui Gu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yongxin Zhou
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
7
|
Zou Y, Bhat OM, Yuan X, Li G, Huang D, Guo Y, Zhou D, Li PL. Release and Actions of Inflammatory Exosomes in Pulmonary Emphysema: Potential Therapeutic Target of Acupuncture. J Inflamm Res 2021; 14:3501-3521. [PMID: 34335040 PMCID: PMC8318722 DOI: 10.2147/jir.s312385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Exosomes have been reported to mediate activation of the inflammatory response by secretion of inflammasome products such as IL-1β or IL-18 and that changes in exosomes production or secretion may be a therapeutic target for treatment of a variety of different chronic diseases. The present study tested the hypothesis that exosome-mediated release of NLRP3 inflammasome products instigates the inflammatory response in the lung during emphysema, a type of chronic obstructive pulmonary disease (COPD) and that electroacupuncture (EA) may attenuate emphysema by inhibition of NLRP3 inflammasome activation and consequent inflammation. METHODS The COPD mice model was developed by injecting porcine pancreatic elastase (PPE) via puncture tracheotomy and instillation. EA (4 Hz/20 Hz, 1 to 3 mA) was applied to the bilateral BL13 and ST36 for 30 min, once every other day for 2 weeks. Micro computed tomography (micro-CT) was performed to measure lung function. Histopathological changes in the lungs were displayed by HE staining. RESULTS In a mouse model of porcine pancreatic elastase (PPE)-induced emphysema, the lung tissue was found to display several key features of emphysema, including alveolar septal thickening, enlarged alveoli, interstitial edema, and inflammatory cells infiltration. Lungs of mice receiving PPE exhibited substantially increased low attenuation area (LAA) in micro-CT images. The colocalization of NLRP3 vs ASC or caspase-1 detected by confocal microscopy was shown to increase in both bronchial and alveolar walls, indicating the increased formation of NLRP3 inflammasomes. IL-1β, a prototype NLRP3 inflammasome activating product, was also found to have increased in the lung during emphysema, which was colocalized with CD63 (an exosome marker), an indicative of inflammatory exosome formation. By nanoparticle tracking analysis (NTA), IL-1β-containing exosomes were shown to significantly increase in the bronchoalveolar lavage (BAL) from mice with emphysema. Therapeutically, IL-1β production in the lung during emphysema was significantly reduced by EA at the acupoint Feishu (BL13) and Zusanli (ST36), accompanied by decreased colocalization of NLRP3 vs ASC or caspase-1. Increased exosome release into BAL during emphysema was shown to be significantly attenuated in EA-treated mice compared to their controls. However, EA of non-specific BL23 together with ST36 acupoint had no effects on NLRP3 inflammasome activation, exosome release and associated lung pathology during emphysema. CONCLUSION NLRP3 inflammasome activation in concert with increased release of exosomes containing IL-1β or other inflammasome products contributes to the development of lung inflammation and injury during PPE-induced emphysema and that EA of lung-specific acupoints attenuates inflammasome activation and exosome release, thereby reducing inflammatory response in the lung of mice with emphysema.
