1
|
Zaaba NE, Yuvarayu P, Beegam S, Elzaki O, Arafat K, Attoub S, Nemmar A. Direct Effects of Waterpipe Smoke Extract on Aortic Endothelial Cells: An In Vitro Study. Physiol Res 2025; 74:69-78. [PMID: 40126144 PMCID: PMC11995937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 03/25/2025] Open
Abstract
Waterpipe smoking (WPS) has adverse health effects that include endothelial dysfunction with mechanisms involving oxidative stress and inflammation. Nonetheless, there is a scarcity of data on the direct impact of WPS on endothelial function. In this study, we assessed the in vitro effects of waterpipe smoke extract (WPSE) on aortic endothelial cell lines, namely the TeloHAEC. The WPSE markedly caused concentration- and time-dependent decreases in cellular viability. When compared with the control, at a concentration of 20 % and an incubation period of 48 h, the WPSE significantly increased the levels of lactate dehydrogenase, and markers of oxidative stress including thiobarbituric acid reactive substances, superoxide dismutase, catalase, and reduced glutathione. Moreover, the concentrations of proinflammatory cytokine (tumor necrosis factor alpha), and adhesion molecules (E-selectin and intercellular adhesion molecule-1) were also significantly augmented. Likewise, WPSE triggered mitochondrial dysfunction, DNA oxidative damage, as well as apoptosis in TeloHAEC cells. Similarly, cells cultured with WPSE have shown increased expression of phosphorylated nuclear factor-kappaB and hypoxia-inducible factor 1-alpha (HIF-1alpha). In conclusion, our study showed that WPSE triggers endothelial inflammation, oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis via mechanisms involving the activation of nuclear factor-kappaB and HIF-1alpha. Key words Waterpipe smoking, Aortic endothelial cells, Inflammation, Oxidative Stress.
Collapse
Affiliation(s)
- N E Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
2
|
Hamadi N, Beegam S, Zaaba NE, Elzaki O, Alderei A, Alfalahi M, Alhefeiti S, Alnaqbi D, Alshamsi S, Nemmar A. Protective Effects of Nerolidol on Thrombotic Events, Systemic Inflammation, Oxidative Stress, and DNA Damage Following Pulmonary Exposure to Diesel Exhaust Particles. Biomedicines 2025; 13:729. [PMID: 40149705 PMCID: PMC11940484 DOI: 10.3390/biomedicines13030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Inhalation of environmental particulate air pollution has been reported to cause pulmonary and systemic events including coagulation disturbances, systemic inflammation, and oxidative stress. Nerolidol, a naturally occurring sesquiterpene alcohol, has effective antioxidant and anti-inflammatory effects. Hence, the aim in the present investigation was to evaluate the potential ameliorative effects of nerolidol on the coagulation and systemic actions induced by pulmonary exposure to diesel exhaust particles (DEPs). Methods: Nerolidol (100 mg/kg) was given to mice by oral gavage one hour before the intratracheal instillation of DEPs (0.5 mg/kg), and 24 h later various markers of coagulation and systemic toxicity were evaluated. Results: Nerolidol treatment significantly abrogated DEP-induced platelet aggregation in vivo and in vitro. Nerolidol has also prevented the shortening of the prothrombin time and activated plasma thromboplastin time triggered by DEP exposure. Likewise, while the concentrations of fibrinogen and plasminogen activator inhibitor-1 were increased by DEP administration, that of tissue plasminogen activator was significantly decreased. These effects were abolished in the group of mice concomitantly treated with nerolidol and DEP. Moreover, plasma markers of inflammation, oxidative stress, and endothelial dysfunction which were significantly increased in the DEP-treated group, returned to control levels in the nerolidol + DEP group. Nerolidol treatment significantly ameliorated the increase in the concentrations of hypoxia-inducible factor 1α, galectin-3, and neutrophil gelatinase-associated lipocalin induced by pulmonary exposure to DEP. The co-administration of nerolidol + DEPs significantly mitigated the increase in markers of oxidative DNA damage, 8-hydroxy-2-deoxyguanosine, and apoptosis, cleaved-caspase-3, induced by DEP. Conclusions: Collectively, our data demonstrate that nerolidol exert significant ameliorative actions against DEP-induced thrombotic events, endothelial dysfunction, systemic inflammation, oxidative stress, DNA damage, and apoptosis. Pending further pharmacological and toxicological studies, nerolidol could be a promising agent to alleviate the toxicity of inhaled DEPs and other pollutant particles.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Alreem Alderei
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Maha Alfalahi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Shamma Alhefeiti
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Dana Alnaqbi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Salama Alshamsi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.); (A.A.); (M.A.); (S.A.); (D.A.); (S.A.)
| | - Abderrahim Nemmar
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Abusara OH, Hammad AM, Debas R, Al-Shalabi E, Waleed M, Scott Hall F. The inflammation and oxidative status of rat lung tissue following smoke/vapor exposure via E-cigarette, cigarette, and waterpipe. Gene 2025; 935:149066. [PMID: 39491601 DOI: 10.1016/j.gene.2024.149066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Tobacco smoking is a major worldwide health issue that contributes to millions of deaths annually. Electronic cigarettes (E-cigarettes) are also harmful. Smoke/vapor from E-cigarettes and tobacco products consists of free radicals and other toxic substances. Tissue damage in smokers, such as lungs, is highly observed and is linked to oxidative damage and inflammation. METHODS The inflammation and oxidative status of rat lung tissues was examined following whole-body smoke/vapor exposure via E-cigarette, cigarette, and waterpipe for 2 h daily, 5 days per week for 8 weeks. RESULTS Lung tissue damage was higher in cigarettes and waterpipe groups compared to the E-cigarette group. Collectively, there was a significant increase (p < 0.05) in the mRNA expression of pro-inflammatory mediators (TNF-α, NF-κB, IL-1β) with the exception of IL-1β in the E-cigarettes group. As for the anti-inflammatory mediators (Nrf2 and IL-10), a significant reduction (p < 0.05) of mRNA expression was observed with the exception of Nrf2 in the E-cigarette group. As for IL-6, there was a significant increase in its mRNA expression (p < 0.05) in the cigarette and waterpipe groups. There was also a significant decrease (p < 0.05) in the antioxidant activity of all antioxidants tested (GPx, SOD, and CAT) in all groups with the exception of SOD in the cigarette group. CONCLUSION Smoke/vapor administered via E-cigarette, cigarette, and waterpipe elicits inflammation and oxidative stress in rat lungs that is accompanied by histopathological changes.
Collapse
Affiliation(s)
- Osama H Abusara
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Rasha Debas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Eveen Al-Shalabi
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammed Waleed
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Beegam S, Al-Salam S, Zaaba NE, Elzaki O, Nemmar A. Prothrombotic State and Vascular Damage in Angiotensin II-Induced Hypertension: Influence of Waterpipe Smoke Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:2670738. [PMID: 39959581 PMCID: PMC11824600 DOI: 10.1155/omcl/2670738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/04/2025] [Indexed: 02/18/2025]
Abstract
Hypertension is a risk factor for vascular injury and thrombotic complications, and smoking tobacco is a risk factor for the development and exacerbation of hypertension. The influence of waterpipe smoke (WPS) on coagulation and vascular injury in hypertension is not fully understood. Here, we evaluated the effects of WPS in mice made hypertensive (HT) by infusing angiotensin II (Ang II) for 42 days. On day 14 of the infusion of Ang II or vehicle (normotensive; NT), mice were exposed either to air or WPS for four consecutive weeks. Each session was 30 min/day for 5 days/week. The concentrations of tissue factor, von Willebrand factor, fibrinogen, and plasminogen activator inhibitor-1 were elevated in the HT + WPS group versus either HT + air or NT + WPS groups. Similarly, in the HT + WPS group, thrombogenicity was increased both in vivo and in vitro, compared with either HT + air or NT + WPS groups. In aortic tissue, adhesion molecules including P-selectin, E-selectin, intercellular adhesion molecule-1, and vascular adhesion molecule-1 were increased in the HT + WPS group versus the controls. Likewise, various proinflammatory cytokines and markers of oxidative stress augmented in the HT + WPS group compared with either HT + air or NT + WPS. DNA damage, cleaved caspase-3, and cytochrome C were increased in the HT + WPS group versus the controls. The immunohistochemical expression of nuclear factor erythroid 2-related factor 2 was increased in the HT + WPS group versus either HT + air or NT + WPS. Taken together, our findings show that WPS exposure intensified thrombogenicity and vascular damage in experimentally induced hypertension. Our data suggest that vascular toxicity of WPS may be exaggerated in hypertensive patients.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| |
Collapse
|
5
|
Hamadi N, Al-Salam S, Beegam S, Zaaba NE, Elzaki O, Nemmar A. Chronic Exposure to Two Regimens of Waterpipe Smoke Elicits Lung Injury, Genotoxicity, and Mitochondrial Impairment with the Involvement of MAPKs Activation in Mice. Int J Mol Sci 2025; 26:430. [PMID: 39796284 PMCID: PMC11722325 DOI: 10.3390/ijms26010430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis. Only R-WPS increased the number of neutrophil polymorphs and plasma cells. R-WPS also significantly increased the chemokines CXCL1, CXCL2, and CCL2 in the lung, BALF, and plasma, while O-WPS increased CXCL1 and CXCL2 in the lung and CXCL1 in the plasma. Both exposure regimens significantly increased lung injury markers, including matrix metalloproteinase-9 and myeloperoxidase. Additionally, R-WPS induced a significant increase in the cytokines IL1β, IL6, and TNFα in the lung, BALF, and plasma, while O-WPS elevated IL1β and IL6 in the lung. Oxidative stress was observed, with increased levels of thiobarbituric acid reactive substances and superoxide dismutase in both the O-WPS and R-WPS groups. Exposure to either O-WPS or R-WPS triggered genotoxicity and altered mitochondrial complex activities. R-WPS exposure also resulted in elevated expression of p-JNK/JNK, p-ERK/ERK, and p-p38/p38, while O-WPS augmented the p-ERK/ERK ratio in the lungs. Taken together, these findings indicate that both O-WPS and R-WPS contribute to lung injury and induce inflammation, oxidative stress, genotoxicity, and mitochondrial dysfunction, with R-WPS having a more pronounced effect. These effects were associated with the activation of MAPKs.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Abderrahim Nemmar
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| |
Collapse
|
6
|
Kassem NOF, Strongin RM, Stroup AM, Brinkman MC, El-Hellani A, Erythropel HC, Etemadi A, Goniewicz ML, Hansen EG, Kassem NO, Li D, Liles S, Noël A, Rezk-Hanna M, Wang Q, Rahman I. Toxicity of waterpipe tobacco smoking: the role of flavors, sweeteners, humectants, and charcoal. Toxicol Sci 2024; 201:159-173. [PMID: 39037923 PMCID: PMC11424890 DOI: 10.1093/toxsci/kfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Waterpipe tobacco (WPT) smoking is a public health concern, particularly among youth and young adults. The global spread of WPT use has surged because the introduction of pre-packaged flavored and sweetened WPT, which is widely marketed as a safer tobacco alternative. Besides flavorants and sugars, WPT additives include humectants, which enhance the moisture and sweetness of WPT, act as solvents for flavors, and impart smoothness to the smoke, thus increasing appeal to users. In the United States, unlike cigarette tobacco flavoring (with the exception of menthol), there is no FDA product standard or policy in place prohibiting sales of flavored WPT. Research has shown that the numerous fruit, candy, and alcohol flavors added to WPT entice individuals to experience those flavors, putting them at an increased risk of exposure to WPT smoke-related toxicants. Additionally, burning charcoal briquettes-used as a heating source for WPT-contributes to the harmful health effects of WPT smoking. This review presents existing evidence on the potential toxicity resulting from humectants, sugars, and flavorants in WPT, and from the charcoal used to heat WPT. The review discusses relevant studies of inhalation toxicity in animal models and of biomarkers of exposure in humans. Current evidence suggests that more data are needed on toxicant emissions in WPT smoke to inform effective tobacco regulation to mitigate the adverse impact of WPT use on human health.
