1
|
Schröper T, Mehrkens D, Leiss V, Tellkamp F, Engelhardt S, Herzig S, Birnbaumer L, Nürnberg B, Matthes J. Protective effects of Gα i3 deficiency in a murine heart-failure model of β 1-adrenoceptor overexpression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2401-2420. [PMID: 37843590 PMCID: PMC10933181 DOI: 10.1007/s00210-023-02751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
We have shown that in murine cardiomyopathy caused by overexpression of the β1-adrenoceptor, Gαi2-deficiency is detrimental. Given the growing evidence for isoform-specific Gαi-functions, we now examined the consequences of Gαi3 deficiency in the same heart-failure model. Mice overexpressing cardiac β1-adrenoceptors with (β1-tg) or without Gαi3-expression (β1-tg/Gαi3-/-) were compared to C57BL/6 wildtypes and global Gαi3-knockouts (Gαi3-/-). The life span of β1-tg mice was significantly shortened but improved when Gαi3 was lacking (95% CI: 592-655 vs. 644-747 days). At 300 days of age, left-ventricular function and survival rate were similar in all groups. At 550 days of age, β1-tg but not β1-tg/Gαi3-/- mice displayed impaired ejection fraction (35 ± 18% vs. 52 ± 16%) compared to wildtype (59 ± 4%) and Gαi3-/- mice (60 ± 5%). Diastolic dysfunction of β1-tg mice was prevented by Gαi3 deficiency, too. The increase of ANP mRNA levels and ventricular fibrosis observed in β1-tg hearts was significantly attenuated in β1-tg/Gαi3-/- mice. Transcript levels of phospholamban, ryanodine receptor 2, and cardiac troponin I were similar in all groups. However, Western blots and phospho-proteomic analyses showed that in β1-tg, but not β1-tg/Gαi3-/- ventricles, phospholamban protein was reduced while its phosphorylation increased. Here, we show that in mice overexpressing the cardiac β1-adrenoceptor, Gαi3 deficiency slows or even prevents cardiomyopathy and increases shortened life span. Previously, we found Gαi2 deficiency to aggravate cardiac dysfunction and mortality in the same heart-failure model. Our findings indicate isoform-specific interventions into Gi-dependent signaling to be promising cardio-protective strategies.
Collapse
Affiliation(s)
- Tobias Schröper
- Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Cologne, Germany
- Department of Internal Medicine III, University Hospital of Cologne, Cologne, Germany and Centre for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department of Internal Medicine III, University Hospital of Cologne, Cologne, Germany and Centre for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne, CMMC, University of Cologne, Cologne, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, and Interfaculty Centre for Pharmacogenomics and Drug Research, Eberhard Karls Universität, Tübingen, Germany
| | - Frederik Tellkamp
- CECAD Research Centre Institute for Genetics, University of Cologne, Cologne, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - Stefan Herzig
- Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Cologne, Germany
- TH Köln-University of Applied Sciences, Cologne, Germany
| | - Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
- Institute of Biomedical Research, School of Medical Sciences, Catholic University of Buenos Aires, Buenos Aires, Argentina
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, and Interfaculty Centre for Pharmacogenomics and Drug Research, Eberhard Karls Universität, Tübingen, Germany
| | - Jan Matthes
- Center of Pharmacology, Department II, University of Cologne and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
4
|
Dimitriadi A, Papaefthimiou C, Genizegkini E, Sampsonidis I, Kalogiannis S, Feidantsis K, Bobori DC, Kastrinaki G, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Adverse effects polystyrene microplastics exert on zebrafish heart - Molecular to individual level. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125969. [PMID: 34492880 DOI: 10.1016/j.jhazmat.2021.125969] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
In the present study the effects of sublethal concentrations of polystyrene microplastics (PS-MPs) on zebrafish were evaluated at multiple levels, related to fish activity and oxidative stress, metabolic changes and contraction parameters in the heart tissue. Zebrafish were fed for 21 days food enriched with PS-MPs (particle sizes 3-12 µm) and a battery of stress indices like DNA damage, lipid peroxidation, autophagy, ubiquitin levels, caspases activation, metabolite adjustments, frequency and force of ventricular contraction were measured in fish heart, parallel to fish swimming velocity. In particular, exposure to PS-MPs caused significant decrease in heart function and swimming competence, while enhanced levels of oxidative stress indices and metabolic adjustments were observed in the heart of challenged species. Among stress indices, DNA damage was more vulnerable to the effect of PS-MPs. Our results provide evidence on the multiplicity of the PS-MPs effects on cellular function, physiology and metabolic pathways and heart rate of adult fish and subsequent effects on fish activity and fish fitness thus enlightening MPs characterization as a potent environmental pollutant.
Collapse
Affiliation(s)
| | - Chrisovalantis Papaefthimiou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Eleni Genizegkini
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
5
|
Teixeira MP, Passos EF, Haddad NF, Andrade MN, Rumjanek VM, Miranda-Alves L, de Carvalho DP, de Paiva LS. In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. ENVIRONMENTAL TOXICOLOGY 2021; 36:1338-1348. [PMID: 33760381 DOI: 10.1002/tox.23130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Ouabain is a steroid described as a compound extracted from plants that is capable of binding to Na+ , K+ -ATPase, inhibiting ion transport and triggering cell signaling pathways. Due to its positive ionotropic effect, ouabain was used for more than 200 years for the treatment of cardiac dysfunctions. Numerous antitumor effects of ouabain have been described so far; however, its role on thyroid cancer is still poorly understood. Therefore, the aim of the present work was to evaluate the effect of ouabain on the biology of human papillary thyroid cancer cells. For this, three human thyroid cell lines were used: NTHY-ori, a non-tumor lineage, BCPAP and TPC-1, both derived from papillary carcinomas. Cells were cultured in the presence or absence of ouabain. Subsequently, we evaluated its effects on the viability, cell death, cell cycle, and migratory ability of these cell lines. We also investigated the impact of ouabain in IL-6/IL-6R and epithelial to mesenchymal transition markers expression. Our results indicate that ouabain (10-7 M), decreased the number of NTHY-ori, TPC-1 and BCPAP viable cells and induced cell cycle arrest after in vitro culture, but did not appear to promote cell death. In TPC-1 cells ouabain also inhibited cell migration; increased IL-6/IL-6R expression and IL-6 secretion; and diminished vimentin and SNAIL-1 expression. Collectively, our results indicate that ouabain has an antitumoral role on human papillary thyroid carcinomas in vitro. Even though additional studies are necessary, our work contributes to the discussion of the possibility of new clinical trials of ouabain.
