1
|
Shaul D, Lev-Cohain N, Sapir G, Sosna J, Gomori JM, Joskowicz L, Katz-Brull R. Real-time influence of intracellular acidification and Na + /H + exchanger inhibition on in-cell pyruvate metabolism in the perfused mouse heart: A 31 P-NMR and hyperpolarized 13 C-NMR study. NMR IN BIOMEDICINE 2023; 36:e4993. [PMID: 37424280 DOI: 10.1002/nbm.4993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Disruption of acid-base balance is linked to various diseases and conditions. In the heart, intracellular acidification is associated with heart failure, maladaptive cardiac hypertrophy, and myocardial ischemia. Previously, we have reported that the ratio of the in-cell lactate dehydrogenase (LDH) to pyruvate dehydrogenase (PDH) activities is correlated with cardiac pH. To further characterize the basis for this correlation, these in-cell activities were investigated under induced intracellular acidification without and with Na+ /H+ exchanger (NHE1) inhibition by zoniporide. Male mouse hearts (n = 30) were isolated and perfused retrogradely. Intracellular acidification was performed in two ways: (1) with the NH4 Cl prepulse methodology; and (2) by combining the NH4 Cl prepulse with zoniporide. 31 P NMR spectroscopy was used to determine the intracellular cardiac pH and to quantify the adenosine triphosphate and phosphocreatine content. Hyperpolarized [1-13 C]pyruvate was obtained using dissolution dynamic nuclear polarization. 13 C NMR spectroscopy was used to monitor hyperpolarized [1-13 C]pyruvate metabolism and determine enzyme activities in real time at a temporal resolution of a few seconds using the product-selective saturating excitation approach. The intracellular acidification induced by the NH4 Cl prepulse led to reduced LDH and PDH activities (-16% and -39%, respectively). This finding is in line with previous evidence of reduced myocardial contraction and therefore reduced metabolic activity upon intracellular acidification. Concomitantly, the LDH/PDH activity ratio increased with the reduction in pH, as previously reported. Combining the NH4 Cl prepulse with zoniporide led to a greater reduction in LDH activity (-29%) and to increased PDH activity (+40%). These changes resulted in a surprising decrease in the LDH/PDH ratio, as opposed to previous predictions. Zoniporide alone (without intracellular acidification) did not change these enzyme activities. A possible explanation for the enzymatic changes observed during the combination of the NH4 Cl prepulse and NHE1 inhibition may be related to mitochondrial NHE1 inhibition, which likely negates the mitochondrial matrix acidification. This effect, combined with the increased acidity in the cytosol, would result in an enhanced H+ gradient across the mitochondrial membrane and a temporarily higher pyruvate transport into the mitochondria, thereby increasing the PDH activity at the expense of the cytosolic LDH activity. These findings demonstrate the complexity of in-cell cardiac metabolism and its dependence on intracellular acidification. This study demonstrates the capabilities and limitations of hyperpolarized [1-13 C]pyruvate in the characterization of intracellular acidification as regards cardiac pathologies.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem, Israel
| | - Naama Lev-Cohain
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leo Joskowicz
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem, Israel
| |
Collapse
|
2
|
Madenidou AV, Mavrogeni S, Nikiphorou E. Cardiovascular Disease and Cardiac Imaging in Inflammatory Arthritis. Life (Basel) 2023; 13:life13040909. [PMID: 37109438 PMCID: PMC10143346 DOI: 10.3390/life13040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Cardiovascular morbidity and mortality are more prevalent in inflammatory arthritis (IA) compared to the general population. Recognizing the importance of addressing this issue, the European League Against Rheumatism (EULAR) published guidelines on cardiovascular disease (CVD) risk management in IA in 2016, with plans to update going forward based on the latest emerging evidence. Herein we review the latest evidence on cardiovascular disease in IA, taking a focus on rheumatoid arthritis, psoriatic arthritis, and axial spondylarthritis, reflecting on the scale of the problem and imaging modalities to identify disease. Evidence demonstrates that both traditional CVD factors and inflammation contribute to the higher CVD burden. Whereas CVD has decreased with the newer anti-rheumatic treatments currently available, CVD continues to remain an important comorbidity in IA patients calling for prompt screening and management of CVD and related risk factors. Non-invasive cardiovascular imaging has been attracting much attention in view of the possibility of detecting cardiovascular lesions in IA accurately and promptly, even at the pre-clinical stage. We reflect on imaging modalities to screen for CVD in IA and on the important role of rheumatologists and cardiologists working closely together.
