1
|
Cassavaugh J, Longhi MS, Robson SC. Impact of Estrogen on Purinergic Signaling in Microvascular Disease. Int J Mol Sci 2025; 26:2105. [PMID: 40076726 PMCID: PMC11900469 DOI: 10.3390/ijms26052105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Microvascular ischemia, especially in the heart and kidneys, is associated with inflammation and metabolic perturbation, resulting in cellular dysfunction and end-organ failure. Heightened production of adenosine from extracellular nucleotides released in response to inflammation results in protective effects, inclusive of adaptations to hypoxia, endothelial cell nitric oxide release with the regulation of vascular tone, and inhibition of platelet aggregation. Purinergic signaling is modulated by ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39, which is the dominant factor dictating vascular metabolism of extracellular ATP to adenosine throughout the cardiovascular tissues. Excess levels of extracellular purine metabolites, however, have been associated with metabolic and cardiovascular diseases. Physiological estrogen signaling is anti-inflammatory with vascular protective effects, but pharmacological replacement use in transgender and postmenopausal individuals is associated with thrombosis and other side effects. Crucially, the loss of this important sex hormone following menopause or with gender reassignment is associated with worsened pro-inflammatory states linked to increased oxidative stress, myocardial fibrosis, and, ultimately, diastolic dysfunction, also known as Yentl syndrome. While there is a growing body of knowledge on distinctive purinergic or estrogen signaling and endothelial health, much less is known about the relationships between the two signaling pathways. Continued studies of the interactions between these pathways will allow further insight into future therapeutic targets to improve the cardiovascular health of aging women without imparting deleterious side effects.
Collapse
Affiliation(s)
- Jessica Cassavaugh
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (M.S.L.); (S.C.R.)
| | | | | |
Collapse
|
2
|
Lamb IR, Novielli‐Kuntz NM, Murrant CL. The role of pannexin/purinergic signaling in intervascular communication from capillaries during skeletal muscle contraction in male Golden hamsters. Physiol Rep 2024; 12:e16113. [PMID: 38898485 PMCID: PMC11186745 DOI: 10.14814/phy2.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
We sought to determine the physiological relevance of pannexin/purinergic-dependent signaling in mediating conducted vasodilation elicited by capillary stimulation through skeletal muscle contraction. Using hamster cremaster muscle and intravital microscopy we stimulated capillaries through local muscle contraction while observing the associated upstream arteriole. Capillaries were stimulated with muscle contraction at low and high contraction (6 and 60CPM) and stimulus frequencies (4 and 40 Hz) in the absence and presence of pannexin blocker mefloquine (MEF; 10-5 M), purinergic receptor antagonist suramin (SUR 10-5 M) and gap-junction uncoupler halothane (HALO, 0.07%) applied between the capillary stimulation site and the upstream arteriolar observation site. Conducted vasodilations elicited at 6CPM were inhibited by HALO while vasodilations at 60CPM were inhibited by MEF and SUR. The conducted response elicited at 4 Hz was inhibited by MEF while the vasodilation at 40 Hz was unaffected by any blocker. Therefore, upstream vasodilations resulting from capillary stimulation via muscle contraction are dependent upon a pannexin/purinergic-dependent pathway that appears to be stimulation parameter-dependent. Our data highlight a physiological importance of the pannexin/purinergic pathway in facilitating communication between capillaries and upstream arteriolar microvasculature and, consequently, indicating that this pathway may play a crucial role in regulating blood flow in response to skeletal muscle contraction.