Collapse
Affiliation(s)
- Yao Zou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Dan Zhou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
8
|
Bhat OM, Yuan X, Kukreja RC, Li PL. Regulatory role of mammalian target of rapamycin signaling in exosome secretion and osteogenic changes in smooth muscle cells lacking acid ceramidase gene. FASEB J 2021; 35:e21732. [PMID: 34143450 PMCID: PMC8221173 DOI: 10.1096/fj.202100385r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Abstract
Acid ceramidase (murine gene code: Asah1) (50 kDa) belongs to N-terminal nucleophile hydrolase family. This enzyme is located in the lysosome, which mediates conversion of ceramide (CER) into sphingosine and free fatty acids at acidic pH. CER plays an important role in intracellular sphingolipid metabolism and its increase causes inflammation. The mammalian target of rapamycin complex 1 (mTORC1) signaling on late endosomes (LEs)/lysosomes may control cargo selection, membrane biogenesis, and exosome secretion, which may be fine controlled by lysosomal sphingolipids such as CER. This lysosomal-CER-mTOR signaling may be a crucial molecular mechanism responsible for development of arterial medial calcification (AMC). Torin-1 (5 mg/kg/day), an mTOR inhibitor, significantly decreased aortic medial calcification accompanied with decreased expression of osteogenic markers like osteopontin (OSP) and runt-related transcription factor 2 (RUNX2) and upregulation of smooth muscle 22α (SM22-α) in mice receiving high dose of Vitamin D (500 000 IU/kg/day). Asah1fl/fl /SMCre mice had markedly increased co-localization of mTORC1 with lysosome-associated membrane protein-1 (Lamp-1) (lysosome marker) and decreased co-localization of vacuolar protein sorting-associated protein 16 (VPS16) (a multivesicular bodies [MVBs] marker) with Lamp-1, suggesting mTOR activation caused reduced MVBs interaction with lysosomes. Torin-1 significantly reduced the co-localization of mTOR vs Lamp-1, increased lysosome-MVB interaction which was associated with reduced accumulation of CD63 and annexin 2 (exosome markers) in the coronary arterial wall of mice. Using coronary artery smooth muscle cells (CASMCs), Pi -stimulation significantly increased p-mTOR expression in Asah1fl/fl /SMCre CASMCs as compared to WT/WT cells associated with increased calcium deposition and mineralization. Torin-1 blocked Pi -induced calcium deposition and mineralization. siRNA mTOR and Torin-1 significantly reduce co-localization of mTORC1 with Lamp-1, increased VPS16 vs Lamp-1 co-localization in Pi -stimulated CASMCs, associated with decreased exosome release. Functionally, Torin-1 significantly reduces arterial stiffening as shown by restoration from increased pulse wave velocity and decreased elastin breaks. These results suggest that lysosomal CER-mTOR signaling may play a critical role for the control of lysosome-MVB interaction, exosome secretion and arterial stiffening during AMC.
Collapse
Affiliation(s)
- Owais M. Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| | - Rakesh C. Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298-0204
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298
| |
Collapse
|
9
|
Bhat OM, Li PL. Lysosome Function in Cardiovascular Diseases. Cell Physiol Biochem 2021; 55:277-300. [PMID: 34019755 PMCID: PMC8743031 DOI: 10.33594/000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The lysosome is a single ubiquitous membrane-enclosed intracellular organelle with an acidic pH present in all eukaryotic cells, which contains large numbers of hydrolytic enzymes with their maximal enzymatic activity at a low pH (pH ≤ 5) such as proteases, nucleases, and phosphatases that are able to degrade extracellular and intracellular components. It is well known that lysosomes act as a center for degradation and recycling of large numbers of macromolecules delivered by endocytosis, phagocytosis, and autophagy. Lysosomes are recognized as key organelles for cellular clearance and are involved in many cellular processes and maintain cellular homeostasis. Recently, it has been shown that lysosome function and its related pathways are of particular importance in vascular regulation and related diseases. In this review, we highlighted studies that have improved our understanding of the connection between lysosome function and vascular physiological and pathophysiological activities in arterial smooth muscle cells (SMCs) and endothelial cells (ECs). Sphingolipids-metabolizingenzymes in lysosomes play critical roles in intracellular signaling events that influence cellular behavior and function in SMCs and ECs. The focus of this review will be to define the mechanism by which the lysosome contributes to cardiovascular regulation and diseases. It is believed that exploring the role of lysosomal function and its sphingolipid metabolism in the initiation and progression of vascular disease and regulation may provide novel insights into the understanding of vascular pathobiology and helps develop more effective therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA,