Collapse
|
3
|
Fuetterer M, Traechtler J, Busch J, Peereboom SM, Dounas A, Manka R, Weisskopf M, Cesarovic N, Stoeck CT, Kozerke S. Hyperpolarized Metabolic and Parametric CMR Imaging of Longitudinal Metabolic-Structural Changes in Experimental Chronic Infarction. JACC Cardiovasc Imaging 2022; 15:2051-2064. [PMID: 36481073 DOI: 10.1016/j.jcmg.2022.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Prolonged ischemia and myocardial infarction are followed by a series of dynamic processes that determine the fate of the affected myocardium toward recovery or necrosis. Metabolic adaptions are considered to play a vital role in the recovery of salvageable myocardium in the context of stunned and hibernating myocardium. OBJECTIVES The potential of hyperpolarized pyruvate cardiac magnetic resonance (CMR) alongside functional and parametric CMR as a tool to study the complex metabolic-structural interplay in a longitudinal study of chronic myocardial infarction in an experimental pig model is investigated. METHODS Metabolic imaging using hyperpolarized [1-13C] pyruvate and proton-based CMR including cine, T1/T2 relaxometry, dynamic contrast-enhanced, and late gadolinium enhanced imaging were performed on clinical 3.0-T and 1.5-T MR systems before infarction and at 6 days and 5 and 9 weeks postinfarction in a longitudinal study design. Chronic myocardial infarction in pigs was induced using catheter-based occlusion and compared with healthy controls. RESULTS Metabolic image data revealed temporarily elevated lactate-to-bicarbonate ratios at day 6 in the infarcted relative to remote myocardium. The temporal changes of lactate-to-bicarbonate ratios were found to correlate with changes in T2 and impaired local contractility. Assessment of pyruvate dehydrogenase flux via the hyperpolarized [13C] bicarbonate signal revealed recovery of aerobic cellular respiration in the hibernating myocardium, which correlated with recovery of local radial strain. CONCLUSIONS This study demonstrates the potential of hyperpolarized CMR to longitudinally detect metabolic changes after cardiac infarction over days to weeks. Viable myocardium in the area at risk was identified based on restored pyruvate dehydrogenase flux.
Collapse
Affiliation(s)
- Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Julia Busch
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | - Andreas Dounas
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Robert Manka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Miriam Weisskopf
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland; Institute of Translational Cardiovascular Technologies, ETH Zurich, Zurich, Switzerland
| | - Christian Torben Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; Division of Surgical Research, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Schwitter J. Getting Deeper Insight by Hyperpolarization: The Multilevel Assessment of Myocardial Infarction by Adding Hyperpolarized 13C-Carbon-CMR. JACC Cardiovasc Imaging 2022; 15:2065-2068. [PMID: 36481074 DOI: 10.1016/j.jcmg.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Juerg Schwitter
- Division of Cardiology, Cardiovascular Department, University Hospital Lausanne, Lausanne, Switzerland, and the Faculty of Biology and Medicine, University of Lausanne, UniL, Switzerland.
| |
Collapse
|
5
|
Can E, Bastiaansen JAM, Couturier DL, Gruetter R, Yoshihara HAI, Comment A. [ 13C]bicarbonate labelled from hyperpolarized [1- 13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state. Commun Biol 2022; 5:10. [PMID: 35013537 PMCID: PMC8748681 DOI: 10.1038/s42003-021-02978-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Hyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate. Can et al. demonstrate the ability to use hyperpolarized [1-13C]pyruvate at nearphysiological concentrations to directly assess liver enzymatic activities by 13C magnetic resonance. While in the fed state, the normalized [13C]bicarbonate signal produced from hyperpolarized [1-13C]pyruvate derives from PDH activity, which is saturated at supraphysiological doses, it results from PEPCK in the fasted state and is dose-independent, allowing non-invasive in vivo detection of hepatic gluconeogenesis.”
Collapse
Affiliation(s)
- Emine Can
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.,Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Rolf Gruetter
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK. .,General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, UK.
| |
Collapse
|
6
|
Zanella CC, Capozzi A, Yoshihara HAI, Radaelli A, Mackowiak ALC, Arn LP, Gruetter R, Bastiaansen JAM. Radical-free hyperpolarized MRI using endogenously occurring pyruvate analogues and UV-induced nonpersistent radicals. NMR IN BIOMEDICINE 2021; 34:e4584. [PMID: 34245482 PMCID: PMC8518970 DOI: 10.1002/nbm.4584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
It was recently demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with UV light, enabling radical-free dissolution dynamic nuclear polarization. Although pyruvate is endogenous, the presence of pyruvate may interfere with metabolic processes or the detection of pyruvate as a metabolic product, making it potentially unsuitable as a polarizing agent. Therefore, the aim of the current study was to characterize solutions containing endogenously occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (αkV) and alpha-ketobutyrate (αkB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing αkV and αkB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with electron spin resonance and compared with pyruvate. The addition of 13 C-labeled substrates to the sample matrix altered the radical yield of the precursors. Using αkB increased the 13 C-labeled glucose liquid-state polarization to 16.3% ± 1.3% compared with 13.3% ± 1.5% obtained with pyruvate, and 8.9% ± 2.1% with αkV. For [1-13 C]butyric acid, polarization levels of 12.1% ± 1.1% for αkV, 12.9% ± 1.7% for αkB, 1.5% ± 0.2% for OX063 and 18.7% ± 0.7% for Finland trityl, were achieved. Hyperpolarized [1-13 C]butyrate metabolism in the heart revealed label incorporation into [1-13 C]acetylcarnitine, [1-13 C]acetoacetate, [1-13 C]butyrylcarnitine, [5-13 C]glutamate and [5-13 C]citrate. This study demonstrates the potential of αkV and αkB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.
