1
|
Bovo E, Seflova J, Robia SL, Zima AV. Protein carbonylation causes sarcoplasmic reticulum Ca 2+ overload by increasing intracellular Na + level in ventricular myocytes. Pflugers Arch 2024; 476:1077-1086. [PMID: 38769127 DOI: 10.1007/s00424-024-02972-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 μM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 μM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL, 60153, USA
| | - Jaroslava Seflova
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL, 60153, USA
| | - Seth L Robia
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL, 60153, USA
| | - Aleksey V Zima
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
2
|
Bazoukis G, Saplaouras A, Efthymiou P, Yiannikourides A, Liu T, Letsas KP, Efremidis M, Lampropoulos K, Xydonas S, Tse G, Armoundas AA. Cardiac contractility modulation in patients with heart failure - A review of the literature. Heart Fail Rev 2024; 29:689-705. [PMID: 38393423 DOI: 10.1007/s10741-024-10390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Experimental in vivo and in vitro studies showed that electric currents applied during the absolute refractory period can modulate cardiac contractility. In preclinical studies, cardiac contractility modulation (CCM) was found to improve calcium handling, reverse the foetal myocyte gene programming associated with heart failure (HF), and facilitate reverse remodeling. Randomized control trials and observational studies have provided evidence about the safety and efficacy of CCM in patients with HF. Clinically, CCM therapy is indicated to improve the 6-min hall walk, quality of life, and functional status of HF patients who remain symptomatic despite guideline-directed medical treatment without an indication for cardiac resynchronization therapy (CRT) and have a left ventricular ejection fraction (LVEF) ranging from 25 to 45%. Although there are promising results about the role of CCM in HF patients with preserved LVEF (HFpEF), further studies are needed to elucidate the role of CCM therapy in this population. Late gadolinium enhancement (LGE) assessment before CCM implantation has been proposed for guiding the lead placement. Furthermore, the optimal duration of CCM application needs further investigation. This review aims to present the existing evidence regarding the role of CCM therapy in HF patients and identify gaps and challenges that require further studies.
Collapse
Affiliation(s)
- George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Inomenon Polition Amerikis, Larnaca, Cyprus.
- Medical School, European University Cyprus, Nicosia, Cyprus.
| | | | - Polyxeni Efthymiou
- Department of Cardiology, Larnaca General Hospital, Inomenon Polition Amerikis, Larnaca, Cyprus
| | | | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Michael Efremidis
- Department of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Sotirios Xydonas
- Second Department of Cardiology, Evangelismos General Hospital, Athens, Greece
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, University of Kent, Canterbury, Kent, UK
- Canterbury Christ Church University, Canterbury, Kent, UK
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston, MA, 02129, USA.
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Bovo E, Seflova J, Robia SL, Zima AV. Protein carbonylation causes sarcoplasmic reticulum Ca2+ overload by increasing intracellular Na+ level in ventricular myocytes. RESEARCH SQUARE 2024:rs.3.rs-3991887. [PMID: 38464201 PMCID: PMC10925417 DOI: 10.21203/rs.3.rs-3991887/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 μM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 μM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.
Collapse
Affiliation(s)
- Elisa Bovo
- Loyola University Chicago, Stritch School of Medicine
| | | | - Seth L Robia
- Loyola University Chicago, Stritch School of Medicine
| | | |
Collapse
|
5
|
Li Z, Liu Q, Zhou S, Xiao Y. Enhancing myocardial function with cardiac contractility modulation: potential and challenges. ESC Heart Fail 2024; 11:1-12. [PMID: 37947013 PMCID: PMC10804199 DOI: 10.1002/ehf2.14575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Cardiac contractility modulation (CCM) offers a novel therapeutic avenue for heart failure patients, particularly those unresponsive to cardiac resynchronization therapy within specific QRS duration ranges. This review elucidates CCM's mechanistic underpinnings, its impact on myocardial function, and utility across patient demographics. However, CCM is limited by insufficient data on mortality and hospitalization rate reductions, as well as the need for specialized device implantation skills. While prevailing research has concentrated on left ventricular effects, a knowledge gap persists for other patient subsets. Future inquiries should address combinatory treatment strategies, extended usage and the impact of atrial fibrillation on device implantation. Such expanded studies could refine therapeutic outcomes and widen the scope of beneficiaries.
Collapse
Affiliation(s)
- Zihan Li
- Department of Cardiovascular Medicine, Second Xiangya HospitalCentral South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
6
|
Brojakowska A, Jackson CJ, Bisserier M, Khlgatian MK, Jagana V, Eskandari A, Grano C, Blattnig SR, Zhang S, Fish KM, Chepurko V, Chepurko E, Gillespie V, Dai Y, Kumar Rai A, Garikipati VNS, Hadri L, Kishore R, Goukassian DA. Lifetime evaluation of left ventricular structure and function in male ApoE null mice after gamma and space-type radiation exposure. Front Physiol 2023; 14:1292033. [PMID: 38054039 PMCID: PMC10694360 DOI: 10.3389/fphys.2023.1292033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
The space radiation (IR) environment contains high charge and energy (HZE) nuclei emitted from galactic cosmic rays with the ability to overcome current shielding strategies, posing increased IR-induced cardiovascular disease risks for astronauts on prolonged space missions. Little is known about the effect of 5-ion simplified galactic cosmic ray simulation (simGCRsim) exposure on left ventricular (LV) function. Three-month-old, age-matched male Apolipoprotein E (ApoE) null mice were irradiated with 137Cs gamma (γ; 100, 200, and 400 cGy) and simGCRsim (50, 100, 150 cGy all at 500 MeV/nucleon (n)). LV function was assessed using transthoracic echocardiography at early/acute (14 and 28 days) and late/degenerative (365, 440, and 660 days) times post-irradiation. As early as 14 and 28-days post IR, LV systolic function was reduced in both IR groups across all doses. At 14 days post-IR, 150 cGy simGCRsim-IR mice had decreased diastolic wall strain (DWS), suggesting increased myocardial stiffness. This was also observed later in 100 cGy γ-IR mice at 28 days. At later stages, a significant decrease in LV systolic function was observed in the 400 cGy γ-IR mice. Otherwise, there was no difference in the LV systolic function or structure at the remaining time points across the IR groups. We evaluated the expression of genes involved in hemodynamic stress, cardiac remodeling, inflammation, and calcium handling in LVs harvested 28 days post-IR. At 28 days post-IR, there is increased expression of Bnp and Ncx in both IR groups at the lowest doses, suggesting impaired function contributes to hemodynamic stress and altered calcium handling. The expression of Gals3 and β-Mhc were increased in simGCRsim and γ-IR mice respectively, suggesting there may be IR-specific cardiac remodeling. IR groups were modeled to calculate the Relative Biological Effectiveness (RBE) and Radiation Effects Ratio (RER). No lower threshold was determined using the observed dose-response curves. These findings do not exclude the possibility of the existence of a lower IR threshold or the presence of IR-induced cardiovascular disease (CVD) when combined with additional space travel stressors, e.g., microgravity.
Collapse
Affiliation(s)
- Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Yale School of Medicine, New Haven, CT, United States
| | | | | | | | - Vineeta Jagana
- New York Medical College, Valhalla, New York, United States
| | - Abrisham Eskandari
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cynthia Grano
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Steve R. Blattnig
- National Aeronautics and Space Administration, Hampton, VA, United States
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kenneth M. Fish
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vadim Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Virginia Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ying Dai
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Amit Kumar Rai
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | | | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center of Excellence for Translational Medicine and Pharmacology/Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raj Kishore
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Husti Z, Varró A, Baczkó I. Arrhythmogenic Remodeling in the Failing Heart. Cells 2021; 10:cells10113203. [PMID: 34831426 PMCID: PMC8623396 DOI: 10.3390/cells10113203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
8
|
Heo R, Seo MS, An JR, Kang M, Park H, Han ET, Han JH, Chun W, Park WS. The anti-diabetic drug trelagliptin induces vasodilation via activation of Kv channels and SERCA pumps. Life Sci 2021; 283:119868. [PMID: 34358551 DOI: 10.1016/j.lfs.2021.119868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022]
Abstract
AIMS In this study, we investigated the vasodilatory effects of trelagliptin (a dipeptidyl peptidase-4 inhibitor) and its related mechanisms using rabbit aortic rings. MAIN METHODS Arterial tone measurement was performed in rabbit thoracic aortic rings. KEY FINDINGS Trelagliptin induced vasodilation in a dose-dependent manner. Pretreatment with the ATP-sensitive K+ channel inhibitor glibenclamide, large-conductance Ca2+-activated K+ channel inhibitor paxilline, and inwardly rectifying K+ channel inhibitor Ba2+ did not affect the vasodilatory effect of trelagliptin. However, pretreatment with the voltage-dependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly attenuated the vasodilatory effect of trelagliptin, suggesting that the vasodilatory effect of trelagliptin is associated with Kv channel activation. Although pretreatment with Kv1.5 and Kv2.1 subtype inhibitors did not affect the response to trelagliptin, pretreatment with a Kv7.X subtype inhibitor effectively reduced the vasodilatory effect of trelagliptin. Furthermore, sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors also significantly attenuated the vasodilatory effect of trelagliptin. These effects, however, were not affected by pretreatment with Ca2+ channel inhibitors, adenylyl cyclase/PKA inhibitors, guanylyl cyclase/PKG inhibitors, or removal of the endothelium. SIGNIFICANCE From these results, we concluded that the vasodilatory effect of trelagliptin was associated with the activation of Kv channels (primary the Kv7.X subtype) and SERCA pump regardless of other K+ channels, Ca2+ channels, cAMP/PKA-related or cGMP/PKG-related signaling pathways, and the endothelium. Therefore, caution is required when prescribing trelagliptin to the patients with hypotension and diabetes.
