1
|
Sevcikova Tomaskova Z, Mackova K. From function to structure: how myofibrillogenesis influences the transverse-axial tubular system development and its peculiarities. Front Physiol 2025; 16:1576133. [PMID: 40352140 PMCID: PMC12062141 DOI: 10.3389/fphys.2025.1576133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/21/2025] [Indexed: 05/14/2025] Open
Abstract
The transverse-axial tubular system (TATS) is the extension of sarcolemma growing to the cell interior, providing sufficient calcium signaling to induce calcium release from sarcoplasmic reticulum cisternae and stimulate the contraction of neighboring myofibrils. Interestingly, the development of TATS is delayed and matures during the post-partum period. It starts with small invaginations near the sarcolemma, proceeding to grow an irregular network that is later assembled into the notably transversally oriented tubular network. Accumulating evidence supports the idea that the development of TATS is linked to cell dimensions, calcium signaling, and increasing myofibrillar content orchestrated by electromechanical stimulation. However, the overall mechanism has not yet been described. The topic of this review is the development of TATS with an emphasis on the irregular phase of tubule growth. The traditional models of BIN1-related tubulation are also discussed. We summarized the recently described protein interactions during TATS development, mainly mediated by costameric and sarcomeric proteins, supporting the idea of the coupling sites between TATS and the myofibrils. We hypothesize that the formation and final organization of the tubular system is driven by the simultaneous development of the contractile apparatus under cycling electromechanical stimulus.
Collapse
Affiliation(s)
| | - Katarina Mackova
- Department of Biophysics and Electrophysiology, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Caldwell JL, Clarke JD, Smith CER, Pinali C, Quinn CJ, Pearman CM, Adomaviciene A, Radcliffe EJ, Watkins A, Horn MA, Bode EF, Madders GWP, Eisner M, Eisner DA, Trafford AW, Dibb KM. Restoring Atrial T-Tubules Augments Systolic Ca Upon Recovery From Heart Failure. Circ Res 2024; 135:739-754. [PMID: 39140440 PMCID: PMC11392124 DOI: 10.1161/circresaha.124.324601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Transverse (t)-tubules drive the rapid and synchronous Ca2+ rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca2+ release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca2+. METHODS HF was induced in sheep by rapid ventricular pacing and recovered following termination of rapid pacing. Serial block-face scanning electron microscopy and confocal imaging were used to study t-tubule ultrastructure. Function was assessed using patch clamp, Ca2+, and confocal imaging. Candidate proteins involved in atrial t-tubule recovery were identified by western blot and expressed in rat neonatal ventricular myocytes to determine if they altered t-tubule structure. RESULTS Atrial t-tubules were lost in HF but reappeared following recovery from HF. Recovered t-tubules were disordered, adopting distinct morphologies with increased t-tubule length and branching. T-tubule disorder was associated with mitochondrial disorder. Recovered t-tubules were functional, triggering Ca2+ release in the cell interior. Systolic Ca2+, ICa-L, sarcoplasmic reticulum Ca2+ content, and sarcoendoplasmic reticulum Ca2+ ATPase function were restored following recovery from HF. Confocal microscopy showed fragmentation of ryanodine receptor staining and movement away from the z-line in HF, which was reversed following recovery from HF. Acute detubulation, to remove recovered t-tubules, confirmed their key role in restoration of the systolic Ca2+ transient, the rate of Ca2+ removal, and the peak L-type Ca2+ current. The abundance of telethonin and myotubularin decreased during HF and increased during recovery. Transfection with these proteins altered the density and structure of tubules in neonatal myocytes. Myotubularin had a greater effect, increasing tubule length and branching, replicating that seen in the recovery atria. CONCLUSIONS We show that recovery from HF restores atrial t-tubules, and this promotes recovery of ICa-L, sarcoplasmic reticulum Ca2+ content, and systolic Ca2+. We demonstrate an important role for myotubularin in t-tubule restoration. Our findings reveal a new and viable therapeutic strategy.
Collapse
Affiliation(s)
- Jessica L Caldwell
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Jessica D Clarke
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Charlotte E R Smith
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Christian Pinali
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Callum J Quinn
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Charles M Pearman
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Aiste Adomaviciene
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Emma J Radcliffe
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Amy Watkins
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Margaux A Horn
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Elizabeth F Bode
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - George W P Madders
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Mark Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - David A Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| |
Collapse
|
3
|
Kraft AE, Bork NI, Subramanian H, Pavlaki N, Failla AV, Zobiak B, Conti M, Nikolaev VO. Phosphodiesterases 4B and 4D Differentially Regulate cAMP Signaling in Calcium Handling Microdomains of Mouse Hearts. Cells 2024; 13:476. [PMID: 38534320 PMCID: PMC10969065 DOI: 10.3390/cells13060476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The ubiquitous second messenger 3',5'-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location.
Collapse
Affiliation(s)
- Axel E. Kraft
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nadja I. Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Antonio V. Failla
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bernd Zobiak
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Conti
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA;
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Hermes J, Borisova V, Kockskämper J. Store-Operated Calcium Entry Increases Nuclear Calcium in Adult Rat Atrial and Ventricular Cardiomyocytes. Cells 2023; 12:2690. [PMID: 38067118 PMCID: PMC10705675 DOI: 10.3390/cells12232690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Store-operated calcium entry (SOCE) in cardiomyocytes may be involved in cardiac remodeling, but the underlying mechanisms remain elusive. We hypothesized that SOCE may increase nuclear calcium, which alters gene expression via calcium/calmodulin-dependent enzyme signaling, and elucidated the underlying cellular mechanisms. An experimental protocol was established in isolated adult rat cardiomyocytes to elicit SOCE by re-addition of calcium following complete depletion of sarcoplasmic reticulum (SR) calcium and to quantify SOCE in relation to the electrically stimulated calcium transient (CaT) measured in the same cell before SR depletion. Using confocal imaging, calcium changes were recorded simultaneously in the cytosol and in the nucleus of the cell. In ventricular myocytes, SOCE was observed in the cytosol and nucleus amounting to ≈15% and ≈25% of the respective CaT. There was a linear correlation between the SOCE-mediated calcium increase in the cytosol and nucleus. Inhibitors of TRPC or Orai channels reduced SOCE by ≈33-67%, whereas detubulation did not. In atrial myocytes, SOCE with similar characteristics was observed in the cytosol and nucleus. However, the SOCE amplitudes in atrial myocytes were ≈two-fold larger than in ventricular myocytes, and this was associated with ≈1.4- to 3.6-fold larger expression of putative SOCE proteins (TRPC1, 3, 6, and STIM1) in atrial tissue. The results indicated that SOCE in atrial and ventricular myocytes is able to cause robust calcium increases in the nucleus and that both TRPC and Orai channels may contribute to SOCE in adult cardiomyocytes.
Collapse
Affiliation(s)
- Julia Hermes
- Institute for Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre (BPC) Marburg, University of Marburg, Karl-von-Frisch-Str. 2 K|03, 35043 Marburg, Germany
| | - Vesela Borisova
- Institute for Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre (BPC) Marburg, University of Marburg, Karl-von-Frisch-Str. 2 K|03, 35043 Marburg, Germany
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Medical University of Varna, Varna 9002, 55 Marin Drinov str., Bulgaria
| | - Jens Kockskämper
- Institute for Pharmacology and Clinical Pharmacy, Biochemical and Pharmacological Centre (BPC) Marburg, University of Marburg, Karl-von-Frisch-Str. 2 K|03, 35043 Marburg, Germany
| |
Collapse
|
5
|
Tamkus G, Uchida K, Lopatin AN. T-tubule recovery after detubulation in isolated mouse cardiomyocytes. Physiol Rep 2023; 11:e15779. [PMID: 37537144 PMCID: PMC10400551 DOI: 10.14814/phy2.15779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Remodeling of cardiac t-tubules in normal and pathophysiological conditions is an important process contributing to the functional performance of the heart. While it is well documented that deterioration of t-tubule network associated with various pathological conditions can be reversed under certain conditions, the mechanistic understanding of the recovery process is essentially lacking. Accordingly, in this study we investigated some aspects of the recovery of t-tubules after experimentally-induced detubulation. T-tubules of isolated mouse ventricular myocytes were first sealed using osmotic shock approach, and their recovery under various experimental conditions was then characterized using electrophysiologic and imaging techniques. The data show that t-tubule recovery is a strongly temperature-dependent process involving reopening of previously collapsed t-tubular segments. T-tubule recovery is slowed by (1) metabolic inhibition of cells, (2) reducing influx of extracellular Ca2+ as well as by (3) both stabilization and disruption of microtubules. Overall, the data show that t-tubule recovery is a highly dynamic process involving several central intracellular structures and processes and lay the basis for more detailed investigations in this area.
Collapse
Affiliation(s)
- Greta Tamkus
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Present address:
John T. Milliken Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Keita Uchida
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Present address:
Department of PhysiologyPennsylvania Muscle Institute, University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Anatoli N. Lopatin
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Dvinskikh L, Sparks H, MacLeod KT, Dunsby C. High-speed 2D light-sheet fluorescence microscopy enables quantification of spatially varying calcium dynamics in ventricular cardiomyocytes. Front Physiol 2023; 14:1079727. [PMID: 36866170 PMCID: PMC9971815 DOI: 10.3389/fphys.2023.1079727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Reduced synchrony of calcium release and t-tubule structure organization in individual cardiomyocytes has been linked to loss of contractile strength and arrhythmia. Compared to confocal scanning techniques widely used for imaging calcium dynamics in cardiac muscle cells, light-sheet fluorescence microscopy enables fast acquisition of a 2D plane in the sample with low phototoxicity. Methods: A custom light-sheet fluorescence microscope was used to achieve dual-channel 2D timelapse imaging of calcium and the sarcolemma, enabling calcium sparks and transients in left and right ventricle cardiomyocytes to be correlated with the cell microstructure. Imaging electrically stimulated dual-labelled cardiomyocytes immobilized with para-nitroblebbistatin, a non-phototoxic, low fluorescence contraction uncoupler, with sub-micron resolution at 395 fps over a 38 μm × 170 µm FOV allowed characterization of calcium spark morphology and 2D mapping of the calcium transient time-to-half-maximum across the cell. Results: Blinded analysis of the data revealed sparks with greater amplitude in left ventricle myocytes. The time for the calcium transient to reach half-maximum amplitude in the central part of the cell was found to be, on average, 2 ms shorter than at the cell ends. Sparks co-localized with t-tubules were found to have significantly longer duration, larger area and spark mass than those further away from t-tubules. Conclusion: The high spatiotemporal resolution of the microscope and automated image-analysis enabled detailed 2D mapping and quantification of calcium dynamics of n = 60 myocytes, with the findings demonstrating multi-level spatial variation of calcium dynamics across the cell, supporting the dependence of synchrony and characteristics of calcium release on the underlying t-tubule structure.