Collapse
Affiliation(s)
- Nada O F Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA 92182, United States
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR 97207-0751, United States
| | - Andrea M Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD 20850, United States
| | - Marielle C Brinkman
- College of Public Health, The Ohio State University, Columbus, OH 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43214, United States
| | - Ahmad El-Hellani
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43214, United States
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, United States
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, United States
- Department of Psychiatry, Yale School of Medicine, Yale Center for the Study of Tobacco Products (YCSTP), New Haven, CT 06511, United States
| | - Arash Etemadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Eleanore G Hansen
- Division of Environmental Health Science, School of Public Health, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noura O Kassem
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, Obstetrics and Gynecology, Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sandy Liles
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA 92123, United States
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Mary Rezk-Hanna
- School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Qixin Wang
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
7
|
Ferdous Z, Beegam S, Zaaba NE, Nemmar A. Exposure to Waterpipe Smoke Disrupts Erythrocyte Homeostasis of BALB/c Mice. BIOLOGY 2024; 13:453. [PMID: 38927333 PMCID: PMC11200634 DOI: 10.3390/biology13060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
The prevalence of waterpipe tobacco smoking (WPS) is increasing worldwide and is relatively high among youth and young adults. It has been shown, both experimentally and clinically, that WPS exposure adversely affects the cardiovascular and hematological systems through the generation of oxidative stress and inflammation. Our study aimed to evaluate the impact of WPS exposure on erythrocytes, a major component of the hematological system, of BALB/c mice. Here, we assessed the effect of nose-only WPS exposure for four consecutive weeks on erythrocyte inflammation, oxidative stress, and eryptosis. The duration of the session was 30 min/day, 5 days/week. Control mice were exposed to air. Our results showed that the levels of C-reactive protein, lipid peroxidation (LPO), superoxide dismutase, and total nitric oxide (NO) were significantly increased in the plasma of WPS-exposed mice. The number of erythrocytes and the hematocrit were significantly decreased in WPS-exposed mice compared with the control group. Moreover, there was an increase in the erythrocyte fragility in mice exposed to WPS compared with those exposed to air. The levels of lactate dehydrogenase, LPO, reduced glutathione, catalase, and NO were significantly increased in the red blood cells (RBCs) of WPS-exposed mice. In addition, erythrocytes of the WPS-exposed group showed a significant increase in ATPase activity, Ca2+, annexin V binding, and calpain activity. Taken together, our findings suggest that WPS exposure elevated inflammation and oxidative stress in the plasma and induced hemolysis in vivo. It also caused alterations of RBCs oxidative stress and eryptosis in vitro. Our data confirm the detrimental impact of WPS on erythrocyte physiology.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Nur E. Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Z.F.); (S.B.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
8
|
Beegam S, Zaaba NE, Elzaki O, Alzaabi A, Alkaabi A, Alseiari K, Alshamsi N, Nemmar A. Palliative effects of carnosol on lung-deposited pollutant particles-induced thrombogenicity and vascular injury in mice. Pharmacol Res Perspect 2024; 12:e1201. [PMID: 38775298 PMCID: PMC11110483 DOI: 10.1002/prp2.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
The toxicity of inhaled particulate air pollution perseveres even at lower concentrations than those of the existing air quality limit. Therefore, the identification of safe and effective measures against pollutant particles-induced vascular toxicity is warranted. Carnosol is a bioactive phenolic diterpene found in rosemary herb, with anti-inflammatory and antioxidant actions. However, its possible protective effect on the thrombotic and vascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed here the potential alleviating effect of carnosol (20 mg/kg) administered intraperitoneally 1 h before intratracheal (i.t.) instillation of DEP (20 μg/mouse). Twenty-four hours after the administration of DEP, various parameters were assessed. Carnosol administration prevented the increase in the plasma concentrations of C-reactive protein, fibrinogen, and tissue factor induced by DEP exposure. Carnosol inhibited DEP-induced prothrombotic effects in pial microvessels in vivo and platelet aggregation in vitro. The shortening of activated partial thromboplastin time and prothrombin time induced by DEP was abated by carnosol administration. Carnosol inhibited the increase in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α) and adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin) in aortic tissue. Moreover, it averted the effects of DEP-induced increase of thiobarbituric acid reactive substances, depletion of antioxidants and DNA damage in the aortic tissue. Likewise, carnosol prevented the decrease in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) caused by DEP. We conclude that carnosol alleviates DEP-induced thrombogenicity and vascular inflammation, oxidative damage, and DNA injury through Nrf2 and HO-1 activation.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Abdulrahman Alzaabi
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Abdulrahman Alkaabi
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Khalifa Alseiari
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Nasser Alshamsi
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| |
Collapse
|
9
|
Hamadi N, Al-Salam S, Beegam S, Zaaba NE, Elzaki O, Nemmar A. Impact of prolonged exposure to occasional and regular waterpipe smoke on cardiac injury, oxidative stress and mitochondrial dysfunction in male mice. Front Physiol 2024; 15:1286366. [PMID: 38370014 PMCID: PMC10869456 DOI: 10.3389/fphys.2024.1286366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Regular waterpipe smoking (Reg-WPS) is well recognized for its deleterious effect on the heart. However, there is a paucity of experimental studies on the impact of occasional waterpipe smoking (Occ-WPS), also known as nondaily smoking, versus Reg-WPS on cardiac homeostasis, and the mechanisms underlying these effects. Hence, we aimed, in the present study, to investigate the effect of Occ-WPS (30 min/day, 1 day/week) versus Reg-WPS (30 min/day, 5 days/week) for 6 months on systolic blood pressure (SBP), cardiac injury, oxidative markers, chemokines, proinflammatory cytokines, DNA damage and mitochondrial function compared with air (control) exposed mice. Our results show that SBP was increased following exposure to either Occ-WPS or Reg-WPS compared with air-exposed mice. Moreover, we found that only Reg-WPS induced a significant elevation in the levels of troponin I, brain natriuretic peptide, lactate dehydrogenase, and creatine phosphokinase. However, the atrial natriuretic peptide (ANP) was significantly increased in both Occ-WPS and Reg-WPS groups. Compared with air-exposed mice, the levels of lipid peroxidation, reduced glutathione and monocyte chemoattractant protein-1 were only significantly augmented in the Reg-WPS. However, catalase, superoxide dismutase, and CXCL1 were significantly increased in both Occ-WPS and Reg-WPS. The concentrations of the adhesion molecules E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 were solely elevated in the heart of mice exposed to Reg-WPS. Similarly, the concentrations of interleukin-1β and tumor necrosis factor α were only significantly augmented in the Reg-WPS. However, both Occ-WPS and Reg-WPS triggered significant augmentation in the levels of IL17 and DNA damage compared to the control groups. Furthermore, while Occ-WPS induced a slight but statistically insignificant elevation in the concentrations of mammalian targets of rapamycin and nuclear factor erythroid-derived 2-like 2 (Nrf2) expression, Reg-WPS exposure increased their levels substantially, in addition to p53 and mitochondrial complexes II & III, and IV activities compared with air-exposed mice. In conclusion, our findings show that while the long-term Occ-WPS exposure induced an elevation of SBP, ANP, antioxidant enzymes, IL17, CXCL1, and cardiac DNA damage, Reg-WPS exposure was consistently associated with the elevation of SBP and occurrence of cardiac damage, inflammation, oxidative stress, DNA damage and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abderrahim Nemmar
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Beegam S, Al-Salam S, Zaaba NE, Elzaki O, Ali BH, Nemmar A. Effects of Waterpipe Smoke Exposure on Experimentally Induced Chronic Kidney Disease in Mice. Int J Mol Sci 2024; 25:585. [PMID: 38203756 PMCID: PMC10778784 DOI: 10.3390/ijms25010585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Tobacco smoking is an independent risk factor in the onset of kidney disease. To date, there have been no reports on the influence of waterpipe smoke (WPS) in experimentally induced chronic kidney disease (CKD) models. We studied the effects and mechanisms of actions of WPS on a mouse model of adenine-induced CKD. Mice fed either a normal diet, or an adenine-added diet and were exposed to either air or WPS (30 min/day and 5 days/week) for four consecutive weeks. Plasma creatinine, urea and indoxyl sulfate increased and creatinine clearance decreased in adenine + WPS versus either WPS or adenine + saline groups. The urinary concentrations of kidney injury molecule-1 and adiponectin and the activities of neutrophil gelatinase-associated lipocalin and N-acetyl-β-D-glucosaminidase were augmented in adenine + WPS compared with either adenine + air or WPS groups. In the kidney tissue, several markers of oxidative stress and inflammation were higher in adenine + WPS than in either adenine + air or WPS groups. Compared with the controls, WPS inhalation in mice with CKD increased DNA damage, and urinary concentration of 8-hydroxy-2-deoxyguanosine. Furthermore, the expressions of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) (ERK and p38) were elevated in the kidneys of adenine + WPS group, compared with the controls. Likewise, the kidneys of adenine + WPS group revealed more marked histological tubular injury, chronic inflammation and interstitial fibrosis. In conclusion, WPS inhalation aggravates kidney injury, oxidative stress, inflammation, DNA damage and fibrosis in mice with adenine-induced CKD, indicating that WPS exposure intensifies CKD. These effects were associated with a mechanism involving NF-κB, ERK and p38 activations.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | | | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
11
|
Nemmar A, Beegam S, Yuvaraju P, Zaaba NE, Elzaki O, Yasin J, Adeghate E. Pathophysiologic effects of waterpipe (shisha) smoke inhalation on liver morphology and function in mice. Life Sci 2024; 336:122058. [PMID: 37659593 DOI: 10.1016/j.lfs.2023.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
AIMS The global prevalence of waterpipe tobacco smoking is increasing. Although the cardiorespiratory, renal, and reproductive effects of waterpipe smoking (WPS) are well-documented, there is limited knowledge regarding its adverse impact on the liver. Therefore, our study aimed to assess the effects and potential mechanisms of WPS inhalation for one or four weeks on the liver. MAIN METHODS Mice were exposed to WPS for 30 min per day, five days per week, while control mice were exposed to clean air. KEY FINDINGS Analysis using light microscopy revealed the infiltration of immune cells (neutrophils and lymphocytes) accompanied by vacuolar hepatic degeneration upon WPS inhalation. At the four-week timepoint, electron microscopy analysis demonstrated an increased number of mitochondria with a concomitant pinching-off of hepatocyte plasma membranes. WPS exposure led to a significant rise in the activities of liver enzymes alanine aminotransferase and aspartate aminotransferase in the bloodstream. Additionally, WPS inhalation elevated lipid peroxidation and reactive oxygen species levels and disrupted the levels of the antioxidant glutathione in liver tissue homogenates. The concentration of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, and IL-1β, was significantly increased in the WPS-exposed group. Furthermore, WPS inhalation induced DNA damage and a significant increase in the levels of cleaved caspase-3, cytochrome C and hypoxia-inducible factor 1α along with alterations in the activity of mitochondrial complexes I, II, III and IV. SIGNIFICANCE Our findings provide evidence that WPS inhalation triggers changes in liver morphology, oxidative stress, inflammation, DNA damage, apoptosis, and alterations in mitochondrial activity.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates.