Collapse
Affiliation(s)
- Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
9
|
Dimerization of SERCA2a Enhances Transport Rate and Improves Energetic Efficiency in Living Cells. Biophys J 2020; 119:1456-1465. [PMID: 32946770 DOI: 10.1016/j.bpj.2020.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022] Open
Abstract
The type 2a sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA2a) plays a key role in intracellular Ca2+ regulation in the heart. We have previously shown evidence of stable homodimers of SERCA2a in heterologous cells and cardiomyocytes. However, the functional significance of the pump dimerization remains unclear. Here, we analyzed how SERCA2a dimerization affects ER Ca2+ transport. Fluorescence resonance energy transfer experiments in HEK293 cells transfected with fluorescently labeled SERCA2a revealed increasing dimerization of Ca2+ pumps with increasing expression level. This concentration-dependent dimerization provided means of comparison of the functional characteristics of monomeric and dimeric pumps. SERCA-mediated Ca2+ uptake was measured with the ER-targeted Ca2+ sensor R-CEPIA1er in cells cotransfected with SERCA2a and ryanodine receptor. For each individual cell, the maximal ER Ca2+ uptake rate and the maximal Ca2+ load, together with the pump expression level, were analyzed. This analysis revealed that the ER Ca2+ uptake rate increased as a function of SERCA2a expression, with a particularly steep, nonlinear increase at high expression levels. Interestingly, the maximal ER Ca2+ load also increased with an increase in the pump expression level, suggesting improved catalytic efficiency of the dimeric species. Reciprocally, thapsigargin inhibition of a fraction of the population of SERCA2a reduced not only the maximal ER Ca2+ uptake rate but also the maximal Ca2+ load. These data suggest that SERCA2a dimerization regulates Ca2+ transport by improving both the SERCA2a turnover rate and catalytic efficacy. Analysis of ER Ca2+ uptake in cells cotransfected with human wild-type SERCA2a (SERCA2aWT) and SERCA2a mutants with different catalytic activity revealed that an intact catalytic cycle in both protomers is required for enhancing the efficacy of Ca2+ transport by a dimer. The data are consistent with the hypothesis of functional coupling of two SERCA2a protomers in a dimer that reduces the energy barrier of rate-limiting steps of the catalytic cycle of Ca2+ transport.
Collapse
|
10
|
Potter S, Sifers J, Yocom E, Blümich SLE, Potter R, Nadolski J, Harrison DA, Cooper RL. Effects of inhibiting mTOR with rapamycin on behavior, development, neuromuscular physiology and cardiac function in larval Drosophila. Biol Open 2019; 8:bio.046508. [PMID: 31704693 PMCID: PMC6899040 DOI: 10.1242/bio.046508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rapamycin and other mTOR inhibitors are being heralded as possible treatments for many human ailments. It is currently being utilized clinically as an immunomodulator after transplantation procedures and as a treatment for certain forms of cancer, but it has numerous potential clinical indications. Some studies have shown profound effects on life cycle and muscle physiology, but these issues have not been addressed in an organism undergoing developmental processes. This paper fills this void by examining the effect of mTOR inhibition by rapamycin on several different qualities of larval Drosophila. Various dosages of the compound were fed to second instar larvae. These larvae were monitored for pupae formation to elucidate possible life cycle effects, and a delay to pupation was quantified. Behavioral deficits were documented in rapamycin-treated larvae. Electrophysiological measurements were taken to discern changes in muscle physiology and synaptic signaling (i.e. resting membrane potential, amplitude of excitatory post-synaptic potentials, synaptic facilitation). Pupation delay and effects on behavior that are likely due to synaptic alterations within the central nervous system were discovered in rapamycin-fed larvae. These results allow for several conclusions as to how mTOR inhibition by rapamycin affects a developing organism. This could eventually allow for a more informed decision when using rapamycin and other mTOR inhibitors to treat human diseases, especially in children and adolescents, to account for known side effects. Summary: Inhibiting mTOR by rapamycin delays pupation, reduced body wall contractions and mouth-hook movements while synaptic transmission appeared normal in larval Drosophila.
Collapse
Affiliation(s)
- Samuel Potter
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Jacob Sifers
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Alice Lloyd College, 100 Purpose Road, Pippa Passes, KY, 41844, USA
| | - Emily Yocom
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Kentucky Wesleyan College, Owensboro, KY, 42301, USA
| | - Sandra L E Blümich
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA.,Veterinärmedizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | - Rachel Potter
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL, 60532 , USA
| | - Douglas A Harrison
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Robin L Cooper
- Deptartment of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
11
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018. [PMID: 30425651 DOI: 10.3389/fphys.2018.01517, 10.3389/fpls.2018.01517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
12
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States.,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
13
|
Hamilton S, Terentyev D. Proarrhythmic Remodeling of Calcium Homeostasis in Cardiac Disease; Implications for Diabetes and Obesity. Front Physiol 2018; 9:1517. [PMID: 30425651 PMCID: PMC6218530 DOI: 10.3389/fphys.2018.01517,+10.3389/fpls.2018.01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
A rapid growth in the incidence of diabetes and obesity has transpired to a major heath issue and economic burden in the postindustrial world, with more than 29 million patients affected in the United States alone. Cardiovascular defects have been established as the leading cause of mortality and morbidity of diabetic patients. Over the last decade, significant progress has been made in delineating mechanisms responsible for the diminished cardiac contractile function and enhanced propensity for malignant cardiac arrhythmias characteristic of diabetic disease. Rhythmic cardiac contractility relies upon the precise interplay between several cellular Ca2+ transport protein complexes including plasmalemmal L-type Ca2+ channels (LTCC), Na+-Ca2+ exchanger (NCX1), Sarco/endoplasmic Reticulum (SR) Ca2+-ATPase (SERCa2a) and ryanodine receptors (RyR2s), the SR Ca2+ release channels. Here we provide an overview of changes in Ca2+ homeostasis in diabetic ventricular myocytes and discuss the therapeutic potential of targeting Ca2+ handling proteins in the prevention of diabetes-associated cardiomyopathy and arrhythmogenesis.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, United States,Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States,*Correspondence: Dmitry Terentyev,
| |
Collapse
|
14
|
Liu G, Li SQ, Hu PP, Tong XY. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy. Diab Vasc Dis Res 2018; 15:322-335. [PMID: 29762054 DOI: 10.1177/1479164118774313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Si Qi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Gambardella J, Trimarco B, Iaccarino G, Santulli G. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:373-385. [PMID: 28956314 PMCID: PMC5889357 DOI: 10.1007/5584_2017_106] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Excitation-contraction (EC) coupling denotes the conversion of electric stimulus in mechanic output in contractile cells. Several studies have demonstrated that calcium (Ca2+) plays a pivotal role in this process. Here we present a comprehensive and updated description of the main systems involved in cardiac Ca2+ handling that ensure a functional EC coupling and their pathological alterations, mainly related to heart failure.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Fisciano, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Fisciano, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forch 525, 10461, New York, NY, USA.