Collapse
Affiliation(s)
- Liuba Dvinskikh
- Department of Physics, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Hugh Sparks
- Department of Physics, Imperial College London, London, United Kingdom
| | - Kenneth T. MacLeod
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Chris Dunsby
- Department of Physics, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Smith CER, Pinali C, Eisner DA, Trafford AW, Dibb KM. Enhanced calcium release at specialised surface sites compensates for reduced t-tubule density in neonatal sheep atrial myocytes. J Mol Cell Cardiol 2022; 173:61-70. [PMID: 36038009 DOI: 10.1016/j.yjmcc.2022.08.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/23/2022] [Indexed: 01/06/2023]
Abstract
Cardiac myocytes rely on transverse (t)-tubules to facilitate a rapid rise in calcium throughout the cell. However, despite their importance in triggering synchronous Ca2+ release, t-tubules are highly labile structures. They develop postnatally, increase in density during exercise training and are lost in diseases such as heart failure (HF). In the majority of settings, an absence of t-tubules decreases function. Here we show that despite reduced t-tubule density due to immature t-tubules, the newborn atrium is highly specialised to maintain Ca2+ release. To compensate for fewer t-tubules triggering a central rise in Ca2+, Ca2+ release at sites on the cell surface is enhanced in the newborn, exceeding that at all Ca2+ release sites in the adult. Using electron and super resolution microscopy to investigate myocyte ultrastructure, we found that newborn atrial cells had enlarged surface sarcoplasmic reticulum and larger, more closely spaced surface and central ryanodine receptor clusters. We suggest that these adaptations mediate enhanced Ca2+ release at the sarcolemma and aid propagation to compensate for reduced t-tubule density in the neonatal atrium.
Collapse
Affiliation(s)
- Charlotte E R Smith
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Christian Pinali
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| |
Collapse
|
8
|
Macías Á, González-Guerra A, Moreno-Manuel AI, Cruz FM, Gutiérrez LK, García-Quintáns N, Roche-Molina M, Bermúdez-Jiménez F, Andrés V, Vera-Pedrosa ML, Martínez-Carrascoso I, Bernal JA, Jalife J. Kir2.1 dysfunction at the sarcolemma and the sarcoplasmic reticulum causes arrhythmias in a mouse model of Andersen-Tawil syndrome type 1. NATURE CARDIOVASCULAR RESEARCH 2022; 1:900-917. [PMID: 39195979 PMCID: PMC11358039 DOI: 10.1038/s44161-022-00145-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/02/2022] [Indexed: 08/29/2024]
Abstract
Andersen-Tawil syndrome type 1 (ATS1) is associated with life-threatening arrhythmias of unknown mechanism. In this study, we generated and characterized a mouse model of ATS1 carrying the trafficking-deficient mutant Kir2.1Δ314-315 channel. The mutant mouse recapitulates the electrophysiological phenotype of ATS1, with QT prolongation exacerbated by flecainide or isoproterenol, drug-induced QRS prolongation, increased vulnerability to reentrant arrhythmias and multifocal discharges resembling catecholaminergic polymorphic ventricular tachycardia (CPVT). Kir2.1Δ314-315 cardiomyocytes display significantly reduced inward rectifier K+ and Na+ currents, depolarized resting membrane potential and prolonged action potentials. We show that, in wild-type mouse cardiomyocytes and skeletal muscle cells, Kir2.1 channels localize to sarcoplasmic reticulum (SR) microdomains, contributing to intracellular Ca2+ homeostasis. Kir2.1Δ314-315 cardiomyocytes exhibit defective SR Kir2.1 localization and function, as intact and permeabilized Kir2.1Δ314-315 cardiomyocytes display abnormal spontaneous Ca2+ release events. Overall, defective Kir2.1 channel function at the sarcolemma and the SR explain the life-threatening arrhythmias in ATS1 and its overlap with CPVT.
Collapse
Affiliation(s)
- Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Švecová O, Bébarová M, Šimurdová M, Šimurda J. Fraction of the T-Tubular Membrane as an Important Parameter in Cardiac Cellular Electrophysiology: A New Way of Estimation. Front Physiol 2022; 13:837239. [PMID: 35620609 PMCID: PMC9127156 DOI: 10.3389/fphys.2022.837239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
The transverse-axial tubular system (t-tubules) plays an essential role in excitation-contraction coupling in cardiomyocytes. Its remodelling is associated with various cardiac diseases. Numerous attempts were made to analyse characteristics essential for proper understanding of the t-tubules and their impact on cardiac cell function in health and disease. The currently available methodical approaches related to the fraction of the t-tubular membrane area produce diverse data. The widely used detubulation techniques cause irreversible cell impairment, thus, distinct cell samples have to be used for estimation of t-tubular parameters in untreated and detubulated cells. Our proposed alternative method is reversible and allows repetitive estimation of the fraction of t-tubular membrane (f t) in cardiomyocytes using short-term perfusion of the measured cell with a low-conductive isotonic sucrose solution. It results in a substantial increase in the electrical resistance of t-tubular lumen, thus, electrically separating the surface and t-tubular membranes. Using the whole-cell patch-clamp measurement and the new approach in enzymatically isolated rat atrial and ventricular myocytes, a set of data was measured and evaluated. The analysis of the electrical equivalent circuit resulted in the establishment of criteria for excluding measurements in which perfusion with a low conductivity solution did not affect the entire cell surface. As expected, the final average f t in ventricular myocytes (0.337 ± 0.017) was significantly higher than that in atrial myocytes (0.144 ± 0.015). The parameter f t could be estimated repetitively in a particular cell (0.345 ± 0.021 and 0.347 ± 0.023 in ventricular myocytes during the first and second sucrose perfusion, respectively). The new method is fast, simple, and leaves the measured cell intact. It can be applied in the course of experiments for which it is useful to estimate both the surface and t-tubular capacitance/area in a particular cell.
Collapse
Affiliation(s)
- Olga Švecová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Milena Šimurdová
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiří Šimurda
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
10
|
Abstract
In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca2+ release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies.
Collapse
Affiliation(s)
- Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
11
|
Belevych AE, Bogdanov V, Terentyev DA, Gyorke S. Acute Detubulation of Ventricular Myocytes Amplifies the Inhibitory Effect of Cholinergic Agonist on Intracellular Ca 2+ Transients. Front Physiol 2021; 12:725798. [PMID: 34512394 PMCID: PMC8427700 DOI: 10.3389/fphys.2021.725798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022] Open
Abstract
Muscarinic receptors expressed in cardiac myocytes play a critical role in the regulation of heart function by the parasympathetic nervous system. How the structural organization of cardiac myocytes affects the regulation of Ca2+ handling by muscarinic receptors is not well-defined. Using confocal Ca2+ imaging, patch-clamp techniques, and immunocytochemistry, the relationship between t-tubule density and cholinergic regulation of intracellular Ca2+ in normal murine ventricular myocytes and myocytes with acute disruption of the t-tubule system caused by formamide treatment was studied. The inhibitory effect of muscarinic receptor agonist carbachol (CCh, 10 μM) on the amplitude of Ca2+ transients, evoked by field-stimulation in the presence of 100 nM isoproterenol (Iso), a β-adrenergic agonist, was directly proportional to the level of myocyte detubulation. The timing of the maximal rate of fluorescence increase of fluo-4, a Ca2+-sensitive dye, was used to classify image pixels into the regions functionally coupled or uncoupled to the sarcolemmal Ca2+ influx (ICa). CCh decreased the fraction of coupled regions and suppressed Ca2+ propagation from sarcolemma inside the cell. Formamide treatment reduced ICa density and decreased sarcoplasmic reticulum (SR) Ca2+ content. CCh did not change SR Ca2+ content in Iso-stimulated control and formamide-treated myocytes. CCh inhibited peak ICa recorded in the presence of Iso by ∼20% in both the control and detubulated myocytes. Reducing ICa amplitude up to 40% by changing the voltage step levels from 0 to –25 mV decreased Ca2+ transients in formamide-treated but not in control myocytes in the presence of Iso. CCh inhibited CaMKII activity, whereas CaMKII inhibition with KN93 mimicked the effect of CCh on Ca2+ transients in formamide-treated myocytes. It was concluded that the downregulation of t-tubules coupled with the diminished efficiency of excitation–contraction coupling, increases the sensitivity of Ca2+ release and propagation to muscarinic receptor-mediated inhibition of both ICa and CaMKII activity.
Collapse
Affiliation(s)
- Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vladimir Bogdanov
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dmitry A Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
12
|
Yamakawa S, Wu D, Dasgupta M, Pedamallu H, Gupta B, Modi R, Mufti M, O'Callaghan C, Frisk M, Louch WE, Arora R, Shiferaw Y, Burrell A, Ryan J, Nelson L, Chow M, Shah SJ, Aistrup G, Zhou J, Marszalec W, Wasserstrom JA. Role of t-tubule remodeling on mechanisms of abnormal calcium release during heart failure development in canine ventricle. Am J Physiol Heart Circ Physiol 2021; 320:H1658-H1669. [PMID: 33635163 PMCID: PMC8260383 DOI: 10.1152/ajpheart.00946.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
The goal of this work was to investigate the role of t-tubule (TT) remodeling in abnormal Ca2+ cycling in ventricular myocytes of failing dog hearts. Heart failure (HF) was induced using rapid right ventricular pacing. Extensive changes in echocardiographic parameters, including left and right ventricular dilation and systolic dysfunction, diastolic dysfunction, elevated left ventricular filling pressures, and abnormal cardiac mechanics, indicated that severe HF developed. TT loss was extensive when measured as the density of total cell volume, derived from three-dimensional confocal image analysis, and significantly increased the distances in the cell interior to closest cell membrane. Changes in Ca2+ transients indicated increases in heterogeneity of Ca2+ release along the cell length. When critical properties of Ca2+ release variability were plotted as a function of TT organization, there was a complex, nonlinear relationship between impaired calcium release and decreasing TT organization below a certain threshold of TT organization leading to increased sensitivity in Ca2+ release below a TT density threshold of 1.5%. The loss of TTs was also associated with a greater incidence of triggered Ca2+ waves during rapid pacing. Finally, virtually all of these observations were replicated by acute detubulation by formamide treatment, indicating an important role of TT remodeling in impaired Ca2+ cycling. We conclude that TT remodeling itself is a major contributor to abnormal Ca2+ cycling in HF, reducing myocardial performance. The loss of TTs is also responsible for a greater incidence of triggered Ca2+ waves that may play a role in ventricular arrhythmias arising in HF.NEW & NOTEWORTHY Three-dimensional analysis of t-tubule density showed t-tubule disruption throughout the whole myocyte in failing dog ventricle. A double-linear relationship between Ca2+ release and t-tubule density displays a steeper slope at t-tubule densities below a threshold value (∼1.5%) above which there is little effect on Ca2+ release (T-tubule reserve). T-tubule loss increases incidence of triggered Ca2+ waves. Chemically induced t-tubule disruption suggests that t-tubule loss alone is a critical component of abnormal Ca2+ cycling in heart failure.
