1
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
2
|
Zawieja SD, Pea GA, Broyhill SE, Patro A, Bromert KH, Li M, Norton CE, Castorena-Gonzalez JA, Hancock EJ, Bertram CD, Davis MJ. IP3R1 underlies diastolic ANO1 activation and pressure-dependent chronotropy in lymphatic collecting vessels. J Gen Physiol 2023; 155:e202313358. [PMID: 37851027 PMCID: PMC10585095 DOI: 10.1085/jgp.202313358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Pressure-dependent chronotropy of murine lymphatic collecting vessels relies on the activation of the Ca2+-activated chloride channel encoded by Anoctamin 1 (Ano1) in lymphatic muscle cells. Genetic ablation or pharmacological inhibition of ANO1 results in a significant reduction in basal contraction frequency and essentially complete loss of pressure-dependent frequency modulation by decreasing the rate of the diastolic depolarization phase of the ionic pacemaker in lymphatic muscle cells (LMCs). Oscillating Ca2+ release from sarcoendoplasmic reticulum Ca2+ channels has been hypothesized to drive ANO1 activity during diastole, but the source of Ca2+ for ANO1 activation in smooth muscle remains unclear. Here, we investigated the role of the inositol triphosphate receptor 1 (Itpr1; Ip3r1) in this process using pressure myography, Ca2+ imaging, and membrane potential recordings in LMCs of ex vivo pressurized inguinal-axillary lymphatic vessels from control or Myh11CreERT2;Ip3r1fl/fl (Ip3r1ismKO) mice. Ip3r1ismKO vessels had significant reductions in contraction frequency and tone but an increased contraction amplitude. Membrane potential recordings from LMCs of Ip3r1ismKO vessels revealed a depressed diastolic depolarization rate and an elongation of the plateau phase of the action potential (AP). Ca2+ imaging of LMCs using the genetically encoded Ca2+ sensor GCaMP6f demonstrated an elongation of the Ca2+ flash associated with an AP-driven contraction. Critically, diastolic subcellular Ca2+ transients were absent in LMCs of Ip3r1ismKO mice, demonstrating the necessity of IP3R1 activity in controlling ANO1-mediated diastolic depolarization. These findings indicate a critical role for IP3R1 in lymphatic vessel pressure-dependent chronotropy and contractile regulation.
Collapse
Affiliation(s)
- Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Grace A. Pea
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E. Broyhill
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H. Bromert
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Edward J. Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | | | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Breslin JW. Lymphatic Clearance and Pump Function. Cold Spring Harb Perspect Med 2023; 13:a041187. [PMID: 35667711 PMCID: PMC9899645 DOI: 10.1101/cshperspect.a041187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lymphatic vessels have an active role in draining excess interstitial fluid from organs and serving as conduits for immune cell trafficking to lymph nodes. In the central circulation, the force needed to propel blood forward is generated by the heart. In contrast, lymphatic vessels rely on intrinsic vessel contractions in combination with extrinsic forces for lymph propulsion. The intrinsic pumping features phasic contractions generated by lymphatic smooth muscle. Periodic, bicuspid valves composed of endothelial cells prevent backflow of lymph. This work provides a brief overview of lymph transport, including initial lymph formation along with cellular and molecular mechanisms controlling lymphatic vessel pumping.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| |
Collapse
|
4
|
Kowalczyk A, Sługocki M, Koleśnik A. Sonography for assessment of thoracic duct anatomy and physiology before and after meals. Clin Anat 2023; 36:11-17. [PMID: 35811378 DOI: 10.1002/ca.23933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
The interest in clinical anatomy of the thoracic duct (TD) has recently grown, owing to discoveries linking its morphology to pathologies such as heart failure or liver cirrhosis. In the light of this knowledge, a cost-efficient and reliable in-vivo imaging method of TD should be devised. Ultrasonography satisfies these criteria and hence is a promising tool for assessment of TD's anatomy and function. Thirty-one healthy volunteers attended the examination after 6 h of fasting and 2 h without drink. Ultrasound of the left supraclavicular fossa was performed in search of TD's orifice into the venous angle. In each case, the largest diameter, number of orifices, presence of valves, tributaries, and motility of the TD were examined. We performed examinations in three sessions: after fasting, after standardized meal and 1 h after the meal. The statistical significance has varied among the three sessions. The strongest connection was shown in the third examination. The TD was visualized in 31 cases, 35 orifices were found, most of which drained into the venous angle. Multiple orifices were seen in four cases and valves in 15 cases. Tributaries were present in 17 cases. Mean widest and orifice diameter measured 3.23 and 2.0 mm, respectively. Spontaneous peristaltic-like movements of the TD were observed in 25 cases. We demonstrated that ultrasound is useful for assessment of TD's anatomy, allowing to visualize and quantify its key features. Moreover, our study is presumably the first to capture and describe TD's motility in vivo.
Collapse
Affiliation(s)
- Arkadiusz Kowalczyk
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland.,Pediatric Surgery and Urology Ward with Burn Unit, Prof. Jan Bogdanowicz Children's Hospital, Warsaw, Poland
| | - Mikołaj Sługocki
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - Adam Koleśnik
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland.,Cardiovascular Interventions Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
5
|
Majgaard J, Skov FG, Kim S, Hjortdal VE, Boedtkjer DMB. Positive chronotropic action of HCN channel antagonism in human collecting lymphatic vessels. Physiol Rep 2022; 10:e15401. [PMID: 35980021 PMCID: PMC9387113 DOI: 10.14814/phy2.15401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/16/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023] Open
Abstract
Spontaneous action potentials precede phasic contractile activity in human collecting lymphatic vessels. In this study, we investigated the expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in human collecting lymphatics and by pharmacological inhibition ex vivo tested their potential role in controlling contractile function. Spontaneous and agonist-evoked tension changes of isolated thoracic duct and mesenteric lymphatic vessels-obtained from surgical patients with informed consent-were investigated by isometric myography, and ivabradine, ZD7288 or cesium were used to inhibit HCN. Analysis of HCN isoforms by RT-PCR and immunofluorescence revealed HCN2 to be the predominantly expressed mRNA isoform in human thoracic duct and mesenteric lymphatic vessels and HCN2-immunoreactivity confirmed protein expression in both vessel types. However, in functional experiments ex vivo the HCN inhibitors ivabradine, ZD7288, and cesium failed to lower contraction frequency: conversely, all three antagonists induced a positive chronotropic effect with concurrent negative inotropic action, though these effects first occurred at concentrations regarded as supramaximal for HCN inhibition. Based on these results, we conclude that human collecting vessels express HCN channel proteins but under the ex vivo experimental conditions described here HCN channels have little involvement in regulating contraction frequency in human collecting lymphatic vessels. Furthermore, HCN antagonists can produce concentration-dependent positive chronotropic and negative inotropic effects, which are apparently unrelated to HCN antagonism.