Collapse
Affiliation(s)
| | - Andrea Capozzi
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | | | - Alice Radaelli
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | - Adèle L. C. Mackowiak
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Lionel P. Arn
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, EPFLLausanneSwitzerland
| | - Jessica A. M. Bastiaansen
- Department of Diagnostic and Interventional RadiologyLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| |
Collapse
|
7
|
Saqib F, Ali A, Ahmedah HT, Irimie CA, Toma SI, Popovici BE, Moga M, Irimie M. Cardioprotective, hypotensive and toxicological studies of Populus ciliata (Wall. ex Royle). Biomed Pharmacother 2021; 142:112065. [PMID: 34449312 DOI: 10.1016/j.biopha.2021.112065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023] Open
Abstract
Populus ciliata Wall ex. Royle has folkloric repute to treat various cardiovascular ailments and related disorders. The current study was designed to evaluate the toxic profile, cardioprotective and hypotensive effects of Populus ciliata (Wall. ex Royle). Populus ciliata crude ethanolic extract (Pc. Cr) and its aqueous (Pc. Aq) & organic (Pc. Dcm) fractions were tested on isolated aorta of rat and rabbit having intact and non-intact endothelium respectively. Pc. Cr & Pc. Aq relaxed the contractions induced by PE (1 µM)-induced and K+ (80 mM)-induced on aorta, possibly by mediating endothelium derived relaxing factor (EDRF) in intact endothelium and voltage dependent L-type calcium channels blocking (CCB) mechanism in non-intact endothelium. Pc. Cr showed anti-hypertensive & cardioprotective activity by decreasing force of contraction & heart rate on isolated rabbit paired atria and reduced blood pressure in anesthetized rat. Cardioprotective effect of Pc. Cr was assessed in isoproterenol induced acute myocardial infarction (AMI) and left ventricular hypertrophy (LVH) in Sprague Dawley rats. In LVH, Pc. Cr exerted positive effects by decreasing angiotensin II & renin and increasing cGMP & nitric oxide (NO) with reduced cardiac fibrosis, necrosis and cardiac cell size. In AMI, Pc. Cr responded effectively by decreasing cardiac markers creatinine kinase (CK), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LD) in blood associated with less edema and necrosis. Presence of catechin, vinallic acid, P-coumeric acid and quercitin identified through HPLC support the effectiveness of Pc. Cr in hypertension, AMI and LVH. Pc. Cr showed no significant adverse effects in Sprague Dawley albino rats after acute & sub-acute treatment in histopathological investigation. Extract of Populus ciliata showed vasorelaxant, hypotensive and cardioprotective effect in Sprague Dawley albino rats and white albino rabbit by mediating EDRF and voltage dependent L-type CCB mechanism respectively.
Collapse
Affiliation(s)
- Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Asad Ali
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 25732, Saudi Arabia.
| | | | | | | | - Marius Moga
- Faculty of Medicine, Transilvania University of Brasov, Romania.
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, Romania.
| |
Collapse
|
8
|
Tougaard RS, Laustsen C, Lassen TR, Qi H, Lindhardt JL, Schroeder M, Jespersen NR, Hansen ESS, Ringgaard S, Bøtker HE, Kim WY, Stødkilde-Jørgensen H, Wiggers H. Remodeling after myocardial infarction and effects of heart failure treatment investigated by hyperpolarized [1- 13 C]pyruvate magnetic resonance spectroscopy. Magn Reson Med 2021; 87:57-69. [PMID: 34378800 DOI: 10.1002/mrm.28964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Hyperpolarized [1-13 C]pyruvate MRS can measure cardiac metabolism in vivo. We investigated whether [1-13 C]pyruvate MRS could predict left ventricular remodeling following myocardial infarction (MI), long-term left ventricular effects of heart failure medication, and could identify responders to treatment. METHODS Thirty-five rats were scanned with hyperpolarized [1-13 C]pyruvate MRS 3 days after MI or sham surgery. The animals were re-examined after 30 days of therapy with β-blockers and ACE-inhibitors (active group, n = 12), placebo treatment (placebo group, n = 13) or no treatment (sham group, n = 10). Furthermore, heart tissue mitochondrial respiratory capacity was assessed by high-resolution respirometry. Metabolic results were compared between groups, over time and correlated to functional MR data at each time point. RESULTS At 30 ± 0.5 days post MI, left ventricular ejection fraction (LVEF) differed between groups (sham, 77% ± 1%; placebo, 52% ± 3%; active, 63% ± 2%, P < .001). Cardiac metabolism, measured by both hyperpolarized [1-13 C]pyruvate MRS and respirometry, neither differed between groups nor between baseline and follow-up. Three days post MI, low bicarbonate + CO2 /pyruvate ratio was associated with low LVEF. At follow-up, in the active group, a poor recovery of LVEF was associated with high bicarbonate + CO2 /pyruvate ratio, as measured by hyperpolarized MRS. CONCLUSION In a rat model of moderate heart failure, medical treatment improved function, but did not on average influence [1-13 C]pyruvate flux as measured by MRS; however, responders to heart failure medication had reduced capacity for carbohydrate metabolism.