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Badejo PO, Umphres SS, Ali HEA, Alarabi AB, Qadri S, Alshbool FZ, Khasawneh FT. Exposure to Electronic Waterpipes Increases the Risk of Occlusive Cardiovascular Disease in C57BL/6J Mice. J Cardiovasc Pharmacol Ther 2024; 29:10742484241242702. [PMID: 38592084 DOI: 10.1177/10742484241242702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
INTRODUCTION It is well documented that cardiovascular disease (CVD) is the leading cause of death in the US and worldwide, with smoking being the most preventable cause. Additionally, most smokers die from thrombotic-based diseases, in which platelets play a major role. To this end, because of the proven harm of smoking, several novel tobacco products such as electronic(e)-waterpipe have been gaining popularity among different sectors of the population, partly due to their "false" safety claims. While many investigators have focused on the negative health effects of traditional cigarettes and e-cigarettes on the cardiovascular system, virtually little or nothing is known about e-waterpipes, which we investigated herein. METHODS AND MATERIALS To investigate their occlusive CVD effects, we employed a whole-body mouse exposure model of e-waterpipe vape/smoke and exposed C57BL/6J male mice (starting at 7 weeks of age) for 1 month, with the controls exposed to clean air. Exposures took place seven times a week, according to the well-known Beirut protocol, which has been employed in many studies, as it mimics real-life waterpipe exposure scenarios; specifically, 171 puffs of 530 ml volume of the e-liquid at 2.6 s puff duration and 17 s puff interval. RESULTS The e-waterpipe exposed mice had shortened bleeding and occlusion times, when compared to the clean air controls, indicating a prothrombotic phenotype. As for the mechanism underlying this phenotype, we found that e-waterpipe exposed platelets exhibited enhanced agonist-triggered aggregation and dense granule secretion. Also, flow cytometry analysis of surface markers of platelet activation showed that both P-selectin and integrin GPIIb-IIIa activation were enhanced in the e-waterpipe exposed platelets, relative to the controls. Finally, platelet spreading and Akt phosphorylation were also more pronounced in the exposed mice. CONCLUSION We document that e-waterpipe exposure does exert untoward effects in the context of thrombosis-based CVD, in part, via promoting platelet hyperreactivity.
Collapse
Affiliation(s)
- Precious O Badejo
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Shelby S Umphres
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Hamdy E A Ali
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Ahmed B Alarabi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Shahnaz Qadri
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA
| |
Collapse
|
13
|
Nemmar A, Al-Salam S, Greish YE, Beegam S, Zaaba NE, Ali BH. Impact of Intratracheal Administration of Polyethylene Glycol-Coated Silver Nanoparticles on the Heart of Normotensive and Hypertensive Mice. Int J Mol Sci 2023; 24:ijms24108890. [PMID: 37240239 DOI: 10.3390/ijms24108890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Silver nanoparticles are widely used in various industrial and biomedical applications; however, little is known about their potential cardiotoxicity after pulmonary exposure, particularly in hypertensive subjects. We assessed the cardiotoxicity of polyethylene glycol (PEG)-coated AgNPs in hypertensive (HT) mice. Saline (control) or PEG-AgNPs (0.5 mg/kg) were intratracheally (i.t.) instilled four times (on days 7, 14, 21, and 28 post-angiotensin II or vehicle [saline] infusion). On day 29, various cardiovascular parameters were evaluated. Systolic blood pressure and heart rate were higher in PEG-AgNPs-treated HT mice than in saline-treated HT or PEG-AgNPs-treated normotensive mice. The heart histology of PEG-AgNPs-treated HT mice had comparatively larger cardiomyocyte damage with fibrosis and inflammatory cells when compared with saline-treated HT mice. Similarly, the relative heart weight and the activities of lactate dehydrogenase and creatine kinase-MB and the concentration of brain natriuretic peptide concentration were significantly augmented in heart homogenates of HT mice treated with PEG-AgNPs compared with HT mice treated with saline or normotensive animals exposed to PEG-AgNPs. Similarly, the concentrations of endothelin-1, P-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in heart homogenates were significantly higher than in the other two groups when HT mice were exposed to PEG-AgNPs. Markers of inflammation and oxidative and nitrosative stress were significantly elevated in heart homogenates of HT mice given PEG-AgNPs compared with HT mice treated with saline or normotensive animals exposed to PEG-AgNPs. The hearts of HT mice exposed to PEG-AgNPs had significantly increased DNA damage than those of HT mice treated with saline or normotensive mice treated with AgNPs. In conclusion, the cardiac injury caused by PEG-AgNPs was aggravated in hypertensive mice. The cardiotoxicity of PEG-AgNPs in HT mice highlights the importance of an in-depth assessment of their toxicity before using them in clinical settings, particularly in patients with pre-existing cardiovascular diseases.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Suhail Al-Salam
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O Box 17666, United Arab Emirates
| | - Yaser E Greish
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 17551, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Nur E Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
14
|
Hamadi N, Beegam S, Zaaba NE, Elzaki O, Altamimi MA, Nemmar A. Neuroinflammation, Oxidative Stress, Apoptosis, Microgliosis and Astrogliosis in the Cerebellum of Mice Chronically Exposed to Waterpipe Smoke. Biomedicines 2023; 11:biomedicines11041104. [PMID: 37189722 DOI: 10.3390/biomedicines11041104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Waterpipe smoking (WPS) is prevalent in Asian and Middle Eastern countries and has recently gained worldwide popularity, especially among youth. WPS has potentially harmful chemicals and is associated with a wide range of adverse effects on different organs. However, little is known regarding the impact of WPS inhalation on the brain and especially on the cerebellum. Presently, we aimed at investigating inflammation, oxidative stress and apoptosis as well as microgliosis and astrogliosis in the cerebellum of BALB/C mice chronically (6 months) exposed to WPS compared with air-exposed mice (control). WPS inhalation augmented the concentrations of proinflammatory cytokines tumor necrosis factor, interleukin (IL)-6 and IL-1β in cerebellar homogenates. Likewise, WPS increased oxidative stress markers including 8-isoprostane, thiobarbituric acid reactive substances and superoxide dismutase. In addition, compared with the air-exposed group, WPS caused an increase in the oxidative DNA damage marker, 8-hydroxy-2′-deoxyguanosine, in cerebellar homogenates. Similarly, in comparison with the air group, WPS inhalation elevated the cerebellar homogenate levels of cytochrome C, cleaved caspase-3 and nuclear factor-κB (NF-κB). Immunofluorescence analysis of the cerebellum showed that WPS exposure significantly augmented the number of ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein-positive microglia and astroglia, respectively. Taken together, our data show that chronic exposure to WPS is associated with cerebellar inflammation, oxidative stress, apoptosis, microgliosis and astrogliosis. These actions were associated with a mechanism involving NF-κB activation.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Mariam Abdulla Altamimi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
15
|
Waterpipe smoke inhalation potentiates cardiac oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and autophagy in experimental hypertension. Biomed Pharmacother 2023; 158:114144. [PMID: 36916396 DOI: 10.1016/j.biopha.2022.114144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Cigarette smoking worsens the health of hypertensive patients. However, less is known about the actions and underlying mechanisms of waterpipe smoke (WPS) in hypertension. Therefore, we evaluated the effects of WPS inhalation in mice made hypertensive (HT) by infusing angiotensin II for six weeks. On day 14 of the infusion of angiotensin II or vehicle (normotensive; NT), mice were exposed either to air or WPS for four consecutive weeks. Each session was 30 min/day and 5 days/week. In NT mice, WPS increased systolic blood pressure (SBP) compared with NT air-exposed group. SBP increase was elevated in HT+WPS group versus either HT+air or NT+WPS. Similarly, the plasma levels of brain natriuretic peptide, C-reactive protein, 8-isoprostane and superoxide dismutase were increased in HT+WPS compared with either HT+air or NT+WPS. In the heart tissue, several markers of oxidative stress and inflammation were increased in HT+WPS group vs the controls. Furthermore, mitochondrial dysfunction in HT+WPS group was more affected than in the HT+air or HT+WPS groups. WPS inhalation in HT mice significantly increased cardiac DNA damage, cleaved caspase 3, expression of the autophagy proteins beclin 1 and microtubule-associated protein light chain 3B, and phosphorylated nuclear factor κ B, compared with the controls. Compared with HT+air mice, heart histology of WPS-exposed HT mice showed increased cardiomyocyte damage, neutrophilic and lymphocytic infiltration and focal fibrosis. We conclude that, in HT mice, WPS inhalation worsened hypertension, cardiac oxidative stress, inflammation, mitochondrial dysfunction, DNA damage, apoptosis and autophagy. The latter effects were associated with a mechanism involving NF-κB activation.
Collapse
|
16
|
A simple sampling method for quantification of hazardous volatile organic compounds in mainstream cigarette smoke: Method development and prestudy validation. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zaarour RF, Sharda M, Azakir B, Hassan Venkatesh G, Abou Khouzam R, Rifath A, Nizami ZN, Abdullah F, Mohammad F, Karaali H, Nawafleh H, Elsayed Y, Chouaib S. Genomic Analysis of Waterpipe Smoke-Induced Lung Tumor Autophagy and Plasticity. Int J Mol Sci 2022; 23:ijms23126848. [PMID: 35743294 PMCID: PMC9225041 DOI: 10.3390/ijms23126848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of autophagy in lung cancer cells exposed to waterpipe smoke (WPS) is not known. Because of the important role of autophagy in tumor resistance and progression, we investigated its relationship with WP smoking. We first showed that WPS activated autophagy, as reflected by LC3 processing, in lung cancer cell lines. The autophagy response in smokers with lung adenocarcinoma, as compared to non-smokers with lung adenocarcinoma, was investigated further using the TCGA lung adenocarcinoma bulk RNA-seq dataset with the available patient metadata on smoking status. The results, based on a machine learning classification model using Random Forest, indicate that smokers have an increase in autophagy-activating genes. Comparative analysis of lung adenocarcinoma molecular signatures in affected patients with a long-term active exposure to smoke compared to non-smoker patients indicates a higher tumor mutational burden, a higher CD8+ T-cell level and a lower dysfunction level in smokers. While the expression of the checkpoint genes tested-PD-1, PD-L1, PD-L2 and CTLA-4-remains unchanged between smokers and non-smokers, B7-1, B7-2, IDO1 and CD200R1 were found to be higher in non-smokers than smokers. Because multiple factors in the tumor microenvironment dictate the success of immunotherapy, in addition to the expression of immune checkpoint genes, our analysis explains why patients who are smokers with lung adenocarcinoma respond better to immunotherapy, even though there are no relative differences in immune checkpoint genes in the two groups. Therefore, targeting autophagy in lung adenocarcinoma patients, in combination with checkpoint inhibitor-targeted therapies or chemotherapy, should be considered in smoker patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Mohak Sharda
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
- School of Life Science, The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore 560064, India
| | - Bilal Azakir
- Molecular and Translational Medicine Laboratory, Faculty of Medicine, Beirut Arab University, Beirut 11072809, Lebanon; (B.A.); (H.K.)