Collapse
Affiliation(s)
- Jens Majgaard
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | | | - Sukhan Kim
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Vibeke Elisabeth Hjortdal
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Cardiothoracic and Vascular SurgeryAarhus University HospitalAarhusDenmark
| | - Donna M. B. Boedtkjer
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
6
|
Kelly B, Smith CL, Saravanan M, Dori Y, Hjortdal VE. Spontaneous contractions of the human thoracic duct-Important for securing lymphatic return during positive pressure ventilation? Physiol Rep 2022; 10:e15258. [PMID: 35581742 PMCID: PMC9114659 DOI: 10.14814/phy2.15258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 04/17/2023] Open
Abstract
The thoracic duct is responsible for the circulatory return of most lymphatic fluid. The return is a well-timed synergy between the pressure in the thoracic duct, venous pressure at the thoracic duct outlet, and intrathoracic pressures during respiration. However, little is known about the forces determining thoracic duct pressure and how these respond to mechanical ventilation. We aimed to assess human thoracic duct pressure and identify elements affecting it during positive pressure ventilation and a brief ventilatory pause. The study examined pressures of 35 patients with severe congenital heart defects undergoing lymphatic interventions. Thoracic duct pressure and central venous pressure were measured in 25 patients during mechanical ventilation and in ten patients during both ventilation and a short pause in ventilation. TD contractions, mechanical ventilation, and arterial pulsations influenced the thoracic duct pressure. The mean pressure of the thoracic duct was 16 ± 5 mmHg. The frequency of the contractions was 5 ± 1 min-1 resulting in an average increase in pressure of 4 ± 4 mmHg. During mechanical ventilation, the thoracic duct pressure correlated closely to the central venous pressure. TD contractions were able to increase thoracic duct pressure by 25%. With thoracic duct pressure correlating closely to the central venous pressure, this intrinsic force may be an important factor in securing a successful return of lymphatic fluid. Future studies are needed to examine the return of lymphatic fluid and the function of the thoracic duct in the absence of both lymphatic complications and mechanical ventilation.
Collapse
Affiliation(s)
- Benjamin Kelly
- Department of Cardiothoracic and Vascular SurgeryAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Christopher L. Smith
- Division of CardiologyDepartment of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Madhumitha Saravanan
- Division of CardiologyDepartment of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Yoav Dori
- Division of CardiologyDepartment of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
7
|
Solari E, Marcozzi C, Ottaviani C, Negrini D, Moriondo A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. BIOLOGY 2022; 11:419. [PMID: 35336793 PMCID: PMC8945018 DOI: 10.3390/biology11030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Lymphatic vessels exploit the mechanical stresses of their surroundings together with intrinsic rhythmic contractions to drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure in order to guarantee a proper mechanical coupling between the chest wall and lungs. To better understand the potential for liquid drainage, the key parameter to be considered is the difference in hydraulic pressure between the pleural space and the lymphatic lumen. In this review we collected old and new findings from in vivo direct measurements of hydraulic pressures in anaesthetized animals with the aim to better frame the complex physiology of diaphragmatic and intercostal lymphatics which drain liquid from the pleural cavity.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, 21100 Varese, Italy; (E.S.); (C.M.); (C.O.); (D.N.)
| |
Collapse
|
8
|
Pal S, Rahman J, Mu S, Rusch NJ, Stolarz AJ. Drug-Related Lymphedema: Mysteries, Mechanisms, and Potential Therapies. Front Pharmacol 2022; 13:850586. [PMID: 35308247 PMCID: PMC8930849 DOI: 10.3389/fphar.2022.850586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The lymphatic circulation is an important component of the circulatory system in humans, playing a critical role in the transport of lymph fluid containing proteins, white blood cells, and lipids from the interstitial space to the central venous circulation. The efficient transport of lymph fluid critically relies on the rhythmic contractions of collecting lymph vessels, which function to "pump" fluid in the distal to proximal direction through the lymphatic circulation with backflow prevented by the presence of valves. When rhythmic contractions are disrupted or valves are incompetent, the loss of lymph flow results in fluid accumulation in the interstitial space and the development of lymphedema. There is growing recognition that many pharmacological agents modify the activity of ion channels and other protein structures in lymph muscle cells to disrupt the cyclic contraction and relaxation of lymph vessels, thereby compromising lymph flow and predisposing to the development of lymphedema. The effects of different medications on lymph flow can be understood by appreciating the intricate intracellular calcium signaling that underlies the contraction and relaxation cycle of collecting lymph vessels. For example, voltage-sensitive calcium influx through long-lasting ("L-type") calcium channels mediates the rise in cytosolic calcium concentration that triggers lymph vessel contraction. Accordingly, calcium channel antagonists that are mainstay cardiovascular medications, attenuate the cyclic influx of calcium through L-type calcium channels in lymph muscle cells, thereby disrupting rhythmic contractions and compromising lymph flow. Many other classes of medications also may contribute to the formation of lymphedema by impairing lymph flow as an off-target effect. The purpose of this review is to evaluate the evidence regarding potential mechanisms of drug-related lymphedema with an emphasis on common medications administered to treat cardiovascular diseases, metabolic disorders, and cancer. Additionally, although current pharmacological approaches used to alleviate lymphedema are largely ineffective, efforts are mounting to arrive at a deeper understanding of mechanisms that regulate lymph flow as a strategy to identify novel anti-lymphedema medications. Accordingly, this review also will provide information on studies that have explored possible anti-lymphedema therapeutics.