Collapse
Affiliation(s)
- Mariana Pires Teixeira
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliza Freitas Passos
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Ferreira Haddad
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Mary Rumjanek
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
6
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
7
|
Mukherjee A, Katiyar R, Dembla E, Dembla M, Kumar P, Belkacemi A, Jung M, Beck A, Flockerzi V, Schwarz K, Schmitz F. Disturbed Presynaptic Ca 2+ Signaling in Photoreceptors in the EAE Mouse Model of Multiple Sclerosis. iScience 2020; 23:101830. [PMID: 33305185 PMCID: PMC7711289 DOI: 10.1016/j.isci.2020.101830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease caused by an auto-reactive immune system. Recent studies also demonstrated synapse dysfunctions in MS patients and MS mouse models. We previously observed decreased synaptic vesicle exocytosis in photoreceptor synapses in the EAE mouse model of MS at an early, preclinical stage. In the present study, we analyzed whether synaptic defects are associated with altered presynaptic Ca2+ signaling. Using high-resolution immunolabeling, we found a reduced signal intensity of Cav-channels and RIM2 at active zones in early, preclinical EAE. In line with these morphological alterations, depolarization-evoked increases of presynaptic Ca2+ were significantly smaller. In contrast, basal presynaptic Ca2+ was elevated. We observed a decreased expression of Na+/K+-ATPase and plasma membrane Ca2+ ATPase 2 (PMCA2), but not PMCA1, in photoreceptor terminals of EAE mice that could contribute to elevated basal Ca2+. Thus, complex Ca2+ signaling alterations contribute to synaptic dysfunctions in photoreceptors in early EAE. Less Cav-channels and RIM2 at the active zones of EAE photoreceptor synapses Decreased depolarization-evoked Ca2+-responses in EAE photoreceptor synapses Elevated basal, resting Ca2+ levels in preclinical EAE photoreceptor terminals Decreased expression of PMCA2 and Na+/K+-ATPase in EAE photoreceptor synapses
Collapse
Affiliation(s)
- Amrita Mukherjee
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Rashmi Katiyar
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Ekta Dembla
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Mayur Dembla
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Praveen Kumar
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Martin Jung
- Institute of Medical Biochemistry and Molecular Biology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Andreas Beck
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Medical School, 66421 Homburg, Germany
| | - Karin Schwarz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Saarland University, Medical School, 66421 Homburg, Germany
| |
Collapse
|
8
|
Pederson PJ, Cai S, Carver C, Powell DR, Risinger AL, Grkovic T, O'Keefe BR, Mooberry SL, Cichewicz RH. Triple-Negative Breast Cancer Cells Exhibit Differential Sensitivity to Cardenolides from Calotropis gigantea. JOURNAL OF NATURAL PRODUCTS 2020; 83:2269-2280. [PMID: 32649211 PMCID: PMC7540184 DOI: 10.1021/acs.jnatprod.0c00423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triple-negative breast cancers (TNBC) are aggressive and heterogeneous cancers that lack targeted therapies. We implemented a screening program to identify new leads for subgroups of TNBC using diverse cell lines with different molecular drivers. Through this program, we identified an extract from Calotropis gigantea that caused selective cytotoxicity in BT-549 cells as compared to four other TNBC cell lines. Bioassay-guided fractionation of the BT-549 selective extract yielded nine cardenolides responsible for the selective activity. These included eight known cardenolides and a new cardenolide glycoside. Structure-activity relationships among the cardenolides demonstrated a correlation between their relative potencies toward BT-549 cells and Na+/K+ ATPase inhibition. Calotropin, the compound with the highest degree of selectivity for BT-549 cells, increased intracellular Ca2+ in sensitive cells to a greater extent than in the resistant MDA-MB-231 cells. Further studies identified a second TNBC cell line, Hs578T, that is also highly sensitive to the cardenolides, and mechanistic studies were conducted to identify commonalities among the sensitive cell lines. Experiments showed that both cardenolide-sensitive cell lines expressed higher mRNA levels of the Na+/Ca2+ exchanger NCX1 than resistant TNBC cells. This suggests that NCX1 could be a biomarker to identify TNBC patients that might benefit from the clinical administration of a cardiac glycoside for anticancer indications.
Collapse
Affiliation(s)
- Petra J Pederson
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Shengxin Cai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chase Carver
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Douglas R Powell
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Tanja Grkovic
- Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Barry R O'Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
9
|
Leu WJ, Wang CT, Hsu JL, Chen IS, Chang HS, Guh JH. Ascleposide, a natural cardenolide, induces anticancer signaling in human castration-resistant prostatic cancer through Na + /K + -ATPase internalization and tubulin acetylation. Prostate 2020; 80:305-318. [PMID: 31905252 DOI: 10.1002/pros.23944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiac glycosides, which inhibit Na+ /K+ -ATPase, display inotropic effects for the treatment of congestive heart failure and cardiac arrhythmia. Recent studies have suggested signaling downstream of Na+ /K+ -ATPase action in the regulation of cell proliferation and apoptosis and have revealed the anticancer activity of cardiac glycosides. The study aims to characterize the anticancer potential of ascleposide, a natural cardenolide, and to uncover its primary target and underlying mechanism against human castration-resistant prostate cancer (CRPC). METHODS Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay, carboxyfluorescein succinimidyl ester staining assay and clonogenic examination. Flow cytometric analysis was used to detect the distribution of cell cycle phase, mitochondrial membrane potential, intracellular Na+ and Ca2+ levels, and reactive oxygen species production. Protein expression was examined using Western blot analysis. Endocytosis of Na+ /K+ -ATPase was determined using confocal immunofluorescence microscopic examination. RESULTS Ascleposide induced an increase of intracellular Na+ and a potent antiproliferative effect. It also induced a decrease of G1 phase distribution while an increase in both G2/M and apoptotic sub-G1 phases, and downregulated several cell cycle regulator proteins, including cyclins, Cdk, p21, and p27 Cip/Kip proteins, Rb and c-Myc. Ascleposide decreased the expression of antiapoptotic Bcl-2 members (eg, Bcl-2 and Mcl-1) but upregulated proapoptotic member (eg, Bak), leading to a significant loss of mitochondrial membrane potential and activation of both caspase-9 and caspase-3. Ascleposide also dramatically induced tubulin acetylation, leading to inhibition of the catalytic activity of Na+ /K+ -ATPase. Notably, extracellular high K+ (16 mM) significantly blunted ascleposide-mediated effects. Furthermore, ascleposide induced a p38 MAPK-dependent endocytosis of Na+ /K+ -ATPase and downregulated the protein expression of Na+ /K+ -ATPase α1 subunit. CONCLUSION Ascleposide displays antiproliferative and apoptotic activities dependent on the inhibition of Na+ /K+ -ATPase pumping activity through p38 MAPK-mediated endocytosis of Na+ /K+ -ATPase and downregulation of α1 subunit, which in turn cause tubulin acetylation and cell cycle arrest. Cell apoptosis is ultimately triggered by the activation of caspase cascade attributed to mitochondrial damage through the downregulation of Bcl-2 and Mcl-1 protein expressions while upregulation of Bak protein levels. The data also suggest the potential of ascleposide in anti-CRPC development.