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Ayesha Rifath
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Zohra Nausheen Nizami
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Fatima Abdullah
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Fatin Mohammad
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Hajar Karaali
- Molecular and Translational Medicine Laboratory, Faculty of Medicine, Beirut Arab University, Beirut 11072809, Lebanon; (B.A.); (H.K.)
| | - Husam Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
| | - Yehya Elsayed
- Department of Biology, Chemistry and Environmental Sciences (BCE), American University of Sharjah, Sharjah 26666, United Arab Emirates;
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (R.F.Z.); (G.H.V.); (R.A.K.); (A.R.); (Z.N.N.); (F.A.); (F.M.); (H.N.)
- Inserm Umr 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France
- Correspondence:
| |
Collapse
|
18
|
Lim DH, Son YS, Kim YH, Kukkar D, Kim KH. Volatile organic compounds released in the mainstream smoke of flavor capsule cigarettes. ENVIRONMENTAL RESEARCH 2022; 209:112866. [PMID: 35134376 DOI: 10.1016/j.envres.2022.112866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In this study, the composition of mainstream smoke was investigated with an emphasis on a list of volatile organic compounds (VOCs: e.g., isoprene, acrylonitrile, methyl ethyl ketone, benzene, toluene, m-xylene and styrene) using the two types of flavor capsule cigarettes (FCCs, here coded as F1 and F2) in reference to one commercial, non-flavored (NF) and 3R4F cigarette. The concentrations of all the target compounds from FCCs were quantified under two contrasting conditions (i.e., with and without breaking the capsules). The effect of breaking the capsule was apparent in the FCC products with the enhancement of VOC levels, specifically between after and before breaking the capsules (e.g., 1.10-1.58 folds (benzene) and 1.30-1.53 folds (acetonitrile)). Such increases were apparent in both FCC samples if assessed in terms of the total amount of VOCs (TVOC): (1) F1 (from 2159 to 2530 μg cig-1 (p = 9.42 × 10-6)) and (2) F2 (from 1470 to 2014 μg cig-1 (p = 0.05)). In addition, these TVOC levels determined from the FCCs were 1.62- to 1.83- and 1.29- to 1.46-fold higher than those of the NF cigarette and the 3R4F cigarette, respectively. Thus, these FCC products are suspected to play a role as stronger sources of VOCs than the general cigarette products.
Collapse
Affiliation(s)
- Dae-Hwan Lim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Youn-Suk Son
- Department of Environmental Engineering, Pukyong National University,45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Yong-Hyun Kim
- Department of Environment and Energy, Jeonbuk National University, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Deepak Kukkar
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India; Department of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
19
|
The Nephroprotective Effects of α-Bisabolol in Cisplatin-Induced Acute Kidney Injury in Mice. Biomedicines 2022; 10:biomedicines10040842. [PMID: 35453592 PMCID: PMC9032774 DOI: 10.3390/biomedicines10040842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 01/24/2023] Open
Abstract
Cisplatin (CP) treatment has been long associated with the development of acute kidney injury (AKI) through mechanisms involving inflammation and oxidative stress. α-Bisabolol (BIS), a sesquiterpene alcohol isolated from the essential oil of various plants, including chamomile, has garnered popularity lately due to its antioxidant, anti-inflammatory, and anticancer properties. Therefore, we investigated the nephroprotective effects of BIS in the murine model of CP-induced AKI and the underlying mechanism of action. BALB/c mice were given BIS orally at 25 mg/kg for 7 days. On day 7, they were given a single dose of CP at 20 mg/kg intraperitoneally. BIS treatment continued for 3 more days. The animals were sacrificed at the end of the experiment (day 11). Kidneys, plasma, and urine were collected, and subsequently, various physiological, biochemical, and histological parameters were assessed. BIS has significantly normalized the alterations of water intake, urine volume, relative kidney weight, and the concentrations of urea and creatinine, as well as the creatinine clearance induced by CP treatment. BIS significantly mitigated the effects of CP-induced kidney injury by reducing kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, adiponectin, and cystatin C. Likewise, the renal concentrations of proinflammatory cytokines, tumor necrosis factor α, interleukin (IL)-6 and IL-1β that were elevated in CP group were significantly reduced in mice treated with BIS and CP. A similar significant reduction was also observed in the CP-induced augmented levels of markers of oxidative stress, as well as the metabolite pteridine. Moreover, BIS significantly reduced the CP–induced renal DNA damage, and markedly lessened the acute tubular necrosis observed in kidney histology. Additionally, BIS significantly reduced the CP-induced increase in the phosphorylated nuclear factor κB (NFκB) in the kidney. These data strongly suggest that BIS exerts a protective action against CP-induced nephrotoxicity by mitigating inflammation and oxidative stress through the inhibition of NFκB activation. No overt adverse effects were noted with BIS treatment. Additional investigations should be done to consider BIS as an efficacious nephroprotective agent against CP.
Collapse
|
20
|
Nemmar A, Al-Salam S, Beegam S, Zaaba NE, Elzaki O, Yasin J, Ali BH. Waterpipe smoke-induced hypercoagulability and cardiac injury in mice: Influence of cessation of exposure. Biomed Pharmacother 2022; 146:112493. [PMID: 35062048 DOI: 10.1016/j.biopha.2021.112493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Waterpipe tobacco smoking has gained worldwide popularity, particularly among youths. Several clinical and experimental studies have reported that waterpipe smoking (WPS) injures the cardiovascular system. However, the impact of smoking cessation (CS) on the cardiovascular toxicity induced by WPS received scant attention. Hence, we assessed, in C57BL/6 mice, the cardiovascular effects of WPS exposure for 3 months followed by 3 months of SC, as compared with mice exposed for either 3 months to WPS or air (control). WPS exposure induced hypertension, prothrombotic events both in vivo and in vitro and increased the plasma concentrations of tissue factor, fibrinogen and plasminogen activator inhibitor-1. These effects were significantly alleviated by SC. In heart tissue, the levels of troponin I, creatine kinase, lipid peroxidation, 8-isoprostane, tumor necrosis factor α, inteleukin 6, DNA damage and cleaved caspase-3 were significantly increased by WPS exposure. These actions were significantly reduced in the group of mice exposed to WPS followed by SC. Similarly, the increase in the level of nuclear factor κ-β induced by WPS exposure was significantly mitigated by SC. Immunohistochemical analysis of the hearts showed that WPS exposure increased the expression of nuclear factor erythroid-derived 2-like 2 by cardiomyocytes. The latter effect was significantly reduced by SC. Taken together, our data show that SC is associated with amelioration of WPS induced hypertension, prothrombotic events and cardiac oxidative stress, inflammation, DNA damage and apoptosis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, P O Box 35, Muscat 123, Al-Khod, Sultanate of Oman
| |
Collapse
|
21
|
Nemmar A, Beegam S, Zaaba NE, Alblooshi S, Alseiari S, Ali BH. The Salutary Effects of Catalpol on Diesel Exhaust Particles-Induced Thrombogenic Changes and Cardiac Oxidative Stress, Inflammation and Apoptosis. Biomedicines 2022; 10:99. [PMID: 35052780 PMCID: PMC8773344 DOI: 10.3390/biomedicines10010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Inhaled particulate air pollution exerts pulmonary inflammation and cardiovascular toxicity through secondary systemic effects due to oxidative stress and inflammation. Catalpol, an iridiod glucoside, extracted from the roots of Rehmannia glutinosa Libosch, has been reported to possess anti-inflammatory and antioxidant properties. Yet, the potential ameliorative effects of catalpol on particulate air pollution-induced cardiovascular toxicity, has not been studied so far. Hence, we evaluated the possible mitigating mechanism of catalpol (5 mg/kg) which was administered to mice by intraperitoneal injection one hour before the intratracheal (i.t.) administration of a relevant type of pollutant particle, viz. diesel exhaust particles (DEPs, 30 µg/mouse). Twenty-four hours after the lung deposition of DEPs, several cardiovascular endpoints were evaluated. DEPs caused a significant shortening of the thrombotic occlusion time in pial microvessels in vivo, induced platelet aggregation in vitro, and reduced the prothrombin time and the activated partial thromboplastin time. All these actions were effectively mitigated by catalpol pretreatment. Likewise, catalpol inhibited the increase of the plasma concentration of C-reactive proteins, fibrinogen, plasminogen activator inhibitor-1 and P- and E-selectins, induced by DEPs. Moreover, in heart tissue, catalpol inhibited the increase of markers of oxidative (lipid peroxidation and superoxide dismutase) and nitrosative (nitric oxide) stress, and inflammation (tumor necrosis factor α, interleukin (IL)-6 and IL-1β) triggered by lung exposure to DEPs. Exposure to DEPs also caused heart DNA damage and increased the levels of cytochrome C and cleaved caspase, and these effects were significantly diminished by the catalpol pretreatment. Moreover, catalpol significantly reduced the DEPs-induced increase of the nuclear factor κB (NFκB) in the heart. In conclusion, catalpol significantly ameliorated DEPs-induced procoagulant events and heart oxidative and nitrosative stress, inflammation, DNA damage and apoptosis, at least partly, through the inhibition of NFκB activation.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Salem Alblooshi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Saleh Alseiari
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (S.B.); (N.E.Z.); (S.A.); (S.A.)
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Oman;
| |
Collapse
|
22
|
Xu H, Zong Y, Yu J, Jiang C, Zhu H, Sun X. Retinal Microvascular Reactivity in Chronic Cigarette Smokers and Non-smokers: An Observational Cross-Sectional Study. Front Med (Lausanne) 2021; 8:782010. [PMID: 34988096 PMCID: PMC8720846 DOI: 10.3389/fmed.2021.782010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: To evaluate the changes in the retinal microvasculature and its reactivity in chronic cigarette smokers. Methods: Thirty-four male chronic cigarette smokers and 18 male non-smokers were enrolled. Optical coherence tomography angiography was used to measure the perfused retinal vessel densities (PVDs) of the peripapillary and parafoveal areas at baseline and during phase IV of the Valsalva maneuver (VM-IV). Systemic blood pressure and intraocular pressure were also measured. Results: The baseline PVD in the peripapillary area of the smokers was significantly lower than the non-smokers (59.56 ± 2.26% vs. 61.67 ± 3.58%, respectively; P = 0.005). However, there was no significant difference in the foveal avascular zone or parafoveal PVD between the two groups. During VM-IV, the peripapillary PVD of the smokers decreased by 1.13 ± 3.50%, which was significantly less than that of the non-smokers (−3.83 ± 4.26%, P < 0.05). Similarly, the parafoveal PVD of the smokers decreased by 5.49 ± 9.70%, which was significantly less than the percentage change of the non-smokers (−13.01 ± 8.39%, P < 0.05). There was no significant difference in the percentage change in systemic blood pressure parameters between the two groups. Conclusion: The retinal microvasculature and its reactivity were impaired in chronic smokers compared with non-smokers. The extent of impairment differed among different regions of the fundus.