| |
Collapse
|
16
|
Abstract
Supplemental Digital Content is available in the text. Rationale: The development of a refractory period for Ca2+ spark initiation after Ca2+ release in cardiac myocytes should inhibit further Ca2+ release during the action potential plateau. However, Ca2+ release sites that did not initially activate or which have prematurely recovered from refractoriness might release Ca2+ later during the action potential and alter the cell-wide Ca2+ transient. Objective: To investigate the possibility of late Ca2+ spark (LCS) activity in intact isolated cardiac myocytes using fast confocal line scanning with improved confocality and signal to noise. Methods and Results: We recorded Ca2+ transients from cardiac ventricular myocytes isolated from rabbit hearts. Action potentials were produced by electric stimulation, and rapid solution changes were used to modify the L-type Ca2+ current. After the upstroke of the Ca2+ transient, LCSs were detected which had increased amplitude compared with diastolic Ca2+ sparks. LCS are triggered by both L-type Ca2+ channel activity during the action potential plateau, as well as by the increase of cytosolic Ca2+ associated with the Ca2+ transient itself. Importantly, a mismatch between sarcoplasmic reticulum load and L-type Ca2+ trigger can increase the number of LCS. The likelihood of triggering an LCS also depends on recovery from refractoriness that appears after prior activation. Consequences of LCS include a reduced rate of decline of the Ca2+ transient and, if frequent, formation of microscopic propagating Ca2+ release events (Ca2+ ripples). Ca2+ ripples resemble Ca2+ waves in terms of local propagation velocity but spread for only a short distance because of limited regeneration. Conclusions: These new types of Ca2+ signaling behavior extend our understanding of Ca2+-mediated signaling. LCS may provide an arrhythmogenic substrate by slowing the Ca2+ transient decline, as well as by amplifying maintained Ca2+ current effects on intracellular Ca2+ and consequently Na+/Ca2+ exchange current.
Collapse
Affiliation(s)
- Ewan D Fowler
- From the School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Cherrie H T Kong
- From the School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Jules C Hancox
- From the School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom
| | - Mark B Cannell
- From the School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, United Kingdom.
| |
Collapse
|
17
|
Qin CX, Sleaby R, Davidoff AJ, Bell JR, De Blasio MJ, Delbridge LM, Chatham JC, Ritchie RH. Insights into the role of maladaptive hexosamine biosynthesis and O-GlcNAcylation in development of diabetic cardiac complications. Pharmacol Res 2016; 116:45-56. [PMID: 27988387 DOI: 10.1016/j.phrs.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus significantly increases the risk of heart failure, independent of coronary artery disease. The mechanisms implicated in the development of diabetic heart disease, commonly termed diabetic cardiomyopathy, are complex, but much of the impact of diabetes on the heart can be attributed to impaired glucose handling. It has been shown that the maladaptive nutrient-sensing hexosamine biosynthesis pathway (HBP) contributes to diabetic complications in many non-cardiac tissues. Glucose metabolism by the HBP leads to enzymatically-regulated, O-linked attachment of a sugar moiety molecule, β-N-acetylglucosamine (O-GlcNAc), to proteins, affecting their biological activity (similar to phosphorylation). In normal physiology, transient activation of HBP/O-GlcNAc mechanisms is an adaptive, protective means to enhance cell survival; interventions that acutely suppress this pathway decrease tolerance to stress. Conversely, chronic dysregulation of HBP/O-GlcNAc mechanisms has been shown to be detrimental in certain pathological settings, including diabetes and cancer. Most of our understanding of the impact of sustained maladaptive HBP and O-GlcNAc protein modifications has been derived from adipose tissue, skeletal muscle and other non-cardiac tissues, as a contributing mechanism to insulin resistance and progression of diabetic complications. However, the long-term consequences of persistent activation of cardiac HBP and O-GlcNAc are not well-understood; therefore, the goal of this timely review is to highlight current understanding of the role of the HBP pathway in development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Pharmacology, University of Melbourne, VIC 3010, Australia
| | - Rochelle Sleaby
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Amy J Davidoff
- University of New England, Biddeford, ME, 04072, United States
| | - James R Bell
- Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; School of BioSciences, University of Melbourne, VIC 3010, Australia
| | | | - John C Chatham
- University of Alabama at Birmingham, Birmingham, AL, 35233, United States
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Pharmacology, University of Melbourne, VIC 3010, Australia; Department of Medicine, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
18
|
Jiang Y, Wang D, Zhang G, Wang G, Tong J, Chen T. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene. ENVIRONMENTAL TOXICOLOGY 2016; 31:1372-1380. [PMID: 25847060 DOI: 10.1002/tox.22142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/09/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Trichloroethylene (TCE) is ubiquitous in our living environment, and prenatal exposure to TCE is reported to cause congenital heart disease in humans. Although multiple studies have been performed using animal models, they have limited value in predicting effects on humans due to the unknown species-specific toxicological effects. To test whether exposure to low doses of TCE induces developmental toxicity in humans, we investigated the effect of TCE on human embryonic stem cells (hESCs) and cardiomyocytes (derived from the hESCs). In the current study, hESCs cardiac differentiation was achieved by using differentiation medium consisting of StemPro-34. We examined the effects of TCE on cell viability by cell growth assay and cardiac inhibition by analysis of spontaneously beating cluster. The expression levels of genes associated with cardiac differentiation and Ca2+ channel pathways were measured by immunofluorescence and qPCR. The overall data indicated the following: (1) significant cardiac inhibition, which was characterized by decreased beating clusters and beating rates, following treatment with low doses of TCE; (2) significant up-regulation of the Nkx2.5/Hand1 gene in cardiac progenitors and down regulation of the Mhc-7/cTnT gene in cardiac cells; and (3) significant interference with Ca2+ channel pathways in cardiomyocytes, which contributes to the adverse effect of TCE on cardiac differentiation during early embryo development. Our results confirmed the involvement of Ca2+ turnover network in TCE cardiotoxicity as reported in animal models, while the inhibition effect of TCE on the transition of cardiac progenitors to cardiomyocytes is unique to hESCs, indicating a species-specific effect of TCE on heart development. This study provides new insight into TCE biology in humans, which may help explain the development of congenital heart defects after TCE exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1372-1380, 2016.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China
| | - Dan Wang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Guoxing Zhang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jian Tong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Toxicology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Tao Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Toxicology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
19
|
Sprenkeler DJ, Vos MA. Post-extrasystolic Potentiation: Link between Ca(2+) Homeostasis and Heart Failure? Arrhythm Electrophysiol Rev 2016; 5:20-6. [PMID: 27403289 DOI: 10.15420/aer.2015.29.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Post-extrasystolic potentiation (PESP) describes the phenomenon of increased contractility of the beat following an extrasystole and has been attributed to changes in Ca(2+) homeostasis. While this effect has long been regarded to be a normal physiological phenomenon, a number of reports describe an enhanced potentiation of the post-extrasystolic beat in heart failure patients. The exact mechanism of this increased PESP is unknown, but disruption of normal Ca(2+) handling in heart failure may be the underlying cause. The use of PESP as a prognostic marker or therapeutic intervention have recently regained new attention, however, the value of the application of PESP in the clinic is still under debate. In this review, the mechanism of PESP with regard to Ca(2+) in the normal and failing heart will be discussed and the possible diagnostic and therapeutic role of this phenomenon will be explored.
Collapse
Affiliation(s)
| | - Marc A Vos
- University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Stary V, Puppala D, Scherrer-Crosbie M, Dillmann WH, Armoundas AA. SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition. J Appl Physiol (1985) 2016; 120:865-75. [PMID: 26846549 DOI: 10.1152/japplphysiol.00588.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/27/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca(2+)indicators to selectively measure mitochondrial and cytosolic Ca(2+)using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 - (small Ca(2+)intensity)/(large Ca(2+)intensity)]. Blocking of complex I and II, cytochrome-coxidase, F0F1synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P< 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P< 0.04).N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P< 0.001). CGP, an antagonist of the mitochondrial Na(+)-Ca(2+)exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P< 0.0001). The major findings of this study are that impairment of mitochondrial Ca(2+)cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca(2+)content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca(2+)signaling in myocytes from diseased hearts, leading to new therapeutic targets.
Collapse
Affiliation(s)
- Victoria Stary
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; Department of Cardiology and Pulmonology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; and
| | - Dheeraj Puppala
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Wolfgang H Dillmann
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts;
| |
Collapse
|
21
|
Calderón-Sánchez EM, Domínguez-Rodríguez A, López-Haldón J, Jiménez-Navarro MF, Gómez AM, Smani T, Ordóñez A. Cardioprotective Effect of Ranolazine in the Process of Ischemia-reperfusion in Adult Rat Cardiomyocytes. ACTA ACUST UNITED AC 2016; 69:45-53. [DOI: 10.1016/j.rec.2015.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/27/2015] [Indexed: 12/19/2022]
|
22
|
Efecto cardioprotector de la ranolazina en el proceso de isquemia-reperfusión en cardiomiocitos de rata adultos. Rev Esp Cardiol 2016. [DOI: 10.1016/j.recesp.2015.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Locatelli J, de Assis LVM, Isoldi MC. Calcium handling proteins: structure, function, and modulation by exercise. Heart Fail Rev 2014; 19:207-25. [PMID: 23436107 DOI: 10.1007/s10741-013-9373-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a serious public health issue with a growing prevalence, and it is related with the aging of the population. Hypertension is identified as the main precursor of left ventricular hypertrophy and therefore can lead to diastolic dysfunction and heart failure. Scientific studies have confirmed the beneficial effects of the physical exercise by reducing the blood pressure and improving the functional status of the heart in hypertension. Several proteins are involved in the mobilization of calcium during the coupling excitation-contraction process in the heart among those are sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban, calsequestrin, sodium-calcium exchanger, L-type calcium's channel, and ryanodine receptors. Our goal is to address the beneficial effects of exercise on the calcium handling proteins in a heart with hypertension.
