1
|
Wearing OH, Chesler NC, Colebank MJ, Hacker TA, Lorenz JN, Simpson JA, West CR. Guidelines for assessing ventricular pressure-volume relationships in rodents. Am J Physiol Heart Circ Physiol 2025; 328:H120-H140. [PMID: 39625460 DOI: 10.1152/ajpheart.00434.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Ventricular catheterization with a pressure-volume (PV) catheter is the gold-standard method for assessing in vivo cardiac function in animal studies, providing valuable "load-independent" indices of systolic and diastolic heart performance. PV studies are commonly performed to elucidate mechanistic insights into cardiovascular disease using surgical and genetically engineered rat and mouse models, but there is considerable heterogeneity in how these studies are performed. Wide variation in protocol design, volume calibration, anesthesia, manipulation of cardiac loading conditions, how load-independent indices of cardiac function are derived, as well as in data analysis and reporting is constraining reliability and reproducibility in the field. The purpose of this manuscript is to combine our collective expertise in performing open- and closed-chest left and right ventricle PV studies in rodents to provide consensus guidelines on how to perform, analyze, and interpret these studies using either conductance or admittance PV catheters. We first review recent methodological reporting in rodent PV studies in this journal and discuss important details required to improve reproducibility within and across PV studies. We then recommend steps to obtain high-quality PV data, from volume calibration to choice of anesthetic agent and acquiring load-independent indices of both systolic and diastolic function. We also consider between- and within-animal variation and recommend how to perform data analysis and visualization. We hope that this consensus paper guides those performing PV studies in rodents and helps align the field with best practices in surgical/analytical methodologies and reporting, facilitating better reliability and reproducibility in the PV field.
Collapse
Affiliation(s)
- Oliver H Wearing
- Department of Cellular & Physiological Sciences, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, UBC Okanagan, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, UBC Okanagan, Kelowna, British Columbia, Canada
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, California, United States
| | - Mitchel J Colebank
- Department of Mathematics, University of South Carolina, Columbia, South Carolina, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - John N Lorenz
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, Ohio, United States
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Christopher R West
- Department of Cellular & Physiological Sciences, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, UBC Okanagan, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, UBC Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Moraña-Fernández S, Vázquez-Abuín X, Aragón-Herrera A, Anido-Varela L, García-Seara J, Otero-García Ó, Rodríguez-Penas D, Campos-Toimil M, Otero-Santiago M, Rodrigues A, Gonçalves A, Pereira Morais J, Alves IN, Sousa-Mendes C, Falcão-Pires I, González-Juanatey JR, Feijóo-Bandín S, Lago F. Cardiometabolic effects of sacubitril/valsartan in a rat model of heart failure with preserved ejection fraction. Biochem Pharmacol 2024; 230:116571. [PMID: 39424202 DOI: 10.1016/j.bcp.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The promising results obtained in the PARADIGM-HF trial prompted the approval of sacubitril/valsartan (SAC/VAL) as a first-in-class treatment for heart failure with reduced ejection fraction (HFrEF) patients. The effect of SAC/VAL treatment was also studied in patients with heart failure with preserved ejection fraction (HFpEF) and, although improvements in New York Heart Association (NYHA) class, HF hospitalizations, and cardiovascular deaths were observed, these results were not so promising. However, the demand for HFpEF therapies led to the approval of SAC/VAL as an alternative treatment, although further studies are needed. We aimed to elucidate the effects of a 9-week SAC/VAL treatment in cardiac function and metabolism using a preclinical model of HFpEF, the Zucker Fatty and Spontaneously Hypertensive (ZSF1) rats. We found that SAC/VAL significantly improved diastolic function parameters and modulated respiratory quotient during exercise. Ex-vivo studies showed that SAC/VAL treatment significantly decreased heart, liver, spleen, and visceral fat weights; cardiac hypertrophy and percentage of fibrosis; lipid infiltration in liver and circulating levels of cholesterol and sodium. Moreover, SAC/VAL reduced glycerophospholipids, cholesterol, and cholesteryl esters while increasing triglyceride levels in cardiac tissue. In conclusion, SAC/VAL treatment improved diastolic and hepatic function, respiratory metabolism, reduced hypercholesterolemia and cardiac fibrosis and hypertrophy, and was able to modulate cardiac metabolic profile. Our findings might provide further insight into the therapeutic benefits of SAC/VAL treatment in obese patients with HFpEF.