Collapse
Affiliation(s)
- Huan Xu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- *Correspondence: Chunhui Jiang
| | - Haohao Zhu
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Haohao Zhu
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
23
|
Waterpipe tobacco smoke and health: What we have learned from rodent models? Life Sci 2021; 284:119898. [PMID: 34453942 DOI: 10.1016/j.lfs.2021.119898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
AIMS Waterpipe smoking (WPS) is a popular form of tobacco smoking. This is due to the misperception that WPS is less detrimental than cigarette smoking. This review aimed to present the adverse effects of WPS on health outcomes through utilizing animal models. MAIN METHODS The design of the current study is systematic review. PubMed, HINARI, Google, and SCOPUS databases were searched for the adverse effects of WPS on general health in rodents. Certain key information was extracted and collected from the included studies. KEY FINDINGS After screening different databases and removal of duplicates, 43 papers were included in this review. It was found that WPS was able to negatively affect the oxidative stress and inflammatory biomarkers in mice. Furthermore, WPS increased the levels of Tumor necrosis factor-α and 8-isoprostane, and DNA damage in mice lung homogenates. Additionally, chronic exposure to WPS increased the serum levels of creatinine and blood urea nitrogen in mice; indicating injury to renal tissues. The negative effect of WPS extends to affect offspring rats following prenatal WPS, in which WPS in utero lead to remarkable increase in the levels of testosterone, estrogen and follicle-stimulating hormones in WPS exposed animals. SIGNIFICANCE This systematic review highlighted the adverse effects of WPS on health outcomes at cellular and biochemical levels in different tissues and organs of rodents. The current reviews' findings highlighted the great hazards presented by WPS in the selected rodents' model and the essential necessity for future improved management of WPS indoor consumption.
Collapse
|
24
|
Zhang Q, Zeng G, Wang X, Wu KH. Associations of exposure to secondhand smoke with hypertension risk and blood pressure values in adults. Environ Health Prev Med 2021; 26:86. [PMID: 34488622 PMCID: PMC8422707 DOI: 10.1186/s12199-021-01009-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background The effects of environmental chemical exposure on blood pressure (BP) have been confirmed, but the association between exposure to secondhand smoke (SHS) and hypertension risk and BP in the general population remains unknown. Methods Cross-sectional associations between SHS exposure and hypertension risk and BP values were evaluated using data for subjects who participated in the National Health and Nutrition Examination Survey (NHANES), 1999–2016. Logistic regression and linear regression were performed after adjusting for age, sex, race, alcohol consumption, poverty-to-income ratio (PIR), body mass index (BMI), estimated glomerular filtration rate, physical activity, diabetes, cardiovascular disease, and NHANES cycle. Restricted cubic spline models were created to display the potential nonlinear association between SHS and BP levels. Results Higher risk of hypertension was found at the highest SHS concentrations (OR = 1.13, 95% CI 1.04, 1.24, P for trend = 0.007). Additionally, SHS exposure had a strong positive association with systolic blood pressure (SBP) but was negatively associated with diastolic blood pressure (DBP). Furthermore, the nonlinear model result showed a significant association between SHS and SBP (P = 0.017); however, the nonlinear model result was not significant for SHS or DBP. Conclusions Our results suggest a potential association between high SHS exposure and the risk of hypertension. Further research is needed to elucidate the underlying mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-021-01009-0.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
25
|
Chaieb F, Ben Saad H. The Chronic Effects of Narghile Use on Males' Cardiovascular Response During Exercise: A Systematic Review. Am J Mens Health 2021; 15:1557988321997706. [PMID: 33729068 PMCID: PMC7975579 DOI: 10.1177/1557988321997706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Narghile use has regained popularity throughout the world. Public opinion misjudges its chronic harmful effects on health, especially on the cardiovascular system. This systematic review aimed to evaluate the chronic effects of narghile use on cardiovascular response during exercise. It followed the preferred reporting items for systematic reviews guidelines. Original articles from PubMed and Scopus published until January 31, 2020, written in English, and tackling the chronic effects of narghile use on human cardiovascular response during exercise were considered. Five studies met the inclusion criteria. Only males were included in these studies. They were published between 2014 and 2017 by teams from Tunisia (n = 4) and Jordan (n = 1). One study applied the 6-min walk test, and four studies opted for the cardiopulmonary exercise test. Narghile use was associated with reduced submaximal (e.g., lower 6-min walk distance) and maximal aerobic capacities (e.g., lower maximal oxygen uptake) with abnormal cardiovascular status at rest (e.g., increase in heart rate and blood pressures), at the end of the exercise (e.g., lower heart rate, tendency to chronotropic insufficiency) and during the recovery period (e.g., lower recovery index). To conclude, chronic narghile use has negative effects on cardiovascular response to exercise with reduced submaximal and maximal exercise capacities.
Collapse
Affiliation(s)
- Faten Chaieb
- University of Sousse, Faculty of
Medicine of Sousse, Laboratory of Physiology, Sousse, Tunisia,Department of Physiology and Functional
Exploration, Farhat Hached University Hospital of Sousse, Tunisia
| | - Helmi Ben Saad
- University of Sousse, Faculty of
Medicine of Sousse, Laboratory of Physiology, Sousse, Tunisia,Heart Failure Research Laboratory
(LR12SP09), Farhat Hached Hospital, Sousse, Tunisia,Helmi Ben Saad (MD, PhD), Laboratory of
Physiology, Faculty of Medicine of Sousse, University of Sousse, Street Mohamed
Karoui, Sousse 4000, Tunisia.
| |
Collapse
|
26
|
Nemmar A, Al-Salam S, Beegam S, Zaaba NE, Ali BH. Effect of smoking cessation on chronic waterpipe smoke inhalation-induced airway hyperresponsiveness, inflammation, and oxidative stress. Am J Physiol Lung Cell Mol Physiol 2021; 320:L791-L802. [PMID: 33719568 DOI: 10.1152/ajplung.00420.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Waterpipe smoking (WPS) prevalence is increasing globally. Clinical and laboratory investigations reported that WPS triggers impairment of pulmonary function, inflammation, and oxidative stress. However, little is known if smoking cessation (SC) would reverse the adverse pulmonary effects induced by WPS. Therefore, we evaluated the impact of WPS inhalation for 3 mo followed by 3 mo of SC (air exposure) compared with those exposed for either 3 or 6 mo to WPS or air (control) in C57BL/6 mice. To this end, various physiological, biochemical, and histological endpoints were evaluated in the lung tissue. Exposure to WPS caused focal areas of dilated alveolar spaces and foci of widening of interalveolar spaces with peribronchiolar moderate mixed inflammatory cells consisting of lymphocytes, macrophages, and neutrophil polymorphs. The latter effects were mitigated by SC. Likewise, SC reversed the increase of airway resistance and reduced the increase in the levels of myeloperoxidase, matrix metalloproteinase 9, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β in lung tissue induced by WPS. In addition, SC attenuated the increase of oxidative stress markers including 8-isoprostane, glutathione, and catalase induced by WPS. Similarly, DNA damage, apoptosis, and the expression of NF-κB in the lung induced by WPS inhalation were alleviated by CS. In conclusion, our data demonstrated, for the first time, to our knowledge, that SC-mitigated WPS inhalation induced an increase in airway resistance, inflammation, oxidative stress, DNA injury, and apoptosis, illustrating the benefits of SC on lung physiology.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nur E Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
27
|
Cardiac Inflammation, Oxidative Stress, Nrf2 Expression, and Coagulation Events in Mice with Experimental Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8845607. [PMID: 33510843 PMCID: PMC7826233 DOI: 10.1155/2021/8845607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/06/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is known to be associated with cardiovascular dysfunction. Dietary adenine intake in mice is also known to induce CKD. However, in this experimental model, the mechanisms underlying the cardiotoxicity and coagulation disturbances are not fully understood. Here, we evaluated cardiac inflammation, oxidative stress, DNA damage, and coagulation events in mice with adenine (0.2% w/w in feed for 4 weeks)-induced CKD. Control mice were fed with normal chow for the same duration. Adenine increased water intake, urine output, relative kidney weight, the plasma concentrations of urea and creatinine, and the urinary concentrations of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It also decreased the body weight and creatinine clearance, and caused kidney DNA damage. Renal histological analysis showed tubular dilation and damage and neutrophilic influx. Adenine induced a significant increase in systolic blood pressure and the concentrations of troponin I, tumor necrosis factor-α, and interleukin-1β in heart homogenates. It also augmented the levels of markers of lipid peroxidation measured by malondialdehyde production and 8-isoprostane, as well as the antioxidants superoxide dismutase and catalase. Immunohistochemical analysis of the hearts showed that adenine increased the expression of nuclear factor erythroid-derived 2-like 2 by cardiomyocytes. It also caused cardiac DNA damage. Moreover, compared with the control group, adenine induced a significant increase in the number of circulating platelet and shortened the thrombotic occlusion time in pial arterioles and venules in vivo, and induced a significant reduction in the prothrombin time and activated partial thromboplastin time. In conclusion, the administration of adenine in mice induced CKD-associated cardiac inflammation, oxidative stress, Nrf2 expression, and DNA damage. It also induced prothrombotic events in vivo. Therefore, this model can be satisfactorily used to study the cardiac pathophysiological events in subjects with CKD and the effect of drug treatment thereon.
Collapse
|
28
|
Abi-Gerges A, Dagher-Hamalian C, Abou-Khalil P, Chahine JB, Hachem P, Khalil C. Evaluation of waterpipe smoke toxicity in C57BL/6 mice model. Pulm Pharmacol Ther 2020; 63:101940. [PMID: 32889155 DOI: 10.1016/j.pupt.2020.101940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023]
Abstract
Waterpipe smoking is a popular pastime worldwide with statistics pointing to an alarming increase in consumption. In the current paper, the evaluation of sub-chronic waterpipe smoke exposure was undertaken using C57BL/6 female mice using a dynamic exposure setting to emulate smoke exposure. Mice were daily subjected to either one (single exposure, SE) or two sessions (double exposure, DE) of waterpipe-generated smoke (two-apple flavor) for a period of two months. Although lungs histopathological examination pointed to a minor inflammation in smoke-exposed mice compared to control air-exposed (CON) group, the lung weights of the waterpipe-exposed mice were significantly higher (+72% in SE and +39% in DE) (p < 0.01) when compared to CON group. Moreover, changes in the protein expression of several proteins such as iNOS and JNK were noted in the lungs of smoke-exposed mice. However, no changes in p38 and EGFR protein levels were noted between the three groups of mice. Our results mainly showed a significant increase in urea serum levels (+28%) in SE mice along with renal pathological damage in both SE and DE mice compared to CON. Additionally, severe significant DNA damages (p < 0.05) were reported in the lungs, kidneys, bone marrow and liver of waterpipe-exposed animals, using MTS and COMET assays. These findings highlighted the significant risks posed by sub-chronic waterpipe smoke exposure in the selected animal model and the pressing need for future better management of waterpipe indoor consumption.
Collapse
Affiliation(s)
- Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Carole Dagher-Hamalian
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Pamela Abou-Khalil
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Joe Braham Chahine
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Pia Hachem
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Christian Khalil
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
29
|
Al-Sawalha NA, Almahmmod Y, Awawdeh MS, Alzoubi KH, Khabour OF. Effect of waterpipe tobacco smoke exposure on the development of metabolic syndrome in adult male rats. PLoS One 2020; 15:e0234516. [PMID: 32559253 PMCID: PMC7304592 DOI: 10.1371/journal.pone.0234516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
The prevalence of metabolic syndrome is increased worldwide. Tobacco smoking increases the risk of developing metabolic syndrome. Waterpipe tobacco smoking has become a global trend of tobacco consumption and is as common as cigarette smoking. In this study, the effect of waterpipe tobacco smoke (WTS) on the development of metabolic syndrome in rats was evaluated. Adult Wistar rats were exposed for 19 weeks to either fresh air (control) or WTS for 1 hour daily/ 5 days per week (WTS). Central obesity, systolic blood pressure, lipid profile, glucose hemostasis and levels of leptin and adiponectin were evaluated. The WTS exposure increased body weight, abdominal circumference, systolic blood pressure and fasting glucose compared to control animals (P<0.05), consistent with inducing metabolic syndrome. The retroperitoneal fat, lipid profile and levels of insulin, leptin and adiponectin were not affected by WTS exposure (P>0.05). In conclusion, exposure to WTS has detrimental health effects leading to the development of metabolic syndrome in experimental animals.