Collapse
Affiliation(s)
- Jamille Locatelli
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Prêto, Brazil
| | | | | |
Collapse
|
24
|
Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D. Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch 2014; 466:1129-37. [PMID: 24515294 DOI: 10.1007/s00424-014-1469-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/22/2022]
Abstract
In the heart, coupling between excitation of the surface membrane and activation of contractile apparatus is mediated by Ca released from the sarcoplasmic reticulum (SR). Several components of Ca machinery are perfectly arranged within the SR network and the T-tubular system to generate a regular Ca cycling and thereby rhythmic beating activity of the heart. Among these components, ryanodine receptor (RyR) and SR Ca ATPase (SERCA) complexes play a particularly important role and their dysfunction largely underlies abnormal Ca homeostasis in diseased hearts such as in heart failure. The abnormalities in Ca regulation occur at practically all main steps of Ca cycling in the failing heart, including activation and termination of SR Ca release, diastolic SR Ca leak, and SR Ca uptake. The contributions of these different mechanisms to depressed contractile function and enhanced arrhythmogenesis may vary in different HF models. This brief review will therefore focus on modifications in RyR and SERCA structure that occur in the failing heart and how these molecular modifications affect SR Ca regulation and excitation-contraction coupling.
Collapse
Affiliation(s)
- Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL, 60153, USA,
| | | | | | | | | | | |
Collapse
|
25
|
Johnsen AB, Høydal M, Røsbjørgen R, Stølen T, Wisløff U. Aerobic interval training partly reverse contractile dysfunction and impaired Ca2+ handling in atrial myocytes from rats with post infarction heart failure. PLoS One 2013; 8:e66288. [PMID: 23799089 PMCID: PMC3682943 DOI: 10.1371/journal.pone.0066288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/05/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is limited knowledge about atrial myocyte Ca(2+) handling in the failing hearts. The aim of this study was to examine atrial myocyte contractile function and Ca(2+) handling in rats with post-infarction heart failure (HF) and to examine whether aerobic interval training could reverse a potential dysfunction. METHODS AND RESULTS Post-infarction HF was induced in Sprague Dawley rats by ligation of the left descending coronary artery. Atrial myocyte shortening was depressed (p<0.01) and time to relaxation was prolonged (p<0.01) in sedentary HF-rats compared to healthy controls. This was associated with decreased Ca(2+) amplitude, decreased SR Ca(2+) content, and slower Ca(2+) transient decay. Atrial myocytes from HF-rats had reduced sarcoplasmic reticulum Ca(2+) ATPase activity, increased Na(+)/Ca(2+)-exchanger activity and increased diastolic Ca(2+) leak through ryanodine receptors. High intensity aerobic interval training in HF-rats restored atrial myocyte contractile function and reversed changes in atrial Ca(2+) handling in HF. CONCLUSION Post infarction HF in rats causes profound impairment in atrial myocyte contractile function and Ca(2+) handling. The observed dysfunction in atrial myocytes was partly reversed after aerobic interval training.
Collapse
Affiliation(s)
- Anne Berit Johnsen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Høydal
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ragnhild Røsbjørgen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tomas Stølen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
26
|
Ottolia M, Torres N, Bridge JHB, Philipson KD, Goldhaber JI. Na/Ca exchange and contraction of the heart. J Mol Cell Cardiol 2013; 61:28-33. [PMID: 23770352 DOI: 10.1016/j.yjmcc.2013.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 12/19/2022]
Abstract
Sodium-calcium exchange (NCX) is the major calcium (Ca) efflux mechanism of ventricular cardiomyocytes. Consequently the exchanger plays a critical role in the regulation of cellular Ca content and hence contractility. Reductions in Ca efflux by the exchanger, such as those produced by elevated intracellular sodium (Na) in response to cardiac glycosides, raise sarcoplasmic reticulum (SR) Ca stores. The result is an increased Ca transient and cardiac contractility. Enhanced Ca efflux activity by the exchanger, for example during heart failure, may reduce diadic cleft Ca and excitation-contraction (EC) coupling gain. This aggravates the impaired contractility associated with SR Ca ATPase dysfunction and reduced SR Ca load in failing heart muscle. Recent data from our laboratories indicate that NCX can also impact the efficiency of EC coupling and contractility independent of SR Ca load through diadic cleft priming with Ca during the upstroke of the action potential. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Michela Ottolia
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
27
|
Goldhaber JI, Philipson KD. Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:355-64. [PMID: 23224894 DOI: 10.1007/978-1-4614-4756-6_30] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide, with ischemic heart disease alone accounting for >12% of all deaths, more than HIV/AIDS, tuberculosis, lung, and breast cancer combined. Heart disease has been the leading cause of death in the United States for the past 85 years and is a major cause of disability and health-care expenditures. The cardiac conditions most likely to result in death include heart failure and arrhythmias, both a consequence of ischemic coronary disease and myocardial infarction, though chronic hypertension and valvular diseases are also important causes of heart failure. Sodium-calcium exchange (NCX) is the dominant calcium (Ca2+) efflux mechanism in cardiac cells. Using ventricular-specific NCX knockout mice, we have found that NCX is also an essential regulator of cardiac contractility independent of sarcoplasmic reticulum Ca2+ load. During the upstroke of the action potential, sodium (Na+) ions enter the diadic cleft space between the sarcolemma and the sarcoplasmic reticulum. The rise in cleft Na+, in conjunction with depolarization, causes NCX to transiently reverse. Ca2+ entry by this mechanism then "primes" the diadic cleft so that subsequent Ca2+ entry through Ca2+ channels can more efficiently trigger Ca2+ release from the sarcoplasmic reticulum. In NCX knockout mice, this mechanism is inoperative (Na+ current has no effect on the Ca2+ transient), and excitation-contraction coupling relies upon the elevated diadic cleft Ca2+ that arises from the slow extrusion of cytoplasmic Ca2+ by the ATP-dependent sarcolemmal Ca2+ pump. Thus, our data support the conclusion that NCX is an important regulator of cardiac contractility. These findings suggest that manipulation of NCX may be beneficial in the treatment of heart failure.
Collapse
|
28
|
Tencerová B, Zahradníková A, Gaburjáková J, Gaburjáková M. Luminal Ca2+ controls activation of the cardiac ryanodine receptor by ATP. ACTA ACUST UNITED AC 2012; 140:93-108. [PMID: 22851674 PMCID: PMC3409101 DOI: 10.1085/jgp.201110708] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The synergic effect of luminal Ca2+, cytosolic Ca2+, and cytosolic adenosine triphosphate (ATP) on activation of cardiac ryanodine receptor (RYR2) channels was examined in planar lipid bilayers. The dose–response of RYR2 gating activity to ATP was characterized at a diastolic cytosolic Ca2+ concentration of 100 nM over a range of luminal Ca2+ concentrations and, vice versa, at a diastolic luminal Ca2+ concentration of 1 mM over a range of cytosolic Ca2+ concentrations. Low level of luminal Ca2+ (1 mM) significantly increased the affinity of the RYR2 channel for ATP but without substantial activation of the channel. Higher levels of luminal Ca2+ (8–53 mM) markedly amplified the effects of ATP on the RYR2 activity by selectively increasing the maximal RYR2 activation by ATP, without affecting the affinity of the channel to ATP. Near-diastolic cytosolic Ca2+ levels (<500 nM) greatly amplified the effects of luminal Ca2+. Fractional inhibition by cytosolic Mg2+ was not affected by luminal Ca2+. In models, the effects of luminal and cytosolic Ca2+ could be explained by modulation of the allosteric effect of ATP on the RYR2 channel. Our results suggest that luminal Ca2+ ions potentiate the RYR2 gating activity in the presence of ATP predominantly by binding to a luminal site with an apparent affinity in the millimolar range, over which local luminal Ca2+ likely varies in cardiac myocytes.