Collapse
Affiliation(s)
- Soumiya Pal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jenat Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amanda J Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
9
|
Alsaied T, Lubert AM, Goldberg DJ, Schumacher K, Rathod R, Katz DA, Opotowsky AR, Jenkins M, Smith C, Rychik J, Amdani S, Lanford L, Cetta F, Kreutzer C, Feingold B, Goldstein BH. Protein losing enteropathy after the Fontan operation. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2022; 7:100338. [PMID: 39712273 PMCID: PMC11657892 DOI: 10.1016/j.ijcchd.2022.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
The Fontan or Fontan Kreutzer procedure is the culmination of staged, surgical palliation of functional single ventricle congenital heart disease, offering the potential for survival and good quality of life well into adulthood. As more patients with Fontan circulation age, a variety of complications involving almost every organ system may occur. Protein-losing enteropathy is a major cause of morbidity and mortality after the Fontan operation, occurring more often in patients with adverse hemodynamics and presenting weeks to years after Fontan surgery. The causes are not well understood, but likely include a combination of lymphatic insufficiency, high central venous pressure, loss of heparan sulfate from intestinal epithelial cells, abnormal mesenteric circulation, and intestinal inflammation. A comprehensive evaluation including multimodality imaging and cardiac catheterization is necessary to diagnose and treat any reversible causes. In advanced cases, early referral for heart transplantation evaluation or lymphatic decompression procedures (if the single ventricle function remains adequate) is indicated. Despite the improvement in detection and management options, the mortality remains high. Standardization of protein-losing enteropathy definition and management strategies will help facilitate interpretation of research and clinical experience, potentially fostering the identification of new therapies. Based on the published data, this review suggests a standardized approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Tarek Alsaied
- Heart Institute, UPMC Children's Hospital of Pittsburgh, Division of Pediatric Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adam M. Lubert
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - David J. Goldberg
- The Children's Hospital of Philadelphia, Division of Pediatric Cardiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt Schumacher
- Congenital Heart Center, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Rahul Rathod
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David A. Katz
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Alexander R. Opotowsky
- Heart Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Meredith Jenkins
- Division of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher Smith
- The Children's Hospital of Philadelphia, Division of Pediatric Cardiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jack Rychik
- The Children's Hospital of Philadelphia, Division of Pediatric Cardiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Shahnawaz Amdani
- Department of Pediatric Cardiology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Lizabeth Lanford
- Heart Institute, UPMC Children's Hospital of Pittsburgh, Division of Pediatric Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank Cetta
- Division of Pediatric Cardiology, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Christian Kreutzer
- Division of Pediatric Cardiovascular Surgery, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina
| | - Brian Feingold
- Heart Institute, UPMC Children's Hospital of Pittsburgh, Division of Pediatric Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan H. Goldstein
- Heart Institute, UPMC Children's Hospital of Pittsburgh, Division of Pediatric Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Solari E, Marcozzi C, Negrini D, Moriondo A. Interplay between Gut Lymphatic Vessels and Microbiota. Cells 2021; 10:cells10102584. [PMID: 34685564 PMCID: PMC8534149 DOI: 10.3390/cells10102584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic vessels play a distinctive role in draining fluid, molecules and even cells from interstitial and serosal spaces back to the blood circulation. Lymph vessels of the gut, and especially those located in the villi (called lacteals), not only serve this primary function, but are also responsible for the transport of lipid moieties absorbed by the intestinal mucosa and serve as a second line of defence against possible bacterial infections. Here, we briefly review the current knowledge of the general mechanisms allowing lymph drainage and propulsion and will focus on the most recent findings on the mutual relationship between lacteals and intestinal microbiota.
Collapse
|
11
|
Antoniak K, Hansdorfer-Korzon R, Mrugacz M, Zorena K. Adipose Tissue and Biological Factors. Possible Link between Lymphatic System Dysfunction and Obesity. Metabolites 2021; 11:metabo11090617. [PMID: 34564433 PMCID: PMC8464765 DOI: 10.3390/metabo11090617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
The World Health Organization (WHO) has recognised obesity as one of the top ten threats to human health. Obesity is not only a state of abnormally increased adipose tissue in the body, but also of an increased release of biologically active metabolites. Moreover, obesity predisposes the development of metabolic syndrome and increases the incidence of type 2 diabetes (T2DM), increases the risk of developing insulin resistance, atherosclerosis, ischemic heart disease, polycystic ovary syndrome, hypertension and cancer. The lymphatic system is a one-directional network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial cells that provides a unidirectional conduit to return filtered arterial and tissue metabolites towards the venous circulation. Recent studies have shown that obesity can markedly impair lymphatic function. Conversely, dysfunction in the lymphatic system may also be involved in the pathogenesis of obesity. This review highlights the important findings regarding obesity related to lymphatic system dysfunction, including clinical implications and experimental studies. Moreover, we present the role of biological factors in the pathophysiology of the lymphatic system and we propose the possibility of a therapy supporting the function of the lymphatic system in the course of obesity.
Collapse
Affiliation(s)
- Klaudia Antoniak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Rita Hansdorfer-Korzon
- Department of Physical Therapy, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
- Correspondence: ; Tel./Fax: +48-583491765
| |
Collapse
|
12
|
Russell PS, Hong J, Trevaskis NL, Windsor JA, Martin ND, Phillips ARJ. Lymphatic Contractile Function: A Comprehensive Review of Drug Effects and Potential Clinical Application. Cardiovasc Res 2021; 118:2437-2457. [PMID: 34415332 DOI: 10.1093/cvr/cvab279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The lymphatic system and the cardiovascular system work together to maintain body fluid homeostasis. Despite that, the lymphatic system has been relatively neglected as a potential drug target and a source of adverse effects from cardiovascular drugs. Like the heart, the lymphatic vessels undergo phasic contractions to promote lymph flow against a pressure gradient. Dysfunction or failure of the lymphatic pump results in fluid imbalance and tissue oedema. While this can due to drug effects, it is also a feature of breast cancer-associated lymphoedema, chronic venous insufficiency, congestive heart failure and acute systemic inflammation. There are currently no specific drug treatments for lymphatic pump dysfunction in clinical use despite the wealth of data from pre-clinical studies. AIM To identify (1) drugs with direct effects on lymphatic tonic and phasic contractions with potential for clinical application, and (2) drugs in current clinical use that have a positive or negative side effect on lymphatic function. METHODS We comprehensively reviewed all studies that tested the direct effect of a drug on the contractile function of lymphatic vessels. RESULTS Of the 208 drugs identified from 193 studies, about a quarter had only stimulatory effects on lymphatic tone, contraction frequency and/or contraction amplitude. Of FDA-approved drugs, there were 14 that increased lymphatic phasic contractile function. The most frequently used class of drug with inhibitory effects on lymphatic pump function were the calcium channels blockers. CONCLUSION This review highlights the opportunity for specific drug treatments of lymphatic dysfunction in various disease states and for avoiding adverse drug effects on lymphatic contractile function.
Collapse
Affiliation(s)
- Peter S Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie L Trevaskis
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - John A Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Niels D Martin
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anthony R J Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Mohanakumar S, Kelly B, Turquetto ALR, Alstrup M, Amato LP, Barnabe MSR, Silveira JBD, Amaral F, Manso PH, Jatene MB, Hjortdal VE. Functional lymphatic reserve capacity is depressed in patients with a Fontan circulation. Physiol Rep 2021; 9:e14862. [PMID: 34057301 PMCID: PMC8165731 DOI: 10.14814/phy2.14862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Background Lymphatic abnormalities play a role in effusions in individuals with a Fontan circulation. Recent results using near‐infrared fluorescence imaging disclosed an increased contraction frequency of lymphatic vessels in Fontan patients compared to healthy controls. It is proposed that the elevated lymphatic pumping seen in the Fontan patients is necessary to maintain habitual interstitial fluid balance. Hyperthermia has previously been used as a tool for lymphatic stress test. By increasing fluid filtration in the capillary bed, the lymphatic workload and contraction frequency are increased accordingly. Using near‐infrared fluorescence imaging, the lymphatic functional reserve capacity in Fontan patients were explored with a lymphatic stress test. Methods Fontan patients (n = 33) were compared to a group of 15 healthy individuals of equal age, weight, and gender. The function of the superficial lymphatic vessels in the lower leg during rest and after inducing hyperthermia was investigated, using near‐infrared fluorescence imaging. Results Baseline values in the Fontan patients showed a 57% higher contraction frequency compared to the healthy controls (0.4 ± 0.3 min−1 vs. 0.3 ± 0.2 min−1, p = 0.0445). After inducing stress on the lymphatic vessels with hyperthermia the ability to increase contraction frequency was decreased in the Fontan patients compared to the controls (0.6 ± 0.5 min−1 vs. 1.2 ± 0.8 min−1, p = 0.0102). Conclusions Fontan patients had a higher lymphatic contraction frequency during normal circumstances. In the Fontan patients, the hyperthermia response is dampened indicating that the functional lymphatic reserve capacity is depressed. This diminished reserve capacity could be part of the explanation as to why some Fontan patients develop late‐onset lymphatic complications.