Collapse
Affiliation(s)
- Sean Yamakawa
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Wu
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mona Dasgupta
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Havisha Pedamallu
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Binita Gupta
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rishi Modi
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maryam Mufti
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Caitlin O'Callaghan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - William E Louch
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rishi Arora
- California State University Northridge, Los Angeles, California
| | - Yohannes Shiferaw
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amy Burrell
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Juliet Ryan
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lauren Nelson
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Madeleine Chow
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sanjiv J Shah
- The Masonic Medical Research Institute, Utica, New York
| | - Gary Aistrup
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Junlan Zhou
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Marszalec
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
13
|
Mellor NG, Pham T, Tran K, Loiselle DS, Ward M, Taberner AJ, Crossman DJ, Han J. Disruption of transverse-tubular network reduces energy efficiency in cardiac muscle contraction. Acta Physiol (Oxf) 2021; 231:e13545. [PMID: 32757472 DOI: 10.1111/apha.13545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
AIM Altered organization of the transverse-tubular network is an early pathological event occurring even prior to the onset of heart failure. Such t-tubular remodelling disturbs the synchrony and signalling between membranous and intracellular ion channels, exchangers, receptors and ATPases essential in the dynamics of excitation-contraction coupling, leading to ionic abnormality and mechanical dysfunction in heart disease progression. In this study, we investigated whether a disrupted t-tubular network has a direct effect on cardiac mechano-energetics. Our aim was to understand the fundamental link between t-tubular remodelling and impaired energy metabolism, both of which are characteristics of heart failure. We thus studied healthy tissue preparations in which cellular processes are not altered by any disease event. METHODS We exploited the "formamide-detubulation" technique to acutely disrupt the t-tubular network in rat left-ventricular trabeculae. We assessed the energy utilization by cellular Ca2+ cycling and by crossbridge cycling, and quantified the change of energy efficiency following detubulation. For these measurements, trabeculae were mounted in a microcalorimeter where force and heat output were simultaneously measured. RESULTS Following structural disorganization from detubulation, muscle heat output associated with Ca2+ cycling was reduced, indicating impaired intracellular Ca2+ homeostasis. This led to reduced force production and heat output by crossbridge cycling. The reduction in force-length work was not paralleled by proportionate reduction in the heat output and, as such, energy efficiency was reduced. CONCLUSIONS These results reveal the direct energetic consequences of disrupted t-tubular network, linking the energy disturbance and the t-tubular remodelling typically observed in heart failure.
Collapse
Affiliation(s)
- Nicholas G. Mellor
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
| | - Toan Pham
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
- Department of Physiology The University of Auckland Auckland New Zealand
| | - Marie‐Louise Ward
- Department of Physiology The University of Auckland Auckland New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
- Department of Engineering Science The University of Auckland Auckland New Zealand
| | - David J. Crossman
- Department of Physiology The University of Auckland Auckland New Zealand
| | - June‐Chiew Han
- Auckland Bioengineering Institute The University of Auckland Auckland New Zealand
| |
Collapse
|
14
|
Celestino-Montes A, Pérez-Treviño P, Sandoval-Herrera MD, Gómez-Víquez NL, Altamirano J. Relative role of T-tubules disruption and decreased SERCA2 on contractile dynamics of isolated rat ventricular myocytes. Life Sci 2021; 264:118700. [PMID: 33130073 DOI: 10.1016/j.lfs.2020.118700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
AIMS Ventricular myocytes (VM) depolarization activates L-type Ca2+ channels (LCC) allowing Ca2+ influx (ICa) to synchronize sarcoplasmic reticulum (SR) Ca2+ release, via Ca2+-release channels (RyR2). The resulting whole-cell Ca2+ transient triggers contraction, while cytosolic Ca2+ removal by SR Ca2+ pump (SERCA2) and sarcolemmal Na+/Ca2+ exchanger (NCX) allows relaxation. In diseased hearts, extensive VM remodeling causes heterogeneous, blunted and slow Ca2+ transients. Among remodeling changes are: A) T-tubules disorganization. B) Diminished SERCA2 and low SR Ca2+. However, those often overlap, hindering their relative contribution to contractile dysfunction (CD). Furthermore, few studies have assessed their specific impact on the spatiotemporal Ca2+ transient properties and contractile dynamics simultaneously. Therefore, we sought to perform a quantitative comparison of how heterogeneous and slow Ca2+ transients, with different underlying determinants, affect contractile performance. METHODS We used two experimental models: A) formamide-induced acute "detubulation", where VM retain functional RyR2 and SERCA2, but lack T-tubules-associated LCC and NCX. B) Intact VM from hypothyroid rats, presenting decreased SERCA2 and SR Ca2+, but maintained T-tubules. By confocal imaging of Fluo-4-loaded VM, under field-stimulation, simultaneously acquired Ca2+ transients and shortening, allowing direct correlations. KEY FINDINGS We found near-linear correlations among key parameters of altered Ca2+ transients, caused independently by T-tubules disruption or decreased SR Ca2+, and shortening and relaxation, SIGNIFICANCE: Unrelated structural and molecular alterations converge in similarly abnormal Ca2+ transients and CD, highlighting the importance of independently reproduce disease-specific alterations, to quantitatively assess their impact on Ca2+ signaling and contractility, which would be valuable to determine potential disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Antonio Celestino-Montes
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Maya D Sandoval-Herrera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Norma L Gómez-Víquez
- Departamento de Farmacobiologia, CINVESTAV-IPN sede Sur, Mexico, D.F. 14330, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico.
| |
Collapse
|
15
|
T-tubule remodeling in human hypertrophic cardiomyopathy. J Muscle Res Cell Motil 2020; 42:305-322. [PMID: 33222034 PMCID: PMC8332592 DOI: 10.1007/s10974-020-09591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
The highly organized transverse T-tubule membrane system represents the ultrastructural substrate for excitation–contraction coupling in ventricular myocytes. While the architecture and function of T-tubules have been well described in animal models, there is limited morpho-functional data on T-tubules in human myocardium. Hypertrophic cardiomyopathy (HCM) is a primary disease of the heart muscle, characterized by different clinical presentations at the various stages of its progression. Most HCM patients, indeed, show a compensated hypertrophic disease (“non-failing hypertrophic phase”), with preserved left ventricular function, and only a small subset of individuals evolves into heart failure (“end stage HCM”). In terms of T-tubule remodeling, the “end-stage” disease does not differ from other forms of heart failure. In this review we aim to recapitulate the main structural features of T-tubules during the “non-failing hypertrophic stage” of human HCM by revisiting data obtained from human myectomy samples. Moreover, by comparing pathological changes observed in myectomy samples with those introduced by acute (experimentally induced) detubulation, we discuss the role of T-tubular disruption as a part of the complex excitation–contraction coupling remodeling process that occurs during disease progression. Lastly, we highlight how T-tubule morpho-functional changes may be related to patient genotype and we discuss the possibility of a primitive remodeling of the T-tubule system in rare HCM forms associated with genes coding for proteins implicated in T-tubule structural integrity, formation and maintenance.
Collapse
|
16
|
Park SH, Kim A, An J, Cho HS, Kang TM. Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:529-543. [PMID: 33093274 PMCID: PMC7585588 DOI: 10.4196/kjpp.2020.24.6.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022]
Abstract
In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.
Collapse
Affiliation(s)
- Sun Hwa Park
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Ami Kim
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Jieun An
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hyun Sung Cho
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Tong Mook Kang
- Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
17
|
Uchida K, Nikouee A, Moench I, Tamkus G, Elghoul Y, Lopatin AN. The mechanism of osmotically induced sealing of cardiac t tubules. Am J Physiol Heart Circ Physiol 2020; 319:H410-H421. [PMID: 32648820 DOI: 10.1152/ajpheart.00573.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac t tubules undergo significant remodeling in various pathological and experimental conditions, which can be associated with mechanical or osmotic stress. In particular, it has been shown that removal of hyposmotic stress can lead to sealing of t tubules. However, the mechanisms underlying the sealing process remain essentially unknown. In this study we used dextran trapping assay to demonstrate that in adult mouse cardiomyocytes, t-tubular sealing can also be induced by hyperosmotic challenge and that both hypo- and hyperosmotic sealing display a clear threshold behavior requiring ≈100 mosmol/L minimal stress. Importantly, during both hypo- and hyperosmotic challenges, the sealing of t tubules occurs only during the shrinking phase. Analysis of the time course of t-tubular remodeling following removal of hyposmotic stress shows that t tubules become sealed essentially instantly, well before any significant reduction in cell size can be observed. Overall, the data support the hypothesis that the critical event in the process of t-tubular sealing during osmotic challenges is detachment (peeling) of the membrane from the underlying cytoskeleton due to suprathreshold stress.NEW & NOTEWORTHY This study provides new insights into how t-tubular membranes respond to osmotic forces. In particular, the data show that osmotically induced sealing of cardiac t tubules is a threshold phenomenon initiated by detachment of t-tubular membrane from the underlying cytoskeleton. The findings are consistent with the hypothesis that final sealing of t tubules is driven by negative hydrostatic intracellular pressure coincident with cell shrinking.
Collapse
Affiliation(s)
- Keita Uchida
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Azadeh Nikouee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ian Moench
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Greta Tamkus
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yasmine Elghoul
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Anatoli N Lopatin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
Vermij SH, Rougier JS, Agulló-Pascual E, Rothenberg E, Delmar M, Abriel H. Single-Molecule Localization of the Cardiac Voltage-Gated Sodium Channel Reveals Different Modes of Reorganization at Cardiomyocyte Membrane Domains. Circ Arrhythm Electrophysiol 2020; 13:e008241. [PMID: 32536203 PMCID: PMC7368852 DOI: 10.1161/circep.119.008241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mutations in the gene encoding the cardiac voltage-gated sodium channel Nav1.5 cause various cardiac arrhythmias. This variety may arise from different determinants of Nav1.5 expression between cardiomyocyte domains. At the lateral membrane and T-tubules, Nav1.5 localization and function remain insufficiently characterized. METHODS We used novel single-molecule localization microscopy and computational modeling to define nanoscale features of Nav1.5 localization and distribution at the lateral membrane, the lateral membrane groove, and T-tubules in cardiomyocytes from wild-type (N=3), dystrophin-deficient (mdx; N=3) mice, and mice expressing C-terminally truncated Nav1.5 (ΔSIV; N=3). We moreover assessed T-tubules sodium current by recording whole-cell sodium currents in control (N=5) and detubulated (N=5) wild-type cardiomyocytes. RESULTS We show that Nav1.5 organizes as distinct clusters in the groove and T-tubules which density, distribution, and organization partially depend on SIV and dystrophin. We found that overall reduction in Nav1.5 expression in mdx and ΔSIV cells results in a nonuniform redistribution with Nav1.5 being specifically reduced at the groove of ΔSIV and increased in T-tubules of mdx cardiomyocytes. A T-tubules sodium current could, however, not be demonstrated. CONCLUSIONS Nav1.5 mutations may site-specifically affect Nav1.5 localization and distribution at the lateral membrane and T-tubules, depending on site-specific interacting proteins. Future research efforts should elucidate the functional consequences of this redistribution.
Collapse
Affiliation(s)
- Sarah H Vermij
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.H.V., J.-S.R., H.A.)
| | - Jean-Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.H.V., J.-S.R., H.A.)
| | | | - Eli Rothenberg
- Department of Biochemistry and Pharmacology (E.R.), New York University School of Medicine, NY
| | - Mario Delmar
- Department of Cardiology (M.D.), New York University School of Medicine, NY
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland (S.H.V., J.-S.R., H.A.)
| |
Collapse
|
19
|
Marchena M, Echebarria B. Influence of the tubular network on the characteristics of calcium transients in cardiac myocytes. PLoS One 2020; 15:e0231056. [PMID: 32302318 PMCID: PMC7164608 DOI: 10.1371/journal.pone.0231056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.