Collapse
Affiliation(s)
- Rasmus Stilling Tougaard
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Jakob Lykke Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | | | - Steffen Ringgaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Won Yong Kim
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark.,MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
9
|
Qiao K, Le Page LM, Chaumeil MM. Non-Invasive Differentiation of M1 and M2 Activation in Macrophages Using Hyperpolarized 13C MRS of Pyruvate and DHA at 1.47 Tesla. Metabolites 2021; 11:410. [PMID: 34206326 PMCID: PMC8305442 DOI: 10.3390/metabo11070410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophage activation, first generalized to the M1/M2 dichotomy, is a complex and central process of the innate immune response. Simply, M1 describes the classical proinflammatory activation, leading to tissue damage, and M2 the alternative activation promoting tissue repair. Given the central role of macrophages in multiple diseases, the ability to noninvasively differentiate between M1 and M2 activation states would be highly valuable for monitoring disease progression and therapeutic responses. Since M1/M2 activation patterns are associated with differential metabolic reprogramming, we hypothesized that hyperpolarized 13C magnetic resonance spectroscopy (HP 13C MRS), an innovative metabolic imaging approach, could distinguish between macrophage activation states noninvasively. The metabolic conversions of HP [1-13C]pyruvate to HP [1-13C]lactate, and HP [1-13C]dehydroascorbic acid to HP [1-13C]ascorbic acid were monitored in live M1 and M2 activated J774a.1 macrophages noninvasively by HP 13C MRS on a 1.47 Tesla NMR system. Our results show that both metabolic conversions were significantly increased in M1 macrophages compared to M2 and nonactivated cells. Biochemical assays and high resolution 1H MRS were also performed to investigate the underlying changes in enzymatic activities and metabolite levels linked to M1/M2 activation. Altogether, our results demonstrate the potential of HP 13C MRS for monitoring macrophage activation states noninvasively.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Lydia M. Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94143, USA; (K.Q.); (L.M.L.P.)
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Apps A, Lau JY, Miller JJ, Tyler A, Young LA, Lewis AJ, Barnes G, Trumper C, Neubauer S, Rider OJ, Tyler DJ. Proof-of-Principle Demonstration of Direct Metabolic Imaging Following Myocardial Infarction Using Hyperpolarized 13C CMR. JACC Cardiovasc Imaging 2021; 14:1285-1288. [PMID: 33582059 PMCID: PMC8184499 DOI: 10.1016/j.jcmg.2020.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Damian J. Tyler
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
11
|
Shaul D, Azar A, Sapir G, Uppala S, Nardi-Schreiber A, Gamliel A, Sosna J, Gomori JM, Katz-Brull R. Correlation between lactate dehydrogenase/pyruvate dehydrogenase activities ratio and tissue pH in the perfused mouse heart: A potential noninvasive indicator of cardiac pH provided by hyperpolarized magnetic resonance. NMR IN BIOMEDICINE 2021; 34:e4444. [PMID: 33258527 DOI: 10.1002/nbm.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases account for more than 30% of all deaths worldwide and many could be ameliorated with early diagnosis. Current cardiac imaging modalities can assess blood flow, heart anatomy and mechanical function. However, for early diagnosis and improved treatment, further functional biomarkers are needed. One such functional biomarker could be the myocardium pH. Although tissue pH is already determinable via MR techniques, and has been since the early 1990s, it remains elusive to use practically. The objective of this study was to explore the possibility to evaluate cardiac pH noninvasively, using in-cell enzymatic rates of hyperpolarized [1-13 C]pyruvate metabolism (ie, moles of product produced per unit time) determined directly in real time using magnetic resonance spectroscopy in a perfused mouse heart model. As a gold standard for tissue pH we used 31 P spectroscopy and the chemical shift of the inorganic phosphate (Pi) signal. The nonhomogenous pH distribution of the perfused heart was analyzed using a multi-parametric analysis of this signal, thus taking into account the heterogeneous nature of this characteristic. As opposed to the signal ratio of hyperpolarized [13 C]bicarbonate to [13 CO2 ], which has shown correlation to pH in other studies, we investigated here the ratio of two intracellular enzymatic rates: lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH), by way of determining the production rates of [1-13 C]lactate and [13 C]bicarbonate, respectively. The enzyme activities determined here are intracellular, while the pH determined using the Pi signal may contain an extracellular component, which could not be ruled out. Nevertheless, we report a strong correlation between the tissue pH and the LDH/PDH activities ratio. This work may pave the way for using the LDH/PDH activities ratio as an indicator of cardiac intracellular pH in vivo, in an MRI examination.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Assad Azar
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
12
|
van Assen M, Kuijpers DJ, Schwitter J. MRI perfusion in patients with stable chest-pain. Br J Radiol 2020; 93:20190881. [PMID: 31834813 PMCID: PMC7465855 DOI: 10.1259/bjr.20190881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022] Open
Abstract
Perfusion-cardiovascular MR (CMR) imaging has been shown to reliably identify patients with suspected or known coronary artery disease (CAD), who are at risk for future cardiac events and thus, allows for guiding therapy including revascularizations. Accordingly, it is an ideal test to exclude prognostically relevant coronary artery disease. Several guidelines, such as the ESC guidelines, currently recommend CMR as non-invasive testing in patients with stable chest pain. CMR has as an advantage over the more conventional pathways as it lacks radiation and it potentially reduces costs.
