1
|
Wołowiec Ł, Rogowicz D, Budzyński J, Banach J, Wołowiec A, Kozakiewicz M, Bieliński M, Jaśniak A, Osiak J, Grześk G. Prognostic value of plasma secretoneurin concentration in patients with heart failure with reduced ejection fraction in one-year follow-up. Ann Med 2024; 56:2305309. [PMID: 38261566 PMCID: PMC10810662 DOI: 10.1080/07853890.2024.2305309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND This is the first study to examine the clinical utility of measuring plasma secretoneurin (SN) levels in patients with heart failure with reduced ejection fraction (HFrEF), as a predictor of unplanned hospitalization, and all-cause mortality independently, and as a composite endpoint at one-year follow-up. METHODS The study group includes 124 caucasian patients in New York Heart Association (NYHA) classes II to IV. Plasma SN concentrations were statistically analyzed in relation to sex, age, BMI, etiology of HFrEF, pharmacotherapy, clinical, laboratory and echocardiographic parameters. Samples were collected within 24 h of admission to the hospital. KEY RESULTS In the 12-month follow-up, high SN levels were noted for all three endpoints. CONCLUSIONS SN positively correlates with HF severity measured by NYHA classes and proves to be a useful prognostic parameter in predicting unplanned hospitalizations and all-cause mortality among patients with HFrEF. Patients with high SN levels may benefit from systematic follow-up and may be candidates for more aggressive treatment.
Collapse
Affiliation(s)
- Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Daniel Rogowicz
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Budzyński
- Department of Vascular and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Banach
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Bieliński
- Department of Clinical Neuropsychology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Albert Jaśniak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
2
|
Mitterer W, Odri Komazec I, Huber E, Schaefer B, Posod A, Kiechl-Kohlendorfer U. Young hearts, early risks: novel cardiovascular biomarkers in former very preterm infants at kindergarten age. Pediatr Res 2024; 96:999-1005. [PMID: 38658663 PMCID: PMC11502516 DOI: 10.1038/s41390-024-03210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Preterm birth is associated with long-term cardiovascular morbidity and mortality. In adults, fibroblast growth factor-23 (FGF-23), α-Klotho, and secretoneurin have all garnered attention as cardiovascular biomarkers, but their utility in pediatric populations has not yet been ascertained. The aim of this pilot study was to evaluate these novel cardiovascular biomarkers and their association with indicators of cardiovascular impairment in the highly vulnerable population of former very preterm infants. METHODS Five- to seven-year-old children born at < 32 weeks' gestation were eligible for the study. Healthy same-aged children born at term served as controls. Biomarkers were quantified in fasting blood samples, and echocardiographic measurements including assessment of aortic elastic properties were obtained. RESULTS We included 26 former very preterm infants and 21 term-born children in the study. At kindergarten age, former very preterm infants exhibited significantly higher plasma concentrations of biologically active intact FGF-23 (iFGF-23; mean 43.2 pg/mL vs. 29.1 pg/mL, p = 0.003) and secretoneurin (median 93.8 pmol/L vs. 70.5 pmol/L, p = 0.046). iFGF-23 inversely correlated with distensibility of the descending aorta. CONCLUSION In preterm-born children, iFGF-23 and secretoneurin both offer prospects as valuable cardiovascular biomarkers, potentially allowing for risk stratification and timely implementation of preventive measures. IMPACT Former very preterm infants have increased plasma concentrations of the novel cardiovascular biomarkers intact fibroblast growth factor-23 (iFGF-23) and secretoneurin at kindergarten age. Increases in iFGF-23 concentrations are associated with decreased distensibility of the descending aorta even at this early age. Monitoring of cardiovascular risk factors is essential in individuals with a history of preterm birth. Both iFGF-23 and secretoneurin hold promise as clinically valuable biomarkers for risk stratification, enabling the implementation of early preventive measures.