Collapse
Affiliation(s)
- Miquel Marchena
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Blas Echebarria
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
- * E-mail:
| |
Collapse
|
20
|
Power A, Kaur S, Dyer C, Ward ML. Disruption of Transverse-Tubules Eliminates the Slow Force Response to Stretch in Isolated Rat Trabeculae. Front Physiol 2020; 11:193. [PMID: 32210837 PMCID: PMC7069251 DOI: 10.3389/fphys.2020.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Ventricular muscle has a biphasic response to stretch. There is an immediate increase in force that coincides with the stretch which is followed by a second phase that takes several minutes for force to develop to a new steady state. The initial increase in force is due to changes in myofilament properties, whereas the second, slower component of the stretch response (known as the “slow force response” or SFR) is accompanied by a steady increase in Ca2+ transient amplitude. Evidence shows stretch-dependent Ca2+ influx during the SFR occurs through some mechanism that is continuously active for several minutes following stretch. Many of the candidate ion channels are located primarily in the t-tubules, which are consequently lost in heart disease. Our aim, therefore, was to investigate the impact of t-tubule loss on the SFR in non-failing cardiac trabeculae in which expression of the different Ca2+ handling proteins was not altered by any disease process. For comparison, we also investigated the effect of formamide detubulation of trabeculae on β-adrenergic activation (1 μM isoproterenol), since this is another key regulator of cardiac force. Measurement of intracellular calcium ([Ca2+]i) and isometric stress were made in RV trabeculae from rat hearts before, during and after formamide treatment (1.5 M for 5 min), which on washout seals the surface sarcolemmal t-tubule openings. Results showed detubulation slowed the time course of Ca2+ transients and twitch force, with time-to-peak, maximum rate-of-rise, and relaxation prolonged in trabeculae at optimal length (Lo). Formamide treatment also prevented development of the SFR following a step change in length from 90 to 100% Lo, and blunted the response to β-adrenergic activation (1 μM isoproterenol).
Collapse
Affiliation(s)
- Amelia Power
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sarbjot Kaur
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Cameron Dyer
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
21
|
Yue X, Hazan A, Lotteau S, Zhang R, Torrente AG, Philipson KD, Ottolia M, Goldhaber JI. Na/Ca exchange in the atrium: Role in sinoatrial node pacemaking and excitation-contraction coupling. Cell Calcium 2020; 87:102167. [PMID: 32028091 DOI: 10.1016/j.ceca.2020.102167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023]
Abstract
Na/Ca exchange is the dominant calcium (Ca) efflux mechanism in cardiac myocytes. Although our knowledge of exchanger function (NCX1 in the heart) was originally established using biochemical and electrophysiological tools such as cardiac sarcolemmal vesicles and the giant patch technique [1-4], many advances in our understanding of the physiological/pathophysiological roles of NCX1 in the heart have been obtained using a suite of genetically modified mice. Early mouse studies focused on modification of expression levels of NCX1 in the ventricles, with transgenic overexpressors, global NCX1 knockout (KO) mice (which were embryonic lethal if homozygous), and finally ventricular-specific NCX1 KO [5-12]. We found, to our surprise, that ventricular cardiomyocytes lacking NCX1 can survive and function by engaging a clever set of adaptations to minimize Ca entry, while maintaining contractile function through an increase in excitation-contraction (EC) coupling gain [5,6,13]. Having studied ventricular NCX1 ablation in detail, we more recently focused on elucidating the role of NCX1 in the atria through altering NCX1 expression. Using a novel atrial-specific NCX1 KO mouse, we found unexpected changes in atrial cell morphology and calcium handling, together with dramatic alterations in the function of sinoatrial node (SAN) pacemaker activity. In this review, we will discuss these findings and their implications for cardiac disease.
Collapse
Affiliation(s)
- Xin Yue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Adina Hazan
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sabine Lotteau
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rui Zhang
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Angelo G Torrente
- Institute for Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
22
|
Rougier JS, Essers MC, Gillet L, Guichard S, Sonntag S, Shmerling D, Abriel H. A Distinct Pool of Na v1.5 Channels at the Lateral Membrane of Murine Ventricular Cardiomyocytes. Front Physiol 2019; 10:834. [PMID: 31333492 PMCID: PMC6619393 DOI: 10.3389/fphys.2019.00834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 01/22/2023] Open
Abstract
Background: In cardiac ventricular muscle cells, the presence of voltage-gated sodium channels Nav1.5 at the lateral membrane depends in part on the interaction between the dystrophin–syntrophin complex and the Nav1.5 C-terminal PDZ-domain-binding sequence Ser-Ile-Val (SIV motif). α1-Syntrophin, a PDZ-domain adaptor protein, mediates the interaction between Nav1.5 and dystrophin at the lateral membrane of cardiac cells. Using the cell-attached patch-clamp approach on cardiomyocytes expressing Nav1.5 in which the SIV motif is deleted (ΔSIV), sodium current (INa) recordings from the lateral membrane revealed a SIV-motif-independent INa. Since immunostaining has suggested that Nav1.5 is expressed in transverse (T-) tubules, this remaining INa might be carried by channels in the T-tubules. Of note, a recent study using heterologous expression systems showed that α1-syntrophin also interacts with the Nav1.5 N-terminus, which may explain the SIV-motif independent INa at the lateral membrane of cardiomyocytes. Aim: To address the role of α1-syntrophin in regulating the INa at the lateral membrane of cardiac cells. Methods and Results: Patch-clamp experiments in cell-attached configuration were performed on the lateral membranes of wild-type, α1-syntrophin knockdown, and ΔSIV ventricular mouse cardiomyocytes. Compared to wild-type, a reduction of the lateral INa was observed in myocytes from α1-syntrophin knockdown hearts. Similar to ΔSIV myocytes, a remaining INa was still recorded. In addition, cell-attached INa recordings from lateral membrane did not differ significantly between non-detubulated and detubulated ΔSIV cardiomyocytes. Lastly, we obtained evidence suggesting that cell-attached patch-clamp experiments on the lateral membrane cannot record currents carried by channels in T-tubules such as calcium channels. Conclusion: Altogether, these results suggest the presence of a sub-pool of sodium channels at the lateral membrane of cardiomyocytes that is independent of α1-syntrophin and the PDZ-binding motif of Nav1.5, located in membrane domains outside of T-tubules. The question of a T-tubular pool of Nav1.5 channels, however, remains open.
Collapse
Affiliation(s)
| | - Maria C Essers
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Ludovic Gillet
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Pain Center, Department of Anesthesiology, Lausanne University Hospital, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sabrina Guichard
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | | | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Bourcier A, Barthe M, Bedioune I, Lechêne P, Miled HB, Vandecasteele G, Fischmeister R, Leroy J. Imipramine as an alternative to formamide to detubulate rat ventricular cardiomyocytes. Exp Physiol 2019; 104:1237-1249. [PMID: 31116459 DOI: 10.1113/ep087760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can imipramine, an antidepressant agent that is a cationic amphiphilic drug that interferes with the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system, be validated as a new detubulating tool? What is the main finding and its importance? Imipramine was validated as a more efficient and less toxic detubulating agent of cardiomyocytes than formamide. New insights are provided on how PI(4,5)P2 is crucial to maintaining T-tubule attachment to the cell surface and on the cardiotoxic effects of imipramine overdoses. ABSTRACT Cardiac T-tubules are membrane invaginations essential for excitation-contraction coupling (ECC). Imipramine, like other cationic amphiphilic drugs, interferes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) interactions with proteins maintaining the tubular system connected to the cell surface. Our main purpose was to validate imipramine as a new detubulating agent in cardiomyocytes. Staining adult rat ventricular myocytes (ARVMs) with di-4-ANEPPS, we showed that unlike formamide, imipramine induces a complete detubulation with no impact on cell viability. Using the patch-clamp technique, we observed a ∼40% decrease in cell capacitance after imipramine pretreatment and a reduction of ICa,L amplitude by ∼72%. These parameters were not affected in atrial cells, excluding direct side effects of imipramine. β-Adrenergic receptor (β-AR) stimulation of the remaining ICa,L with isoproterenol (Iso) was still effective. ECC was investigated in ARVMs loaded with Fura-2 and paced at 1 Hz, allowing simultaneous measurement of the Ca2+ transient (CaT) and sarcomere shortening (SS). Amplitude of both CaT and SS was decreased by imipramine and partially restored by Iso. Furthermore, detubulated cells exhibited Ca2+ homeostasis perturbations. Real-time cAMP variations induced by Iso using a Förster resonance energy transfer biosensor revealed ∼27% decreased cAMP elevation upon β-AR stimulation. To conclude, we validated a new cardiomyocyte detubulation method using imipramine, which is more efficient and less toxic than formamide. This antidepressant agent induces the hallmark effects of detubulation on ECC and its β-AR stimulation. Besides, we provide new insights on how an imipramine overdose may affect cardiac function and suggest that PI(4,5)P2 is crucial for maintaining T-tubule structure.
Collapse
Affiliation(s)
- Aurelia Bourcier
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Marion Barthe
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Ibrahim Bedioune
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Patrick Lechêne
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Hela Ben Miled
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Grégoire Vandecasteele
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Rodolphe Fischmeister
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Jérôme Leroy
- Inserm UMR-S 1180, Faculte de Pharmacie, Univ. Paris-Sud, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| |
Collapse
|
24
|
Kong CHT, Bryant SM, Watson JJ, Roth DM, Patel HH, Cannell MB, James AF, Orchard CH. Cardiac-specific overexpression of caveolin-3 preserves t-tubular I Ca during heart failure in mice. Exp Physiol 2019; 104:654-666. [PMID: 30786093 PMCID: PMC6488395 DOI: 10.1113/ep087304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the cellular basis of the protection conferred on the heart by overexpression of caveolin-3 (Cav-3 OE) against many of the features of heart failure normally observed in vivo? What is the main finding and its importance? Cav-3 overexpression has little effect in normal ventricular myocytes but reduces cellular hypertrophy and preserves t-tubular ICa , but not local t-tubular Ca2+ release, in heart failure induced by pressure overload in mice. Thus Cav-3 overexpression provides specific but limited protection following induction of heart failure, although other factors disrupt Ca2+ release. ABSTRACT Caveolin-3 (Cav-3) is an 18 kDa protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. During cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted and excitation-contraction coupling (ECC) is impaired. Previous work has suggested that Cav-3 overexpression (OE) is cardio-protective, but the effect of Cav-3 OE on these cellular changes is unknown. We therefore investigated whether Cav-3 OE in mice is protective against the cellular effects of pressure overload induced by 8 weeks' transverse aortic constriction (TAC). Cav-3 OE mice developed cardiac dilatation, decreased stroke volume and ejection fraction, and hypertrophy and pulmonary congestion in response to TAC. These changes were accompanied by cellular hypertrophy, a decrease in t-tubule regularity and density, and impaired local Ca2+ release at the t-tubules. However, the extent of cardiac and cellular hypertrophy was reduced in Cav-3 OE compared to WT mice, and t-tubular Ca2+ current (ICa ) density was maintained. These data suggest that Cav-3 OE helps prevent hypertrophy and loss of t-tubular ICa following TAC, but that other factors disrupt local Ca2+ release.