Collapse
Affiliation(s)
- Marly van Assen
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dirk Jan Kuijpers
- Department of Radiology, HMC-Bronovo, Haaglanden Medisch Centrum, Den Haag, the Netherlands
| | | |
Collapse
|
13
|
Saqib F, Arif Aslam M, Mujahid K, Marceanu L, Moga M, Ahmedah HT, Chicea L. Studies to Elucidate the Mechanism of Cardio Protective and Hypotensive Activities of Anogeissus acuminata (Roxb. ex DC.) in Rodents. Molecules 2020; 25:molecules25153471. [PMID: 32751601 PMCID: PMC7436098 DOI: 10.3390/molecules25153471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
Anogeissus acuminata (Roxb. ex DC.) is a folkloric medicinal plant in Asia; including Pakistan; used as a traditional remedy for cardiovascular disorders. This study was planned to establish a pharmacological basis for the trivial uses of Anogeissus acuminata in certain medical conditions related to cardiovascular systems and to explore the underlying mechanisms. Mechanistic studies suggested that crude extract of Anogeissus acuminata (Aa.Cr) produced in vitro cardio-relaxant and vasorelaxant effects in isolated paired atria and aorta coupled with in vivo decrease in blood pressure by invasive method; using pressure and force transducers connected to Power Lab Data Acquisition System. Moreover; Aa.Cr showed positive effects in left ventricular hypertrophy in Sprague Dawley rats observed hemodynamically by a decrease in cardiac cell size and fibrosis; along with absence of inflammatory cells; coupled with reduced levels of angiotensin converting enzyme (ACE) and renin concentration along with increased concentrations of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP). In Acute Myocardial Infarction (AMI) model; creatine kinase (CK), creatine kinase-MB (CK-MB) and lactic acid dehydrogenase (LDH levels) were found to be decreased; along with decreased necrosis; edema and recruitment of inflammatory cells histologically. In vivo and ex vivo studies of Anogeissus acuminata provided evidence of vasorelaxant; hypotensive and cardioprotective properties facilitated through blockage of voltage-gated Ca++ ion channel; validating its use in cardiovascular diseases.
Collapse
Affiliation(s)
- Fatima Saqib
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (F.S.); (M.A.A.); (K.M.)
| | - Muhammad Arif Aslam
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (F.S.); (M.A.A.); (K.M.)
| | - Khizra Mujahid
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (F.S.); (M.A.A.); (K.M.)
| | - Luigi Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
- Correspondence: (L.M.); (H.T.A.); Tel.: +40-744674478 (L.M.); +966-541417822 (H.T.A.)
| | - Marius Moga
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| | - Hanadi Talal Ahmedah
- Radiological Sciences Department, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (L.M.); (H.T.A.); Tel.: +40-744674478 (L.M.); +966-541417822 (H.T.A.)
| | - Liana Chicea
- “Victor Papilian” Medical School, “Lucian Blaga” University of Sibiu, 550024 Sibiu, Romania;
| |
Collapse
|
14
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
15
|
Metabolic alterations in acute myocardial ischemia-reperfusion injury and necrosis using in vivo hyperpolarized [1- 13C] pyruvate MR spectroscopy. Sci Rep 2019; 9:18427. [PMID: 31804591 PMCID: PMC6895171 DOI: 10.1038/s41598-019-54965-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate real-time early detection of metabolic alteration in a rat model with acute myocardial ischemia-reperfusion (AMI/R) injury and myocardial necrosis, as well as its correlation with intracellular pH level using in vivo hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy (MRS). Hyperpolarized 13C MRS was performed on the myocardium of 8 sham-operated control rats and 8 rats with AMI/R injury, and 8 sham-operated control rats and 8 rats with AMI-induced necrosis. Also, the correlations of levels of [1-13C] metabolites with pH were analyzed by Spearman’s correlation test. The AMI/R and necrosis groups showed significantly higher ratios of [1-13C] lactate (Lac)/bicarbonate (Bicar) and [1-13C] Lac/total carbon (tC), and lower ratios of 13C Bicar/Lac + alanine (Ala), and 13C Bicar/tC than those of the sham-operated control group. Moreover, the necrosis group showed significantly higher ratios of [1-13C] Lac/Bicar and [1-13C] Lac/tC, and lower ratios of 13C Bicar/Lac + Ala and 13C Bicar/tC than those of the AMI/R group. These results were consistent with the pattern for in vivo the area under the curve (AUC) ratios. In addition, levels of [1-13C] Lac/Bicar and [1-13C] Lac/tC were negatively correlated with pH levels, whereas 13C Bicar/Lac + Ala and 13C Bicar/tC levels were positively correlated with pH levels. The levels of [1-13C] Lac and 13C Bicar will be helpful for non-invasively evaluating the early stage of AMI/R and necrosis in conjunction with reperfusion injury of the heart. These findings have potential application to real-time evaluation of cardiac malfunction accompanied by changes in intracellular pH level and enzymatic activity.