| |
Collapse
|
10
|
Ren K, Li B, Liu Z, Xia L, Zhai M, Wei X, Duan W, Yu S. GDF11 prevents the formation of thoracic aortic dissection in mice: Promotion of contractile transition of aortic SMCs. J Cell Mol Med 2021; 25:4623-4636. [PMID: 33764670 PMCID: PMC8107100 DOI: 10.1111/jcmm.16312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Thoracic aortic dissection (TAD) is an aortic disease associated with dysregulated extracellular matrix composition and de‐differentiation of vascular smooth muscle cells (SMCs). Growth Differentiation Factor 11 (GDF11) is a member of transforming growth factor β (TGF‐β) superfamily associated with cardiovascular diseases. The present study attempted to investigate the expression of GDF11 in TAD and its effects on aortic SMC phenotype transition. GDF11 level was found lower in the ascending thoracic aortas of TAD patients than healthy aortas. The mouse model of TAD was established by β‐aminopropionitrile monofumarate (BAPN) combined with angiotensin II (Ang II). The expression of GDF11 was also decreased in thoracic aortic tissues accompanied with increased inflammation, arteriectasis and elastin degradation in TAD mice. Administration of GDF11 mitigated these aortic lesions and improved the survival rate of mice. Exogenous GDF11 and adeno‐associated virus type 2 (AAV‐2)‐mediated GDF11 overexpression increased the expression of contractile proteins including ACTA2, SM22α and myosin heavy chain 11 (MYH11) and decreased synthetic markers including osteopontin and fibronectin 1 (FN1), indicating that GDF11 might inhibit SMC phenotype transition and maintain its contractile state. Moreover, GDF11 inhibited the production of matrix metalloproteinase (MMP)‐2, 3, 9 in aortic SMCs. The canonical TGF‐β (Smad2/3) signalling was enhanced by GDF11, while its inhibition suppressed the inhibitory effects of GDF11 on SMC de‐differentiation and MMP production in vitro. Therefore, we demonstrate that GDF11 may contribute to TAD alleviation via inhibiting inflammation and MMP activity, and promoting the transition of aortic SMCs towards a contractile phenotype, which provides a therapeutic target for TAD.
Collapse
Affiliation(s)
- Kai Ren
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Buying Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenhua Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Xia
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xufeng Wei
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Yuan X, Bhat OM, Samidurai A, Das A, Zhang Y, Li PL. Reversal of Endothelial Extracellular Vesicle-Induced Smooth Muscle Phenotype Transition by Hypercholesterolemia Stimulation: Role of NLRP3 Inflammasome Activation. Front Cell Dev Biol 2020; 8:597423. [PMID: 33409276 PMCID: PMC7779768 DOI: 10.3389/fcell.2020.597423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] Open
Abstract
Recent studies reported that vascular endothelial cells (ECs) secrete NLR family pyrin domain-containing 3 (NLRP3) inflammasome products such as interleukin-1β (IL-1β) via extracellular vesicles (EVs) under various pathological conditions. EVs represent one of the critical mechanisms mediating the cell-to-cell communication between ECs and vascular smooth muscle cells (VSMCs). However, whether or not the inflammasome-dependent EVs directly participate in the regulation of VSMC function remains unknown. In the present study, we found that in cultured carotid ECs, atherogenic stimulation by oxysterol 7-ketocholesterol (7-Ket) induced NLRP3 inflammasome formation and activation, reduced lysosome-multivesicular bodies (MVBs) fusion, and increased secretion of EVs that contain inflammasome product IL-1β. These EC-derived IL-1β-containing EVs promoted synthetic phenotype transition of co-cultured VSMCs, whereas EVs from unstimulated ECs have the opposite effects. Moreover, acid ceramidase (AC) deficiency or lysosome inhibition further exaggerated the 7-Ket-induced release of IL-1β-containing EVs in ECs. Using a Western diet (WD)-induced hypercholesterolemia mouse model, we found that endothelial-specific AC gene knockout mice (Asah1fl/fl/ECCre) exhibited augmented WD-induced EV secretion with IL-1β and more significantly decreased the interaction of MVBs with lysosomes in the carotid arterial wall compared to their wild-type littermates (WT/WT). The endothelial AC deficiency in Asah1fl/fl/ECCre mice also resulted in enhanced VSMC phenotype transition and accelerated neointima formation. Together, these results suggest that NLRP3 inflammasome-dependent IL-1β production during hypercholesterolemia promotes VSMC phenotype transition to synthetic status via EV machinery, which is controlled by lysosomal AC activity. Our findings provide novel mechanistic insights into understanding the pathogenic role of endothelial NLRP3 inflammasome in vascular injury through EV-mediated EC-to-VSMC regulation.