Collapse
Affiliation(s)
- Cherrie H. T. Kong
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Simon M. Bryant
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Judy J. Watson
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - David M. Roth
- VA San Diego Healthcare System and Department of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Hemal H. Patel
- VA San Diego Healthcare System and Department of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Mark B. Cannell
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Andrew F. James
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| | - Clive H. Orchard
- School of PhysiologyPharmacology & NeuroscienceBiomedical Sciences BuildingUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
25
|
Bryant SM, Kong CHT, Watson JJ, Gadeberg HC, Roth DM, Patel HH, Cannell MB, James AF, Orchard CH. Caveolin-3 KO disrupts t-tubule structure and decreases t-tubular I Ca density in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 2018; 315:H1101-H1111. [PMID: 30028203 PMCID: PMC6415741 DOI: 10.1152/ajpheart.00209.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Caveolin-3 (Cav-3) is a protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. In cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted, and excitation-contraction coupling is impaired. However, the extent to which the decrease in Cav-3 expression underlies these changes is unclear. We therefore investigated the structure and function of myocytes isolated from the hearts of Cav-3 knockout (KO) mice. These mice showed cardiac dilatation and decreased ejection fraction in vivo compared with wild-type control mice. Isolated KO myocytes showed cellular hypertrophy, altered t-tubule structure, and decreased L-type Ca2+ channel current ( ICa) density. This decrease in density occurred predominantly in the t-tubules, with no change in total ICa, and was therefore a consequence of the increase in membrane area. Cav-3 KO had no effect on L-type Ca2+ channel expression, and C3SD peptide, which mimics the scaffolding domain of Cav-3, had no effect on ICa in KO myocytes. However, inhibition of PKA using H-89 decreased ICa at the surface and t-tubule membranes in both KO and wild-type myocytes. Cav-3 KO had no significant effect on Na+/Ca2+ exchanger current or Ca2+ release. These data suggest that Cav-3 KO causes cellular hypertrophy, thereby decreasing t-tubular ICa density. NEW & NOTEWORTHY Caveolin-3 (Cav-3) is a protein that inhibits hypertrophic pathways, has been implicated in the formation and function of cardiac t-tubules, and shows decreased expression in heart failure. This study demonstrates that Cav-3 knockout mice show cardiac dysfunction in vivo, while isolated ventricular myocytes show cellular hypertrophy, changes in t-tubule structure, and decreased t-tubular L-type Ca2+ current density, suggesting that decreased Cav-3 expression contributes to these changes in cardiac hypertrophy and failure.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Caveolin 3/deficiency
- Caveolin 3/genetics
- Down-Regulation
- Genetic Predisposition to Disease
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenotype
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Simon M Bryant
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Cherrie H T Kong
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Judy J Watson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Hanne C Gadeberg
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - David M Roth
- Veterans Affairs San Diego Healthcare System and Department of Anesthesiology, University of California-San Diego , La Jolla, California
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System and Department of Anesthesiology, University of California-San Diego , La Jolla, California
| | - Mark B Cannell
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| | - Clive H Orchard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
26
|
Scardigli M, Ferrantini C, Crocini C, Pavone FS, Sacconi L. Interplay Between Sub-Cellular Alterations of Calcium Release and T-Tubular Defects in Cardiac Diseases. Front Physiol 2018; 9:1474. [PMID: 30410446 PMCID: PMC6209824 DOI: 10.3389/fphys.2018.01474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
Asynchronous Ca2+ release promotes non-homogeneous myofilament activation, leading to mechanical dysfunction, as well as initiation of propagated calcium waves and arrhythmias. Recent advances in microscopy techniques have allowed for optical recordings of local Ca2+ fluxes and action potentials from multiple sub-cellular domains within cardiac cells with unprecedented spatial and temporal resolution. Since then, sub-cellular local information of the spatio-temporal relationship between Ca2+ release and action potential propagation have been unlocked, providing novel mechanistic insights in cardiac excitation-contraction coupling (ECC). Here, we review the promising perspectives arouse from repeatedly probing Ca2+ release at the same sub-cellular location while simultaneously probing multiple locations at the same time within a single cardiac cell. We also compare the results obtained in three different rodent models of cardiac diseases, highlighting disease-specific mechanisms. Slower local Ca2+ release has been observed in regions with defective action potential conduction in diseased cardiac cells. Moreover, significant increment of Ca2+ variability (both in time and in space) has been found in diseased cardiac cells but does not directly correlate with local electrical defects nor with the degree of structural aberrations of the cellular membrane system, suggesting a role for other players of the ECC machinery. We finally explore exciting opportunities provided by the technology for studying different cardiomyocyte populations, as well as for dissecting the mechanisms responsible for subcellular spatio-temporal variability of Ca2+ release.
Collapse
Affiliation(s)
- Marina Scardigli
- National Institute of Optics, National Research Council, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy, Florence, Italy
| | - Cecilia Ferrantini
- European Laboratory for Non-Linear Spectroscopy, Florence, Italy.,Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Francesco S Pavone
- National Institute of Optics, National Research Council, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy, Florence, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Leonardo Sacconi
- National Institute of Optics, National Research Council, Florence, Italy.,European Laboratory for Non-Linear Spectroscopy, Florence, Italy
| |
Collapse
|
27
|
Jayasinghe I, Clowsley AH, de Langen O, Sali SS, Crossman DJ, Soeller C. Shining New Light on the Structural Determinants of Cardiac Couplon Function: Insights From Ten Years of Nanoscale Microscopy. Front Physiol 2018; 9:1472. [PMID: 30405432 PMCID: PMC6204384 DOI: 10.3389/fphys.2018.01472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Remodelling of the membranes and protein clustering patterns during the pathogenesis of cardiomyopathies has renewed the interest in spatial visualisation of these structures in cardiomyocytes. Coincidental emergence of single molecule (super-resolution) imaging and tomographic electron microscopy tools in the last decade have led to a number of new observations on the structural features of the couplons, the primary sites of excitation-contraction coupling in the heart. In particular, super-resolution and tomographic electron micrographs have revised and refined the classical views of the nanoscale geometries of couplons, t-tubules and the organisation of the principal calcium handling proteins in both healthy and failing hearts. These methods have also allowed the visualisation of some features which were too small to be detected with conventional microscopy tools. With new analytical capabilities such as single-protein mapping, in situ protein quantification, correlative and live cell imaging we are now observing an unprecedented interest in adapting these research tools across the cardiac biophysical research discipline. In this article, we review the depth of the new insights that have been enabled by these tools toward understanding the structure and function of the cardiac couplon. We outline the major challenges that remain in these experiments and emerging avenues of research which will be enabled by these technologies.
Collapse
Affiliation(s)
- Izzy Jayasinghe
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Oscar de Langen
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sonali S Sali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - David J Crossman
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
28
|
Brandenburg S, Pawlowitz J, Fakuade FE, Kownatzki-Danger D, Kohl T, Mitronova GY, Scardigli M, Neef J, Schmidt C, Wiedmann F, Pavone FS, Sacconi L, Kutschka I, Sossalla S, Moser T, Voigt N, Lehnart SE. Axial Tubule Junctions Activate Atrial Ca 2+ Release Across Species. Front Physiol 2018; 9:1227. [PMID: 30349482 PMCID: PMC6187065 DOI: 10.3389/fphys.2018.01227] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/14/2018] [Indexed: 01/10/2023] Open
Abstract
Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial “super-hub” Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Pawlowitz
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Funsho E Fakuade
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kownatzki-Danger
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Kohl
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina Scardigli
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Constanze Schmidt
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics, University of Florence, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Ingo Kutschka
- Department of Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Niels Voigt
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Göttingen, Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Göttingen, Göttingen, Germany.,BioMET, The Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol 2018; 9:1380. [PMID: 30337881 PMCID: PMC6180171 DOI: 10.3389/fphys.2018.01380] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Atrial fibrillation (AF) is commonly associated with heart failure. A bidirectional relationship exists between the two-AF exacerbates heart failure causing a significant increase in heart failure symptoms, admissions to hospital and cardiovascular death, while pathological remodeling of the atria as a result of heart failure increases the risk of AF. A comprehensive understanding of the pathophysiology of AF is essential if we are to break this vicious circle. In this review, the latest evidence will be presented showing a fundamental role for calcium in both the induction and maintenance of AF. After outlining atrial electrophysiology and calcium handling, the role of calcium-dependent afterdepolarizations and atrial repolarization alternans in triggering AF will be considered. The atrial response to rapid stimulation will be discussed, including the short-term protection from calcium overload in the form of calcium signaling silencing and the eventual progression to diastolic calcium leak causing afterdepolarizations and the development of an electrical substrate that perpetuates AF. The role of calcium in the bidirectional relationship between heart failure and AF will then be covered. The effects of heart failure on atrial calcium handling that promote AF will be reviewed, including effects on both atrial myocytes and the pulmonary veins, before the aspects of AF which exacerbate heart failure are discussed. Finally, the limitations of human and animal studies will be explored allowing contextualization of what are sometimes discordant results.
Collapse
Affiliation(s)
- Nathan C. Denham
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | - Katharine M. Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Henry AD, MacQuaide N, Burton FL, Rankin AC, Rowan EG, Drummond RM. Spontaneous Ca 2+ transients in rat pulmonary vein cardiomyocytes are increased in frequency and become more synchronous following electrical stimulation. Cell Calcium 2018; 76:36-47. [PMID: 30253263 DOI: 10.1016/j.ceca.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/09/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
Abstract
The pulmonary veins have an external sleeve of cardiomyocytes that are a widely recognised source of ectopic electrical activity that can lead to atrial fibrillation. Although the mechanisms behind this activity are currently unknown, changes in intracellular calcium (Ca2+) signalling are purported to play a role. Therefore, the intracellular Ca2+ concentration was monitored in the pulmonary vein using fluo-4 and epifluorescence microscopy. Electrical field stimulation evoked a synchronous rise in Ca2+ in neighbouring cardiomyocytes; asynchronous spontaneous Ca2+ transients between electrical stimuli were also present. Immediately following termination of electrical field stimulation at 3 Hz or greater, the frequency of the spontaneous Ca2+ transients was increased from 0.45 ± 0.06 Hz under basal conditions to between 0.59 ± 0.05 and 0.65 ± 0.06 Hz (P < 0.001). Increasing the extracellular Ca2+ concentration enhanced this effect, with the frequency of spontaneous Ca2+ transients increasing from 0.45 ± 0.05 Hz to between 0.75 ± 0.06 and 0.94 ± 0.09 Hz after electrical stimulation at 3 to 9 Hz (P < 0.001), and this was accompanied by a significant increase in the velocity of Ca2+ transients that manifested as waves. Moreover, in the presence of high extracellular Ca2+, the spontaneous Ca2+ transients occurred more synchronously in the initial few seconds following electrical stimulation. The ryanodine receptors, which are the source of spontaneous Ca2+ transients in pulmonary vein cardiomyocytes, were found to be arranged in a striated pattern in the cell interior, as well as along the periphery of cell. Furthermore, labelling the sarcolemma with di-4-ANEPPS showed that over 90% of pulmonary vein cardiomyocytes possessed T-tubules. These findings demonstrate that the frequency of spontaneous Ca2+ transients in the rat pulmonary vein are increased following higher rates of electrical stimulation and increasing the extracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Alasdair D Henry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - N MacQuaide
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - F L Burton
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - A C Rankin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - E G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - R M Drummond
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
31
|
Bryant SM, Kong CHT, Watson JJ, Gadeberg HC, James AF, Cannell MB, Orchard CH. Caveolin 3-dependent loss of t-tubular I Ca during hypertrophy and heart failure in mice. Exp Physiol 2018; 103:652-665. [PMID: 29473235 PMCID: PMC6099270 DOI: 10.1113/ep086731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/15/2018] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? Heart failure is associated with redistribution of L-type Ca2+ current (ICa ) away from the t-tubule membrane to the surface membrane of cardiac ventricular myocytes. However, the underlying mechanism and its dependence on severity of pathology (hypertrophy versus failure) are unclear. What is the main finding and its importance? Increasing severity of response to transverse aortic constriction, from hypertrophy to failure, was accompanied by graded loss of t-tubular ICa and loss of regulation of ICa by caveolin 3. Thus, the pathological loss of t-tubular ICa , which contributes to impaired excitation-contraction coupling and thereby cardiac function in vivo, appears to be attributable to loss of caveolin 3-dependent stimulation of t-tubular ICa . ABSTRACT Previous work has shown redistribution of L-type Ca2+ current (ICa ) from the t-tubules to the surface membrane of rat ventricular myocytes after myocardial infarction. However, whether this occurs in all species and in response to other insults, the relationship of this redistribution to the severity of the pathology, and the underlying mechanism, are unknown. We have therefore investigated the response of mouse hearts and myocytes to pressure overload induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or equivalent sham operation 8 weeks before use. ICa and Ca2+ transients were measured in isolated myocytes, and expression of caveolin 3 (Cav3), junctophilin 2 (Jph2) and bridging integrator 1 (Bin1) was determined. C3SD peptide was used to disrupt Cav3 binding to its protein partners. Some animals showed cardiac hypertrophy in response to TAC with little evidence of heart failure, whereas others showed greater hypertrophy and pulmonary congestion. These graded changes were accompanied by graded cellular hypertrophy, t-tubule disruption, decreased expression of Jph2 and Cav3, and decreased t-tubular ICa density, with no change at the cell surface, and graded impairment of Ca2+ release at t-tubules. C3SD decreased ICa density in control but not in TAC myocytes. These data suggest that the graded changes in cardiac function and size that occur in response to TAC are paralleled by graded changes in cell structure and function, which will contribute to the impaired function observed in vivo. They also suggest that loss of t-tubular ICa is attributable to loss of Cav3-dependent stimulation of ICa .