Collapse
Affiliation(s)
- Barbora Tencerová
- Institute of Molecular Physiology and Genetics, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, 833 34 Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
29
|
Salameh A, Dhein S, Blanke K, Rastan A, Hiyasat B, Dietze A, Sobiraij A, Dähnert I, Janousek J. Right or Left Ventricular Pacing in Young Minipigs With Chronic Atrioventricular Block. Circulation 2012; 125:2578-87. [DOI: 10.1161/circulationaha.111.079087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background—
Left ventricular (LV) dyssynchrony may occur as a result of right ventricular (RV) pacing and is a known risk factor for the development of heart failure. In children with complete atrioventricular block, pacing-induced dyssynchrony lasting for decades might be especially deleterious for LV function. To determine the hemodynamic and ultrastructural remodeling after either RV free wall or LV apical pacing, we used a chronic minipig model.
Methods and Results—
Fourteen piglets 8 weeks of age underwent atrioventricular node ablation and were paced from either the RV free wall or the LV apex at 120 bpm for 1 year (7 age-matched minipigs served as controls with spontaneous heart rates of 104±5 bpm). Echocardiographic examinations, pressure-volume loops, patch-clamp investigations, and examinations of connexin43, calcium-handling proteins, and histomorphology were carried out. RV free wall–paced minipigs exhibited significantly more LV dyssynchrony than LV apex–paced animals, which was accompanied by worsening of LV function (maximum LV mechanical delay/LV ejection fraction: RV free wall pacing, 154±36 ms/28±3%, LV apical pacing, 52±19 ms/45±2%, control 47±14 ms/62±1%;
P
=0.0001). At the cellular level, both pacemaker groups exhibited a significant reduction in L-type calcium and peak sodium current, shortening of action potential duration and amplitude, increased cell capacity, and alterations in the calcium-handling proteins that were similar for RV free wall– and LV apex–paced animals.
Conclusions—
The observed molecular remodeling seemed to be more dependent on heart rate than on dyssynchrony. LV apical pacing is associated with less dyssynchrony, a more physiological LV contraction pattern, and preserved LV function as opposed to RV free wall pacing.
Collapse
Affiliation(s)
- Aida Salameh
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| | - Stefan Dhein
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| | - Katja Blanke
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| | - Ardawan Rastan
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| | - Bahi Hiyasat
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| | - Anna Dietze
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| | - Axel Sobiraij
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| | - Ingo Dähnert
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| | - Jan Janousek
- From the Department of Paediatric Cardiology Heart Centre (A. Salameh, K.B., I.D.), Department of Cardiac Surgery, Heart Centre (S.D., A.R., B.H., A.D.), and Veterinary Faculty (A. Sobiraij), University of Leipzig, Leipzig, Germany, and Kardiocentrum and Cardiovascular Research Centre, University Hospital Motol, Prague, Czech Republic (J.J.)
| |
Collapse
|
30
|
Iyer V, Heller V, Armoundas AA. Altered spatial calcium regulation enhances electrical heterogeneity in the failing canine left ventricle: implications for electrical instability. J Appl Physiol (1985) 2012; 112:944-55. [DOI: 10.1152/japplphysiol.00609.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myocytes across the left ventricular (LV) wall of the mammalian heart are known to exhibit heterogeneity of electrophysiological properties; however, the transmural variation of cellular electrophysiology and Ca2+ homeostasis in the failing LV is incompletely understood. We studied action potentials (APs), the L-type calcium (Ca2+) current ( ICa,L), and intracellular Ca2+ transients ([Ca2+]i) of subendocardial (Endo), midmyocardial (Mid), and subepicardial (Epi) tissue layers in the canine normal and tachycardia pacing-induced failing left ventricles. Heart failure (HF) was associated with significant prolongation of the AP duration in Mid myocytes. There were no differences in ICa,L density in normal Endo, Mid, and Epi myocytes, whereas in the failing heart, ICa,L density was downregulated by 45% and 26% (at +10 mV) in Endo and Mid myocytes, respectively. The rates of sarcoplasmic reticulum (SR) Ca2+ release and decay of the [Ca2+]i were slowed, and the amplitude of the [Ca2+]i was depressed in Endo and Epi myocytes isolated from failing, compared with normal, hearts. Experiments in sodium (Na+)-free solutions showed that Epi and Mid myocytes of the failing ventricle exhibit a greater reliance on the Na+-Ca2+ exchanger to remove cytosolic Ca2+ than myocytes isolated from normal hearts. Simulation studies in Endo, Mid, and Epi canine myocytes demonstrate the importance of L-type current density and SR Ca2+ uptake in modulating the potentially arrhythmogenic repolarization in HF. In conclusion, these results demonstrate that spatially heterogeneous decreases in ICa,L and defective cytosolic Ca2+ removal contribute to the altered [Ca2+]i and AP profiles across the canine failing LV. These distinct electrophysiological features in myocytes from a failing heart contribute to a characteristic electrogram arising from increased dispersion of refractoriness across the LV, which may result in significant arrhythmogenic sequellae.
Collapse
Affiliation(s)
- Vivek Iyer
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Victoria Heller
- Department of Cardiology and Pulmonology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; and
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Antonis A. Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
31
|
Age- and chamber-specific differences in oxidative stress after ischemic injury. Pediatr Cardiol 2012; 33:322-31. [PMID: 22057242 PMCID: PMC3287060 DOI: 10.1007/s00246-011-0137-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
Each year, tens of thousands of children undergo cardiopulmonary bypass (CPB) to correct congenital heart defects. Although necessary for surgery, CPB involves stopping the heart and exposing it to ischemic conditions. On reoxygenation, the heart can experience effects similar to that of acute myocardial infarction. Although much is known about adult injury, little is known about the effects of global ischemia on newborn ventricles. We studied newborn (2 to 4 days old) and adult (>8 weeks old) rabbit hearts subjected to ischemia-reperfusion (30 min of ischemia and 60 min of reperfusion). Our data demonstrated chamber- and age-specific changes in oxidative stress. During ischemia, hydrogen peroxide (H(2)O(2)) increased in both right-ventricular (RV) and left-ventricular (LV) myocytes of the newborn, although only the RV change was significant. In contrast, there was no significant increase in H(2)O(2) in either RV or LV myocytes of adults. There was a fivefold increase in H(2)O(2) formation in newborn RV myocytes compared with adults (P = 0.006). In whole-heart tissue, superoxide dismutase activity increased from sham versus ischemia in the left ventricle of both adult and newborn hearts, but it was increased only in the right ventricle of the newborn heart. Catalase activity was significantly increased after ischemia in both adult ventricles, whereas no increase was seen in newborn compared with sham hearts. In addition, catalase levels in newborns were significantly lower, indicating less scavenging potential. Nanoparticle-encapsulated ebselen, given as an intracardiac injection into the right or left ventricle of newborn hearts, significantly increased functional recovery of developed pressure only in the right ventricle, indicating the potential for localized antioxidant therapy during and after pediatric surgical procedures.
Collapse
|
32
|
Yang X, Chen G, Papp R, Defranco DB, Zeng F, Salama G. Oestrogen upregulates L-type Ca²⁺ channels via oestrogen-receptor- by a regional genomic mechanism in female rabbit hearts. J Physiol 2011; 590:493-508. [PMID: 22124151 DOI: 10.1113/jphysiol.2011.219501] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In type-2 long QT (LQT2), adult women and adolescent boys have a higher risk of lethal arrhythmias, called Torsades de pointes (TdP), compared to the opposite sex. In rabbit hearts, similar sex- and age-dependent TdP risks were attributed to higher expression levels of L-type Ca(2+) channels and Na(+)-Ca(2+) exchanger, at the base of the female epicardium. Here, the effects of oestrogen and progesterone are investigated to elucidate the mechanisms whereby I(Ca,L) density is upregulated in adult female rabbit hearts. I(Ca,L) density was measured by the whole-cell patch-clamp technique on days 0-3 in cardiomyocytes isolated from the base and apex of adult female epicardium. Peak I(Ca,L) was 28% higher at the base than apex (P < 0.01) and decreased gradually (days 0-3), becoming similar to apex myocytes, which had stable currents for 3 days. Incubation with oestrogen (E2, 0.1-1.0 nm) increased I(Ca,L) (∼2-fold) in female base but not endo-, apex or male myocytes. Progesterone (0.1-10 μm) had no effect at base myocytes. An agonist of the α- (PPT, 5 nm) but not the β- (DPN, 5 nm) subtype oestrogen receptor (ERα/ERβ) upregulated I(Ca,L) like E2. Western blots detected similar levels of ERα and ERβ in male and female hearts at the base and apex. E2 increased Cav1.2α (immunocytochemistry) and mRNA (RT-PCR) levels but did not change I(Ca,L) kinetics. I(Ca,L) upregulation by E2 was suppressed by the ER antagonist ICI 182,780 (10 μm) or by inhibition of transcription (actinomycin D, 4 μm) or protein biosynthesis (cycloheximide, 70 μm). Therefore, E2 upregulates I(Ca,L) by a regional genomic mechanism involving ERα which is a known determinant of sex differences in TdP risk in LQT2.