Collapse
Affiliation(s)
- Iain R. Lamb
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | | | - Coral L. Murrant
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
3
|
Mironova GY, Kowalewska PM, El-Lakany M, Tran CHT, Sancho M, Zechariah A, Jackson WF, Welsh DG. The conducted vasomotor response and the principles of electrical communication in resistance arteries. Physiol Rev 2024; 104:33-84. [PMID: 37410448 PMCID: PMC11918294 DOI: 10.1152/physrev.00035.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
Biological tissues are fed by arterial networks whose task is to set blood flow delivery in accordance with energetic demand. Coordinating vasomotor activity among hundreds of neighboring segments is an essential process, one dependent upon electrical information spreading among smooth muscle and endothelial cells. The "conducted vasomotor response" is a functional expression of electrical spread, and it is this process that lies at the heart of this critical review. Written in a narrative format, this review first highlights historical manuscripts and then characterizes the conducted response across a range of preparations. Trends are highlighted and used to guide subsequent sections, focused on cellular foundations, biophysical underpinnings, and regulation in health and disease. Key information has been tabulated; figures reinforce grounding concepts and reveal a framework within which theoretical and experimental work can be rationalized. This summative review highlights that despite 30 years of concerted experimentation, key aspects of the conducted response remain ill defined. Of note is the need to rationalize the regulation and deterioration of conduction in pathobiological settings. New quantitative tools, along with transgenic technology, are discussed as a means of propelling this investigative field forward.
Collapse
Affiliation(s)
- Galina Yu Mironova
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paulina M Kowalewska
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mohammed El-Lakany
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Cam Ha T Tran
- Department of Physiology, Faculty of Medicine, University of Nevada (Reno), Reno, Nevada, United States
| | - Maria Sancho
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anil Zechariah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
5
|
Murrant CL, Fletcher NM. Capillary communication: the role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol 2022; 323:H1019-H1036. [PMID: 36149771 DOI: 10.1152/ajpheart.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historically, capillaries have been viewed as the microvascular site for flux of nutrients to cells and removal of waste products. Capillaries are the most numerous blood vessel segment within the tissue, whose vascular wall consists of only a single layer of endothelial cells and are situated within microns of each cell of the tissue, all of which optimizes capillaries for the exchange of nutrients between the blood compartment and the interstitial space of tissues. There is, however, a growing body of evidence to support that capillaries play an important role in sensing the tissue environment, coordinating microvascular network responses, and controlling blood flow. Much of our growing understanding of capillaries stems from work in skeletal muscle and more recent work in the brain, where capillaries can be stimulated by products released from cells of the tissue during increased activity and are able to communicate with upstream and downstream vascular segments, enabling capillaries to sense the activity levels of the tissue and send signals to the microvascular network to coordinate the blood flow response. This review will focus on the emerging role that capillaries play in communication between cells of the tissue and the vascular network required to direct blood flow to active cells in skeletal muscle and the brain. We will also highlight the emerging central role that disruptions in capillary communication may play in blood flow dysregulation, pathophysiology, and disease.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Fletcher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
The Effects of Acidosis on eNOS in the Systemic Vasculature: A Focus on Early Postnatal Ontogenesis. Int J Mol Sci 2022; 23:ijms23115987. [PMID: 35682667 PMCID: PMC9180972 DOI: 10.3390/ijms23115987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
The activity of many vasomotor signaling pathways strongly depends on extracellular/intracellular pH. Nitric oxide (NO) is one of the most important vasodilators produced by the endothelium. In this review, we present evidence that in most vascular beds of mature mammalian organisms metabolic or respiratory acidosis increases functional endothelial NO-synthase (eNOS) activity, despite the observation that direct effects of low pH on eNOS enzymatic activity are inhibitory. This can be explained by the fact that acidosis increases the activity of signaling pathways that positively regulate eNOS activity. The role of NO in the regulation of vascular tone is greater in early postnatal ontogenesis compared to adulthood. Importantly, in early postnatal ontogenesis acidosis also augments functional eNOS activity and its contribution to the regulation of arterial contractility. Therefore, the effect of acidosis on total peripheral resistance in neonates may be stronger than in adults and can be one of the reasons for an undesirable decrease in blood pressure during neonatal asphyxia. The latter, however, should be proven in future studies.