Collapse
Affiliation(s)
- Simon M Bryant
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Cherrie H T Kong
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Judy J Watson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hanne C Gadeberg
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Mark B Cannell
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Clive H Orchard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
32
|
Smith CER, Trafford AW, Caldwell JL, Dibb KM. Physiology and patho-physiology of the cardiac transverse tubular system. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Gadeberg HC, Kong CHT, Bryant SM, James AF, Orchard CH. Cholesterol depletion does not alter the capacitance or Ca handling of the surface or t-tubule membranes in mouse ventricular myocytes. Physiol Rep 2017; 5:5/22/e13500. [PMID: 29150591 PMCID: PMC5704078 DOI: 10.14814/phy2.13500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 01/17/2023] Open
Abstract
Cholesterol is a key component of the cell plasma membrane. It has been suggested that the t‐tubule membrane of cardiac ventricular myocytes is enriched in cholesterol and that this plays a role in determining t‐tubule structure and function. We have used methyl‐β‐cyclodextrin (MβCD) to deplete cholesterol in intact and detubulated mouse ventricular myocytes to investigate the contribution of cholesterol to t‐tubule structure, membrane capacitance, and the distribution of Ca flux pathways. Depletion of membrane cholesterol was confirmed using filipin; however, di‐8‐ANEPPS staining showed no differences in t‐tubule structure following MβCD treatment. MβCD treatment had no significant effect on the capacitance:volume relationship of intact myocytes or on the decrease in capacitance:volume caused by detubulation. Similarly, Ca influx and efflux were not altered by MβCD treatment and were reduced by a similar amount following detubulation in untreated and MβCD‐treated cells. These data show that cholesterol depletion has similar effects on the surface and t‐tubule membranes and suggest that cholesterol plays no acute role in determining t‐tubule structure and function.
Collapse
Affiliation(s)
- Hanne C Gadeberg
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Cherrie H T Kong
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Simon M Bryant
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Clive H Orchard
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, Dahl CP, Fiane A, Tønnessen T, Kryshtal DO, Louch WE, Knollmann BC. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res 2017; 121:1323-1330. [PMID: 28974554 DOI: 10.1161/circresaha.117.311920] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are increasingly being used for modeling heart disease and are under development for regeneration of the injured heart. However, incomplete structural and functional maturation of hiPSC-CM, including lack of T-tubules, immature excitation-contraction coupling, and inefficient Ca-induced Ca release remain major limitations. OBJECTIVE Thyroid and glucocorticoid hormones are critical for heart maturation. We hypothesized that their addition to standard protocols would promote T-tubule development and mature excitation-contraction coupling of hiPSC-CM when cultured on extracellular matrix with physiological stiffness (Matrigel mattress). METHODS AND RESULTS hiPSC-CM were generated using a standard chemical differentiation method supplemented with T3 (triiodothyronine) and/or Dex (dexamethasone) during days 16 to 30 followed by single-cell culture for 5 days on Matrigel mattress. hiPSC-CM treated with T3+Dex, but not with either T3 or Dex alone, developed an extensive T-tubule network. Notably, Matrigel mattress was necessary for T-tubule formation. Compared with adult human ventricular cardiomyocytes, T-tubules in T3+Dex-treated hiPSC-CM were less organized and had more longitudinal elements. Confocal line scans demonstrated spatially and temporally uniform Ca release that is characteristic of excitation-contraction coupling in the heart ventricle. T3+Dex enhanced elementary Ca release measured by Ca sparks and promoted RyR2 (ryanodine receptor) structural organization. Simultaneous measurements of L-type Ca current and intracellular Ca release confirmed enhanced functional coupling between L-type Ca channels and RyR2 in T3+Dex-treated cells. CONCLUSIONS Our results suggest a permissive role of combined thyroid and glucocorticoid hormones during the cardiac differentiation process, which when coupled with further maturation on Matrigel mattress, is sufficient for T-tubule development, enhanced Ca-induced Ca release, and more ventricular-like excitation-contraction coupling. This new hormone maturation method could advance the use of hiPSC-CM for disease modeling and cell-based therapy.
Collapse
Affiliation(s)
- Shan S Parikh
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Daniel J Blackwell
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Nieves Gomez-Hurtado
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Michael Frisk
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Lili Wang
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Kyungsoo Kim
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Christen P Dahl
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Arnt Fiane
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Theis Tønnessen
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Dmytro O Kryshtal
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - William E Louch
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Bjorn C Knollmann
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.).
| |
Collapse
|
35
|
Abstract
Cardiac contractility is regulated by changes in intracellular Ca concentration ([Ca2+]i). Normal function requires that [Ca2+]i be sufficiently high in systole and low in diastole. Much of the Ca needed for contraction comes from the sarcoplasmic reticulum and is released by the process of calcium-induced calcium release. The factors that regulate and fine-tune the initiation and termination of release are reviewed. The precise control of intracellular Ca cycling depends on the relationships between the various channels and pumps that are involved. We consider 2 aspects: (1) structural coupling: the transporters are organized within the dyad, linking the transverse tubule and sarcoplasmic reticulum and ensuring close proximity of Ca entry to sites of release. (2) Functional coupling: where the fluxes across all membranes must be balanced such that, in the steady state, Ca influx equals Ca efflux on every beat. The remainder of the review considers specific aspects of Ca signaling, including the role of Ca buffers, mitochondria, Ca leak, and regulation of diastolic [Ca2+]i.
Collapse
Affiliation(s)
- David A Eisner
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom.
| | - Jessica L Caldwell
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| | - Kornél Kistamás
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, United Kingdom
| |
Collapse
|
36
|
Crossman DJ, Jayasinghe ID, Soeller C. Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma? Biophys Rev 2017; 9:919-929. [PMID: 28695473 DOI: 10.1007/s12551-017-0273-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200-400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart.
Collapse
Affiliation(s)
- David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| | | | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Biomedical Physics, University of Exeter, Exeter, UK
| |
Collapse
|
37
|
Schönleitner P, Schotten U, Antoons G. Mechanosensitivity of microdomain calcium signalling in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28648626 DOI: 10.1016/j.pbiomolbio.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In cardiac myocytes, calcium (Ca2+) signalling is tightly controlled in dedicated microdomains. At the dyad, i.e. the narrow cleft between t-tubules and junctional sarcoplasmic reticulum (SR), many signalling pathways combine to control Ca2+-induced Ca2+ release during contraction. Local Ca2+ gradients also exist in regions where SR and mitochondria are in close contact to regulate energetic demands. Loss of microdomain structures, or dysregulation of local Ca2+ fluxes in cardiac disease, is often associated with oxidative stress, contractile dysfunction and arrhythmias. Ca2+ signalling at these microdomains is highly mechanosensitive. Recent work has demonstrated that increasing mechanical load triggers rapid local Ca2+ releases that are not reflected by changes in global Ca2+. Key mechanisms involve rapid mechanotransduction with reactive oxygen species or nitric oxide as primary signalling molecules targeting SR or mitochondria microdomains depending on the nature of the mechanical stimulus. This review summarizes the most recent insights in rapid Ca2+ microdomain mechanosensitivity and re-evaluates its (patho)physiological significance in the context of historical data on the macroscopic role of Ca2+ in acute force adaptation and mechanically-induced arrhythmias. We distinguish between preload and afterload mediated effects on local Ca2+ release, and highlight differences between atrial and ventricular myocytes. Finally, we provide an outlook for further investigation in chronic models of abnormal mechanics (eg post-myocardial infarction, atrial fibrillation), to identify the clinical significance of disturbed Ca2+ mechanosensitivity for arrhythmogenesis.
Collapse
Affiliation(s)
- Patrick Schönleitner
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Uli Schotten
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Gudrun Antoons
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| |
Collapse
|
38
|
Yue X, Zhang R, Kim B, Ma A, Philipson KD, Goldhaber JI. Heterogeneity of transverse-axial tubule system in mouse atria: Remodeling in atrial-specific Na +-Ca 2+ exchanger knockout mice. J Mol Cell Cardiol 2017; 108:50-60. [PMID: 28529049 DOI: 10.1016/j.yjmcc.2017.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 01/20/2023]
Abstract
Transverse-axial tubules (TATs) are commonly assumed to be sparse or absent in atrial myocytes from small animals. Atrial myocytes from rats, cats and rabbits lack TATs, which results in a characteristic "V"-shaped Ca release pattern in confocal line-scan recordings due to the delayed rise of Ca in the center of the cell. To examine TAT expression in isolated mouse atrial myocytes, we loaded them with the membrane dye Di-4-ANEPPS to label TATs. We found that >80% of atrial myocytes had identifiable TATs. Atria from male mice had a higher TAT density than female mice, and TAT density correlated with cell width. Using the fluorescent Ca indicator Fluo-4-AM and confocal imaging, we found that wild type (WT) mouse atrial myocytes generate near-synchronous Ca transients, in contrast to the "V"-shaped pattern typically reported in other small animals such as rat. In atrial-specific Na-Ca exchanger (NCX) knockout (KO) mice, which develop sinus node dysfunction and atrial hypertrophy with dilation, we found a substantial loss of atrial TATs in isolated atrial myocytes. There was a greater loss of transverse tubules compared to axial tubules, resulting in a dominance of axial tubules. Consistent with the overall loss of TATs, NCX KO atrial myocytes displayed a "V"-shaped Ca transient with slower and reduced central (CT) Ca release and uptake in comparison to subsarcolemmal (SS) Ca release. We compared chemically detubulated (DT) WT cells to KO, and found similar slowing of CT Ca release and uptake. However, SS Ca transients in the WT DT cells had faster uptake kinetics than KO cells, consistent with the presence of NCX and normal sarcolemmal Ca efflux in the WT DT cells. We conclude that the remodeling of NCX KO atrial myocytes is accompanied by a loss of TATs leading to abnormal Ca release and uptake that could impact atrial contractility and rhythm.