Collapse
|
16
|
Kerforne T, Allain G, Giraud S, Bon D, Ameteau V, Couturier P, Hebrard W, Danion J, Goujon JM, Thuillier R, Hauet T, Barrou B, Jayle C. Defining the optimal duration for normothermic regional perfusion in the kidney donor: A porcine preclinical study. Am J Transplant 2019; 19:737-751. [PMID: 30091857 DOI: 10.1111/ajt.15063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/25/2023]
Abstract
Kidneys from donation after circulatory death (DCD) are highly sensitive to ischemia-reperfusion injury and thus require careful reconditioning, such as normothermic regional perfusion (NRP). However, the optimal NRP protocol remains to be characterized. NRP was modeled in a DCD porcine model (30 minutes of cardiac arrest) for 2, 4, or 6 hours compared to a control group (No-NRP); kidneys were machine-preserved and allotransplanted. NRP appeared to permit recovery from warm ischemia, possibly due to an increased expression of HIF1α-dependent survival pathway. At 2 hours, blood levels of ischemic injury biomarkers increased: creatinine, lactate/pyruvate ratio, LDH, AST, NGAL, KIM-1, CD40 ligand, and soluble-tissue-factor. All these markers then decreased with time; however, AST, NGAL, and KIM-1 increased again at 6 hours. Hemoglobin and platelets decreased at 6 hours, after which the procedure became difficult to maintain. Regarding inflammation, active tissue-factor, cleaved PAR-2 and MCP-1 increased by 4-6 hours, but not TNF-α and iNOS. Compared to No-NRP, NRP kidneys showed lower resistance during hypothermic machine perfusion (HMP), likely associated with pe-NRP eNOS activation. Kidneys transplanted after 4 and 6 hours of NRP showed better function and outcome, compared to No-NRP. In conclusion, our results confirm the mechanistic benefits of NRP and highlight 4 hours as its optimal duration, after which injury markers appear.
Collapse
Affiliation(s)
- Thomas Kerforne
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,Anesthesia and Intensive Care Department, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France
| | - Geraldine Allain
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,CardioVascular Surgery Division, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France
| | - Sebastien Giraud
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,Biochemistry Department, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France
| | - Delphine Bon
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France
| | - Virginie Ameteau
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France
| | - Pierre Couturier
- INSERM U1082, (IRTOMIT), Poitiers, France.,Biochemistry Department, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France.,IBiSA 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique (MOPICT)', Domaine Expérimental du Magneraud, Surgères, France
| | - William Hebrard
- Unité expérimentale Génétique, Expérimentations et systèmes innovants (GENESI), INRA, Domaine Expérimental du Magneraud, Surgères, France
| | - Jerome Danion
- INSERM U1082, (IRTOMIT), Poitiers, France.,Visceral Surgery Department, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France
| | - Jean-Michel Goujon
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,Pathology Department, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France
| | - Raphael Thuillier
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,Biochemistry Department, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France
| | - Thierry Hauet
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,Biochemistry Department, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France.,IBiSA 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique (MOPICT)', Domaine Expérimental du Magneraud, Surgères, France.,FHU SUPORT 'SUrvival oPtimization in ORgan Transplantation', Poitiers, France
| | - Benoit Barrou
- INSERM U1082, (IRTOMIT), Poitiers, France.,Service d'Urologie et de transplantation rénale, AP-HP, GH Pitié-Salpêtrière, Paris, France.,Pierre and Marie Curie Paris VI University, Paris, France
| | - Christophe Jayle
- INSERM U1082, (IRTOMIT), Poitiers, France.,Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,CardioVascular Surgery Division, Poitiers Regional and Academic Teaching Hospital Center, Poitiers, France.,IBiSA 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique (MOPICT)', Domaine Expérimental du Magneraud, Surgères, France
| |
Collapse
|
17
|
Skinner JG, Menichetti L, Flori A, Dost A, Schmidt AB, Plaumann M, Gallagher FA, Hövener JB. Metabolic and Molecular Imaging with Hyperpolarised Tracers. Mol Imaging Biol 2018; 20:902-918. [PMID: 30120644 DOI: 10.1007/s11307-018-1265-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since reaching the clinic, magnetic resonance imaging (MRI) has become an irreplaceable radiological tool because of the macroscopic information it provides across almost all organs and soft tissues within the human body, all without the need for ionising radiation. The sensitivity of MR, however, is too low to take full advantage of the rich chemical information contained in the MR signal. Hyperpolarisation techniques have recently emerged as methods to overcome the sensitivity limitations by enhancing the MR signal by many orders of magnitude compared to the thermal equilibrium, enabling a new class of metabolic and molecular X-nuclei based MR tracers capable of reporting on metabolic processes at the cellular level. These hyperpolarised (HP) tracers have the potential to elucidate the complex metabolic processes of many organs and pathologies, with studies so far focusing on the fields of oncology and cardiology. This review presents an overview of hyperpolarisation techniques that appear most promising for clinical use today, such as dissolution dynamic nuclear polarisation (d-DNP), parahydrogen-induced hyperpolarisation (PHIP), Brute force hyperpolarisation and spin-exchange optical pumping (SEOP), before discussing methods for tracer detection, emerging metabolic tracers and applications and progress in preclinical and clinical application.