Collapse
Affiliation(s)
- Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Ching-Ting Wang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung, Taiwan, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung, Taiwan, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Liu J, Nie Y, Chaudhry M, Bai F, Chuang J, Sodhi K, Shapiro JI. The Redox-Sensitive Na/K-ATPase Signaling in Uremic Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21041256. [PMID: 32069992 PMCID: PMC7072896 DOI: 10.3390/ijms21041256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions, including cardiac hypertrophy and uremic cardiomyopathy. Cardiotonic steroids (CTS), specific ligands of Na/K-ATPase, regulate its enzymatic activity (at higher concentrations) and signaling function (at lower concentrations without significantly affecting its enzymatic activity) and increase reactive oxygen species (ROS) generation. On the other hand, an increase in ROS alone also regulates the Na/K-ATPase enzymatic activity and signaling function. We termed this phenomenon the Na/K-ATPase-mediated oxidant-amplification loop, in which oxidative stress regulates both the Na/K-ATPase activity and signaling. Most recently, we also demonstrated that this amplification loop is involved in the development of uremic cardiomyopathy. This review aims to evaluate the redox-sensitive Na/K-ATPase-mediated oxidant amplification loop and uremic cardiomyopathy.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Y.N.); (M.C.); (F.B.)
- Correspondence:
| | - Ying Nie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Y.N.); (M.C.); (F.B.)
| | - Muhammad Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Y.N.); (M.C.); (F.B.)
| | - Fang Bai
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Y.N.); (M.C.); (F.B.)
| | - Justin Chuang
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (J.C.); (K.S.); (J.I.S.)
| | - Komal Sodhi
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (J.C.); (K.S.); (J.I.S.)
| | - Joseph I. Shapiro
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (J.C.); (K.S.); (J.I.S.)
| |
Collapse
|
11
|
Askari A. The other functions of the sodium pump. Cell Calcium 2019; 84:102105. [DOI: 10.1016/j.ceca.2019.102105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 01/14/2023]
|
12
|
Qi Y, Yang C, Jiang Z, Wang Y, Zhu F, Li T, Wan X, Xu Y, Xie Z, Li D, Pierre SV. Epicatechin-3-Gallate Signaling and Protection against Cardiac Ischemia/Reperfusion Injury. J Pharmacol Exp Ther 2019; 371:663-674. [PMID: 31582423 DOI: 10.1124/jpet.119.260117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 03/08/2025] Open
Abstract
At concentrations found in humans after ingestion of one to two cups of green tea, epicatechin-3-gallate (ECG) modulates Na/K-ATPase conformation and activity. Akin to ouabain, an archetypal Na/K-ATPase ligand of the cardiotonic steroid (CTS) family, ECG also activates protein kinase C epsilon type (PKCε) translocation and increases the force of contraction of the rat heart. This study evaluated whether, like ouabain, ECG also modulates Na/K-ATPase/Src receptor function and triggers pre- and postconditioning against ischemia/reperfusion (I/R) injury. In vitro, ECG activated the purified Na/K-ATPase/Src complex. In Langendorff-perfused rat hearts, submicromolar concentrations of ECG administered either before or after ischemia reduced infarct size by more than 40%, decreased lactate dehydrogenase release, and improved the recovery of cardiac function. ECG protection was blocked by PKCε inhibition and attenuated by mitochondrial KATP channel inhibition. In a unique mammalian cell system with depleted Na/K-ATPase α1 expression, ECG-induced PKCε activation persisted but protection against I/R was blunted. Taken together, these results reveal a Na/K-ATPase- and PKCε-dependent mechanism of protection by ECG that is also distinct from the mechanism of action of ouabain. These ECG properties likely contribute to the positive impact of green tea consumption on cardiovaascular health and warrant further investigation into the role of cardiac Na/K-ATPase signaling in the cardioprotective effect of green tea consumption. SIGNIFICANCE STATEMENT: Consumption of green tea, the richest dietary source of ECG, is associated with a reduced risk of cardiac mortality. Antioxidant effects of ECG and other tea polyphenols are well known, but reported for concentrations well above dietary levels. Therefore, the mechanism underlying the cardioprotective effect of green tea remains incompletely understood. This study provides experimental evidence that ECG concentrations commonly detected in humans after consumption of a cup of tea trigger the Na/K-ATPase/Src receptor in a cell-free system, activate a CTS-like signaling pathway, and provide PKCε-dependent protection against ischemia/reperfusion injury in rat hearts. Mechanistic studies in mammalian cells with targeted Na/K-ATPase depletion revealed that although Na/K-ATPase does not mediate ECG-induced PKCε activation, it is required for ECG-induced protection against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yiyao Qi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Changjun Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Zhen Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Yin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Feng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Tao Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Yunhui Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Zijian Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| | - Sandrine V Pierre
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Anhui, China (Y.Q., C.Y., F.Z., T.L., X.W., D.L.); International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China (Y.Q., F.Z., T.L., X.W., D.L.); Department of Neuroscience, Mcknight Brain Institute, University of Florida, Gainesville, Florida (C.Y.); Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia (Z.J., Y.X., Z.X., S.V.P.); Gladstone Institute of Cardiovascular Disease, The J. David Gladstone Institutes, San Francisco, California (Z.J.); and Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, China (Y.W.)
| |
Collapse
|
13
|
Deisl C, Fine M, Moe OW, Hilgemann DW. Hypertrophy of human embryonic stem cell-derived cardiomyocytes supported by positive feedback between Ca 2+ and diacylglycerol signals. Pflugers Arch 2019; 471:1143-1157. [PMID: 31250095 PMCID: PMC6614165 DOI: 10.1007/s00424-019-02293-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cell-derived cardiomyocytes develop pronounced hypertrophy in response to angiotensin-2, endothelin-1, and a selected mix of three fatty acids. All three of these responses are accompanied by increases in both basal cytoplasmic Ca2+ and diacylglycerol, quantified with the Ca2+ sensor Fluo-4 and a FRET-based diacylglycerol sensor expressed in these cardiomyocytes. The heart glycoside, ouabain (30 nM), and a recently developed inhibitor of diacylglycerol lipases, DO34 (1 μM), cause similar hypertrophy responses, and both responses are accompanied by equivalent increases of basal Ca2+ and diacylglycerol. These results together suggest that basal Ca2+ and diacylglycerol form a positive feedback signaling loop that promotes execution of cardiac growth programs in these human myocytes. Given that basal Ca2+ in myocytes depends strongly on the Na+ gradient, we also tested whether nanomolar ouabain concentrations might stimulate Na+/K+ pumps, as described by others, and thereby prevent hypertrophy. However, stimulatory effects of nanomolar ouabain (1.5 nM) were not verified on Na+/K+ pump currents in stem cell-derived myocytes, nor did nanomolar ouabain block hypertrophy induced by endothelin-1. Thus, low-dose ouabain is not a "protective" intervention under the conditions of these experiments in this human myocyte model. To summarize, the major aim of this study has been to characterize the progression of hypertrophy in human embryonic stem cell-derived cardiac myocytes in dependence on diacylglycerol and Na+ gradient changes, developing a case that positive feedback coupling between these mechanisms plays an important role in the initiation of hypertrophy programs.