Collapse
Affiliation(s)
- Sheyanth Mohanakumar
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Radiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | - Benjamin Kelly
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Mathias Alstrup
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Fernando Amaral
- Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Pediatric and Adult Congenital Heart Disease Unit, Hospital das Clínicas, Ribeirão Preto, Brazil
| | - Paulo Henrique Manso
- Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Pediatric and Adult Congenital Heart Disease Unit, Hospital das Clínicas, Ribeirão Preto, Brazil
| | | | - Vibeke Elisabeth Hjortdal
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
McMillan DW, Henderson GC, Nash MS, Jacobs KA. Effect of Paraplegia on the Time Course of Exogenous Fatty Acid Incorporation Into the Plasma Triacylglycerol Pool in the Postprandial State. Front Physiol 2021; 12:626003. [PMID: 33613318 PMCID: PMC7887382 DOI: 10.3389/fphys.2021.626003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Spinal cord injury (SCI) results in disordered fat metabolism. Autonomic decentralization might contribute to dyslipidemia in SCI, in part by influencing the uptake of dietary fats through the gut-lymph complex. However, the neurogenic contributions to dietary fat metabolism are unknown in this population. We present a subset of results from an ongoing registered clinical trial (NCT03691532) related to dietary fat absorption. We fed a standardized (20 kcal⋅kgFFM–1) liquid meal tolerance test (50% carb, 35% fat, and 15% protein) that contained stable isotope lipid tracer (5 mg⋅kgFFM–1 [U-13C]palmitate) to persons with and without motor complete thoracic SCI. Blood samples were collected at six postprandial time points over 400 min. Changes in dietary fatty acid incorporated into the triacylglycerol (TAG) pool (“exogenous TAG”) were used as a marker of dietary fat absorption. This biomarker showed that those with paraplegia had a lower amplitude than non-injured participants at Post240 (52.4 ± 11.0 vs. 77.5 ± 16.0 μM), although this failed to reach statistical significance (p = 0.328). However, group differences in the time course of absorption were notable. The injury level was also strongly correlated with time-to-peak exogenous TAG concentration (r = −0.806, p = 0.012), with higher injuries resulting in a slower rise in exogenous TAG. This time course documenting exogenous TAG change is the first to show a potential neurogenic alteration in SCI dietary fat absorption.
Collapse
Affiliation(s)
- David W McMillan
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL, United States.,The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gregory C Henderson
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Mark S Nash
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin A Jacobs
- Department of Kinesiology and Sport Sciences, University of Miami, Miami, FL, United States
| |
Collapse
|
15
|
Solari E, Marcozzi C, Negrini D, Moriondo A. Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow. BIOLOGY 2020; 9:biology9120463. [PMID: 33322476 PMCID: PMC7763507 DOI: 10.3390/biology9120463] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Simple Summary Lymphatic vessels are responsible for the drainage of liquids, solutes, and cells from interstitial spaces and serosal cavities. Their task is fundamental in order to avoid fluid accumulation leading to tissue swelling and edema. The lymphatic system does not possess a central pump, instead lymph is propelled against an overall hydraulic pressure gradient from interstitial spaces to central veins thanks to two pumping mechanisms, which rely on extrinsic forces or the intrinsic rhythmic contractility of lymphatic muscle cells embedded in vessel walls. This latter mechanism can very rapidly adapt to subtle changes in the microenvironment due to hydraulic pressure, lymph flow-induced wall shear stress, liquid osmolarity, and local tissue temperature. Thus, endothelial and lymphatic muscle cells possess mechanosensors that sense these stimuli and promote a change in contraction frequency and amplitude to modulate lymph flow accordingly. In this review, we will focus on the known physical parameters that can modulate lymph flow and on their putative cellular and molecular mechanisms of transduction. Abstract Lymphatic vessels drain and propel lymph by exploiting external forces that surrounding tissues exert upon vessel walls (extrinsic mechanism) and by using active, rhythmic contractions of lymphatic muscle cells embedded in the vessel wall of collecting lymphatics (intrinsic mechanism). The latter mechanism is the major source of the hydraulic pressure gradient where scant extrinsic forces are generated in the microenvironment surrounding lymphatic vessels. It is mainly involved in generating pressure gradients between the interstitial spaces and the vessel lumen and between adjacent lymphatic vessels segments. Intrinsic pumping can very rapidly adapt to ambient physical stimuli such as hydraulic pressure, lymph flow-derived shear stress, fluid osmolarity, and temperature. This adaptation induces a variable lymph flow, which can precisely follow the local tissue state in terms of fluid and solutes removal. Several cellular systems are known to be sensitive to osmolarity, temperature, stretch, and shear stress, and some of them have been found either in lymphatic endothelial cells or lymphatic muscle. In this review, we will focus on how known physical stimuli affect intrinsic contractility and thus lymph flow and describe the most likely cellular mechanisms that mediate this phenomenon.
Collapse
|
16
|
Abstract
Purpose of Review Lymphatic disorders have received an increasing amount of attention over the last decade. Sparked primarily by improved imaging modalities and the dawn of lymphatic interventions, understanding, diagnostics, and treatment of lymphatic complications have undergone considerable improvements. Thus, the current review aims to summarize understanding, diagnostics, and treatment of lymphatic complications in individuals with congenital heart disease. Recent Findings The altered hemodynamics of individuals with congenital heart disease has been found to profoundly affect morphology and function of the lymphatic system, rendering this population especially prone to the development of lymphatic complications such as chylous and serous effusions, protein-losing enteropathy and plastic bronchitis. Summary Although improved, a full understanding of the pathophysiology and targeted treatment for lymphatic complications is still wanting. Future research into pharmacological improvement of lymphatic function and continued implementation of lymphatic imaging and interventions may improve knowledge, treatment options, and outcome for affected individuals.