Collapse
Affiliation(s)
- Xiaoyan Yang
- University of Pittsburgh, Department of Medicine, Cardiovascular Institute, 3550 Terrace Street, Suite S 628 Scaife Hall, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
33
|
Prasad AM, Inesi G. Regulation and rate limiting mechanisms of Ca2+ ATPase (SERCA2) expression in cardiac myocytes. Mol Cell Biochem 2011; 361:85-96. [DOI: 10.1007/s11010-011-1092-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
34
|
Arias-Loza PA, Hu K, Frantz S, Dienesch C, Bayer B, Wu R, Ertl G, Pelzer T. Medroxyprogesterone acetate aggravates oxidative stress and left ventricular dysfunction in rats with chronic myocardial infarction. Toxicol Pathol 2011; 39:867-878. [PMID: 21670166 DOI: 10.1177/0192623311410441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role of estrogens during myocardial ischemia has been extensively studied. However, effects of a standard hormone replacement therapy including 17β-estradiol (E2) combined with medroxyprogesterone acetate (MPA) have not been assessed, and this combination could have contributed to the negative outcomes of the clinical studies on hormone replacement. We hypothesized that adding MPA to an E2 treatment would aggravate chronic heart failure after experimental myocardial infarction (MI). To address this issue, we evaluated clinical signs of heart failure as well as left ventricular (LV) dysfunction and remodeling in ovariectomized rats subjected to chronic MI receiving E2 or E2 plus MPA. After eight weeks MI E2 showed no effects. Adding MPA to E2 aggravated LV remodeling and dysfunction as judged by increased heart weight, elevated myocyte cross-sectional areas, increased elevated left ventricle end diastolic pressure, and decreased LV fractional shortening. Impaired LV function in rats receiving MPA plus E2 was associated with increased cardiac reactive oxygen species generation and myocardial expression levels of NADPH oxidase subunits. These results support the interpretation that adding MPA to an E2 treatment complicates cardiovascular injury damage post-MI and therefore contributes to explain the adverse outcome of prospective clinical studies.
Collapse
|
35
|
Prasad AM, Inesi G. Silencing calcineurin A subunit reduces SERCA2 expression in cardiac myocytes. Am J Physiol Heart Circ Physiol 2010; 300:H173-80. [PMID: 21057045 DOI: 10.1152/ajpheart.00841.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resting intracellular Ca(2+) can be raised, in neonatal rat cardiac myocytes, by exposure to very low concentration of thapsigargin (TG). Such a Ca(2+) rise yields calcineurin (CN) activation demonstrated by increased expression of transfected luciferase cDNA under control of nuclear factor of activated T-cells (NFAT) promoter and increased translocation of NFAT to nuclei. We found that exposure of cardiac myocytes to TG is followed by increase of sarcroplasmic reticulum Ca(2+) transport ATPase (SERCA2) expression, which is further increased when CN inactivation by CAMKII (calmodulin-dependent kinase) is prevented with KN93 (CAMKII inhibitor). On the other hand, SERCA2 expression is reduced by CN inhibition with cyclosporine. We have now induced calcineurin A (CNA) α- or β-subunit gene silencing with small interfering RNA (siRNA) and observed strong interference with expression of SERCA2, both in control myocytes and following exposure to TG. Such interference is also obtained following NFAT displacement from CN with 9,10-dihydro-9,10[1',2']-benzenoanthracene-1,4-dione (INCA-6). We have also observed analogous effects on expression of phospholamban (PLB) and Na(+)/Ca(2+) exchanger (NCX). Pertinent to these findings, we have identified, by in-silico analysis, NFAT binding sites in SERCA2, PLB, and NCX1 promoters. Our experiments indicate that activation of the calcineurin-NFAT pathway by rise of resting cytosolic Ca(2+) elevates transcription/expression of SERCA2, PLB, and NCX1, providing a homeostatic mechanism for long-term control of cytosolic Ca(2+).
Collapse
Affiliation(s)
- Anand Mohan Prasad
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | |
Collapse
|
36
|
Zou C, Liu Z, Qu F, Lu W, Han L, Song J, Jiang B, Yang X. WITHDRAWN: Simvastatin prevents decreased SERCA2a activity in non-ischemic heart failure in rabbits via inhibition of β-adrenergic signaling. Biomed Pharmacother 2010:S0753-3322(10)00165-4. [PMID: 20950994 DOI: 10.1016/j.biopha.2010.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.biomag.2010.09.003. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Cao Zou
- Department of Cardiology, The First Affiliated Hospital of Soochow University, No.188, Shizi Road,Suzhou 215006,PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
NADPH oxidase inhibition ameliorates cardiac dysfunction in rabbits with heart failure. Mol Cell Biochem 2010; 343:143-53. [PMID: 20567884 DOI: 10.1007/s11010-010-0508-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/02/2010] [Indexed: 02/07/2023]
Abstract
Increased NADPH oxidase activity is found in both experimental and clinical HF. Here, we investigated the effects and mechanisms of NADPH oxidase inhibition on cardiac function in rabbits with HF. HF was induced by combined volume and pressure overload. Rabbits with HF or sham operation were randomized to orally receive apocynin, an inhibitor of NADPH oxidase (15 mg per day) or placebo for 8 weeks. Echocardiography was performed to examine the cardiac function and structure of the rabbits. Cardiac fibrosis was evaluated by masson's trichrome staining. The transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) expression were measured by real-time PCR. The expression of SERCA2a and phospholamban (PLB) was detected by reverse transcription-polymerase chain reaction and Western Blot. SERCA2a activity was evaluated by measuring the Pi liberated from ATP hydrolysis. Rabbits with HF exhibited cardiac dysfunction and fibrosis. These changes were associated with significant increases in myocardial NADPH oxidase activity and oxidative stress. Compared with sham-operated rabbits, the TGF-β, CTGF, MMP-2, and MMP-9 mRNA expression significantly increased, the expression of SERCA2a and PLB dramatically decreased, and the SERCA2a activity was lower in HF rabbits. Apocynin reduced NADPH oxidase activity and oxidative stress, decreased TGF-β, CTGF, MMP-2, and MMP-9 expression, attenuated cardiac fibrosis, increased SERCA2a and PLB expression, restored SERCA2a activity, and thereby ameliorated cardiac dysfunction. Thus, chronic NADPH oxidase inhibition ameliorated cardiac dysfunction by decreasing cardiac fibrosis and preserving SERCA2a expression and activity.
Collapse
|
38
|
Affiliation(s)
- Joshua I Goldhaber
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
39
|
Egger M, Domenighetti AA. Adaptive and Maladaptive Remodeling of Cardiomyocyte Excitation-Contraction Coupling by Angiotensin II. Trends Cardiovasc Med 2010; 20:78-85. [DOI: 10.1016/j.tcm.2010.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Goldhaber JI, Bridge JHB. Loss of intracellular and intercellular synchrony of calcium release in systolic heart failure. Circ Heart Fail 2009; 2:157-9. [PMID: 19808334 DOI: 10.1161/circheartfailure.109.871525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Stambler BS, Laurita KR. Atrial fibrillation in heart failure: steady progress but still a long way to go. Circ Arrhythm Electrophysiol 2009; 1:77-9. [PMID: 19808396 DOI: 10.1161/circep.108.785071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Gusev K, Domenighetti AA, Delbridge LM, Pedrazzini T, Niggli E, Egger M. Angiotensin II–Mediated Adaptive and Maladaptive Remodeling of Cardiomyocyte Excitation–Contraction Coupling. Circ Res 2009; 105:42-50. [DOI: 10.1161/circresaha.108.189779] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac hypertrophy is associated with alterations in cardiomyocyte excitation–contraction coupling (ECC) and Ca
2+
handling. Chronic elevation of plasma angiotensin II (Ang II) is a major determinant in the pathogenesis of cardiac hypertrophy and congestive heart failure. However, the molecular mechanisms by which the direct actions of Ang II on cardiomyocytes contribute to ECC remodeling are not precisely known. This question was addressed using cardiac myocytes isolated from transgenic (TG1306/1R [TG]) mice exhibiting cardiac specific overexpression of angiotensinogen, which develop Ang II–mediated cardiac hypertrophy in the absence of hemodynamic overload. Electrophysiological techniques, photolysis of caged Ca
2+
and confocal Ca
2+
imaging were used to examine ECC remodeling at early (≈20 weeks of age) and late (≈60 weeks of age) time points during the development of cardiac dysfunction. In young TG mice, increased cardiac Ang II levels induced a hypertrophic response in cardiomyocyte, which was accompanied by an adaptive change of Ca
2+
signaling, specifically an upregulation of the Na
+
/Ca
2+
exchanger–mediated Ca
2+
transport. In contrast, maladaptation was evident in older TG mice, as suggested by reduced sarcoplasmic reticulum Ca
2+
content resulting from a shift in the ratio of plasmalemmal Ca
2+
removal and sarcoplasmic reticulum Ca
2+
uptake. This was associated with a conserved ECC gain, consistent with a state of hypersensitivity in Ca
2+
-induced Ca
2+
release. Together, our data suggest that chronic elevation of cardiac Ang II levels significantly alters cardiomyocyte ECC in the long term, and thereby contractility, independently of hemodynamic overload and arterial hypertension.