Collapse
Affiliation(s)
- Christine Deisl
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| | - Michael Fine
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Orson W Moe
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Donald W Hilgemann
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| |
Collapse
|
14
|
Abstract
Ouabain preconditioning (OPC) initiated by low concentrations of the cardiac glycoside (CG) ouabain binding to Na/K-ATPase is relayed by a unique intracellular signaling and protects cardiac myocytes against ischemia/reperfusion injury. To explore more clinically applicable protocols based on CG properties, we tested whether the FDA-approved CG digoxin could trigger cardioprotective effects comparable with those of ouabain using PC, preconditioning and PostC, postconditioning protocols in the Langendorff-perfused mouse heart subjected to global ischemia and reperfusion. Ouabain or digoxin at 10 μmol/L inhibited Na/K-ATPase activity by approximately 30% and activated PKCε translocation by approximately 50%. Digoxin-induced PC (DigPC), initiated by a transient exposure before 40 minutes of ischemia, was as effective as OPC as suggested by the recovery of left ventricular developed pressure, end-diastolic pressure, and cardiac Na/K-ATPase activity after 30 minutes of reperfusion. DigPC also significantly decreased lactate dehydrogenase release and reduced infarct size, comparable with OPC. PostC protocols consisting of a single bolus injection of 100 nmoles of ouabain or digoxin in the coronary tree at the beginning of reperfusion both improved significantly the recovery of left ventricular developed pressure and decreased lactate dehydrogenase release, demonstrating a functional and structural protection comparable with the one provided by OPC. Given the unique signaling triggered by OPC, these results suggest that DigPostC could be considered for patients with risk factors and/or concurrent treatments that may limit effectiveness of ischemic PostC.
Collapse
|
15
|
Bögeholz N, Pauls P, Bauer BK, Schulte JS, Frommeyer G, Dechering DG, Boknik P, Kirchhefer U, Müller FU, Pott C, Eckardt L. Overexpression of the Na + /Ca 2+ exchanger influences ouabain-mediated spontaneous Ca 2+ activity but not positive inotropy. Fundam Clin Pharmacol 2018; 33:43-51. [PMID: 30092622 DOI: 10.1111/fcp.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 12/01/2022]
Abstract
Administration of digitalis in heart failure (HF) increases quality of life but does not carry a prognostic benefit. Digitalis is an indirect inhibitor of the Na+ /Ca2+ exchanger (NCX), which is overexpressed in HF. We therefore used the cardiac glycoside ouabain in Ca2+ imaging experiments and patch-clamp experiments in isolated ventricular myocytes from nonfailing transgenic NCX overexpressor mice (OE). In field-stimulated myocytes, ouabain (1-100 μm) increased the amplitude of the Ca2+ transient in OE and wild-type (WT) similarly. Ouabain-mediated spontaneous Ca2+ -activity was significantly more pronounced in OE compared to WT myocytes at higher concentrations (100 μm). Also, at very high concentrations (1000 μm) of ouabain, the number of cells with hypercontraction leading to cell death was higher in OE. Ouabain (10 μm) shortened the action potential duration in both genotypes. Our findings suggest that the proarrhythmic but not the inotropic effects of cardiac glycosides are enhanced by increased NCX expression. This may offer an explanation for the observed lack of prognostic benefit but increased quality of life in HF, which is accompanied by NCX upregulation.
Collapse
Affiliation(s)
- Nils Bögeholz
- Klinik für Kardiologie II: Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Paul Pauls
- Klinik für Kardiologie II: Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany.,Institut für Pharmakologie und Toxikologie, Universität Münster, Domagkstraße 12, 48149, Münster, Germany
| | - Bastian K Bauer
- Klinik für Kardiologie II: Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Jan S Schulte
- Institut für Pharmakologie und Toxikologie, Universität Münster, Domagkstraße 12, 48149, Münster, Germany
| | - Gerrit Frommeyer
- Klinik für Kardiologie II: Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Dirk G Dechering
- Klinik für Kardiologie II: Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Universität Münster, Domagkstraße 12, 48149, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universität Münster, Domagkstraße 12, 48149, Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Universität Münster, Domagkstraße 12, 48149, Münster, Germany
| | - Christian Pott
- Department of Cardiology, Schüchtermann-Klinik, Ulmenallee 5-11, 49214, Bad Rothenfelde, Germany
| | - Lars Eckardt
- Klinik für Kardiologie II: Rhythmologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| |
Collapse
|
16
|
Marck PV, Pierre SV. Na/K-ATPase Signaling and Cardiac Pre/Postconditioning with Cardiotonic Steroids. Int J Mol Sci 2018; 19:ijms19082336. [PMID: 30096873 PMCID: PMC6121447 DOI: 10.3390/ijms19082336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The first reports of cardiac Na/K-ATPase signaling, published 20 years ago, have opened several major fields of investigations into the cardioprotective action of low/subinotropic concentrations of cardiotonic steroids (CTS). This review focuses on the protective cardiac Na/K-ATPase-mediated signaling triggered by low concentrations of ouabain and other CTS, in the context of the enduring debate over the use of CTS in the ischemic heart. Indeed, as basic and clinical research continues to support effectiveness and feasibility of conditioning interventions against ischemia/reperfusion injury in acute myocardial infarction (AMI), the mechanistic information available to date suggests that unique features of CTS-based conditioning could be highly suitable, alone /or as a combinatory approach.