Collapse
|
17
|
Bachmann SB, Gsponer D, Montoya-Zegarra JA, Schneider M, Scholkmann F, Tacconi C, Noerrelykke SF, Proulx ST, Detmar M. A Distinct Role of the Autonomic Nervous System in Modulating the Function of Lymphatic Vessels under Physiological and Tumor-Draining Conditions. Cell Rep 2020; 27:3305-3314.e13. [PMID: 31189113 PMCID: PMC6581737 DOI: 10.1016/j.celrep.2019.05.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/22/2019] [Accepted: 05/15/2019] [Indexed: 11/19/2022] Open
Abstract
Lymphatic vessels (LVs) are important in the regulation of tissue fluid homeostasis and the pathogenesis of tumor progression. We investigated the innervation of LVs and the response to agonists and antagonists of the autonomic nervous system in vivo. While skin-draining collecting LVs express muscarinic, α1- and β2-adrenergic receptors on lymphatic endothelial cells and smooth muscle cells, intestinal lacteals express only β-adrenergic receptors and muscarinic receptors on their smooth muscle cells. Quantitative in vivo near-infrared imaging of the exposed flank-collecting LV revealed that muscarinic and α1-adrenergic agonists increased LV contractility, whereas activation of β2-adrenergic receptors inhibited contractility and initiated nitric oxide (NO)-dependent vasodilation. Tumor-draining LVs were expanded and showed a higher innervation density and contractility that was reduced by treatment with atropine, phentolamine, and, most potently, isoproterenol. These findings likely have clinical implications given the impact of lymphatic fluid drainage on intratumoral fluid pressure and thus drug delivery. Murine lymphatic vessels are innervated in an organ-specific manner α1-adrenergic and muscarinic agents enhance lymphatic contractility in vivo β2-adrenergic agents reduce lymphatic contractility Tumor-draining lymphatic vessels have increased innervation and contractility
Collapse
Affiliation(s)
- Samia B Bachmann
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Denise Gsponer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Martin Schneider
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, 8093 Zurich, Switzerland
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon F Noerrelykke
- ScopeM, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Jo M, Trujillo AN, Yang Y, Breslin JW. Evidence of functional ryanodine receptors in rat mesenteric collecting lymphatic vessels. Am J Physiol Heart Circ Physiol 2019; 317:H561-H574. [PMID: 31274355 DOI: 10.1152/ajpheart.00564.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the current study, the potential contributions of ryanodine receptors (RyRs) to intrinsic pumping and responsiveness to substance P (SP) were investigated in isolated rat mesenteric collecting lymphatic vessels. Responses to SP were characterized in lymphatic vessels in the absence or presence of pretreatment with nifedipine to block L-type Ca2+ channels, caffeine to block normal release and uptake of Ca2+ from the sarcoplasmic reticulum, ryanodine to block all RyR isoforms, or dantrolene to more selectively block RyR1 and RyR3. RyR expression and localization in lymphatics was also assessed by quantitative PCR and immunofluorescence confocal microscopy. The results show that SP normally elicits a significant increase in contraction frequency and a decrease in end-diastolic diameter. In the presence of nifedipine, phasic contractions stop, yet subsequent SP treatment still elicits a strong tonic contraction. Caffeine treatment gradually relaxes lymphatics, causing a loss of phasic contractions, and prevents subsequent SP-induced tonic contraction. Ryanodine also gradually diminishes phasic contractions but without causing vessel relaxation and significantly inhibits the SP-induced tonic contraction. Dantrolene treatment did not significantly impair lymphatic contractions nor the response to SP. The mRNA for all RyR isoforms is detectable in isolated lymphatics. RyR2 and RyR3 proteins are found predominantly in the collecting lymphatic smooth muscle layer. Collectively, the data suggest that SP-induced tonic contraction requires both extracellular Ca2+ plus Ca2+ release from internal stores and that RyRs play a role in the normal contractions and responsiveness to SP of rat mesenteric collecting lymphatics.NEW & NOTEWORTHY The mechanisms that govern contractions of lymphatic vessels remain unclear. Tonic contraction of lymphatic vessels caused by substance P was blocked by caffeine, which prevents normal uptake and release of Ca2+ from internal stores, but not nifedipine, which blocks L-type channel-mediated Ca2+ entry. Ryanodine, which also disrupts normal sarcoplasmic reticulum Ca2+ release and reuptake, significantly inhibited substance P-induced tonic contraction. Ryanodine receptors 2 and 3 were detected within the smooth muscle layer of collecting lymphatic vessels.
Collapse
Affiliation(s)
- Michiko Jo
- Department of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Andrea N Trujillo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
19
|
Bertram CD, Macaskill C, Moore JE. Inhibition of contraction strength and frequency by wall shear stress in a single-lymphangion model. J Biomech Eng 2019; 141:2733771. [PMID: 31074761 DOI: 10.1115/1.4043724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/29/2022]
Abstract
The phasic contractions of collecting lymphatic vessels are reduced in strength and occur at diminished frequency when the favourable pressure difference and the resulting antegrade flow create large fluid shear stresses at the luminal surface. This paper describes a minimal phenomenological model of this mechanism, that is applied to a previously validated numerical model of a phasically contracting lymphangion. The parameters of the inhibition model are quantitatively matched to observations in isolated segments of rat lymphatic vessel, first for mesenteric lymphatics then for thoracic duct, and outcomes from the numerical model are then qualitatively compared with recent observations in isolated segments of rat thoracic duct.
Collapse
Affiliation(s)
- C D Bertram
- School of Mathematics & Statistics, University of Sydney, New South Wales, Australia 2006
| | - Charles Macaskill
- School of Mathematics & Statistics, University of Sydney, New South Wales, Australia 2006
| | - James E Moore
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Moeller AL, Hjortdal VE, Boedtkjer DMB, Boedtkjer E. Acidosis inhibits rhythmic contractions of human thoracic ducts. Physiol Rep 2019; 7:e14074. [PMID: 31025551 PMCID: PMC6483936 DOI: 10.14814/phy2.14074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/24/2022] Open
Abstract
Lymph vessels counteract edema by transporting interstitial fluid from peripheral tissues to the large veins and serve as conduits for immune cells, cancer cells, and pathogens. Because edema during inflammation and malignancies is frequently associated with acidosis, we tested the hypothesis that acid-base disturbances affect human thoracic duct contractions. We studied, by isometric and isobaric myography, the contractile function of human thoracic duct segments harvested with written informed consent from patients undergoing esophageal cancer surgery. Human thoracic ducts produce complex contractile patterns consisting of tonic rises in tension (isometric myography) or decreases in diameter (isobaric myography) with superimposed phasic contractions. Active tone development decreases substantially (~90% at 30 vs. 7 mmHg) at elevated transmural pressure. Acidosis inhibits spontaneous as well as noradrenaline- and serotonin-induced phasic contractions of human thoracic ducts by 70-90% at extracellular pH 6.8 compared to 7.4 with less pronounced effects observed at pH 7.1. Mean tension responses to noradrenaline and serotonin - averaged over the entire period of agonist exposure - decrease by ~50% at extracellular pH 6.8. Elevating extracellular [K+ ] from the normal resting level around 4 mmol/L increases overall tension development but reduces phasic activity to a level that is no different between human thoracic duct segments investigated at normal and low extracellular pH. In conclusion, we show that extracellular acidosis inhibits human thoracic duct contractions with more pronounced effects on phasic than tonic contractions. We propose that reduced phasic activity of lymph vessels at low pH attenuates lymph propulsion and increases the risk of edema formation.