Collapse
Affiliation(s)
- Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Owais M. Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun Samidurai
- Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Anindita Das
- Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Jiao L, Shao Y, Yu Q, Li M, Wang Y, Gong M, Yang X, Liu T, Li Z, Liu H, Zhang Y, Tan Z, Sun L, Xuan L, Yin H, Zhang Y, Cai B, Zhang Y, Yang B. GDF11 replenishment protects against hypoxia-mediated apoptosis in cardiomyocytes by regulating autophagy. Eur J Pharmacol 2020; 885:173495. [DOI: 10.1016/j.ejphar.2020.173495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
|
13
|
Bhat OM, Yuan X, Camus S, Salloum FN, Li PL. Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. Int J Mol Sci 2020; 21:1713. [PMID: 32138242 PMCID: PMC7084670 DOI: 10.3390/ijms21051713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1-/- mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1-/- mice as compared to their wild-type littermates. Besides, Mcoln1-/- mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1-/- mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1-/- mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC.
Collapse
Affiliation(s)
- Owais M. Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Sarah Camus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| | - Fadi N. Salloum
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA;
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (O.M.B.); (X.Y.); (S.C.)
| |
Collapse
|
14
|
Bhat OM, Li G, Yuan X, Huang D, Gulbins E, Kukreja RC, Li PL. Arterial Medial Calcification through Enhanced small Extracellular Vesicle Release in Smooth Muscle-Specific Asah1 Gene Knockout Mice. Sci Rep 2020; 10:1645. [PMID: 32015399 PMCID: PMC6997457 DOI: 10.1038/s41598-020-58568-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Arterial medial calcification (AMC) involves an increased small extracellular vesicle (sEV) secretion and apatite calcium precipitation in the arterial wall. The mechanisms mediating AMC remain poorly understood. In the present study, smooth muscle-specific acid ceramidase (Ac) gene knockout mice (Asah1fl/fl/SMCre) were used to demonstrate the role of lysosomal ceramide signaling pathway in AMC. Asah1fl/fl/SMCre mice were found to have more severe AMC in both aorta and coronary arteries compared to their littermates (Asah1fl/fl/SMwt and WT/WT mice) after receiving a high dose vitamin D. These mice also had pronounced upregulation of osteopontin and RUNX2 (osteogenic markers), CD63, AnX2 (sEV markers) and ALP expression (mineralization marker) in the arterial media. In cultured coronary arterial smooth muscle cells (CASMCs) from Asah1fl/fl/SMCre mice, high dose of Pi led to a significantly increased calcium deposition, phenotypic change and sEV secretion compared to WT CASMCs, which was associated with reduced lysosome-multivesicular body (MVB) interaction. Also, GW4869, sEV release inhibitor decreased sEV secretion and calcification in these cells. Lysosomal transient receptor potential mucolipin 1 (TRPML1) channels regulating lysosome interaction with MVBs were found remarkably inhibited in Asah1fl/fl/SMCre CASMCs as shown by GCaMP3 Ca2+ imaging and Port-a-Patch patch clamping of lysosomes. Lysosomal Ac in SMCs controls sEV release by regulating lysosomal TRPML1 channel activity and lysosome-MVB interaction, which importantly contributes to phenotypic transition and AMC.