Collapse
Affiliation(s)
- Jason Graham Skinner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Anna Dost
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Benjamin Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Markus Plaumann
- Institute of Biometrics and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Jan-Bernd Hövener
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany.
| |
Collapse
|
18
|
From Lab to Life. JACC Cardiovasc Imaging 2018; 11:1607-1610. [DOI: 10.1016/j.jcmg.2017.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022]
|
19
|
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
20
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
21
|
Shekhar A, Heeger P, Reutelingsperger C, Arbustini E, Narula N, Hofstra L, Bax JJ, Narula J. Targeted Imaging for Cell Death in Cardiovascular Disorders. JACC Cardiovasc Imaging 2018; 11:476-493. [DOI: 10.1016/j.jcmg.2017.11.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/19/2017] [Accepted: 11/27/2017] [Indexed: 01/30/2023]
|
22
|
Bastiaansen JAM, Yoshihara HAI, Capozzi A, Schwitter J, Gruetter R, Merritt ME, Comment A. Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced nonpersistent radicals. Magn Reson Med 2018; 79:2451-2459. [PMID: 29411415 DOI: 10.1002/mrm.27122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13 C-labeled substrate mixture prepared using photo-induced nonpersistent radicals. METHODS Droplets of mixed [1-13 C]pyruvic and [1-13 C]butyric acids were frozen into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization in a 7T polarizer, the beads were dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. RESULTS Ultraviolet irradiation created nonpersistent radicals in a mixture containing 13 C-labeled pyruvic and butyric acids, and enabled the hyperpolarization of both substrates by dynamic nuclear polarization. Ethanol addition increased the radical concentration from 16 to 26 mM. Liquid-state 13 C polarization was 3% inside the pump at the time of injection, and increased to 5% by addition of ethanol to the substrate mixture prior to ultraviolet irradiation. In the rat heart, the in vivo 13 C signals from lactate, alanine, bicarbonate, and acetylcarnitine were detected following the metabolism of the injected substrate mixture. CONCLUSION Copolarization of two different 13 C-labeled substrates and the detection of their myocardial metabolism in vivo was achieved without using persistent radicals. The absence of radicals in the solution containing the hyperpolarized 13 C-substrates may simplify the translation to clinical use, as no radical filtration is required prior to injection.
Collapse
Affiliation(s)
- Jessica A M Bastiaansen
- Department of Radiology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland.,Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Division of Cardiology and Cardiac MR Center, University Hospital Lausanne, Lausanne, Switzerland
| | - Andrea Capozzi
- Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Juerg Schwitter
- Division of Cardiology and Cardiac MR Center, University Hospital Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Arnaud Comment
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,General Electric Healthcare, Pollards Wood, Chalfont St Giles, Buckinghamshire, United Kingdom
| |
Collapse
|
23
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
24
|
Baligand C, Qin H, True-Yasaki A, Gordon J, von Morze C, Santos JD, Wilson D, Raffai R, Cowley PM, Baker AJ, Kurhanewicz J, Lovett DH, Wang ZJ. Hyperpolarized 13 C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3765. [PMID: 28708304 PMCID: PMC5618802 DOI: 10.1002/nbm.3765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 05/10/2023]
Abstract
Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease (CKD). Persistent oxidative stress and mitochondrial dysfunction are implicated across diverse forms of AKI and in the transition to CKD. In this study, we applied hyperpolarized (HP) 13 C dehydroascorbate (DHA) and 13 C pyruvate magnetic resonance spectroscopy (MRS) to investigate the renal redox capacity and mitochondrial pyruvate dehydrogenase (PDH) activity, respectively, in a murine model of AKI at baseline and 7 days after unilateral ischemia reperfusion injury (IRI). Compared with the contralateral sham-operated kidneys, the kidneys subjected to IRI showed a significant decrease in the HP 13 C vitamin C/(vitamin C + DHA) ratio, consistent with a decrease in redox capacity. The kidneys subjected to IRI also showed a significant decrease in the HP 13 C bicarbonate/pyruvate ratio, consistent with impaired PDH activity. The IRI kidneys showed a significantly higher HP 13 C lactate/pyruvate ratio at day 7 compared with baseline, although the 13 C lactate/pyruvate ratio was not significantly different between the IRI and contralateral sham-operated kidneys at day 7. Arterial spin labeling magnetic resonance imaging (MRI) demonstrated significantly reduced perfusion in the IRI kidneys. Renal tissue analysis showed corresponding increased reactive oxygen species (ROS) and reduced PDH activity in the IRI kidneys. Our results show the feasibility of HP 13 C MRS for the non-invasive assessment of oxidative stress and mitochondrial PDH activity following renal IRI.
Collapse
Affiliation(s)
- Celine Baligand
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Hecong Qin
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Aisha True-Yasaki
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Jeremy Gordon
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Cornelius von Morze
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Justin DeLos Santos
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David Wilson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Robert Raffai
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Patrick M. Cowley
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Anthony J. Baker
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David H. Lovett
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Zhen Jane Wang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| |
Collapse
|
25
|
Hansen ESS, Tougaard RS, Nørlinger TS, Mikkelsen E, Nielsen PM, Bertelsen LB, Bøtker HE, Jørgensen HS, Laustsen C. Imaging porcine cardiac substrate selection modulations by glucose, insulin and potassium intervention: A hyperpolarized [1- 13 C]pyruvate study. NMR IN BIOMEDICINE 2017; 30. [PMID: 28186677 DOI: 10.1002/nbm.3702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 05/07/2023]
Abstract
Cardiac metabolism has received considerable attention in terms of both diagnostics and prognostics, as well as a novel target for treatment. As human trials involving hyperpolarized magnetic resonance in the heart are imminent, we sought to evaluate the general feasibility of detection of an imposed shift in metabolic substrate utilization during metabolic modulation with glucose-insulin-potassium (GIK) infusion, and thus the limitations associated with this strategy, in a large animal model resembling human physiology. Four [1-13 C]pyruvate injections did not alter the blood pressure or ejection fraction over 180 min. Hyperpolarized [1-13 C]pyruvate conversion showed a generally high reproducibility, with intraclass correlation coefficients between the baseline measurements at 0 and 30 min as follows: lactate to pyruvate, 0.85; alanine to pyruvate, 1.00; bicarbonate to pyruvate, 0.83. This study demonstrates that hyperpolarized [1-13 C]pyruvate imaging is a feasible technique for cardiac studies and shows a generally high reproducibility in fasted large animals. GIK infusion increases the metabolic conversion of pyruvate to its metabolic derivatives lactate, alanine and bicarbonate, but with increased variability.