Collapse
Affiliation(s)
- Pauline V Marck
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| |
Collapse
|
17
|
Belliard A, Gulati GK, Duan Q, Alves R, Brewer S, Madan N, Sottejeau Y, Wang X, Kalisz J, Pierre SV. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep 2017; 4:4/19/e12991. [PMID: 27702882 PMCID: PMC5064143 DOI: 10.14814/phy2.12991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Cardiac glycosides (CG) are traditionally known as positive cardiac inotropes that inhibit Na+/K+‐ATPase‐dependent ion transport. CG also trigger‐specific signaling pathways through the cardiac Na+/K+‐ATPase, with beneficial effects in ischemia/reperfusion (I/R) injury (e.g., ouabain preconditioning, known as OPC) and hypertrophy. Our current understanding of hypersensitivity to CG and subsequent toxicity in the ischemic heart is mostly based on specific I/R‐induced alterations of the Na+/K+‐ATPase enzymatic function and has remained incomplete. The primary goal of this study was to investigate and compare the impact of I/R on Na+/K+‐ATPase enzymatic and signaling functions. Second, we assessed the impact of OPC on both functions. Langendorff‐perfused rat hearts were exposed to 30 min of ischemia and 30 min of reperfusion. At the inotropic concentration of 50 μmol/L, ouabain increased ERK and Akt phosphorylation in control hearts. In I/R hearts, this concentration did not induced positive inotropy and failed to induce Akt or ERK phosphorylation. The inotropic response to dobutamine as well as insulin signaling persisted, suggesting specific alterations of Na+/K+‐ATPase. Indeed, Na+/K+‐ATPase protein expression was intact, but the enzyme activity was decreased by 60% and the enzymatic function of the isoform with high affinity for ouabain was abolished following I/R. Strikingly, OPC prevented all I/R‐induced alterations of the receptor. Further studies are needed to reveal the respective roles of I/R‐induced modulations of Na+/K+‐ATPase enzymatic and signaling functions in cardiomyocyte death.
Collapse
Affiliation(s)
- Aude Belliard
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Gaurav K Gulati
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Qiming Duan
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Rosana Alves
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio Marshall Institute for Interdisciplinary Research, Huntington, West Virginia
| | - Shannon Brewer
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Namrata Madan
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia
| | - Yoann Sottejeau
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia
| | - Jennifer Kalisz
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, Ohio
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, West Virginia
| |
Collapse
|
18
|
Deeter A, Dalman M, Haddad J, Duan ZH. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks. PLoS One 2017; 12:e0186004. [PMID: 29049295 PMCID: PMC5648141 DOI: 10.1371/journal.pone.0186004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.
Collapse
Affiliation(s)
- Anthony Deeter
- Integrated Bioscience, University of Akron, Akron, Ohio, United States of America
- Department of Computer Science, University of Akron, Akron, Ohio, United States of America
- * E-mail:
| | - Mark Dalman
- College of Public Health, Department of Biostatistics, Environmental Health Sciences and Epidemiology, Kent State University, Kent, Ohio, United States of America
- College of Podiatric Medicine, Department of Preclinical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Joseph Haddad
- Department of Computer Science, University of Akron, Akron, Ohio, United States of America
| | - Zhong-Hui Duan
- Integrated Bioscience, University of Akron, Akron, Ohio, United States of America
- Department of Computer Science, University of Akron, Akron, Ohio, United States of America
| |
Collapse
|
19
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
20
|
Bai Y, Wu J, Li D, Morgan EE, Liu J, Zhao X, Walsh A, Saikumar J, Tinkel J, Joe B, Gupta R, Liu L. Differential roles of caveolin-1 in ouabain-induced Na+/K+-ATPase cardiac signaling and contractility. Physiol Genomics 2016; 48:739-748. [PMID: 27519543 PMCID: PMC5243228 DOI: 10.1152/physiolgenomics.00042.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022] Open
Abstract
Binding of ouabain to cardiac Na+/K+-ATPase initiates cell signaling and causes contractility in cardiomyocytes. It is widely accepted that caveolins, structural proteins of caveolae, have been implicated in signal transduction. It is known that caveolae play a role in Na+/K+-ATPase functions. Regulation of caveolin-1 in ouabain-mediated cardiac signaling and contractility has never been reported. The aim of this study is to compare ouabain-induced cardiac signaling and contractility in wild-type (WT) and caveolin-1 knockout (cav-1 KO) mice. In contrast with WT cardiomyocytes, ouabain-induced signaling e.g., activation of phosphoinositide 3-kinase-α/Akt and extracellular signal-regulated kinases (ERK)1/2, and hypertrophic growth were significantly reduced in cav-1 KO cardiomyocytes. Interactions of the Na+/K+-ATPase α1-subunit with caveolin-3 and the Na+/K+-ATPase α1-subunit with PI3K-α were also decreased in cav-1 KO cardiomyocytes. The results from cav-1 KO mouse embryonic fibroblasts also proved that cav-1 significantly attenuated ouabain-induced ERK1/2 activation without alteration in protein and cholesterol distribution in caveolae/lipid rafts. Intriguingly, the effect of ouabain induced positive inotropy in vivo (via transient infusion of ouabain, 0.48 nmol/g body wt) was not attenuated in cav-1 KO mice. Furthermore, ouabain (1-100 μM) induced dose-dependent contractility in isolated working hearts from WT and cav-1 KO mice. The effects of ouabain on contractility between WT and cav-1 KO mice were not significantly different. These results demonstrated differential roles of cav-1 in the regulation of ouabain signaling and contractility. Signaling by ouabain, in contrast to contractility, may be a redundant property of Na+/K+-ATPase.