Collapse
Affiliation(s)
- Xin Yue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, Shaanxi 710061, China; Cedars-Sinai Heart Institute, Division of Applied Cell Biology and Physiology, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Rui Zhang
- Cedars-Sinai Heart Institute, Division of Applied Cell Biology and Physiology, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Brian Kim
- Cedars-Sinai Heart Institute, Division of Applied Cell Biology and Physiology, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education and Key Laboratory of Molecular Cardiology of Shaanxi Province, 277 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Kenneth D Philipson
- Department of Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Drive South, Los Angeles, CA 90095, USA
| | - Joshua I Goldhaber
- Cedars-Sinai Heart Institute, Division of Applied Cell Biology and Physiology, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| |
Collapse
|
39
|
Gadeberg HC, Kong CHT, Bryant SM, James AF, Orchard CH. Sarcolemmal distribution of ICa and INCX and Ca 2+ autoregulation in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 2017; 313:H190-H199. [PMID: 28476922 PMCID: PMC5538864 DOI: 10.1152/ajpheart.00117.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/14/2017] [Accepted: 05/01/2017] [Indexed: 12/02/2022]
Abstract
This study shows that in contrast to the rat, mouse ventricular Na+/Ca2+ exchange current density is lower in the t-tubules than in the surface sarcolemma and Ca2+ current is predominantly located in the t-tubules. As a consequence, the t-tubules play a role in recovery (autoregulation) from reduced, but not increased, sarcoplasmic reticulum Ca2+ release. The balance of Ca2+ influx and efflux regulates the Ca2+ load of cardiac myocytes, a process known as autoregulation. Previous work has shown that Ca2+ influx, via L-type Ca2+ current (ICa), and efflux, via the Na+/Ca2+ exchanger (NCX), occur predominantly at t-tubules; however, the role of t-tubules in autoregulation is unknown. Therefore, we investigated the sarcolemmal distribution of ICa and NCX current (INCX), and autoregulation, in mouse ventricular myocytes using whole cell voltage-clamp and simultaneous Ca2+ measurements in intact and detubulated (DT) cells. In contrast to the rat, INCX was located predominantly at the surface membrane, and the hysteresis between INCX and Ca2+ observed in intact myocytes was preserved after detubulation. Immunostaining showed both NCX and ryanodine receptors (RyRs) at the t-tubules and surface membrane, consistent with colocalization of NCX and RyRs at both sites. Unlike INCX, ICa was found predominantly in the t-tubules. Recovery of the Ca2+ transient amplitude to steady state (autoregulation) after application of 200 µM or 10 mM caffeine was slower in DT cells than in intact cells. However, during application of 200 µM caffeine to increase sarcoplasmic reticulum (SR) Ca2+ release, DT and intact cells recovered at the same rate. It appears likely that this asymmetric response to changes in SR Ca2+ release is a consequence of the distribution of ICa, which is reduced in DT cells and is required to refill the SR after depletion, and NCX, which is little affected by detubulation, remaining available to remove Ca2+ when SR Ca2+ release is increased. NEW & NOTEWORTHY This study shows that in contrast to the rat, mouse ventricular Na+/Ca2+ exchange current density is lower in the t-tubules than in the surface sarcolemma and Ca2+ current is predominantly located in the t-tubules. As a consequence, the t-tubules play a role in recovery (autoregulation) from reduced, but not increased, sarcoplasmic reticulum Ca2+ release.
Collapse
Affiliation(s)
- Hanne C Gadeberg
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Cherrie H T Kong
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Simon M Bryant
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clive H Orchard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
40
|
Different Densities of Na-Ca Exchange Current in T-Tubular and Surface Membranes and Their Impact on Cellular Activity in a Model of Rat Ventricular Cardiomyocyte. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6343821. [PMID: 28321411 PMCID: PMC5340987 DOI: 10.1155/2017/6343821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023]
Abstract
The ratio of densities of Na-Ca exchanger current (INaCa) in the t-tubular and surface membranes (INaCa-ratio) computed from the values of INaCa and membrane capacitances (Cm) measured in adult rat ventricular cardiomyocytes before and after detubulation ranges between 1.7 and 25 (potentially even 40). Variations of action potential waveform and of calcium turnover within this span of the INaCa-ratio were simulated employing previously developed model of rat ventricular cell incorporating separate description of ion transport systems in the t-tubular and surface membranes. The increase of INaCa-ratio from 1.7 to 25 caused a prolongation of APD (duration of action potential at 90% repolarisation) by 12, 9, and 6% and an increase of peak intracellular Ca2+ transient by 45, 19, and 6% at 0.1, 1, and 5 Hz, respectively. The prolonged APD resulted from the increase of INaCa due to the exposure of a larger fraction of Na-Ca exchangers to higher Ca2+ transients under the t-tubular membrane. The accompanying rise of Ca2+ transient was a consequence of a higher Ca2+ load in sarcoplasmic reticulum induced by the increased Ca2+ cycling between the surface and t-tubular membranes. However, the reason for large differences in the INaCa-ratio assessed from measurements in adult rat cardiomyocytes remains to be explained.
Collapse
|
41
|
Crocini C, Ferrantini C, Coppini R, Sacconi L. Electrical defects of the transverse-axial tubular system in cardiac diseases. J Physiol 2017; 595:3815-3822. [PMID: 27981580 PMCID: PMC5471422 DOI: 10.1113/jp273042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023] Open
Abstract
Electrical excitability is an essential feature of cardiomyocytes and the homogenous propagation of the action potential is guaranteed by a complex network of membrane invaginations called the transverse-axial tubular system (TATS). TATS structural remodelling is a hallmark of cardiac diseases and we demonstrated that this can be accompanied by electrical defects at single T-tubular level. Using a random-access multi-photon (RAMP) microscope, we found that pathological T-tubules can fail to conduct action potentials, which delays local Ca2+ release. Although the underlying causes for T-tubular electrical failure are still unknown, our findings suggest that they are likely to be related to local ultrastructural alterations. Here, we first review the experimental approach that allowed us to observe and dissect the consequences of TATS electrical dysfunction and then propose two different strategies to unveil the reasons for T-tubular electrical failures. The first strategy consists in a correlative approach, in which the failing T-tubule identified with the RAMP microscope is then imaged with electron microscopy. The second approach exploits the diffusion of molecules within TATS to gain insights into the local TATS structure, even without a thorough reconstruction of the tubular network. Although challenging, the local electrical failure occurring at single T-tubules is a fundamental question that needs to be addressed and could provide novel insights in cardiac pathophysiology.
Collapse
Affiliation(s)
- Claudia Crocini
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, 50125, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Raffaele Coppini
- Division of Pharmacology, Department 'NeuroFarBa', University of Florence, 50139, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council, 50125, Florence, Italy
| |
Collapse
|
42
|
Gadeberg HC, Bond RC, Kong CHT, Chanoit GP, Ascione R, Cannell MB, James AF. Heterogeneity of T-Tubules in Pig Hearts. PLoS One 2016; 11:e0156862. [PMID: 27281038 PMCID: PMC4900646 DOI: 10.1371/journal.pone.0156862] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
Background T-tubules are invaginations of the sarcolemma that play a key role in excitation-contraction coupling in mammalian cardiac myocytes. Although t-tubules were generally considered to be effectively absent in atrial myocytes, recent studies on atrial cells from larger mammals suggest that t-tubules may be more numerous than previously supposed. However, the degree of heterogeneity between cardiomyocytes in the extent of the t-tubule network remains unclear. The aim of the present study was to investigate the t-tubule network of pig atrial myocytes in comparison with ventricular tissue. Methods Cardiac tissue was obtained from young female Landrace White pigs (45–75 kg, 5–6 months old). Cardiomyocytes were isolated by arterial perfusion with a collagenase-containing solution. Ca2+ transients were examined in field-stimulated isolated cells loaded with fluo-4-AM. Membranes of isolated cells were visualized using di-8-ANEPPS. T-tubules were visualized in fixed-frozen tissue sections stained with Alexa-Fluor 488-conjugated WGA. Binary images were obtained by application of a threshold and t-tubule density (TTD) calculated. A distance mapping approach was used to calculate half-distance to nearest t-tubule (HDTT). Results & Conclusion The spatio-temporal properties of the Ca2+ transient appeared to be consistent with the absence of functional t-tubules in isolated atrial myocytes. However, t-tubules could be identified in a sub-population of atrial cells in frozen sections. While all ventricular myocytes had TTD >3% (mean TTD = 6.94±0.395%, n = 24), this was true of just 5/22 atrial cells. Mean atrial TTD (2.35±0.457%, n = 22) was lower than ventricular TTD (P<0.0001). TTD correlated with cell-width (r = 0.7756, n = 46, P<0.0001). HDTT was significantly greater in the atrial cells with TTD ≤3% (2.29±0.16 μm, n = 17) than in either ventricular cells (1.33±0.05 μm, n = 24, P<0.0001) or in atrial cells with TTD >3% (1.65±0.06 μm, n = 5, P<0.05). These data demonstrate considerable heterogeneity between pig cardiomyocytes in the extent of t-tubule network, which correlated with cell size.