Collapse
Affiliation(s)
- Wolfgang Mitterer
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
- VASCage GmbH, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Irena Odri Komazec
- Department of Pediatrics III, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Huber
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria
| | - Benedikt Schaefer
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Posod
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
3
|
Theurl M, Dichtl W. Is Local Secretoneurin Release a Defense Strategy of the Heart to Protect Itself from Takotsubo Syndrome? Cardiology 2024; 149:472-473. [PMID: 38889705 DOI: 10.1159/000539523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Markus Theurl
- University Clinic of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang Dichtl
- University Clinic of Internal Medicine III, Medical University Innsbruck, Innsbruck, Austria,
| |
Collapse
|
4
|
Plášek J, Lazárová M, Dodulík J, Šulc P, Stejskal D, Švagera Z, Všianský F, Václavík J. Secretoneurin as a Novel Biomarker of Cardiovascular Episodes: Are We There Yet? A Narrative Review. J Clin Med 2022; 11:jcm11237191. [PMID: 36498765 PMCID: PMC9735894 DOI: 10.3390/jcm11237191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Secretoneurin (SN) is a 33 amino-acid evolutionary conserved neuropeptide from the chromogranin peptide family. SN's main effects may be cardioprotective and are believed to be mediated through its inhibition of calmodulin-dependent kinase II (CaMKII), which influences intracellular calcium handling. SN inhibition of CaMKII suppresses calcium leakage from the sarcoplasmic reticulum through the ryanodine receptor. This action may reduce the risk of ventricular arrhythmias and calcium-dependent remodelling in heart failure. SN is also involved in reducing the intracellular reactive oxygen species concentration, modulating the immune response, and regulating the cell cycle, including apoptosis. SN can predict mortality in different disease states, beyond the classical risk factors and markers of myocardial injury. Plasma SN levels are elevated soon after an arrhythmogenic episode. In summary, SN is a novel biomarker with potential in cardiovascular medicine, and probably beyond.
Collapse
Affiliation(s)
- Jiří Plášek
- Dept. of Internal Medicine and Cardiology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Research Center for Internal and Cardiovascular Diseases, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Correspondence: ; Tel.: +420-776-658-598
| | - Marie Lazárová
- Dept. of Internal Medicine and Cardiology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Jozef Dodulík
- Dept. of Internal Medicine and Cardiology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Patrik Šulc
- Dept. of Internal Medicine and Cardiology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - David Stejskal
- Institute of Laboratory Medicine, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Institute of Laboratory Medicine, University of Ostrava, 70103 Ostrava, Czech Republic
| | - Zdeněk Švagera
- Institute of Laboratory Medicine, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Institute of Laboratory Medicine, University of Ostrava, 70103 Ostrava, Czech Republic
| | - František Všianský
- Institute of Laboratory Medicine, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Jan Václavík
- Dept. of Internal Medicine and Cardiology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Research Center for Internal and Cardiovascular Diseases, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| |
Collapse
|
5
|
The Emerging Roles of Chromogranins and Derived Polypeptides in Atherosclerosis, Diabetes, and Coronary Heart Disease. Int J Mol Sci 2021; 22:ijms22116118. [PMID: 34204153 PMCID: PMC8201018 DOI: 10.3390/ijms22116118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Chromogranin A (CgA), B (CgB), and C (CgC), the family members of the granin glycoproteins, are associated with diabetes. These proteins are abundantly expressed in neurons, endocrine, and neuroendocrine cells. They are also present in other areas of the body. Patients with diabetic retinopathy have higher levels of CgA, CgB, and CgC in the vitreous humor. In addition, type 1 diabetic patients have high CgA and low CgB levels in the circulating blood. Plasma CgA levels are increased in patients with hypertension, coronary heart disease, and heart failure. CgA is the precursor to several functional peptides, including catestatin, vasostatin-1, vasostatin-2, pancreastatin, chromofungin, and many others. Catestatin, vasostain-1, and vasostatin-2 suppress the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular endothelial cells. Catestatin and vasostatin-1 suppress oxidized low-density lipoprotein-induced foam cell formation in human macrophages. Catestatin and vasostatin-2, but not vasostatin-1, suppress the proliferation and these three peptides suppress the migration in human vascular smooth muscles. Chronic infusion of catestatin, vasostatin-1, or vasostatin-2 suppresses the development of atherosclerosis of the aorta in apolipoprotein E-deficient mice. Catestatin, vasostatin-1, vasostatin-2, and chromofungin protect ischemia/reperfusion-induced myocardial dysfunction in rats. Since pancreastatin inhibits insulin secretion from pancreatic β-cells, and regulates glucose metabolism in liver and adipose tissues, pancreastatin inhibitor peptide-8 (PSTi8) improves insulin resistance and glucose homeostasis. Catestatin stimulates therapeutic angiogenesis in the mouse hind limb ischemia model. Gene therapy with secretoneurin, a CgC-derived peptide, stimulates postischemic neovascularization in apolipoprotein E-deficient mice and streptozotocin-induced diabetic mice, and improves diabetic neuropathy in db/db mice. Therefore, CgA is a biomarker for atherosclerosis, diabetes, hypertension, and coronary heart disease. CgA- and CgC--derived polypeptides provide the therapeutic target for atherosclerosis and ischemia-induced tissue damages. PSTi8 is useful in the treatment of diabetes.