Collapse
Affiliation(s)
- Yan Bai
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio; Pediatrics Department of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China
| | - Jian Wu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Daxiang Li
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China; and
| | - Eric E Morgan
- Center for Hypertension and Personalized Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Jiang Liu
- Department of Pharmacology, Physiology and Toxicology, JCE School of Medicine, Marshall University, Huntington, West Virginia
| | - Xiaochen Zhao
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Aaron Walsh
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Jagannath Saikumar
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Jodi Tinkel
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Bina Joe
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio; Center for Hypertension and Personalized Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Rajesh Gupta
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Lijun Liu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio; Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio; Center for Hypertension and Personalized Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio;
| |
Collapse
|
21
|
Liu L, Wu J, Kennedy DJ. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms. Front Physiol 2016; 7:382. [PMID: 27667975 PMCID: PMC5016610 DOI: 10.3389/fphys.2016.00382] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo Toledo, OH, USA
| | - Jian Wu
- Center for Craniofacial Molecular Biology, University of Southern California Los Angeles, CA, USA
| | - David J Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|
22
|
Blaustein MP, Chen L, Hamlyn JM, Leenen FHH, Lingrel JB, Wier WG, Zhang J. Pivotal role of α2 Na + pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 2016; 594:6079-6103. [PMID: 27350568 DOI: 10.1113/jp272419] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
Reduced smooth muscle (SM)-specific α2 Na+ pump expression elevates basal blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl, whilst SM-α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged ouabain infusion induces hypertension in rodents, and ouabain-resistant mutation of the α2 ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure overload-induced heart hypertrophy and failure are attenuated in cardio-specific α2 knockout, cardio-specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and circulating endogenous ouabain (EO). Circulating EO modulates ouabain-sensitive α2 Na+ pump activity and Ca2+ transporter expression and, via Na+ /Ca2+ exchange, Ca2+ homeostasis. This regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada, K1Y 4W7
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
23
|
Wu J, Li D, Du L, Baldawi M, Gable ME, Askari A, Liu L. Ouabain prevents pathological cardiac hypertrophy and heart failure through activation of phosphoinositide 3-kinase α in mouse. Cell Biosci 2015; 5:64. [PMID: 26587223 PMCID: PMC4652409 DOI: 10.1186/s13578-015-0053-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/03/2015] [Indexed: 11/14/2022] Open
Abstract
Background
Use of low doses of digitalis to prevent the development of heart failure was advocated decades ago, but conflicting results of early animal studies dissuaded further research on this issue. Recent discoveries of digitalis effects on cell signal pathways prompted us to reexamine the possibility of this prophylactic action of digitalis. The specific aim of the present study was to determine if subinotropic doses of ouabain would prevent pressure overload-induced cardiac remodeling in the mouse by activating phosphoinositide 3-kinase α (PI3Kα). Results Studies were done on an existing transgenic mouse deficient in cardiac PI3Kα (p85-KO) but with normal cardiac contractility, a control mouse (Con), and on cultured adult cardiomyocytes. In Con myocytes, but not in p85-KO myocytes, ouabain activated PI3Kα and Akt, and caused cell growth. This occurred at low ouabain concentrations that did not activate the EGFR-Src/Ras/Raf/ERK cascade. Con and p85-KO mice were subjected to transverse aortic constriction (TAC) for 8 weeks. A subinotropic dose of ouabain (50 µg/kg/day) was constantly administrated by osmotic mini-pumps for the first 4 weeks. All mice were monitored by echocardiography throughout. Ouabain early treatment attenuated TAC-induced cardiac hypertrophy and fibrosis, and improved cardiac function in TAC-operated Con mice but not in TAC-operated p85-KO mice. TAC downregulated α2-isoform of Na+/K+-ATPase but not its α1-isoform in Con hearts, and ouabain treatment prevented the downregulation of α2-isoform. TAC-induced reduction of α2-isoform did not occur in p85-KO hearts. Conclusions Our results show that (a) safe doses of ouabain prevent or delay cardiac remodeling of pressure overloaded mouse heart; and (b) these prophylactic effects are due to ouabain binding to α2-isoform resulting in the selective activation of PI3Kα. Our findings also suggest that potential prophylactic use of digitalis for prevention of heart failure in man deserves serious consideration. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0053-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Wu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, 3000 Arlington Ave., MS 1010, Toledo, OH 43614 USA ; Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA USA
| | - Daxiang Li
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, 3000 Arlington Ave., MS 1010, Toledo, OH 43614 USA ; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Lingling Du
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, 3000 Arlington Ave., MS 1010, Toledo, OH 43614 USA
| | - Mustafa Baldawi
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, 3000 Arlington Ave., MS 1010, Toledo, OH 43614 USA
| | - Marjorie E Gable
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, 3000 Arlington Ave., MS 1010, Toledo, OH 43614 USA
| | - Amir Askari
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, 3000 Arlington Ave., MS 1010, Toledo, OH 43614 USA
| | - Lijun Liu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, 3000 Arlington Ave., MS 1010, Toledo, OH 43614 USA
| |
Collapse
|
24
|
Keller K, Maass M, Dizayee S, Leiss V, Annala S, Köth J, Seemann WK, Müller-Ehmsen J, Mohr K, Nürnberg B, Engelhardt S, Herzig S, Birnbaumer L, Matthes J. Lack of Gαi2 leads to dilative cardiomyopathy and increased mortality in β1-adrenoceptor overexpressing mice. Cardiovasc Res 2015; 108:348-56. [PMID: 26464333 DOI: 10.1093/cvr/cvv235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023] Open
Abstract
AIMS Inhibitory G (Gi) proteins have been proposed to be cardioprotective. We investigated effects of Gαi2 knockout on cardiac function and survival in a murine heart failure model of cardiac β1-adrenoceptor overexpression. METHODS AND RESULTS β1-transgenic mice lacking Gαi2 (β1-tg/Gαi2 (-/-)) were compared with wild-type mice and littermates either overexpressing cardiac β1-adrenoceptors (β1-tg) or lacking Gαi2 (Gαi2 (-/-)). At 300 days, mortality of mice only lacking Gαi2 was already higher compared with wild-type or β1-tg, but similar to β1-tg/Gαi2 (-/-), mice. Beyond 300 days, mortality of β1-tg/Gαi2 (-/-) mice was enhanced compared with all other genotypes (mean survival time: 363 ± 21 days). At 300 days of age, echocardiography revealed similar cardiac function of wild-type, β1-tg, and Gαi2 (-/-) mice, but significant impairment for β1-tg/Gαi2 (-/-) mice (e.g. ejection fraction 14 ± 2 vs. 40 ± 4% in wild-type mice). Significantly increased ventricle-to-body weight ratio (0.71 ± 0.06 vs. 0.48 ± 0.02% in wild-type mice), left ventricular size (length 0.82 ± 0.04 vs. 0.66 ± 0.03 cm in wild types), and atrial natriuretic peptide and brain natriuretic peptide expression (mRNA: 2819 and 495% of wild-type mice, respectively) indicated hypertrophy. Gαi3 was significantly up-regulated in Gαi2 knockout mice (protein compared with wild type: 340 ± 90% in Gαi2 (-/-) and 394 ± 80% in β1-tg/Gαi2 (-/-), respectively). CONCLUSIONS Gαi2 deficiency combined with cardiac β1-adrenoceptor overexpression strongly impaired survival and cardiac function. At 300 days of age, β1-adrenoceptor overexpression alone had not induced cardiac hypertrophy or dysfunction while there was overt cardiomyopathy in mice additionally lacking Gαi2. We propose an enhanced effect of increased β1-adrenergic drive by the lack of protection via Gαi2. Gαi3 up-regulation was not sufficient to compensate for Gαi2 deficiency, suggesting an isoform-specific or a concentration-dependent mechanism.