Collapse
Affiliation(s)
| | | | - Donna M. B. Boedtkjer
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | |
Collapse
|
21
|
Bachmann SB, Proulx ST, He Y, Ries M, Detmar M. Differential effects of anaesthesia on the contractility of lymphatic vessels
in vivo. J Physiol 2019; 597:2841-2852. [DOI: 10.1113/jp277254] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Samia B. Bachmann
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| | - Steven T. Proulx
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| | - Yuliang He
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| | - Miriam Ries
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| |
Collapse
|
22
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
23
|
Zawieja SD, Castorena-Gonzalez JA, Dixon B, Davis MJ. Experimental Models Used to Assess Lymphatic Contractile Function. Lymphat Res Biol 2018; 15:331-342. [PMID: 29252142 DOI: 10.1089/lrb.2017.0052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent years have seen a renewed interest in studies of the lymphatic system. This review addresses the differences between in vivo and ex vivo methods for visualization and functional studies of lymphatic networks, with an emphasis on studies of collecting lymphatic vessels. We begin with a brief summary of the historical uses of both approaches. For the purpose of detailed comparisons, we subdivide in vivo methods into those visualizing lymphatic networks through the intact skin and those using surgically opened skin. We subdivide ex vivo methods into isobaric studies (using a pressure myograph) or isometric studies (using a wire myograph). For all four categories, we compile a comprehensive list of the advantages, disadvantages, and limitations of each preparation, with the goal of informing the research community as to the appropriate kinds of experiments best suited, and ill suited, for each.
Collapse
Affiliation(s)
- Scott D Zawieja
- 1 Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | | | - Brandon Dixon
- 2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Michael J Davis
- 1 Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
24
|
d'Udekem Y, de Leval M. The elusive and ungrateful lymphatic circulation may be a key determinant of Fontan failure. J Thorac Cardiovasc Surg 2018; 155:2067-2068. [DOI: 10.1016/j.jtcvs.2018.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
|
25
|
Mohanakumar S, Majgaard J, Telinius N, Katballe N, Pahle E, Hjortdal V, Boedtkjer D. Spontaneous and α-adrenoceptor-induced contractility in human collecting lymphatic vessels require chloride. Am J Physiol Heart Circ Physiol 2018; 315:H389-H401. [PMID: 29631375 DOI: 10.1152/ajpheart.00551.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human lymphatic vessels are myogenically active and respond to sympathetic stimulation. The role of various cations in this behavior has recently been investigated, but whether the anion Cl- is essential is unclear. With ethical approval and informed consent, human thoracic duct and mesenteric lymphatic vessels were obtained from surgical patients. Spontaneous or norepinephrine-induced isometric force production from isolated vessels was measured by wire myography; the transmembrane Cl- gradient and Cl- channels were investigated by substitution of extracellular Cl- with the impermeant anion aspartate and inhibition of Cl- transport and channels with the clinical diuretics furosemide and bendroflumethiazide as well as DIDS and 5-nitro-2-(3-phenylpropylamino)benzoic acid. The molecular expression of Ca2+-activated Cl- channels was investigated by RT-PCR, and proteins were localized using immunoreactivity. Spontaneous and norepinephrine-induced contractility in human lymphatic vessels was highly abrogated after Cl- substitution with aspartate. About 100-300 µM DIDS or 5-nitro-2-(3-phenylpropylamino)benzoic acid inhibited spontaneous contractile behavior. Norepinephrine-stimulated tone was furthermore markedly abrogated by 200 µM DIDS. Furosemide lowered only spontaneous constrictions, whereas bendroflumethiazide had nonspecific inhibitory effects. Consistent expression of transmembrane member 16A [TMEM16A (anoctamin-1)] was found in both the thoracic duct and mesenteric lymphatic vessels, and immunoreactivity with different antibodies localized TMEM16A to lymphatic smooth muscle cells and interstitial cells. The significant change in contractile function observed with inhibitors and anion substitution suggests that Cl- movement over the plasma membrane of lymphatic myocytes is integral for spontaneous and α-adrenoceptor-evoked contractility in human collecting lymphatic vessels. Consistent detection and localization of TMEM16A to myocytes suggests that this channel could play a major functional role. NEW & NOTEWORTHY In this study, we report the first observations of Cl- being a critical ionic component of spontaneous and agonist-evoked contractility in human lymphatics. The most consistently expressed Ca2+-activated Cl- channel gene in the human thoracic duct and mesenteric lymphatic vessels appears to be transmembrane member 16A, suggesting that this channel plays a major role.
Collapse
Affiliation(s)
- Sheyanth Mohanakumar
- Department of Biomedicine, Aarhus University , Aarhus , Denmark.,Department of Clinical Medicine, Aarhus University , Aarhus , Denmark.,Deptartment of Cardiothoracic and Vascular Surgery, Aarhus University Hospital , Aarhus , Denmark
| | - Jens Majgaard
- Department of Biomedicine, Aarhus University , Aarhus , Denmark.,Deptartment of Cardiothoracic and Vascular Surgery, Aarhus University Hospital , Aarhus , Denmark
| | - Niklas Telinius
- Department of Biomedicine, Aarhus University , Aarhus , Denmark.,Deptartment of Cardiothoracic and Vascular Surgery, Aarhus University Hospital , Aarhus , Denmark
| | - Niels Katballe
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark.,Deptartment of Cardiothoracic and Vascular Surgery, Aarhus University Hospital , Aarhus , Denmark
| | - Einar Pahle
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Vibeke Hjortdal
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark.,Deptartment of Cardiothoracic and Vascular Surgery, Aarhus University Hospital , Aarhus , Denmark
| | - Donna Boedtkjer
- Department of Biomedicine, Aarhus University , Aarhus , Denmark.,Department of Clinical Medicine, Aarhus University , Aarhus , Denmark.,Deptartment of Cardiothoracic and Vascular Surgery, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
26
|
Zawieja SD, Castorena-Gonzalez JA, Scallan JP, Davis MJ. Differences in L-type Ca 2+ channel activity partially underlie the regional dichotomy in pumping behavior by murine peripheral and visceral lymphatic vessels. Am J Physiol Heart Circ Physiol 2018; 314:H991-H1010. [PMID: 29351458 DOI: 10.1152/ajpheart.00499.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We identified a regional dichotomy in murine lymphatic contractile function with regard to vessel location within the periphery or visceral cavity. All vessels isolated from peripheral regions [cervical, popliteal, inguinal, axillary, and internodal inguinal axillary (Ing-Ax)] developed robust contractions with maximal ejection fractions (EFs) of 50-80% in our ex vivo isobaric myograph experiments. Conversely, vessels isolated from the visceral cavity (mesenteric, thoracic duct, and iliac) demonstrated maximal EFs of ≤10%. Using pressure myography, sharp electrode membrane potential recordings, and Ca2+ imaging, we assessed the role of L-type Ca2+ channels in this contractile dichotomy. Ing-Ax membrane potential revealed a ~2-s action potential (AP) cycle (resting -35 mV, spike -5 mV, and plateau -11 mV) with a plateau phase that was significantly lengthened by the L-type Ca2+ channel agonist Bay K8644 (BayK; 100 nM). APs recorded from mesenteric vessels, however, displayed a slower upstroke and an elongated time over threshold. BayK (100 nM) increased the mesenteric AP upstroke velocity and plateau duration but also significantly hyperpolarized the vessel. Contractions of vessels from both regions were preceded by Ca2+ flashes, detected with a smooth muscle-specific endogenous Ca2+ reporter, that typically were coordinated over the length of the vessel. Similar to the membrane potential recordings, Ca2+ flashes in mesenteric vessels were weaker and had a slower rise time but were longer lasting than those in Ing-Ax vessels. BayK (100 nM) significantly increased the Ca2+ transient amplitude and duration in both vessels and decreased time to peak Ca2+ in mesenteric vessels. However, a higher concentration (1 μM) of BayK was required to produce even a modest increase in EF in visceral lymphatics, which remained at <20%. NEW & NOTEWORTHY Lymphatic collecting vessels isolated from murine peripheral tissues, but not from the visceral cavities, display robust contractile behavior similar to lymphatic vessels from other animal models and humans. These differences are partially explained by L-type Ca2+ channel activity as revealed by the first measurements of murine lymphatic action potentials and contraction-associated Ca2+ transients.