Collapse
|
6
|
Chen H, Wu M, Jiang W, Liu X, Zhang J, Yu C. iTRAQ‑based quantitative proteomics analysis of the potential application of secretoneurin gene therapy for cardiac hypertrophy induced by DL‑isoproterenol hydrochloride in mice. Int J Mol Med 2020; 45:793-804. [PMID: 31985029 PMCID: PMC7015125 DOI: 10.3892/ijmm.2020.4472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
A previous study by our group demonstrated a protective role of the neuropeptide secretoneurin (SN) in DL‑isoproterenol hydrochloride (ISO)‑induced cardiac hypertrophy in mice. To further characterize the molecular mechanism of SN treatment, an isobaric tags for relative and absolute quantification (iTRAQ)‑based quantitative proteomic analysis was applied to identify putative target proteins and molecular pathways. An SN expression vector was injected into the myocardial tissues of mice, and the animals were then subcutaneously injected with ISO (5 mg/kg/day) for 7 days to induce cardiac hypertrophy. The results of echocardiography and hemodynamic measurements indicated that the function of the heart impaired by ISO treatment was significantly ameliorated via SN gene injection. The investigation of heart proteomics was performed by iTRAQ‑based liquid chromatography‑tandem mass spectrometry analysis. A total of 2,044 quantified proteins and 15 differentially expressed proteins were associated with SN overexpression in mice with cardiac hypertrophy. Functional enrichment analysis demonstrated that these effects were possibly associated with metabolic processes. A protein‑protein interaction network analysis was constructed and the data indicated that apolipoprotein C‑III (Apoc3) was associated with the positive effect of SN on the induction of cardiac hypertrophy in mice. The present study proposed a potential mechanism of SN action on Apoc3 upregulation that may contribute to the amelioration of cardiac hypertrophy. These findings can aid the clinical application of SN in patients with cardiac hypertrophy.
Collapse
Affiliation(s)
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016
| | - Wei Jiang
- State Key Laboratory of Biotherapy, Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang Liu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016
| | - Jun Zhang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016
| | | |
Collapse
|
7
|
Chen H, Vanhoutte PM, Leung SWS. Acute activation of endothelial AMPK surprisingly inhibits endothelium-dependent hyperpolarization-like relaxations in rat mesenteric arteries. Br J Pharmacol 2019; 176:2905-2921. [PMID: 31116877 DOI: 10.1111/bph.14716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelium-dependent hyperpolarizations (EDHs) contribute to the regulation of peripheral resistance. They are initiated through opening of endothelial calcium-activated potassium channels (KCa ); the potassium ions released then diffuse to the underlying smooth muscle cells, causing hyperpolarization and thus relaxation. The present study aimed to examine whether or not AMPK modulates EDH-like relaxations in rat mesenteric arteries. EXPERIMENTAL APPROACH Arterial rings were isolated for isometric tension recording. AMPK activity and protein level were measured by ELISA and western blotting respectively. KEY RESULTS The AMPK activator, AICAR, reduced ACh-induced EDH-like relaxations and increased AMPK activity in preparations with endothelium; these responses were prevented by compound C, an AMPK inhibitor. AICAR inhibited relaxations induced by SKA-31 (opener of endothelial KCa ) but did not affect potassium-induced, hyperpolarization-attributable relaxations or increase AMPK activity in preparations without endothelium. A769662, another AMPK activator, not only caused a similar inhibition of relaxations to ACh and SKA-31 in preparations with endothelium but also inhibited hyperpolarization-attributable relaxations and augmented AMPK activity in rings without endothelium. Protein levels of total AMPKα, AMPKα1, or AMPKβ1/2 were comparable between preparations with and without endothelium. CONCLUSIONS AND IMPLICATIONS Activation of endothelial AMPK, by either AICAR or A769662, acutely inhibits EDH-like relaxations of rat mesenteric arteries. Furthermore, A769662 inhibits signalling downstream of smooth muscle hyperpolarization. In view of the major blunting effect of AMPK activation on EDH-like relaxations, caution should be applied when administering therapeutic agents that activate AMPK in patients with endothelial dysfunction characterized by reduced production and/or bioavailability of NO.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
8
|
Secretoneurin suppresses cardiac hypertrophy through suppression of oxidant stress. Eur J Pharmacol 2018; 822:13-24. [PMID: 29337195 DOI: 10.1016/j.ejphar.2018.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/25/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