Collapse
Affiliation(s)
- Konstantin Gusev
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Andrea A. Domenighetti
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Lea M.D. Delbridge
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Thierry Pedrazzini
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Ernst Niggli
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| | - Marcel Egger
- From the Department of Physiology (K.G., E.N., M.E.), University of Bern, Switzerland; Department of Medicine (A.A.D., T.P.), University of Lausanne, Centre Hospitalier Universitaire Vaudois, Switzerland; and Department of Physiology (L.M.D.D.), University of Melbourne, Australia. Present address for A.A.D.: Department of Medicine, University of California at San Diego, La Jolla
| |
Collapse
|
43
|
Abstract
Human heart disease is a major cause of death and disability. A variety of animal models of cardiac disease have been developed to better understand the etiology, cellular and molecular mechanisms of cardiac dysfunction and novel therapeutic strategies. The animal models have included large animals (e.g. pig and dog) and small rodents (e.g. mouse and rat) and the advantages of genetic manipulation in mice have appropriately encouraged the development of novel mouse models of cardiac disease. However, there are major differences between rodent and human hearts that raise cautions about the extrapolation of results from mouse to human. The rabbit is a medium-sized animal that has many cellular and molecular characteristics very much like human, and is a practical alternative to larger mammals. Numerous rabbit models of cardiac disease are discussed, including pressure or volume overload, ischemia, rapid-pacing, doxorubicin, drug-induced arrhythmias, transgenesis and infection. These models also lead to the assessment of therapeutic strategies which may become beneficial in human cardiac disease. Ju Chen – University of California, San Diego, Department of Medicine, La Jolla, CA, USA Robert Ross – University of California, San Diego, Cardiology Section, San Diego, CA, USA
Collapse
Affiliation(s)
- Steven M Pogwizd
- Departments of Medicine, Physiology, and Biophysics & Bioengineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Genome Building 3513, Davis, CA 95616-8636, United States
| |
Collapse
|
44
|
Prasad AM, Inesi G. Effects of thapsigargin and phenylephrine on calcineurin and protein kinase C signaling functions in cardiac myocytes. Am J Physiol Cell Physiol 2009; 296:C992-C1002. [PMID: 19244478 DOI: 10.1152/ajpcell.00594.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neonatal rat cardiac myocytes were exposed to 10 nM thapsigargin (TG) or 20 muM phenylephrine (PE) to compare resulting alterations of Ca(2+) homeostasis. Either treatment results in resting cytosolic [Ca(2+)] rise and reduction of Ca(2+) signals in myocytes following electrical stimuli. In fact, ATP-dependent Ca(2+) transport is reduced due to catalytic inhibition of sarcoplasmic reticulum ATPase (SERCA2) by TG or reduction of SERCA2 protein expression by PE. A marked rise of nuclear factor of activated T cells (NFAT)-dependent expression of transfected luciferase cDNA is produced by TG or PE, which is dependent on increased NFAT dephosphorylation by activated calcineurin and reduced phosphorylation by inactivated glycogen synthase kinase 3beta. Expression of SERCA2 (inactivated) protein is increased following exposure to TG, whereas no hypertrophy is produced. On the contrary, SERCA2 expression is reduced, despite high CN activity, following protein kinase C (PKC) activation by PE (or phorbol 12-myristate 13-acetate) under conditions producing myocyte hypertrophy. Both effects of TG and PE are dependent on NFAT dephosphorylation by CN, as demonstrated by CN inhibition with cyclosporine (CsA). However, the hypertrophy program triggered by PKC activation bypasses SERCA2 transcription and expression due to competitive recruitment of NFAT and/or other transcriptional factors. A similar dependence on CN activation, but relative reduction under conditions of PKC activation, involves transcription and expression of the Na(+)/Ca(2+) exchanger-1. On the other hand, significant upregulation of transient receptor potential channel proteins is noted following PKC activation. The observed alterations of Ca(2+) homeostasis may contribute to development of contractile failure.
Collapse
Affiliation(s)
- Anand Mohan Prasad
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | | |
Collapse
|
45
|
Aiba T, Hesketh GG, Barth AS, Liu T, Daya S, Chakir K, Dimaano VL, Abraham TP, O'Rourke B, Akar FG, Kass DA, Tomaselli GF. Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation 2009; 119:1220-30. [PMID: 19237662 DOI: 10.1161/circulationaha.108.794834] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) is widely applied in patients with heart failure and dyssynchronous contraction (DHF), but the electrophysiological consequences of CRT in heart failure remain largely unexplored. METHODS AND RESULTS Adult dogs underwent left bundle-branch ablation and either right atrial pacing (190 to 200 bpm) for 6 weeks (DHF) or 3 weeks of right atrial pacing followed by 3 weeks of resynchronization by biventricular pacing at the same pacing rate (CRT). Isolated left ventricular anterior and lateral myocytes from nonfailing (control), DHF, and CRT dogs were studied with the whole-cell patch clamp. Quantitative polymerase chain reaction and Western blots were performed to measure steady state mRNA and protein levels. DHF significantly reduced the inward rectifier K(+) current (I(K1)), delayed rectifier K(+) current (I(K)), and transient outward K(+) current (I(to)) in both anterior and lateral cells. CRT partially restored the DHF-induced reduction of I(K1) and I(K) but not I(to), consistent with trends in the changes in steady state K(+) channel mRNA and protein levels. DHF reduced the peak inward Ca(2+) current (I(Ca)) density and slowed I(Ca) decay in lateral compared with anterior cells, whereas CRT restored peak I(Ca) amplitude but did not hasten decay in lateral cells. Calcium transient amplitudes were depressed and the decay was slowed in DHF, especially in lateral myocytes. CRT hastened the decay in both regions and increased the calcium transient amplitude in lateral but not anterior cells. No difference was found in Ca(V)1.2 (alpha1C) mRNA or protein expression, but reduced Ca(V)beta2 mRNA was found in DHF cells. DHF reduced phospholamban, ryanodine receptor, and sarcoplasmic reticulum Ca(2+) ATPase and increased Na(+)-Ca(2+) exchanger mRNA and protein. CRT did not restore the DHF-induced molecular remodeling, except for sarcoplasmic reticulum Ca(2+) ATPase. Action potential durations were significantly prolonged in DHF, especially in lateral cells, and CRT abbreviated action potential duration in lateral but not anterior cells. Early afterdepolarizations were more frequent in DHF than in control cells and were reduced with CRT. CONCLUSIONS CRT partially restores DHF-induced ion channel remodeling and abnormal Ca(2+) homeostasis and attenuates the regional heterogeneity of action potential duration. The electrophysiological changes induced by CRT may suppress ventricular arrhythmias, contribute to the survival benefit of this therapy, and improve the mechanical performance of the heart.