Collapse
Affiliation(s)
- Kirsten Keller
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Martina Maass
- Department of Internal Medicine III, University Hospital of Cologne, Cologne, Germany
| | - Sara Dizayee
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tuebingen, Germany
| | - Suvi Annala
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Jessica Köth
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Wiebke K Seemann
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | | | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tuebingen, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
| | - Stefan Herzig
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, NIEHS, NIH (Department of Health and Human Services), Durham, USA
| | - Jan Matthes
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| |
Collapse
|
25
|
Wu Y, Wang L, Ma J, Song Y, Zhang P, Luo A, Fu C, Cao Z, Wang X, Shryock JC, Belardinelli L. Protein kinase C and Ca(2+) -calmodulin-dependent protein kinase II mediate the enlarged reverse INCX induced by ouabain-increased late sodium current in rabbit ventricular myocytes. Exp Physiol 2015; 100:399-409. [PMID: 25641541 DOI: 10.1113/expphysiol.2014.083972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of protein kinase C (PKC) and Ca(2+) -calmodulin-dependent protein kinase II (CaMKII) on late sodium current (INaL ), reverse Na(+) -Ca(2+) exchange current (reverse INCX ) or intracellular Ca(2+) levels changed by ouabain? What is the main finding and its importance? Ouabain, even at low concentrations (0.5-8.0 μm), can increase INaL and reverse INCX , and these effects may contribute to the effect of the glycoside to increase Ca(2+) transients and contractility. Both PKC and CaMKII activities may mediate or modulate these processes. It has been reported that the cardiac glycoside ouabain can increase the late sodium current (INaL ), as well as the diastolic intracellular calcium concentration and contractile shortening. Whether an increase of INaL participates in a pathway that can mediate the positive inotropic response to ouabain is unknown. We therefore determined the effects of ouabain on INaL , reverse Na(+) -Ca(2+) exchange current (reverse INCX ), intracellular Ca(2+) ([Ca(2+) ]i ) levels and contractile shortening in rabbit isolated ventricular myocytes. Ouabain (0.1-8 μm) markedly increased INaL and reverse INCX in a concentration-dependent manner, with significant effects at concentrations as low as 0.5 and 1 μm. These effects of ouabain were suppressed by the INaL inhibitors TTX and ranolazine, the protein kinase C inhibitor bisindolylmaleimide and the Ca(2+) -calmodulin-dependent protein kinase II inhibitor KN-93. The enhancement by 0.5 μm ouabain of ventricular myocyte contractility and intracellular Ca(2+) transients was suppressed by 2.0 μm TTX. We conclude that ouabain, even at low concentrations (0.5-8.0 μm), can increase INaL and reverse INCX , and these effects may contribute to the effect of the glycoside to increase Ca(2+) transients and contractility. Both protein kinase C and Ca(2+) -calmodulin-dependent protein kinase II activities may mediate or modulate these processes.
Collapse
Affiliation(s)
- Ying Wu
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Petrushanko IY, Simonenko OV, Burnysheva KM, Klimanova EA, Dergousova EA, Mitkevich VA, Lopina OD, Makarov AA. The ability of cells to adapt to low-oxygen conditions is associated with glutathionylation of Na,K-ATPase. Mol Biol 2015. [DOI: 10.1134/s0026893315010148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Role of phosphoinositide 3-kinase IA (PI3K-IA) activation in cardioprotection induced by ouabain preconditioning. J Mol Cell Cardiol 2015; 80:114-25. [PMID: 25575882 DOI: 10.1016/j.yjmcc.2014.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/06/2014] [Accepted: 12/26/2014] [Indexed: 11/23/2022]
Abstract
Acute myocardial infarction, the clinical manifestation of ischemia-reperfusion (IR) injury, is a leading cause of death worldwide. Like ischemic preconditioning (IPC) induced by brief episodes of ischemia and reperfusion, ouabain preconditioning (OPC) mediated by Na/K-ATPase signaling protects the heart against IR injury. Class I PI3K activation is required for IPC, but its role in OPC has not been investigated. While PI3K-IB is critical to IPC, studies have suggested that ouabain signaling is PI3K-IA-specific. Hence, a pharmacological approach was used to test the hypothesis that OPC and IPC rely on distinct PI3K-I isoforms. In Langendorff-perfused mouse hearts, OPC was initiated by 4 min of ouabain 10 μM and IPC was triggered by 4 cycles of 5 min ischemia and reperfusion prior to 40 min of global ischemia and 30 min of reperfusion. Without affecting PI3K-IB, ouabain doubled PI3K-IA activity and Akt phosphorylation at Ser(473). IPC and OPC significantly preserved cardiac contractile function and tissue viability as evidenced by left ventricular developed pressure and end-diastolic pressure recovery, reduced lactate dehydrogenase release, and decreased infarct size. OPC protection was blunted by the PI3K-IA inhibitor PI-103, but not by the PI3K-IB inhibitor AS-604850. In contrast, IPC-mediated protection was not affected by PI-103 but was blocked by AS-604850, suggesting that PI3K-IA activation is required for OPC while PI3K-IB activation is needed for IPC. Mechanistically, PI3K-IA activity is required for ouabain-induced Akt activation but not PKCε translocation. However, in contrast to PKCε translocation which is critical to protection, Akt activity was not required for OPC. Further studies shall reveal the identity of the downstream targets of this new PI3K IA-dependent branch of OPC. These findings may be of clinical relevance in patients at risk for myocardial infarction with underlying diseases and/or medication that could differentially affect the integrity of cardiac PI3K-IA and IB pathways.