Collapse
Affiliation(s)
- Esben Søvsø Szocska Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Rasmus Stilling Tougaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus N, Denmark
| | | | - Emmeli Mikkelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus N, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
van de Weijer T, Paiman EHM, Lamb HJ. Cardiac metabolic imaging: current imaging modalities and future perspectives. J Appl Physiol (1985) 2017; 124:168-181. [PMID: 28473616 DOI: 10.1152/japplphysiol.01051.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this review, current imaging techniques and their future perspectives in the field of cardiac metabolic imaging in humans are discussed. This includes a range of noninvasive imaging techniques, allowing a detailed investigation of cardiac metabolism in health and disease. The main imaging modalities discussed are magnetic resonance spectroscopy techniques for determination of metabolite content (triglycerides, glucose, ATP, phosphocreatine, and so on), MRI for myocardial perfusion, and single-photon emission computed tomography and positron emission tomography for quantitation of perfusion and substrate uptake.
Collapse
|
27
|
Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, Drachman N, Ruppert K, Clapp J, Rizi R. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev 2017; 113:3-23. [PMID: 27599979 PMCID: PMC5783573 DOI: 10.1016/j.addr.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Mannherz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Jähnig F, Kwiatkowski G, Däpp A, Hunkeler A, Meier BH, Kozerke S, Ernst M. Dissolution DNP using trityl radicals at 7 T field. Phys Chem Chem Phys 2017; 19:19196-19204. [DOI: 10.1039/c7cp03633g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Characterization of direct 13C DNP at 1.4 K and 7 T field using trityl radicals.
Collapse
Affiliation(s)
- Fabian Jähnig
- Physical Chemistry
- ETH Zürich
- Vladimir-Prelog-Weg 2
- 8093 Zürich
- Switzerland
| | - Grzegorz Kwiatkowski
- Institute for Biomedical Engineering
- University and ETH Zürich
- Gloriastrasse 35
- 8092 Zürich
- Switzerland
| | - Alexander Däpp
- Physical Chemistry
- ETH Zürich
- Vladimir-Prelog-Weg 2
- 8093 Zürich
- Switzerland
| | - Andreas Hunkeler
- Physical Chemistry
- ETH Zürich
- Vladimir-Prelog-Weg 2
- 8093 Zürich
- Switzerland
| | - Beat H. Meier
- Physical Chemistry
- ETH Zürich
- Vladimir-Prelog-Weg 2
- 8093 Zürich
- Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering
- University and ETH Zürich
- Gloriastrasse 35
- 8092 Zürich
- Switzerland
| | - Matthias Ernst
- Physical Chemistry
- ETH Zürich
- Vladimir-Prelog-Weg 2
- 8093 Zürich
- Switzerland
| |
Collapse
|
29
|
The novel heart-specific RING finger protein 207 is involved in energy metabolism in cardiomyocytes. J Mol Cell Cardiol 2016; 100:43-53. [DOI: 10.1016/j.yjmcc.2016.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 11/22/2022]
|
30
|
Hyperpolarized MRS: New tool to study real-time brain function and metabolism. Anal Biochem 2016; 529:270-277. [PMID: 27665679 DOI: 10.1016/j.ab.2016.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022]
Abstract
The advent of dissolution dynamic nuclear polarization (DNP) led to the emergence of a new kind of magnetic resonance (MR) measurements providing the opportunity to probe metabolism in vivo in real time. It has been shown that, following the injection of hyperpolarized substrates prepared using dissolution DNP, specific metabolic bioprobes that can be used to differentiate between healthy and pathological tissue in preclinical and clinical studies can be readily detected by MR thanks to the tremendous signal enhancement. The present article aims at reviewing the studies of cerebral function and metabolism based on the use of hyperpolarized MR. The constraints and future opportunities that this technology could offer are discussed.
Collapse
|
31
|
Bastiaansen JAM, Merritt ME, Comment A. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-(13)C]butyrate and [1-(13)C]pyruvate. Sci Rep 2016; 6:25573. [PMID: 27150735 PMCID: PMC4858671 DOI: 10.1038/srep25573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/20/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-13C]pyruvate and [1-13C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [13C]bicarbonate (−48%), [1-13C]acetylcarnitine (+113%), and [5-13C]glutamate (−63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-13C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-13C]acetoacetate and [1-13C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-13C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (−82%). Combining HP 13C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease.
Collapse
Affiliation(s)
- Jessica A M Bastiaansen
- Department of Radiology, University Hospital Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Arnaud Comment
- Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|