Collapse
Affiliation(s)
- Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | | | - Joshua P Scallan
- Molecular Pharmacology and Physiology, University of South Florida , Tampa, Florida
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
27
|
Friedland-Little JM, Gajarski RJ, Schumacher KR. Dopamine as a potential rescue therapy for refractory protein-losing enteropathy in Fontan-palliated patients. Pediatr Transplant 2017; 21. [PMID: 28370952 DOI: 10.1111/petr.12925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 12/18/2022]
Abstract
PLE is an important cause of morbidity and mortality in patients who have undergone Fontan palliation. While multiple PLE therapies have been reported, none has proved consistently effective. Patients who do not respond to "standard" PLE therapies face poor long-term outcomes. We report here a significant response to dopamine infusion in three patients with chronic, refractory PLE. We hypothesize that this response may be at least partially due to a dopamine effect on lymphatic receptors rather than to an augmentation of cardiac output.
Collapse
Affiliation(s)
- Joshua M Friedland-Little
- Division of Pediatric Cardiology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Robert J Gajarski
- Division of Pediatric Cardiology, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Kurt R Schumacher
- Division of Pediatric Cardiology, Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Telinius N, Majgaard J, Mohanakumar S, Pahle E, Nielsen J, Hjortdal V, Aalkjær C, Boedtkjer DB. Spontaneous and Evoked Contractility of Human Intestinal Lymphatic Vessels. Lymphat Res Biol 2017; 15:17-22. [DOI: 10.1089/lrb.2016.0039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Niklas Telinius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Majgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sheyanth Mohanakumar
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Einar Pahle
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Jørn Nielsen
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Donna Briggs Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Hasselhof V, Sperling A, Buttler K, Ströbel P, Becker J, Aung T, Felmerer G, Wilting J. Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors. PLoS One 2016; 11:e0164964. [PMID: 27764183 PMCID: PMC5072738 DOI: 10.1371/journal.pone.0164964] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023] Open
Abstract
Millions of patients suffer from lymphedema worldwide. Supporting the contractility of lymphatic collectors is an attractive target for pharmacological therapy of lymphedema. However, lymphatics have mostly been studied in animals, while the cellular and molecular characteristics of human lymphatic collectors are largely unknown. We studied epifascial lymphatic collectors of the thigh, which were isolated for autologous transplantations. Our immunohistological studies identify additional markers for LECs (vimentin, CCBE1). We show and confirm differences between initial and collecting lymphatics concerning the markers ESAM1, D2-40 and LYVE-1. Our transmission electron microscopic studies reveal two types of smooth muscle cells (SMCs) in the media of the collectors with dark and light cytoplasm. We observed vasa vasorum in the media of the largest collectors, as well as interstitial Cajal-like cells, which are highly ramified cells with long processes, caveolae, and lacking a basal lamina. They are in close contact with SMCs, which possess multiple caveolae at the contact sites. Immunohistologically we identified such cells with antibodies against vimentin and PDGFRα, but not CD34 and cKIT. With Next Generation Sequencing we searched for highly expressed genes in the media of lymphatic collectors, and found therapeutic targets, suitable for acceleration of lymphatic contractility, such as neuropeptide Y receptors 1, and 5; tachykinin receptors 1, and 2; purinergic receptors P2RX1, and 6, P2RY12, 13, and 14; 5-hydroxytryptamine receptors HTR2B, and 3C; and adrenoceptors α2A,B,C. Our studies represent the first comprehensive characterization of human epifascial lymphatic collectors, as a prerequisite for diagnosis and therapy.
Collapse
Affiliation(s)
- Viktoria Hasselhof
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Anastasia Sperling
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Kerstin Buttler
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Becker
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Thiha Aung
- Division of Trauma Surgery, Plastic and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
- Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Gunther Felmerer
- Division of Trauma Surgery, Plastic and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 2016; 594:5749-5768. [PMID: 27219461 PMCID: PMC5063934 DOI: 10.1113/jp272088] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
31
|
Lymph vessels: the forgotten second circulation in health and disease. Virchows Arch 2016; 469:3-17. [PMID: 27173782 PMCID: PMC4923112 DOI: 10.1007/s00428-016-1945-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022]
Abstract
The lymphatic circulation is still a somewhat forgotten part of the circulatory system. Despite this, novel insights in lymph angiogenesis in health and disease, application of immune markers for lymphatic growth and differentiation and also the introduction of new imaging techniques to visualize the lymphatic circulation have improved our understanding of lymphatic function in both health and disease, especially in the last decade. These achievements yield better understanding of the various manifestations of lymph oedemas and malformations, and also the patterns of lymphovascular spread of cancers. Immune markers that recognize lymphatic endothelium antigens, such as podoplanin, LYVE-1 and Prox-1, can be successfully applied in diagnostic pathology and have revealed (at least partial) lymphatic differentiation in many types of vascular lesions.