Collapse
|
28
|
Khundmiri SJ. Advances in understanding the role of cardiac glycosides in control of sodium transport in renal tubules. J Endocrinol 2014; 222:R11-24. [PMID: 24781255 DOI: 10.1530/joe-13-0613] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiotonic steroids have been used for the past 200 years in the treatment of congestive heart failure. As specific inhibitors of membrane-bound Na(+)/K(+) ATPase, they enhance cardiac contractility through increasing myocardial cell calcium concentration in response to the resulting increase in intracellular Na concentration. The half-minimal concentrations of cardiotonic steroids required to inhibit Na(+)/K(+) ATPase range from nanomolar to micromolar concentrations. In contrast, the circulating levels of cardiotonic steroids under physiological conditions are in the low picomolar concentration range in healthy subjects, increasing to high picomolar levels under pathophysiological conditions including chronic kidney disease and heart failure. Little is known about the physiological function of low picomolar concentrations of cardiotonic steroids. Recent studies have indicated that physiological concentrations of cardiotonic steroids acutely stimulate the activity of Na(+)/K(+) ATPase and activate an intracellular signaling pathway that regulates a variety of intracellular functions including cell growth and hypertrophy. The effects of circulating cardiotonic steroids on renal salt handling and total body sodium homeostasis are unknown. This review will focus on the role of low picomolar concentrations of cardiotonic steroids in renal Na(+)/K(+) ATPase activity, cell signaling, and blood pressure regulation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Division of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USADivision of Nephrology and HypertensionDepartment of MedicineDepartment of Physiology and BiophysicsUniversity of Louisville, 570 S. Preston Street, Louisville, Kentucky 40202, USA
| |
Collapse
|
29
|
Hertz L, Peng L, Song D. Ammonia, like K(+), stimulates the Na(+), K(+), 2 Cl(-) cotransporter NKCC1 and the Na(+),K(+)-ATPase and interacts with endogenous ouabain in astrocytes. Neurochem Res 2014; 40:241-57. [PMID: 24929663 DOI: 10.1007/s11064-014-1352-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/12/2022]
Abstract
Brain edema during hepatic encephalopathy or acute liver failure as well as following brain ischemia has a multifactorial etiology, but it is a dangerous and occasionally life-threatening complication because the brain is enclosed in the rigid skull. During ischemia the extracellular K(+) concentration increases to very high levels, which when energy becomes available during reperfusion stimulate NKCC1, a cotransporter driven by the transmembrane ion gradients established by the Na(+),K(+)-ATPase and accumulating Na(+), K(+) and 2 Cl(-) together with water. This induces pronounced astrocytic swelling under pathologic conditions, but NKCC1 is probably also activated, although to a lesser extent, during normal brain function. Redistribution of ions and water between extra- and intracellular phases does not create brain edema, which in addition requires uptake across the blood-brain barrier. During hepatic encephalopathy and acute liver failure a crucial factor is the close resemblance between K(+) and NH4(+) in their effects not only on NKCC1 and Na(+),K(+)-ATPase but also on Na(+),K(+)-ATPase-induced signaling by endogenous ouabains. These in turn activate production of ROS and nitrosactive agents which slowly sensitize NKCC1, explaining why cell swelling and brain edema generally are delayed under hyperammonemic conditions, although very high ammonia concentrations can cause immediate NKCC1 activation.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 92 Beier Road, Heping District, Shenyang, People's Republic of China
| | | | | |
Collapse
|
30
|
Li D, Wu J, Bai Y, Zhao X, Liu L. Isolation and culture of adult mouse cardiomyocytes for cell signaling and in vitro cardiac hypertrophy. J Vis Exp 2014. [PMID: 24894542 DOI: 10.3791/51357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Technological advances have made genetically modified mice, including transgenic and gene knockout mice, an essential tool in many research fields. Adult cardiomyocytes are widely accepted as a good model for cardiac cellular physiology and pathophysiology, as well as for pharmaceutical intervention. Genetically modified mice preclude the need for complicated cardiomyocyte infection processes to generate the desired genotype, which are inefficient due to cardiomyocytes' terminal differentiation. Isolation and culture of high quantity and quality functional cardiomyocytes will dramatically benefit cardiovascular research and provide an important tool for cell signaling transduction research and drug development. Here, we describe a well-established method for isolation of adult mouse cardiomyocytes that can be implemented with little training. The mouse heart is excised and cannulated to an isolated heart system, then perfused with a calcium-free and high potassium buffer followed by type II collagenase digestion in Langendorff retrograde perfusion mode. This protocol yields a consistent result for the collection of functional adult mouse cardiomyocytes from a variety of genetically modified mice.
Collapse
Affiliation(s)
- Daxiang Li
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences
| | - Jian Wu
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences
| | - Yan Bai
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences
| | - Xiaochen Zhao
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences
| | - Lijun Liu
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine and Life Sciences;
| |
Collapse
|
31
|
Wu J, Akkuratov EE, Bai Y, Gaskill CM, Askari A, Liu L. Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry 2013; 52:9059-67. [PMID: 24266852 PMCID: PMC3868411 DOI: 10.1021/bi4011804] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Exposure
of intact cells to selective inhibitors of Na+/K+-ATPase such as ouabain activates several growth-related
cell signaling pathways. It has been suggested that the initial event
of these pathways is the binding of ouabain to a preexisting complex
of Src with Na+/K+-ATPase of the plasma membrane.
The aim of this work was to evaluate the role of Src in the ouabain-induced
activation of phosphatidylinositide 3-kinase 1A (PI3K1A) and its downstream
consequences. When fibroblasts devoid of Src (SYF cells) and controls
(Src++ cells) were exposed to ouabain, PI3K1A, Akt, and
proliferative growth were similarly stimulated in both cell lines.
Ouabain-induced activation of Akt was not prevented by the Src inhibitor
PP2. In contrast, ERK1/2 were not activated by ouabain in SYF cells
but were stimulated in Src++ cells; this was prevented
by PP2. In isolated adult mouse cardiac myocytes, where ouabain induces
hypertrophic growth, PP2 also did not prevent ouabain-induced activation
of Akt and the resulting hypertrophy. Ouabain-induced increases in
the levels of co-immunoprecipitation of the α-subunit of Na+/K+-ATPase with the p85 subunit of PI3K1A were
noted in SYF cells, Src++ cells, and adult cardiac myocytes.
In conjunction with previous findings, the results presented here
indicate that (a) if there is a preformed complex of Src and Na+/K+-ATPase, it is irrelevant to ouabain-induced
activation of the PI3K1A/Akt pathway through Na+/K+-ATPase and (b) a more likely, but not established, mechanism
of linkage of Na+/K+-ATPase to PI3K1A is the
ouabain-induced interaction of a proline-rich domain of the α-subunit
of Na+/K+-ATPase with the SH3 domain of the
p85 subunit of PI3K1A.
Collapse
Affiliation(s)
- Jian Wu
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus , Toledo, Ohio 43614, United States
| | | | | | | | | | | |
Collapse
|
32
|
Sodium/calcium exchanger is upregulated by sulfide signaling, forms complex with the β1 and β3 but not β2 adrenergic receptors, and induces apoptosis. Pflugers Arch 2013; 466:1329-42. [PMID: 24114174 DOI: 10.1007/s00424-013-1366-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/06/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Hydrogen sulfide (H2S) as a novel gasotransmitter regulates variety of processes, including calcium transport systems. Sodium calcium exchanger (NCX) is one of the key players in a regulation calcium homeostasis. Thus, the aims of our work were to determine effect of sulfide signaling on the NCX type 1 (NCX1) expression and function in HeLa cells, to investigate the relationship of β-adrenergic receptors with the NCX1 in the presence and/or absence of H2S, and to determine physiological importance of this potential communication. As a H2S donor, we used morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate-GYY4137. We observed increased levels of the NCX1 mRNA, protein, and activity after 24 h of GYY4137 treatment. This increase was accompanied by elevated cAMP due to the GYY4137 treatment, which was completely abolished, when NCX1 was silenced. Increased cAMP levels would point to upregulation of β-adrenergic receptors. Indeed, GYY4137 increased expression of β1 and β3 (but not β2) adrenergic receptors. These receptors co-precipitated, co-localized with the NCX1, and induced apoptosis in the presence of H2S. Our results suggest that sulfide signaling plays a role in regulation of the NCX1, β1 and β3 adrenergic receptors, their co-localization, and stimulation of apoptosis, which might be of a potential importance in cancer treatment.
Collapse
|