Collapse
Affiliation(s)
- Nour A. Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
- * E-mail:
| | - Yehya Almahmmod
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mofleh S. Awawdeh
- Department of Veterinary Pathology & Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
30
|
Ali BH, Al-Salam S, Al Balushi KA, Al Za’abi M, Adham SA, Beegam S, Yuvaraju P, Manoj P, Nemmar A. Ameliorative Effect of Gum Acacia on Hookah Smoke-Induced Testicular Impairment in Mice. Biomolecules 2020; 10:biom10050762. [PMID: 32414135 PMCID: PMC7277429 DOI: 10.3390/biom10050762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated some reproductive actions of hookah smoke (HS) exposure (30 min/day, for 30 days) in male mice, and the possible mitigative effect of the prebiotic agent gum acacia (GA) thereon. Control mice were air-exposed (AE). Twenty-four hours after the last exposure, the levels of some plasma reproductive hormones, biochemical markers of inflammation, oxidative and nitrosative stress and testicular histopathology were assessed. The urinary level of cotinine, a major nicotine metabolite, was also measured. HS exposure induced significant decreases in testosterone, estradiol, luteinizing hormone, and androgen binding protein, as well as glutathione reductase activity and levels of nitrite and total nitrite. Plasma inhibin B, alkaline phosphatase, lipopolysaccharide binding protein, uric acid, lactate dehydrogenase, lipid peroxidation, 8-oxo-2’-deoxyguanosine, and cytochrome C were significantly increased following HS exposure. In testicular homogenate, nuclear factor-κB (NF-ĸB), nuclear factor erythroid 2–related factor 2 (Nrf2), interleukin- 6 (IL-6), interleukin-1β (IL-1β), transforming growth factor-β1(TGF- β1), and tumor necrosis factor-α (TNF- α) were all significantly elevated, and the steroidogenic acute regulatory protein (StAR) significantly decreased. Histopathologically, there was slight impairment and disorganization of spermatogenesis. Urinary cotinine concentration was elevated significantly in the HS-exposed group compared with the air-exposed group. GA co-administration mitigated the adverse actions of HS measured. In conclusion, daily exposure to HS at the above dose induced adverse actions on the reproductive system of male mice. GA co-administration significantly mitigated these effects by reducing the inflammation, oxidative and nitrosative stress, via a mechanism involving Nrf2, and reduction of StAR expression.
Collapse
Affiliation(s)
- Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Muscat 123, Oman; (B.H.A.); (K.A.A.B.); (M.A.Z.); (P.M.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE;
| | - Khalid A. Al Balushi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Muscat 123, Oman; (B.H.A.); (K.A.A.B.); (M.A.Z.); (P.M.)
| | - Mohammed Al Za’abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Muscat 123, Oman; (B.H.A.); (K.A.A.B.); (M.A.Z.); (P.M.)
| | - Sirin A. Adham
- Department of Biology, College of Science, Sultan Qaboos University, Al-Khod, Muscat 123, Oman;
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (S.B.); (P.Y.)
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (S.B.); (P.Y.)
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Muscat 123, Oman; (B.H.A.); (K.A.A.B.); (M.A.Z.); (P.M.)
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (S.B.); (P.Y.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, UAE
- Correspondence: ; Tel.: +971-371-375-33
| |
Collapse
|
31
|
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Zaaba NE, Yasin J, Ali BH. Waterpipe Tobacco Smoke Inhalation Triggers Thrombogenicity, Cardiac Inflammation and Oxidative Stress in Mice: Effects of Flavouring. Int J Mol Sci 2020; 21:E1291. [PMID: 32075078 PMCID: PMC7072969 DOI: 10.3390/ijms21041291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
The consumption of water-pipe smoking (WPS) has been promoted by the use of flavoured tobacco. However, little is known about the impact of flavouring on the cardiovascular toxicity induced by WPS inhalation. Here, we compared the cardiovascular effects and underlying mechanism of actions of plain (P) (unflavoured) versus apple-flavoured (AF) WPS (30 minutes/day, 5 days/week for 1 month) in mice. Control mice were exposed to air. Both P- and AF-WPS inhalation induced an increase in systolic blood pressure, thrombogenicity and plasma concentration of fibrinogen and von Willebrand factor. In heart homogenates, AF-WPS inhalation caused an increase of 8-isoprostane and a decrease in the levels of reduced glutathione (GSH) and superoxide dismutase (SOD). Nevertheless, P-WPS decreased only the activity of SOD. The concentrations of tumour necrosis factor α and interleukin 1β were increased only in heart homogenates of mice exposed to AF-WPS. Although both P- and AF-WPS increased the concentration of troponin I in heart homogenates and induced DNA damage, the concentration of cleaved caspase 3 was only increased in mice exposed to AF-WPS. Immunohistochemical analysis of the hearts showed that both P- and AF- WPS inhalation decreased the expression of SOD. Moreover, the expression of nuclear factor erythroid-derived 2-like 2 at nuclear level in the heart was higher in both AF-WPS and P-WPS compared with control group, and the effect observed in AF-WPS group was more significant than that seen in P-WPS group. Likewise, the concentration of heme oxygenase-1 was significantly increased in both P-WPS and AF-WPS groups compared with control group, and the effect seen in AF-group was higher than that observed in P-WPS group. In conclusion, our findings showed that both P- and AF-WPS induce thrombogenicity and cardiac injury, and that this toxicity is potentiated by the presence of flavouring.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE; (S.B.); (P.Y.); (N.E.Z.)
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE;
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE; (S.B.); (P.Y.); (N.E.Z.)
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE; (S.B.); (P.Y.); (N.E.Z.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE; (S.B.); (P.Y.); (N.E.Z.)
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE;
| | - Badreldin H. Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Al-Khod, Oman;
| |
Collapse
|
32
|
Nemmar A, Beegam S, Yuvaraju P, Yasin J, Ali BH, Adeghate E. Nose-Only Water-Pipe Smoke Exposure in Mice Elicits Renal Histopathological Alterations, Inflammation, Oxidative Stress, DNA Damage, and Apoptosis. Front Physiol 2020; 11:46. [PMID: 32116758 PMCID: PMC7026484 DOI: 10.3389/fphys.2020.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of water-pipe tobacco smoking is increasing worldwide, and is relatively high among youth and young adults. Exposure to water-pipe smoke (WPS) has been reported to affect various systems including the respiratory, cardiovascular and reproductive systems. However, the impact of WPS exposure on the kidney has received only scant attention. Here, we assessed the effect of nose-only WPS exposure for one or four consecutive weeks on renal histology, inflammation, oxidative stress, DNA damage, and apoptosis. The duration of the session was 30 min/day and 5 days/week. Control mice were exposed to air. Light and electron microcopy analysis revealed that the WPS exposure (especially at 4-week time point) caused degeneration of the endothelial cells of the glomerular capillaries and vacuolar degenerations of the proximal convoluted tubules. WPS exposure also significantly decreased the creatinine clearance, and significantly increased proteinuria and urinary kidney injury molecule-1 (KIM-1) concentration. Kidney lipid peroxidation, reactive oxygen species, and oxidized glutathione were significantly increased. WPS exposure also affected the concentration of reduced glutathione and the activity of catalase. Likewise, renal concentrations of interleukin (IL)-6, IL-1β and KIM-1 were augmented by WPS exposure. Moreover, WPS caused DNA damage as evaluated by comet assay, and increased the expression of cleaved caspase-3 and cytochrome C in the kidney. We conclude that exposure of mice to WPS caused renal histopathological alterations, inflammation, oxidative stress, DNA damage, and apoptosis. If the latter findings could be substantiated by controlled human studies, it would be an additional cause for disquiet about an established public health concern.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
33
|
Alarabi AB, Karim ZA, Ramirez JEM, Hernandez KR, Lozano PA, Rivera JO, Alshbool FZ, Khasawneh FT. Short-Term Exposure to Waterpipe/Hookah Smoke Triggers a Hyperactive Platelet Activation State and Increases the Risk of Thrombogenesis. Arterioscler Thromb Vasc Biol 2020; 40:335-349. [PMID: 31941383 DOI: 10.1161/atvbaha.119.313435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Cardiovascular disease is a major public health problem. Among cardiovascular disease's risk factors, tobacco smoking is considered the single most preventable cause of death, with thrombosis being the main mechanism of cardiovascular disease mortality in smokers. While tobacco smoking has been on the decline, the use of waterpipes/hookah has been rising, mainly due to the perception that they are less harmful than regular cigarettes. Strikingly, there are few studies on the negative effects of waterpipes on the cardiovascular system, and none regarding their direct contribution to thrombus formation. Approach and Results: We used a waterpipe whole-body exposure protocol that mimics real-life human exposure scenarios and investigated its effects, relative to clean air, on platelet function, hemostasis, and thrombogenesis. We found that waterpipe smoke (WPS)-exposed mice exhibited both shortened thrombus occlusion and bleeding times. Further, our results show that platelets from WPS-exposed mice are hyperactive, with enhanced agonist-induced aggregation, dense and α-granule secretion, αIIbβ3 integrin activation, phosphatidylserine expression, and platelet spreading, when compared with clean air-exposed platelets. Finally, at the molecular level, it was found that Akt (protein kinase B) and ERK (extracellular signal-regulated kinases) phosphorylation are enhanced in the WPS and in nicotine-treated platelets. CONCLUSIONS Our findings demonstrate that WPS exposure directly modulates hemostasis and increases the risk of thrombosis and that this is mediated, in part, via a state of platelet hyperactivity. The negative health impact of WPS/hookah, therefore, should not be underestimated. Moreover, this study should also help in raising public awareness of the toxic effects of waterpipe/hookah.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Zubair A Karim
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Jean E Montes Ramirez
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Keziah R Hernandez
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Patricia A Lozano
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - José O Rivera
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Fatima Z Alshbool
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| | - Fadi T Khasawneh
- From the Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso
| |
Collapse
|
34
|
Ashour AA, Haik MY, Sadek KW, Yalcin HC, Bitharas J, Aboulkassim T, Batist G, Yasmeen A, Al Moustafa AE. Substantial Toxic Effect of Water-Pipe Smoking on the Early Stage of Embryonic Development. Nicotine Tob Res 2019; 20:502-507. [PMID: 28605482 DOI: 10.1093/ntr/ntx135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Background Water-pipe smoking (WPS) is the most widespread tobacco use in the Middle-East, and is rapidly spreading globally. Smoke from WP contains most of the compounds present in cigarette smoke, although in different proportions. WPS is associated with the risk of several human diseases; however, its impact on the early stage of normal development has not been investigated yet. Thus, in this investigation, we assess the effect of WPS on the embryo at the early stage of development. Methods Chicken embryos at 3 days of incubations were used in this study. Meanwhile, we explored the outcome of WPS on angiogenesis using the chorioallantoic membrane (CAM) of the chicken embryos. Finally, quantitative real-time polymerase chain reaction was used to study the regulation of some key control genes of cell proliferation, apoptosis, and migration. Results Our data reveal that WPS inhibits angiogenesis of the CAM and in embryos in comparison with their matched controls; in addition, WPS-exposed embryos show slight reduction in their sizes. We also noted that around 80% of WPS-exposed embryos die before 10 days of incubation. More significantly, WPS induces upregulations of BCL-2, Caspase-8, ATF-3, INHIB-A, and Cadherin 6 genes, which are important key regulators of cell apoptosis, proliferation, and migration. Conclusion Our data reveal, for the first time, that WPS has very toxic effects during the early stage of embryogenesis. Thus, we believe that further studies are required to elucidate the pathogenic effect of WPS on human health especially on the embryo at the early stage of its development. Implications This investigation addresses an important gap on the outcome of WPS during the early stage of embryogenesis. Data of this study point out that WPS can have a very toxic effect on the embryo at this stage. Additionally, results from this report display for the first time that WPS can damage normal angiogenesis of the embryo thus provoking a significant number of embryonic death. Moreover, this study reveals that this effect can occur via the deregulation of several genes related to cell apoptosis, proliferation, and migration.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Bitharas
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Tahar Aboulkassim
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Gerald Batist
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada.,Oncology Department, McGill University, Montreal, QC, Canada
| | - Amber Yasmeen
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada.,Oncology Department, McGill University, Montreal, QC, Canada
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, QC, Canada.,Syrian Research Cancer Centre of the Syrian Society against Cancer, Aleppo, Syria
| |
Collapse
|
35
|
Testicular Toxicity of Water Pipe Smoke Exposure in Mice and the Effect of Treatment with Nootkatone Thereon. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2416935. [PMID: 31341528 PMCID: PMC6614988 DOI: 10.1155/2019/2416935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/02/2019] [Indexed: 12/17/2022]
Abstract
There is a worldwide increase in the popularity of water pipe (shisha) tobacco smoking including in Europe and North America. However, little is known about the effects of water pipe smoke (WPS) exposure on male reproductivity. We have recently demonstrated that WPS exposure in mice induces testicular toxicity including inflammation and oxidative stress. Nootkatone, a sesquiterpenoid found in grapefruit, has antioxidant and anti-inflammatory effects. However, the possible protective effect of nootkatone on WPS-induced testicular toxicity has not been reported before. Here, we tested the effects of treatment of mice with nootkatone on WPS-induced testicular toxicity. Mice were exposed to normal air or WPS (30 minutes/day, for 30 days). Nootkatone (90 mg/kg) was given orally to mice by gavage, 1 h before WPS or air exposure. Nootkatone treatment significantly ameliorated the WPS-induced increase in plasma levels of inhibin, uric acid, and lactate dehydrogenase activity. Nootkatone also significantly mitigated the decrease in testosterone, androgen-binding protein, and estradiol concentrations in the plasma induced by WPS. In testicular homogenates, WPS exposure caused a decrease in the total nitric oxide level and an increase in the proinflammatory cytokine interleukin-1β level and oxidative stress markers including malondialdehyde, cytochrome C, and 8-Oxo-2'-deoxyguanosine. All the latter effects were significantly alleviated by nootkatone treatment. Moreover, in testicular homogenate, nootkatone inhibited the expression of nuclear factor-kappaB induced by WPS. Likewise, histological examination of mouse testes showed that nootkatone treatment ameliorated the deterioration of spermatogenesis induced by WPS exposure. We conclude that nootkatone ameliorated the WPS-induced testicular inflammation and oxidative stress and hormonal and spermatogenesis alterations.