Collapse
Affiliation(s)
- Hanne C. Gadeberg
- Cardiovascular Research Laboratories, Bristol Cardiovascular, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Richard C. Bond
- Cardiovascular Research Laboratories, Bristol Cardiovascular, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Cherrie H. T. Kong
- Cardiovascular Research Laboratories, Bristol Cardiovascular, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Guillaume P. Chanoit
- School of Veterinary Sciences, University of Bristol, Langford House, Langford, BS40 5DU, United Kingdom
| | - Raimondo Ascione
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, United Kingdom
| | - Mark B. Cannell
- Cardiovascular Research Laboratories, Bristol Cardiovascular, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
- * E-mail: (AFJ); (MBC)
| | - Andrew F. James
- Cardiovascular Research Laboratories, Bristol Cardiovascular, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
- * E-mail: (AFJ); (MBC)
| |
Collapse
|
43
|
Uchida K, Moench I, Tamkus G, Lopatin AN. Small membrane permeable molecules protect against osmotically induced sealing of t-tubules in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 2016; 311:H229-38. [PMID: 27208165 DOI: 10.1152/ajpheart.00836.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/16/2016] [Indexed: 02/07/2023]
Abstract
Cardiac t-tubules are critical for efficient excitation-contraction coupling but become significantly remodeled during various stress conditions. However, the mechanisms by which t-tubule remodeling occur are poorly understood. Recently, we demonstrated that recovery of mouse ventricular myocytes after hyposmotic shock is associated with t-tubule sealing. In this study, we found that the application of Small Membrane Permeable Molecules (SMPM) such as DMSO, formamide and acetamide upon washout of hyposmotic solution significantly reduced the amount of extracellular dextran trapped within sealed t-tubules. The SMPM protection displayed sharp biphasic concentration dependence that peaks at ∼140 mM leading to >3- to 4-fold reduction in dextran trapping. Consistent with these data, detailed analysis of the effects of DMSO showed that the magnitude of normalized inward rectifier tail current (IK1,tail), an electrophysiological marker of t-tubular integrity, was increased ∼2-fold when hyposmotic stress was removed in the presence of 1% DMSO (∼140 mM). Analysis of dynamics of cardiomyocytes shrinking during resolution of hyposmotic stress revealed only minor increase in shrinking rate in the presence of 1% DMSO, and cell dimensions returned fully to prestress values in both control and DMSO groups. Application and withdrawal of 10% DMSO in the absence of preceding hyposmotic shock induced classical t-tubule sealing. This suggests that the biphasic concentration dependence originated from an increase in secondary t-tubule sealing when high SMPM concentrations are removed. Overall, the data suggest that SMPM protect against sealing of t-tubules following hyposmotic stress, likely through membrane modification and essentially independent of their osmotic effects.
Collapse
Affiliation(s)
- Keita Uchida
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ian Moench
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Greta Tamkus
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Anatoli N Lopatin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
44
|
Zhang H, Cannell MB, Kim SJ, Watson JJ, Norman R, Calaghan SC, Orchard CH, James AF. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload. PLoS One 2015; 10:e0144309. [PMID: 26713852 PMCID: PMC4694654 DOI: 10.1371/journal.pone.0144309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF). Although abnormal sarcoplasmic reticulum (SR) function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB) on Ca2+-handling in rat isolated atrial myocytes in comparison to age-matched sham-operated animals (Sham). Myocytes were either labelled for ryanodine receptor (RyR) or loaded with fluo-3-AM and imaged by confocal microscopy. AoB myocytes were hypertrophied in comparison to Sham controls (P<0.0001). RyR labeling was localized to the z-lines and to the cell edge. There were no differences between AoB and Sham in the intensity or pattern of RyR-staining. In both AoB and Sham, electrical stimulation evoked robust SR Ca2+-release at the cell edge whereas Ca2+ transients at the cell center were much smaller. Western blotting showed a decreased L-type Ca channel expression but no significant changes in RyR or RyR phosphorylation or in expression of Na+/Ca2+ exchanger, SR Ca2+ ATPase or phospholamban. Mathematical modeling indicated that [Ca2+]i transients at the cell center were accounted for by simple centripetal diffusion of Ca2+ released at the cell edge. In contrast, caffeine (10 mM) induced Ca2+ release was uniform across the cell. The caffeine-induced transient was smaller in AoB than in Sham, suggesting a reduced SR Ca2+-load in hypertrophied cells. There were no significant differences between AoB and Sham cells in the rate of Ca2+ extrusion during recovery of electrically-stimulated or caffeine-induced transients. The incidence and frequency of spontaneous Ca2+-transients following rapid-pacing (4 Hz) was greater in AoB than in Sham myocytes. In conclusion, elevated afterload causes cellular hypertrophy and remodeling of atrial SR Ca2+-release.
Collapse
Affiliation(s)
- Haifei Zhang
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Mark B. Cannell
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Shang Jin Kim
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Judy J. Watson
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ruth Norman
- School of Biomedical Sciences, Garstang, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sarah C. Calaghan
- School of Biomedical Sciences, Garstang, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Clive H. Orchard
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Andrew F. James
- Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Gadeberg HC, Bryant SM, James AF, Orchard CH. Altered Na/Ca exchange distribution in ventricular myocytes from failing hearts. Am J Physiol Heart Circ Physiol 2015; 310:H262-8. [PMID: 26566728 PMCID: PMC4796630 DOI: 10.1152/ajpheart.00597.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/11/2015] [Indexed: 11/22/2022]
Abstract
In mammalian cardiac ventricular myocytes, Ca efflux via Na/Ca exchange (NCX) occurs predominantly at T tubules. Heart failure is associated with disrupted t-tubular structure, but its effect on t-tubular function is less clear. We therefore investigated t-tubular NCX activity in ventricular myocytes isolated from rat hearts ∼18 wk after coronary artery ligation (CAL) or corresponding sham operation (Sham). NCX current (INCX) and l-type Ca current (ICa) were recorded using the whole cell, voltage-clamp technique in intact and detubulated (DT) myocytes; intracellular free Ca concentration ([Ca]i) was monitored simultaneously using fluo-4. INCX was activated and measured during application of caffeine to release Ca from sarcoplasmic reticulum (SR). Whole cell INCX was not significantly different in Sham and CAL myocytes and occurred predominantly in the T tubules in Sham myocytes. CAL was associated with redistribution of INCX and ICa away from the T tubules to the cell surface and an increase in t-tubular INCX/ICa density from 0.12 in Sham to 0.30 in CAL myocytes. The decrease in t-tubular INCX in CAL myocytes was accompanied by an increase in the fraction of Ca sequestered by SR. However, SR Ca content was not significantly different in Sham, Sham DT, and CAL myocytes but was significantly increased by DT of CAL myocytes. In Sham myocytes, there was hysteresis between INCX and [Ca]i, which was absent in DT Sham but present in CAL and DT CAL myocytes. These data suggest altered distribution of NCX in CAL myocytes.
Collapse
Affiliation(s)
- Hanne C Gadeberg
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Simon M Bryant
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Clive H Orchard
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
46
|
Glukhov AV, Balycheva M, Sanchez-Alonso JL, Ilkan Z, Alvarez-Laviada A, Bhogal N, Diakonov I, Schobesberger S, Sikkel MB, Bhargava A, Faggian G, Punjabi PP, Houser SR, Gorelik J. Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes. Circulation 2015; 132:2372-84. [PMID: 26450916 PMCID: PMC4689179 DOI: 10.1161/circulationaha.115.018131] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
Abstract
Supplemental Digital Content is available in the text. Distinct subpopulations of L-type calcium channels (LTCCs) with different functional properties exist in cardiomyocytes. Disruption of cellular structure may affect LTCC in a microdomain-specific manner and contribute to the pathophysiology of cardiac diseases, especially in cells lacking organized transverse tubules (T-tubules) such as atrial myocytes (AMs).
Collapse
Affiliation(s)
- Alexey V Glukhov
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Marina Balycheva
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Jose L Sanchez-Alonso
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Zeki Ilkan
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Anita Alvarez-Laviada
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Navneet Bhogal
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Ivan Diakonov
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Sophie Schobesberger
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Markus B Sikkel
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Anamika Bhargava
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Giuseppe Faggian
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Prakash P Punjabi
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Steven R Houser
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.)
| | - Julia Gorelik
- From Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, United Kingdom (A.V.G., M.B., J.L.S.-A., Z.I., A.A.-L., N.B., I.D., S.S., M.B.S., A.B., P.P.P., J.G.); University of Verona, School of Medicine, Verona, Italy (M.B., G.F.); Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, United Kingdom (P.P.P.); and Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA (S.R.H.).
| |
Collapse
|
47
|
Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol 2015; 86:23-31. [PMID: 26103619 PMCID: PMC4564288 DOI: 10.1016/j.yjmcc.2015.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/23/2023]
Abstract
In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~ 18 weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation–contraction coupling observed in heart failure. Whole-cell Ca current (ICa) density is not altered in myocytes from failing hearts. ICa density decreases in the t-tubules of myocytes from failing hearts. The decrease of t-tubular ICa is associated with impaired Ca release at t-tubules. These changes in Ca release can be mimicked by decreasing ICa using nifedipine.
Collapse
|
48
|
Ibrahim M, Nader A, Yacoub MH, Terracciano C. Manipulation of sarcoplasmic reticulum Ca(2+) release in heart failure through mechanical intervention. J Physiol 2015; 593:3253-9. [PMID: 25922157 DOI: 10.1113/jp270446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/26/2015] [Indexed: 12/24/2022] Open
Abstract
Left ventricular assist devices (LVADs) were developed as a means of temporary circulatory support, but the mechanical unloading they offer also results in significant reverse remodelling. In selected patients, these improvements are sufficient to allow ultimate device explantation without requiring transplantation; this represents a fundamental shift in our understanding of heart failure. Like heart failure itself, LVADs influence multiple biological systems. The transverse tubules are a system of membrane invaginations in ventricular cardiomyocytes which allow rapid propagation of the action potential throughout the cell. Through their dense concentration of L-type Ca(2+) channels in close proximity to intracellular ryanodine receptors, the t-tubules enable synchronous Ca(2+) release throughout the cell. The t-tubules' structure appears to be specifically regulated by mechanical load, such that either the overload of heart failure (or the spontaneously hypertensive rat model) or the profound unloading in a chronically unloaded heart result in impaired t-tubule structure, with ineffective Ca(2+) release. While there are multiple molecular pathways which underpin t-tubule regulation, Telethonin (Tcap) appears to be important in regulating the effect of altered loading on the t-tubule system.
Collapse
Affiliation(s)
- Michael Ibrahim
- Integrated Resident in Cardiac Surgery, Division of Cardiovascular Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | |
Collapse
|
49
|
Autocrine A2 in the T-system of ventricular myocytes creates transmural gradients in ion transport: a mechanism to match contraction with load? Biophys J 2015; 106:2364-74. [PMID: 24896115 DOI: 10.1016/j.bpj.2014.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 11/20/2022] Open
Abstract
Transmural heterogeneities in Na/K pump current (IP), transient outward K(+)-current (Ito), and Ca(2+)-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33-50% of IP, 57-65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load.
Collapse
|
50
|
Bovo E, de Tombe PP, Zima AV. The role of dyadic organization in regulation of sarcoplasmic reticulum Ca(2+) handling during rest in rabbit ventricular myocytes. Biophys J 2014; 106:1902-9. [PMID: 24806922 DOI: 10.1016/j.bpj.2014.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/24/2014] [Accepted: 03/25/2014] [Indexed: 01/01/2023] Open
Abstract
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca(2+) release during systole. However, it remains obscure how the dyadic organization affects SR Ca(2+) handling during diastole. By measuring intraluminal SR Ca(2+) ([Ca(2+)]SR) decline during rest in rabbit ventricular myocytes, we found that ∼76% of leaked SR Ca(2+) is extruded from the cytosol and only ∼24% is pumped back into the SR. Thus, the majority of Ca(2+) that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca(2+)-ATPase (SERCA). Detubulation decreased [Ca(2+)]SR decline during rest, thus making the leaked SR Ca(2+) more accessible for SERCA. These results suggest that Ca(2+) extrusion systems are localized in T-tubules. Inhibition of Na(+)-Ca(2+) exchanger (NCX) slowed [Ca(2+)]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca(2+)]SR decline. Despite a significant SR Ca(2+) leak, Ca(2+) sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca(2+) spark activity independent of SR Ca(2+) load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca(2+) that leaks from the SR. This can be explained if the majority of SR Ca(2+) leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca(2+)] by NCX play a critical role in suppressing Ca(2+) sparks during rest.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|