Collapse
Affiliation(s)
- Takeshi Aiba
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Talukder MH, Yang F, Nishijima Y, Chen CA, Kalyanasundaram A, Periasamy M, Zweier JL. Reduced SERCA2a converts sub-lethal myocardial injury to infarction and affects postischemic functional recovery. J Mol Cell Cardiol 2009; 46:285-287. [PMID: 19046972 PMCID: PMC2858397 DOI: 10.1016/j.yjmcc.2008.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 11/28/2022]
Abstract
The goal of the present study was to assess how reduced SERCA2a expression affects in vivo myocardial ischemia/reperfusion (I/R) injury. We specifically wanted to determine to what extent hearts with reduced SERCA2a levels are susceptible to in vivo I/R injury. Therefore, we examined the effects of different ischemic periods on post-ischemic myocardial injury in wild-type (WT) and SERCA2a heterozygous knockout (SERCA2a(+/-)) mice expressing lower levels of SERCA2a pump in vivo. Following 20-min ischemia and 48-hour reperfusion, SERCA2a(+/-) mice developed significant myocardial infarction (MI) compared to negligible infarction in WT mice (14+/-3% vs. 3+/-1%, P<0.01); whereas following 30-min ischemia, the infarction was significantly larger in SERCA2a(+/-) mice compared to WT mice (49+/-5% vs. 37+/-3%, P<0.05). Further, echocardiographic analysis revealed worsened postischemic contractile function in SERCA2a(+/-) mice compared to WT mice. Thus, these findings demonstrate that maintaining optimal SERCA2a function is critical for myocardial protection from I/R injury and postischemic functional recovery.
Collapse
Affiliation(s)
- M.A. Hassan Talukder
- Davis Heart and Lung Research Institute, and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Ohio, USA
| | - Fuchun Yang
- Davis Heart and Lung Research Institute, and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Ohio, USA
| | - Yoshinori Nishijima
- Davis Heart and Lung Research Institute, and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Ohio, USA
| | - Chun-An Chen
- Davis Heart and Lung Research Institute, and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Ohio, USA
| | - Anuradha Kalyanasundaram
- Department of Cell Biology and Physiology, The Ohio State University College of Medicine and Public Health, Ohio, USA
| | - Muthu Periasamy
- Department of Cell Biology and Physiology, The Ohio State University College of Medicine and Public Health, Ohio, USA
| | - Jay L. Zweier
- Davis Heart and Lung Research Institute, and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine and Public Health, Ohio, USA
- Department of Cell Biology and Physiology, The Ohio State University College of Medicine and Public Health, Ohio, USA
| |
Collapse
|
47
|
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009; 296:H13-28. [PMID: 19028792 PMCID: PMC2637779 DOI: 10.1152/ajpheart.01056.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.
Collapse
Affiliation(s)
- Boglarka Laczy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kääb S, Ravens U, Coutu P, Dobrev D, Nattel S. Calcium-Handling Abnormalities Underlying Atrial Arrhythmogenesis and Contractile Dysfunction in Dogs With Congestive Heart Failure. Circ Arrhythm Electrophysiol 2008; 1:93-102. [DOI: 10.1161/circep.107.754788] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Congestive heart failure (CHF) is a common cause of atrial fibrillation. Focal sources of unknown mechanism have been described in CHF-related atrial fibrillation. The authors hypothesized that abnormal calcium (Ca
2+
) handling contributes to the CHF-related atrial arrhythmogenic substrate.
Methods and Results—
CHF was induced in dogs by ventricular tachypacing (240 bpm �2 weeks). Cellular Ca
2+
-handling properties and expression/phosphorylation status of key Ca
2+
handling and myofilament proteins were assessed in control and CHF atria. CHF decreased cell shortening but increased left atrial diastolic intracellular Ca
2+
concentration ([Ca
2+
]
i
), [Ca
2+
]
i
transient amplitude, and sarcoplasmic reticulum (SR) Ca
2+
load (caffeine-induced [Ca
2+
]
i
release). SR Ca
2+
overload was associated with spontaneous Ca
2+
transient events and triggered ectopic activity, which was suppressed by the inhibition of SR Ca
2+
release (ryanodine) or Na
+
/Ca
2+
exchange. Mechanisms underlying abnormal SR Ca
2+
handling were then studied. CHF increased atrial action potential duration and action potential voltage clamp showed that CHF-like action potentials enhance Ca
2+
i
loading. CHF increased calmodulin-dependent protein kinase II phosphorylation of phospholamban by 120%, potentially enhancing SR Ca
2+
uptake by reducing phospholamban inhibition of SR Ca
2+
ATPase, but it did not affect phosphorylation of SR Ca
2+
-release channels (RyR2). Total RyR2 and calsequestrin (main SR Ca
2+
-binding protein) expression were significantly reduced, by 65% and 15%, potentially contributing to SR dysfunction. CHF decreased expression of total and protein kinase A–phosphorylated myosin-binding protein C (a key contractile filament regulator) by 27% and 74%, potentially accounting for decreased contractility despite increased Ca
2+
transients. Complex phosphorylation changes were explained by enhanced calmodulin-dependent protein kinase IIδ expression and function and type-1 protein-phosphatase activity but downregulated regulatory protein kinase A subunits.
Conclusions—
CHF causes profound changes in Ca
2+
-handling and -regulatory proteins that produce atrial fibrillation–promoting atrial cardiomyocyte Ca
2+
-handling abnormalities, arrhythmogenic triggered activity, and contractile dysfunction.
Collapse
Affiliation(s)
- Yung-Hsin Yeh
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Reza Wakili
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Xiao-Yan Qi
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Denis Chartier
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Peter Boknik
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Stefan Kääb
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Ursula Ravens
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Pierre Coutu
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Dobromir Dobrev
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Stanley Nattel
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| |
Collapse
|
49
|
On C, Marshall CR, Chen N, Moyes CD, Tibbits GF. Gene structure evolution of the Na+-Ca2+ exchanger (NCX) family. BMC Evol Biol 2008; 8:127. [PMID: 18447948 PMCID: PMC2408596 DOI: 10.1186/1471-2148-8-127] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 04/30/2008] [Indexed: 12/02/2022] Open
Abstract
Background The Na+-Ca2+ exchanger (NCX) is an important regulator of cytosolic Ca2+ levels. Many of its structural features are highly conserved across a wide range of species. Invertebrates have a single NCX gene, whereas vertebrate species have multiple NCX genes as a result of at least two duplication events. To examine the molecular evolution of NCX genes and understand the role of duplicated genes in the evolution of the vertebrate NCX gene family, we carried out phylogenetic analyses of NCX genes and compared NCX gene structures from sequenced genomes and individual clones. Results A single NCX in invertebrates and the protochordate Ciona, and the presence of at least four NCX genes in the genomes of teleosts, an amphibian, and a reptile suggest that a four member gene family arose in a basal vertebrate. Extensive examination of mammalian and avian genomes and synteny analysis argue that NCX4 may be lost in these lineages. Duplicates for NCX1, NCX2, and NCX4 were found in all sequenced teleost genomes. The presence of seven genes encoding NCX homologs may provide teleosts with the functional specialization analogous to the alternate splicing strategy seen with the three NCX mammalian homologs. Conclusion We have demonstrated that NCX4 is present in teleost, amphibian and reptilian species but has been secondarily and independently lost in mammals and birds. Comparative studies on conserved vertebrate homologs have provided a possible evolutionary route taken by gene duplicates subfunctionalization by minimizing homolog number.
Collapse
Affiliation(s)
- Caly On
- Cardiac Membrane Research Laboratory - Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | | | | |
Collapse
|
50
|
Caldwell PT, Thorne PA, Johnson PD, Boitano S, Runyan RB, Selmin O. Trichloroethylene disrupts cardiac gene expression and calcium homeostasis in rat myocytes. Toxicol Sci 2008; 104:135-43. [PMID: 18411232 DOI: 10.1093/toxsci/kfn078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have been investigating the molecular mechanisms by which trichloroethylene (TCE) might induce cardiac malformations in the embryonic heart. Previous results indicated that TCE disrupted expression of genes encoding proteins involved in regulation of intracellular Ca2+, [Ca2+](i), in cardiac cells, including ryanodine receptor isoform 2 (Ryr2), and sarcoendoplasmatic reticulum Ca2+ ATPase, Serca2a. These observations are important in light of the notion that altered cardiac contractility can produce morphological defects. The hypothesis tested in this study is that the TCE-induced changes in gene expression of Ca2+-associated proteins resulted in altered Ca2+ flux regulation. We used real-time PCR and digital imaging microscopy to characterize effects of various doses of TCE on gene expression and Ca2+ response to vasopressin (VP) in rat cardiac H9c2 myocytes. We observed a reduction in Serca2a and Ryr2 expression at 12 and 48 h after exposure to TCE. In addition, we found significant differences in Ca2+ response to VP in cells treated with TCE doses as low as 10 parts per billion. Taken all together, our data strongly indicate that exposure to TCE disrupts the ability of myocytes to regulate cellular Ca2+ fluxes. Perturbation of calcium signaling alters cardiac cell physiology and signal transduction and may hint to morphogenetic consequences in the context of heart development. These results point to a novel area of TCE biology and, if confirmed in vivo, may help to explain the apparent cardio-specific toxicity of TCE exposure in the rodent embryo.
Collapse
Affiliation(s)
- Patricia T Caldwell
- Department of Veterinary Science & Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|