Collapse
|
36
|
Rababa’h AM, Bsoul RW, Alkhatatbeh MJ, Alzoubi KH, Khabour OF. Waterpipe tobacco smoke distresses cardiovascular biomarkers in mice: alterations in protein expression of metalloproteinases, endothelin and myeloperoxidase. Inhal Toxicol 2019; 31:99-106. [DOI: 10.1080/08958378.2019.1606366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Abeer M. Rababa’h
- Department of Clinical Pharmacy Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Raghad W. Bsoul
- Department of Clinical Pharmacy Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad J. Alkhatatbeh
- Department of Clinical Pharmacy Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
37
|
Waterpipe Smoke Exposure Triggers Lung Injury and Functional Decline in Mice: Protective Effect of Gum Arabic. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8526083. [PMID: 31178975 PMCID: PMC6501418 DOI: 10.1155/2019/8526083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of waterpipe (shisha) tobacco smoking has recently seen a substantial increase worldwide and is becoming a public health problem. Both human and animal studies have established that waterpipe smoke (WPS) increases airway reactivity and inflammation. Gum Arabic (GA) is a prebiotic agent that possesses antioxidant and anti-inflammatory properties. However, its effects on lung toxicity induced by WPS exposure are unknown. Thus, the aim of this study was to investigate the possible salutary effects and underlying mechanisms of GA on WPS-induced pulmonary pathophysiologic effects. C57BL/6 mice were exposed to air or WPS (30 minutes/day for one month) with or without GA treatment in drinking water (15%, w/v). Exposure to WPS induced an influx of neutrophil polymorphs in the peribronchiolar and interstitial spaces and an increase of tumor necrosis factor-α and 8-isoprostane, a marker of lipid peroxidation, concentrations in lung homogenates. The latter effects were significantly mitigated by GA treatment. Likewise, the lung DNA damage induced by WPS exposure was prevented by GA administration. Western blot analysis of the lung showed that GA inhibited nuclear factor kappa-B (NF-κB) expression caused by WPS and augmented that of nuclear factor erythroid 2-related factor 2 (Nrf2). Similarly, immunohistochemical analysis of bronchial epithelial cells and alveolar cells showed a parallel and significant increase in the nuclear expression of Nrf2 and cytoplasmic expression of glutathione in mice treated with GA and exposed to WPS. Moreover, GA administration has significantly prevented airway hyperreactivity to methacholine induced by WPS. We conclude that GA administration significantly declined the physiological, histological, biochemical, and molecular indices of lung toxicity caused by WPS exposure, indicating its beneficial respiratory impact. Considering that GA is a safe agent with health benefits in humans, our data suggest its potential usage in waterpipe smokers.
Collapse
|
38
|
Conklin DJ, Schick S, Blaha MJ, Carll A, DeFilippis A, Ganz P, Hall ME, Hamburg N, O'Toole T, Reynolds L, Srivastava S, Bhatnagar A. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. A Tobacco Centers of Regulatory Science compilation. Am J Physiol Heart Circ Physiol 2019; 316:H801-H827. [PMID: 30707616 PMCID: PMC6483019 DOI: 10.1152/ajpheart.00591.2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Although substantial evidence shows that smoking is positively and robustly associated with cardiovascular disease (CVD), the CVD risk associated with the use of new and emerging tobacco products, such as electronic cigarettes, hookah, and heat-not-burn products, remains unclear. This uncertainty stems from lack of knowledge on how the use of these products affects cardiovascular health. Cardiovascular injury associated with the use of new tobacco products could be evaluated by measuring changes in biomarkers of cardiovascular harm that are sensitive to the use of combustible cigarettes. Such cardiovascular injury could be indexed at several levels. Preclinical changes contributing to the pathogenesis of disease could be monitored by measuring changes in systemic inflammation and oxidative stress, organ-specific dysfunctions could be gauged by measuring endothelial function (flow-mediated dilation), platelet aggregation, and arterial stiffness, and organ-specific injury could be evaluated by measuring endothelial microparticles and platelet-leukocyte aggregates. Classical risk factors, such as blood pressure, circulating lipoproteins, and insulin resistance, provide robust estimates of risk, and subclinical disease progression could be followed by measuring coronary artery Ca2+ and carotid intima-media thickness. Given that several of these biomarkers are well-established predictors of major cardiovascular events, the association of these biomarkers with the use of new and emerging tobacco products could be indicative of both individual and population-level CVD risk associated with the use of these products. Differential effects of tobacco products (conventional vs. new and emerging products) on different indexes of cardiovascular injury could also provide insights into mechanisms by which they induce cardiovascular harm.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Suzaynn Schick
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael J Blaha
- Ciccarone Center for the Prevention of Heart Disease, Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Alex Carll
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Andrew DeFilippis
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Peter Ganz
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Naomi Hamburg
- Department of Medicine/Cardiovascular Medicine, School of Medicine, Boston University , Boston, Massachusetts
| | - Tim O'Toole
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Lindsay Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Sanjay Srivastava
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| |
Collapse
|
39
|
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Gum Arabic Ameliorates Impaired Coagulation and Cardiotoxicity Induced by Water-Pipe Smoke Exposure in Mice. Front Physiol 2019; 10:53. [PMID: 30858803 PMCID: PMC6397852 DOI: 10.3389/fphys.2019.00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Water-pipe smoking (WPS) is prevalent in the East and elsewhere. WPS exposure is known to induce thrombosis and cardiovascular toxicity involving inflammation and oxidative stress. Here, we have investigated the effect of Gum Arabic (GA), a prebiotic with anti-oxidant, anti-inflammatory and cytoprotective properties, on WPS exposure (30 min/day for 1 month) on coagulation and cardiac homeostasis, and their possible underlying mechanisms in mice. Animals received either GA in drinking water (15%, w/v) or water only for the entire duration of study. GA significantly mitigated thrombosis in pial microvessels in vivo, platelet aggregation in vitro, and the shortening of prothrombin time induced by WPS exposure. The increase in plasma concentrations of fibrinogen, plasminogen activator inhibitor-1 and markers of lipid peroxidation, 8-isoprostane and malondialdehyde, induced by WPS were significantly reduced by GA administration. Moreover, WPS exposure induced a significant increase in systolic blood pressure and the concentrations of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin 1β in heart homogenates. GA significantly alleviated these effects, and prevented the decrease of reduced glutathione, catalase and total nitric oxide levels in heart homogenates. Immunohistochemical analysis of the hearts showed that WPS exposure increased nuclear factor erythroid-derived 2-like 2 (Nrf2) expressions by cardiac myocytes and endothelial cells, and these effects were potentiated by the combination of GA and WPS. WPS also increased DNA damage and cleaved caspase 3, and GA administration prevented these effects. Our data, obtained in experimental murine model of WPS exposure, show that GA ameliorates WPS-induced coagulation and cardiovascular inflammation, oxidative stress, DNA damage and apoptosis, through a mechanism involving Nrf2 activation.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
40
|
Park J, Lee HJ, Kim SK, Yi JE, Shin DG, Lee JM, Kim Y, Kim YJ, Joung B. Smoking aggravates ventricular arrhythmic events in non-ischemic dilated cardiomyopathy associated with a late gadolinium enhancement in cardiac MRI. Sci Rep 2018; 8:15609. [PMID: 30353108 PMCID: PMC6199322 DOI: 10.1038/s41598-018-34145-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
Smoking is known to increase cardiovascular events, but the association and mechanisms between smoking and ventricular arrhythmic events in dilated cardiomyopathy (DCMP) are unknown. The purpose of this study is to investigate the hypothesis that smoking is associated with sudden cardiac death (SCD) and ventricular arrhythmia in DCMP patients. We enrolled 378 patients who underwent cardiovascular magnetic resonance imaging (cMRI) and were diagnosed with DCMP at two general hospitals in Korea. The clinical data and left ventricular late-gadolinium enhancement (LV-LGE) of all patients were analyzed according to being never-smokers or smokers. Smokers were more likely to be male than never-smokers, but there was no other clinical difference between them. Smokers had a greater LV-LGE ratio, and multi-segment involvement of LV-LGEs. Smoking and a low left ventricular (LV) ejection fraction were significant predictors of the presence of LV-LGEs even after adjusting for optimal medical therapy. In addition, smokers had a higher fatal ventricular arrhythmic (FVA; sustained ventricular tachycardia, and ventricular fibrillation) and FVA + SCD, and ex-smokers had a similar FVA to never-smokers during 44.3 ± 36.4 months of follow-up. Finally, smoking independently increased the FVA + SCD even after adjusting for the clinical variables and LV-LGE. Smoking is associated with a multi-segmental involvement of LV-LGE and increased FVA + SCD in DCMP patients when compared to never-smokers.