Collapse
|
32
|
D'Andrea V, Panarese A, Taurone S, Coppola L, Cavallotti C, Artico M. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers. Lymphat Res Biol 2015; 13:170-5. [DOI: 10.1089/lrb.2015.0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vito D'Andrea
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Samanta Taurone
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Luigi Coppola
- Operative Unit of Pathologic Anatomy. S. Filippo Neri Hospital, Rome, Italy
| | - Carlo Cavallotti
- Department of Anatomical, Histological, Forensic and Locomotor System Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Telinius N, Majgaard J, Kim S, Katballe N, Pahle E, Nielsen J, Hjortdal V, Aalkjaer C, Boedtkjer DB. Voltage-gated sodium channels contribute to action potentials and spontaneous contractility in isolated human lymphatic vessels. J Physiol 2015; 593:3109-22. [PMID: 25969124 PMCID: PMC4532530 DOI: 10.1113/jp270166] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/05/2015] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) play a key role for initiating action potentials (AP) in excitable cells. VGSC in human lymphatic vessels have not been investigated. In the present study, we report the electrical activity and APs of small human lymphatic collecting vessels, as well as mRNA expression and function of VGSC in small and large human lymphatic vessels. The VGSC blocker TTX inhibited spontaneous contractions in six of 10 spontaneously active vessels, whereas ranolazine, which has a narrower VGSC blocking profile, had no influence on spontaneous activity. TTX did not affect noradrenaline-induced contractions. The VGSC opener veratridine induced contractions in a concentration-dependent manner (0.1-30 μm) eliciting a stable tonic contraction and membrane depolarization to -18 ± 0.6 mV. Veratridine-induced depolarizations and contractions were reversed ∼80% by TTX, and were dependent on Ca(2+) influx via L-type calcium channels and the sodium-calcium exchanger in reverse mode. Molecular analysis determined NaV 1.3 to be the predominantly expressed VGSC isoform. Electrophysiology of mesenteric lymphatics determined the resting membrane potential to be -45 ± 1.7 mV. Spontaneous APs were preceded by a slow depolarization of 5.3 ± 0.6 mV after which a spike was elicited that almost completely repolarized before immediately depolarizing again to plateau. Vessels transiently hyperpolarized prior to returning to the resting membrane potential. TTX application blocked APs. We have shown that VGSC are necessary for initiating and maintaining APs and spontaneous contractions in human lymphatic vessels and our data suggest the main contribution from comes NaV 1.3. We have also shown that activation of these channels augments the contractile activity of the vessels.
Collapse
Affiliation(s)
- Niklas Telinius
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University HospitalAarhus, Denmark
| | - Jens Majgaard
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
| | - Sukhan Kim
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
| | - Niels Katballe
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
| | - Einar Pahle
- Department of Surgery, Viborg HospitalViborg, Denmark
| | - Jørn Nielsen
- Department of Surgery, Viborg HospitalViborg, Denmark
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Aarhus University HospitalAarhus, Denmark
| | | | - Donna Briggs Boedtkjer
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark
- Department of Cardiothoracic Surgery, Aarhus University HospitalAarhus, Denmark
| |
Collapse
|
34
|
Telinius N, Mohanakumar S, Majgaard J, Kim S, Pilegaard H, Pahle E, Nielsen J, de Leval M, Aalkjaer C, Hjortdal V, Boedtkjer DB. Human lymphatic vessel contractile activity is inhibited in vitro but not in vivo by the calcium channel blocker nifedipine. J Physiol 2014; 592:4697-714. [PMID: 25172950 DOI: 10.1113/jphysiol.2014.276683] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Calcium channel blockers (CCB) are widely prescribed anti-hypertensive agents. The commonest side-effect, peripheral oedema, is attributed to a larger arterial than venous dilatation causing increased fluid filtration. Whether CCB treatment is detrimental to human lymphatic vessel function and thereby exacerbates oedema formation is unknown. We observed that spontaneous lymphatic contractions in isolated human vessels (thoracic duct and mesenteric lymphatics) maintained under isometric conditions were inhibited by therapeutic concentrations (nanomolar) of the CCB nifedipine while higher than therapeutic concentrations of verapamil (micromolar) were necessary to inhibit activity. Nifedipine also inhibited spontaneous action potentials measured by sharp microelectrodes. Furthermore, noradrenaline did not elicit normal increases in lymphatic vessel tone when maximal constriction was reduced to 29.4 ± 4.9% of control in the presence of 20 nmol l(-1) nifedipine. Transcripts for the L-type calcium channel gene CACNA1C were consistently detected from human thoracic duct samples examined and the CaV1.2 protein was localized by immunoreactivity to lymphatic smooth muscle cells. While human lymphatics ex vivo were highly sensitive to nifedipine, this was not apparent in vivo when nifedipine was compared to placebo in a randomized, double-blinded clinical trial: conversely, lymphatic vessel contraction frequency was increased and refill time was faster despite all subjects achieving target nifedipine plasma concentrations. We conclude that human lymphatic vessels are highly sensitive to nifedipine in vitro but that care must be taken when extrapolating in vitro observations of lymphatic vessel function to the clinical situation, as similar changes in lymphatic function were not evident in our clinical trial comparing nifedipine treatment to placebo.
Collapse
Affiliation(s)
- Niklas Telinius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Sheyanth Mohanakumar
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Majgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sukhan Kim
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hans Pilegaard
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Einar Pahle
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Jørn Nielsen
- Department of Surgery, Viborg Hospital, Viborg, Denmark
| | - Marc de Leval
- International Congenital Cardiac Centre, Harley Street Clinic, London, UK
| | | | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Donna Briggs Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Telinius N, Kim S, Pilegaard H, Pahle E, Nielsen J, Hjortdal V, Aalkjaer C, Boedtkjer DB. The contribution of K(+) channels to human thoracic duct contractility. Am J Physiol Heart Circ Physiol 2014; 307:H33-43. [PMID: 24778167 DOI: 10.1152/ajpheart.00921.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In smooth muscle cells, K(+) permeability is high, and this highly influences the resting membrane potential. Lymph propulsion is dependent on phasic contractions generated by smooth muscle cells of lymphatic vessels, and it is likely that K(+) channels play a critical role in regulating contractility in this tissue. The aim of this study was to investigate the contribution of distinct K(+) channels to human lymphatic vessel contractility. Thoracic ducts were harvested from 43 patients and mounted in a wire myograph for isometric force measurements or membrane potential recordings with an intracellular microelectrode. Using K(+) channel blockers and activators, we demonstrate a functional contribution to human lymphatic vessel contractility from all the major classes of K(+) channels [ATP-sensitive K(+) (KATP), Ca(2+)-activated K(+), inward rectifier K(+), and voltage-dependent K(+) channels], and this was confirmed at the mRNA level. Contraction amplitude, frequency, and baseline tension were altered depending on which channel was blocked or activated. Microelectrode impalements of lymphatic vessels determined an average resting membrane potential of -43.1 ± 3.7 mV. We observed that membrane potential changes of <5 mV could have large functional effects with contraction frequencies increasing threefold. In general, KATP channels appeared to be constitutively open since incubation with glibenclamide increased contraction frequency in spontaneously active vessels and depolarized and initiated contractions in previously quiescent vessels. The largest change in membrane voltage was observed with the KATP opener pinacidil, which caused 24 ± 3 mV hyperpolarization. We conclude that K(+) channels are important modulators of human lymphatic contractility.
Collapse
|
36
|
Blei F. Update March 2014. Lymphat Res Biol 2014. [DOI: 10.1089/lrb.2014.1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|