The neuropeptide secretoneurin (SN) plays protective roles in myocardial ischemia. In the present study, the effect of SN in cardiac hypertrophy was investigated. We observed that, in isoproterenol (ISO) treatment induced cardiac or cardiomyocytes hypertrophy, a marked increase in the expression of endogenous SN in mouse plasma, myocardium and primary-cultured cardiomyocytes occurs. In hypertrophic mice, the heart size, heart weight/body weight (HW/BW) ratio, cardiomyocyte size, and atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) expression were significantly higher than those in controls but were effectively suppressed by SN gene therapy. Similarly, the protective effects of SN were also observed in cultured cardiomyocytes following ISO treatment. SN significantly increased the activity of catalase and superoxide dismutase (SOD) in parallel with the decrease in reactive oxygen species levels in cardiomyocytes. We observed that SN evoked the activation of all of the AMPK, P38/MAPK and ERK/MAPK pathways in cardiomyocytes, but pretreatment with only AMPK inhibitor (compound C) and ERK1/2/MAPK inhibitor (PD98059) counteracted the protective effects of SN against cardiomyocyte hypertrophy and the suppressive effects of SN on oxidant stress in cardiomyocytes. These results indicated that endogenous SN is induced in hypertrophic cardiomyocytes, and may play a protective role in the pathogenesis of cardiac hypertrophy. These results suggest that exogenous SN supplementation protects the cardiac hypertrophy induced by ISO treatment through the activation of AMPK and ERK/MAPK pathways, thus upregulating antioxidants and suppressing oxidative stress.
Collapse
|
9
|
Widiapradja A, Chunduri P, Levick SP. The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 2017; 74:2019-2038. [PMID: 28097372 PMCID: PMC6339818 DOI: 10.1007/s00018-017-2452-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022]
Abstract
In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Vanhoutte PM, Zhao Y, Xu A, Leung SWS. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ Res 2017; 119:375-96. [PMID: 27390338 DOI: 10.1161/circresaha.116.306531] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
Endothelial cells control vascular tone by releasing nitric oxide (NO) produced by endothelial NO synthase. The activity of endothelial NO synthase is modulated by the calcium concentration and by post-translational modifications (eg, phosphorylation). When NO reaches vascular smooth muscle, soluble guanylyl cyclase is its primary target producing cGMP. NO production is stimulated by circulating substances (eg, catecholamines), platelet products (eg, serotonin), autacoids formed in (eg, bradykinin) or near (eg, adiponectin) the vascular wall and physical factors (eg, shear stress). NO dysfunction can be caused, alone or in combination, by abnormal coupling of endothelial cell membrane receptors, insufficient supply of substrate (l-arginine) or cofactors (tetrahydrobiopterin), endogenous inhibitors (asymmetrical dimethyl arginine), reduced expression/presence/dimerization of endothelial NO synthase, inhibition of its enzymatic activity, accelerated disposition of NO by reactive oxygen species and abnormal responses (eg, biased soluble guanylyl cyclase activity producing cyclic inosine monophosphate) of the vascular smooth muscle. Major culprits causing endothelial dysfunction, irrespective of the underlying pathological process (aging, obesity, diabetes mellitus, and hypertension), include stimulation of mineralocorticoid receptors, activation of endothelial Rho-kinase, augmented presence of asymmetrical dimethyl arginine, and exaggerated oxidative stress. Genetic and pharmacological interventions improve dysfunctional NO-mediated vasodilatations if protecting the supply of substrate and cofactors for endothelial NO synthase, preserving the presence and activity of the enzyme and reducing reactive oxygen species generation. Common achievers of such improvement include maintained levels of estrogens and increased production of adiponectin and induction of silent mating-type information regulation 2 homologue 1. Obviously, endothelium-dependent relaxations are not the only beneficial action of NO in the vascular wall. Thus, reduced NO-mediated responses precede and initiate the atherosclerotic process.
Collapse
Affiliation(s)
- Paul M Vanhoutte
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yingzi Zhao
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- From the State Key Laboratory of Pharmaceutical Biotechnology (P.M.V., Y.Z., A.X., S.W.S.L.), Department of Pharmacology and Pharmacy (P.M.V., Y.Z., A.X., S.W.S.L.), and Department of Medicine (A.X.), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Vascular Endothelium. TISSUE FUNCTIONING AND REMODELING IN THE CIRCULATORY AND VENTILATORY SYSTEMS 2013. [DOI: 10.1007/978-1-4614-5966-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|