Collapse
Affiliation(s)
- Junbeom Park
- Department of Cardiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Hye-Jeong Lee
- Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sook Kyoung Kim
- Department of Cardiology, College of Medicine, Ewha Womans University, Seoul, Korea.,Department of Biomedical Engineering, Medical College, Korea University, Seoul, Korea
| | - Jeong-Eun Yi
- Department of Cardiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Dong Geum Shin
- Division of Cardiology, Department of Internal Medicine, Gangneung Asan Hospital, Gangneung, Republic of Korea
| | - Jung Myung Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yookyung Kim
- Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Young-Jin Kim
- Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Boyoung Joung
- Department of Cardiology, Internal medicine, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
41
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
42
|
Golbidi S, Li H, Laher I. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance. Antioxid Redox Signal 2018; 28:741-759. [PMID: 29212347 DOI: 10.1089/ars.2017.7257] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones and their secondary effects on intracellular kinases, and dysregulation of intracellular Ca2+ can all potentially trigger other vicious cycles. Recent clinical data suggest that boosting the antioxidant system through nonpharmacological measures, for example, lifestyle changes that include exercise have benefits that cannot easily be achieved with pharmacological interventions alone. CRITICAL ISSUES Indiscriminate manipulation of the cellular redox network could lead to a new series of ailments. An ideal approach requires meticulous scrutiny of redox balance mechanisms for individual pathologies so as to create new treatment strategies that target key pathways while minimizing side effects. FUTURE DIRECTIONS Extrapolating our understanding of redox balance to other debilitating conditions such as diabetes and the metabolic syndrome could potentially lead to devising a unifying therapeutic strategy. Antioxid. Redox Signal. 28, 741-759.
Collapse
Affiliation(s)
- Saeid Golbidi
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| | - Huige Li
- 2 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Ismail Laher
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| |
Collapse
|
43
|
Exercise Training Mitigates Water Pipe Smoke Exposure-Induced Pulmonary Impairment via Inhibiting NF- κB and Activating Nrf2 Signalling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7459612. [PMID: 29692875 PMCID: PMC5859847 DOI: 10.1155/2018/7459612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Abstract
Water pipe smoking is a tobacco smoking method commonly used in Eastern countries and is gaining popularity in Europe and North America, in particular among adolescents and young adults. Several clinical and experimental studies have reported that exposure to water pipe smoke (WPS) induces lung inflammation and impairment of pulmonary function. However, the mechanisms of such effects are not understood, as are data on the possible palliative effect of exercise training. The present study evaluated the effects of regular aerobic exercise training (treadmill: 5 days/week, 40 min/day) on subchronic exposure to WPS (30 minutes/day, 5 days/week for 2 months). C57BL/6 mice were exposed to air or WPS with or without exercise training. Airway resistance measured using forced oscillation technique was significantly and dose-dependently increased in the WPS-exposed group when compared with the air-exposed one. Exercise training significantly prevented the effect of WPS on airway resistance. Histologically, the lungs of WPS-exposed mice had focal moderate interstitial inflammatory cell infiltration consisting of neutrophil polymorphs, plasma cells, and lymphocytes. There was a mild increase in intra-alveolar macrophages and a focal damage to alveolar septae in some foci. Exercise training significantly alleviated these effects and also decreased the WPS-induced increase of tumor necrosis factor α and interleukin 6 concentrations and attenuated the increase of 8-isoprostane in lung homogenates. Likewise, the lung DNA damage induced by WPS was significantly inhibited by exercise training. Moreover, exercise training inhibited nuclear factor kappa-B (NF-κB) expression induced by WPS and increased that of nuclear factor erythroid 2-related factor 2 (Nrf2). Our findings suggest that exercise training significantly mitigated WPS-induced increase in airway resistance, inflammation, oxidative stress, and DNA damage via mechanisms that include inhibiting NF-κB and activating Nrf2 signalling pathways.
Collapse
|
44
|
Brooks HL, Lindsey ML. Guidelines for authors and reviewers on antibody use in physiology studies. Am J Physiol Heart Circ Physiol 2018; 314:H724-H732. [PMID: 29351459 PMCID: PMC6048465 DOI: 10.1152/ajpheart.00512.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Antibody use is a critical component of cardiovascular physiology research, and antibodies are used to monitor protein abundance (immunoblot analysis) and protein expression and localization (in tissue by immunohistochemistry and in cells by immunocytochemistry). With ongoing discussions on how to improve reproducibility and rigor, the goal of this review is to provide best practice guidelines regarding how to optimize antibody use for increased rigor and reproducibility in both immunoblot analysis and immunohistochemistry approaches. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-on-antibody-use-in-physiology-studies/.
Collapse
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Pharmacology and Medicine, Sarver Heart Center, College of Medicine, University of Arizona , Tucson, Arizona
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| |
Collapse
|
45
|
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Thrombosis and systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles and the effect of nootkatone thereon. Am J Physiol Heart Circ Physiol 2018; 314:H917-H927. [PMID: 29351455 DOI: 10.1152/ajpheart.00313.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adverse cardiovascular effects of particulate air pollution persist even at lower concentrations than those of the current air quality limit. Therefore, identification of safe and effective measures against particle-induced cardiovascular toxicity is needed. Nootkatone is a sesquiterpenoid in grapefruit with diverse bioactivities including anti-inflammatory and antioxidant effects. However, its protective effect on the cardiovascular injury induced by diesel exhaust particles (DEPs) has not been studied before. We assessed the possible protective effect of nootkatone (90 mg/kg) administered by gavage 1 h before intratracheal instillation of DEPs (30 μg/mouse). Twenty-four hours after the intratracheal administration of DEPs, various thrombotic and cardiac parameters were assessed. Nootkatone inhibited the prothrombotic effect induced by DEPs in pial arterioles and venules in vivo and platelet aggregation in whole blood in vitro. Also, nootkatone prevented the shortening of activated partial thromboplastin time and prothrombin time induced by DEPs. Nootkatone inhibited the increase of plasma concentration of fibrinogen, plasminogen activator inhibitor-1, interleukin-6, and lipid peroxidation induced by DEPs. Immunohistochemically, hearts showed an analogous increase in glutathione and nuclear factor erythroid-derived 2-like 2 expression by cardiac myocytes and endothelial cells after DEP exposure, and these effects were enhanced in mice treated with nootkatone + DEPs. Likewise, heme oxygenase-1 was increased in mice treated with nootkatone + DEPs compared with those treated with DEPs or nootkatone + saline. The DNA damage caused by DEPs was prevented by nootkatoone pretreatment. In conclusion, nootkatoone alleviates DEP-induced thrombogenicity and systemic and cardiac oxidative stress and DNA damage, at least partly, through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation. NEW & NOTEWORTHY Nootkatoone, a sesquiterpenoid found in grapefruit, alleviates the thrombogenicity and systemic and cardiac oxidative stress and DNA damage in mice exposed to diesel exhaust particles. Nootkatone-induced boosting of nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 levels in the heart of mice exposed to diesel exhaust particles suggests that its protective effect is, at least partly, mediated through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khod, Sultanate of Oman
| |
Collapse
|
46
|
Karahan EG, Tomatir AG, Acikbas I, Er AB, Evyapan F, Akdag B, Arslan PE. Determination of Genotoxic Damage by Comet Assay in Smokers. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1351121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E. G. Karahan
- Pamukkale University, Department of Medical Biology, Faculty of Medicine, Denizli, Turkey
| | - A. G. Tomatir
- Pamukkale University, Department of Medical Biology, Faculty of Medicine, Denizli, Turkey
| | - I. Acikbas
- Pamukkale University, Department of Medical Biology, Faculty of Medicine, Denizli, Turkey
| | - A. B. Er
- Pamukkale University, Department of Medical Biology, Faculty of Medicine, Denizli, Turkey
| | - F. Evyapan
- Pamukkale University, Department of Chest Diseases, Faculty of Medicine, Denizli, Turkey
| | - B. Akdag
- Pamukkale University, Department of Biostatistics, Faculty of Medicine, Denizli, Turkey
| | - P. E. Arslan
- Pamukkale University, Department of Medical Biology, Faculty of Medicine, Denizli, Turkey
| |
Collapse
|
47
|
Ali BH, Al Balushi KA, Ashique M, Shalaby A, Al Kindi MA, Adham SA, Karaca T, Beegam S, Yuvaraju P, Nemmar A. Chronic Water-Pipe Smoke Exposure Induces Injurious Effects to Reproductive System in Male Mice. Front Physiol 2017; 8:158. [PMID: 28420996 PMCID: PMC5378788 DOI: 10.3389/fphys.2017.00158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/28/2017] [Indexed: 02/05/2023] Open
Abstract
There is a global increase in the popularity of water-pipe tobacco smoking including in Europe and North America. Nevertheless, little is known about the male reproductive effects of water-pipe smoke (WPS), especially after long-term exposure. Here, we assessed effects of WPS exposure (30 min/day) in male mice for 6 months. Control mice were exposed to air-only for the same period of time. Twenty-four hours after the last exposure, testicular histopathology, and markers of inflammation and oxidative stress, and the tyrosine-protein kinase vascular endothelial growth factor receptor 1 (VEGFR1) were assessed in testicular homogenates. Moreover, plasma testosterone, estradiol, and luteinizing hormone (LH) concentrations were also measured. Chronic WPS exposure induced a significant decrease of testosterone and estradiol, and a slight but significant increase of LH. Glutathione reductase, catalase, and ascorbic acid were significantly decreased following WPS exposure. Plasma concentration of leptin was significantly decreased by WPS exposure, whereas that of tumor necrosis factor α and interleukin 6 was significantly increased. Histopathological analysis of the testes revealed the presence of a marked reduction in the diameter of the seminiferous tubules with reduced spermatogenesis. Transmission electron microscopy examination showed irregular thickening and wrinkling of the basement membranes with abnormal shapes and structures of the spermatozoa. VEGFR1 was overexpressed in the testis of the mice exposed to WPS and was not detected in the control. The urine concentration of cotinine, the predominant metabolite of nicotine, was significantly increased in the WPS-exposed group compared with the control group. We conclude that chronic exposure to WPS induces damaging effects to the reproductive system in male mice. If this can be confirmed in humans, it would be an additional concern to an already serious public health problem, especially with the increased use of WPS use all over the world, especially in young adults.
Collapse
Affiliation(s)
- Badreldin H Ali
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos UniversityAl Khod, Oman
| | - Khalid A Al Balushi
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos UniversityAl Khod, Oman
| | - Mohammed Ashique
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos UniversityAl Khod, Oman
| | - Asem Shalaby
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos UniversityAl Khod, Oman
| | - Mohammed A Al Kindi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos UniversityAl Khod, Oman
| | - Sirin A Adham
- Department of Biology, College of Science, Sultan Qaboos UniversityAl Khod, Oman
| | - Turan Karaca
- Department of Histology-Embryology, Faculty of Medicine, University of TrakyaEdirne, Turkey
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|