Collapse
|
7
|
Jackson WF. Endothelial Ion Channels and Cell-Cell Communication in the Microcirculation. Front Physiol 2022; 13:805149. [PMID: 35211031 PMCID: PMC8861442 DOI: 10.3389/fphys.2022.805149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells in resistance arteries, arterioles, and capillaries express a diverse array of ion channels that contribute to Cell-Cell communication in the microcirculation. Endothelial cells are tightly electrically coupled to their neighboring endothelial cells by gap junctions allowing ion channel-induced changes in membrane potential to be conducted for considerable distances along the endothelial cell tube that lines arterioles and forms capillaries. In addition, endothelial cells may be electrically coupled to overlying smooth muscle cells in arterioles and to pericytes in capillaries via heterocellular gap junctions allowing electrical signals generated by endothelial cell ion channels to be transmitted to overlying mural cells to affect smooth muscle or pericyte contractile activity. Arteriolar endothelial cells express inositol 1,4,5 trisphosphate receptors (IP3Rs) and transient receptor vanilloid family member 4 (TRPV4) channels that contribute to agonist-induced endothelial Ca2+ signals. These Ca2+ signals then activate intermediate and small conductance Ca2+-activated K+ (IKCa and SKCa) channels causing vasodilator-induced endothelial hyperpolarization. This hyperpolarization can be conducted along the endothelium via homocellular gap junctions and transmitted to overlying smooth muscle cells through heterocellular gap junctions to control the activity of voltage-gated Ca2+ channels and smooth muscle or pericyte contraction. The IKCa- and SKCa-induced hyperpolarization may be amplified by activation of inward rectifier K+ (KIR) channels. Endothelial cell IP3R- and TRPV4-mediated Ca2+ signals also control the production of endothelial cell vasodilator autacoids, such as NO, PGI2, and epoxides of arachidonic acid contributing to control of overlying vascular smooth muscle contractile activity. Cerebral capillary endothelial cells lack IKCa and SKCa but express KIR channels, IP3R, TRPV4, and other Ca2+ permeable channels allowing capillary-to-arteriole signaling via hyperpolarization and Ca2+. This allows parenchymal cell signals to be detected in capillaries and signaled to upstream arterioles to control blood flow to capillaries by active parenchymal cells. Thus, endothelial cell ion channels importantly participate in several forms of Cell-Cell communication in the microcirculation that contribute to microcirculatory function and homeostasis.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Oxygen flux from capillary to mitochondria: integration of contemporary discoveries. Eur J Appl Physiol 2022; 122:7-28. [PMID: 34940908 PMCID: PMC8890444 DOI: 10.1007/s00421-021-04854-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Resting humans transport ~ 100 quintillion (1018) oxygen (O2) molecules every second to tissues for consumption. The final, short distance (< 50 µm) from capillary to the most distant mitochondria, in skeletal muscle where exercising O2 demands may increase 100-fold, challenges our understanding of O2 transport. To power cellular energetics O2 reaches its muscle mitochondrial target by dissociating from hemoglobin, crossing the red cell membrane, plasma, endothelial surface layer, endothelial cell, interstitial space, myocyte sarcolemma and a variable expanse of cytoplasm before traversing the mitochondrial outer/inner membranes and reacting with reduced cytochrome c and protons. This past century our understanding of O2's passage across the body's final O2 frontier has been completely revised. This review considers the latest structural and functional data, challenging the following entrenched notions: (1) That O2 moves freely across blood cell membranes. (2) The Krogh-Erlang model whereby O2 pressure decreases systematically from capillary to mitochondria. (3) Whether intramyocyte diffusion distances matter. (4) That mitochondria are separate organelles rather than coordinated and highly plastic syncytia. (5) The roles of free versus myoglobin-facilitated O2 diffusion. (6) That myocytes develop anoxic loci. These questions, and the intriguing notions that (1) cellular membranes, including interconnected mitochondrial membranes, act as low resistance conduits for O2, lipids and H+-electrochemical transport and (2) that myoglobin oxy/deoxygenation state controls mitochondrial oxidative function via nitric oxide, challenge established tenets of muscle metabolic control. These elements redefine muscle O2 transport models essential for the development of effective therapeutic countermeasures to pathological decrements in O2 supply and physical performance.
Collapse
|