Collapse
MESH Headings
- Acid Ceramidase/genetics
- Acid Ceramidase/metabolism
- Animals
- Aorta/metabolism
- Aorta/pathology
- Calcium Signaling
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Models, Animal
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/pathology
- Farber Lipogranulomatosis/genetics
- Farber Lipogranulomatosis/metabolism
- Lysosomes/metabolism
- Male
- Metabolic Networks and Pathways
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Cardiovascular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Sphingolipids/metabolism
- Transient Receptor Potential Channels/agonists
- Transient Receptor Potential Channels/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany and Dept. of Surgery, University of Cincinnati, Cincinnati, USA
| | - Rakesh C Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA, 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
15
|
Bhat OM, Yuan X, Cain C, Salloum FN, Li P. Medial calcification in the arterial wall of smooth muscle cell-specific Smpd1 transgenic mice: A ceramide-mediated vasculopathy. J Cell Mol Med 2020; 24:539-553. [PMID: 31743567 PMCID: PMC6933411 DOI: 10.1111/jcmm.14761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
Arterial medial calcification (AMC) is associated with crystallization of hydroxyapatite in the extracellular matrix and arterial smooth muscle cells (SMCs) leading to reduced arterial compliance. The study was performed to test whether lysosomal acid sphingomyelinase (murine gene code: Smpd1)-derived ceramide contributes to the small extracellular vesicle (sEV) secretion from SMCs and consequently leads to AMC. In Smpd1trg /SMcre mice with SMC-specific overexpression of Smpd1 gene, a high dose of Vit D (500 000 IU/kg/d) resulted in increased aortic and coronary AMC, associated with augmented expression of RUNX2 and osteopontin in the coronary and aortic media compared with their littermates (Smpd1trg /SMwt and WT/WT mice), indicating phenotypic switch. However, amitriptyline, an acid sphingomyelinase (ASM) inhibitor, reduced calcification and reversed phenotypic switch. Smpd1trg /SMcre mice showed increased CD63, AnX2 and ALP levels in the arterial wall, accompanied by reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), a parameter for lysosome-MVB interaction. All these changes related to lysosome fusion and sEV release were substantially attenuated by amitriptyline. Increased arterial stiffness and elastin disorganization were found in Smpd1trg /SMcre mice as compared to their littermates. In cultured coronary arterial SMCs (CASMCs) from Smpd1trg /SMcre mice, increased Pi concentrations led to markedly increased calcium deposition, phenotypic change and sEV secretion compared with WT CASMCs, accompanied by reduced lysosome-MVB interaction. However, amitriptyline prevented these changes in Pi -treated CASMCs. These data indicate that lysosomal ceramide plays a critical role in phenotype change and sEV release in SMCs, which may contribute to the arterial stiffness during the development of AMC.
Collapse
Affiliation(s)
- Owais M. Bhat
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginia
| | - Xinxu Yuan
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginia
| | - Chad Cain
- Division of CardiologyDepartment of Internal MedicineVCU Pauley Heart CenterVirginia Commonwealth UniversityRichmondVirginia
| | - Fadi N. Salloum
- Division of CardiologyDepartment of Internal MedicineVCU Pauley Heart CenterVirginia Commonwealth UniversityRichmondVirginia
| | - Pin‐Lan Li
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginia
| |
Collapse
|
16
|
Yuan X, Bhat OM, Lohner H, Zhang Y, Li PL. Endothelial acid ceramidase in exosome-mediated release of NLRP3 inflammasome products during hyperglycemia: Evidence from endothelium-specific deletion of Asah1 gene. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158532. [PMID: 31647995 PMCID: PMC6909250 DOI: 10.1016/j.bbalip.2019.158532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/31/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022]
Abstract
Exosomes have been demonstrated to be one of the mechanisms mediating the release of intracellular signaling molecules to conduct cell-to-cell communication. However, it remains unknown whether and how exosomes mediate the release of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome products such as interleukin-1 beta (IL-1β) from endothelial cells. The present study hypothesized that lysosomal acid ceramidase (AC) determines the fate of multivesicular bodies (MVBs) to control the exosome-mediated release of NLRP3 inflammasome products during hyperglycemia. Using a streptozotocin (STZ)-induced diabetes mouse model, we found that endothelium-specific AC gene knockout mice (Asah1fl/fl/ECcre) significantly enhanced the formation and activation of NLRP3 inflammasomes in coronary arterial ECs (CECs). These mice also had increased thickening of the coronary arterial wall and reduced expression of tight junction protein compared to wild-type (WT/WT) littermates. We also observed the expression of exosome markers such as CD63 and alkaline phosphatase (ALP) was augmented in STZ-treated Asah1fl/fl/ECcre mice compared to WT/WT mice, which was accompanied by an increased IL-1β release of exosomes. In the primary cultures of CECs, we demonstrated that AC deficiency markedly enhanced the formation and activation of NLRP3 inflammasomes, but significantly down-regulated tight junction proteins when these cells were exposed to high levels of glucose. The CECs from Asah1fl/fl/ECcre mice had decreased MVB-lysosome interaction and increased IL-1β-containing exosome release in response to high glucose stimulation. Together, these results suggest that AC importantly controls exosome-mediated release of NLRP3 inflammasome products in CECs, which is enhanced by AC deficiency leading to aggravated arterial inflammatory response during hyperglycemia.
Collapse
Affiliation(s)
- Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Hannah Lohner
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Yang Zhang
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|