Collapse
Affiliation(s)
- Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xocas Vázquez-Abuín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Seara
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Arrhytmia Unit, Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Óscar Otero-García
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Otero-Santiago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Clinical Biochemistry Laboratory, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Alexandre Rodrigues
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alexandre Gonçalves
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Juliana Pereira Morais
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, UnIC@RISE - Cardiovascular Research Centre, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Inês N Alves
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Tantisuwat L, Saengklub N, Boonpala P, Kumphune S, Panyasing Y, Kalandakanond-Thongsong S, Kijtawornrat A. Sacubitril/valsartan mitigates cardiac remodeling, systolic dysfunction, and preserves mitochondrial quality in a rat model of mitral regurgitation. Sci Rep 2023; 13:11472. [PMID: 37455281 DOI: 10.1038/s41598-023-38694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Sacubitril/valsartan (SAC/VAL), an angiotensin receptor blocker-neprilysin inhibitor, has been widely used to treat several types of heart failure. Nevertheless, the effects of drugs in mitral regurgitation patients, from the molecular level to therapeutic effects, remain unclear. This study investigates the roles of SAC/VAL on cardiac function, mitochondrial quality, autophagy, mitophagy, and natriuretic peptides in a rat model of chronic mitral regurgitation. Male Sprague-Dawley rats underwent MR induction (n = 16) and sham surgeries (n = 8). Four weeks post-surgery confirmed MR rats were randomly divided into MR (n = 8) and SAC/VAL (n = 8) groups. The SAC/VAL group was administered SAC/VAL, whereas the MR and the sham rats received vehicle via oral gavage daily for 8 weeks. Cardiac geometry, function, and myocardial fibrosis were assessed by echocardiography and histopathology. Spectrophotometry and real-time PCR were performed to assess the pharmacological effects on mitochondrial quality, autophagy, mitophagy, and natriuretic peptides. MR rats demonstrated significant left heart dilation and left ventricular systolic dysfunction compared with the sham group, which could be significantly improved by SAC/VAL. In addition, SAC/VAL significantly reduced myocardial cardiac remodeling and fibrosis in MR rats. SAC/VAL improved the mitochondrial quality by attenuating mitochondrial reactive oxygen species production and mitochondrial depolarization compared with the MR group. Also, the upregulation of autophagy-related, mitophagy-related, and natriuretic peptide system gene expression in MR rats was attenuated by SAC/VAL treatment. In conclusion, this study demonstrated that SAC/VAL treatment could provide numerous beneficial effects in MR conditions, suggesting that this drug may be an effective treatment for MR.
Collapse
Affiliation(s)
- Lalida Tantisuwat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nakkawee Saengklub
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pakit Boonpala
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Chiang Mai, Thailand
| | - Yaowalak Panyasing
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Chulalongkorn University Laboratory Animal Center (CULAC), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Sobiborowicz-Sadowska AM, Kamińska K, Cudnoch-Jędrzejewska A. Neprilysin Inhibition in the Prevention of Anthracycline-Induced Cardiotoxicity. Cancers (Basel) 2023; 15:312. [PMID: 36612307 PMCID: PMC9818213 DOI: 10.3390/cancers15010312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Anthracycline-induced cardiotoxicity (AIC) poses a clinical challenge in the management of cancer patients. AIC is characterized by myocardial systolic dysfunction and remodeling, caused by cardiomyocyte DNA damage, oxidative stress, mitochondrial dysfunction, or renin-angiotensin-aldosterone system (RAAS) dysregulation. In the past decade, after positive results of a PARADIGM-HF trial, a new class of drugs, namely angiotensin receptor/neprilysin inhibitors (ARNi), was incorporated into the management of patients with heart failure with reduced ejection fraction. As demonstrated in a variety of preclinical studies of cardiovascular diseases, the cardioprotective effects of ARNi administration are associated with decreased oxidative stress levels, the inhibition of myocardial inflammatory response, protection against mitochondrial damage and endothelial dysfunction, and improvement in the RAAS imbalance. However, data on ARNi's effectiveness in the prevention of AIC remains limited. Several reports of ARNi administration in animal models of AIC have shown promising results, as ARNi prevented ventricular systolic dysfunction and electrocardiographic changes and ameliorated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and the inflammatory response associated with anthracyclines. There is currently an ongoing PRADAII trial aimed to assess the efficacy of ARNi in patients receiving breast cancer treatment, which is expected to be completed by late 2025.
Collapse
Affiliation(s)
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
5
|
Mustafa NH, Jalil J, Zainalabidin S, Saleh MS, Asmadi AY, Kamisah Y. Molecular mechanisms of sacubitril/valsartan in cardiac remodeling. Front Pharmacol 2022; 13:892460. [PMID: 36003518 PMCID: PMC9393311 DOI: 10.3389/fphar.2022.892460] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases have become a major clinical burden globally. Heart failure is one of the diseases that commonly emanates from progressive uncontrolled hypertension. This gives rise to the need for a new treatment for the disease. Sacubitril/valsartan is a new drug combination that has been approved for patients with heart failure. This review aims to detail the mechanism of action for sacubitril/valsartan in cardiac remodeling, a cellular and molecular process that occurs during the development of heart failure. Accumulating evidence has unveiled the cardioprotective effects of sacubitril/valsartan on cellular and molecular modulation in cardiac remodeling, with recent large-scale randomized clinical trials confirming its supremacy over other traditional heart failure treatments. However, its molecular mechanism of action in cardiac remodeling remains obscure. Therefore, comprehending the molecular mechanism of action of sacubitril/valsartan could help future research to study the drug's potential therapy to reduce the severity of heart failure.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed S.M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Elkholey K, Niewiadomska M, Morris L, Whyte S, Houser J, Humphrey MB, Stavrakis S. Transcutaneous Vagus Nerve Stimulation Ameliorates the Phenotype of Heart Failure With Preserved Ejection Fraction Through Its Anti-Inflammatory Effects. Circ Heart Fail 2022; 15:e009288. [PMID: 35862007 PMCID: PMC9388556 DOI: 10.1161/circheartfailure.122.009288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A systemic proinflammatory state plays a central role in the development of heart failure with preserved ejection fraction (HFpEF). Low-level transcutaneous vagus nerve stimulation (LLTS) suppresses inflammation in animals and humans, mediated by an α7nAchR (alpha7 nicotinic acetylcholine receptor)-dependent pathway. We examined the effects of LLTS on cardiac function, inflammation, and fibrosis in the presence of α7nAchR pharmacological blockade in a rat model of HFpEF. METHODS Dahl salt-sensitive rats at 7 weeks of age were treated with high-salt diet for 6 weeks to induce HFpEF, followed by 4 weeks of (1) LLTS, (2) LLTS with the α7nAchR blocker methyllycaconitine, (3) sham, and (4) olmesartan. Blood pressure, cardiac function by echocardiography, heart rate variability, and serum cytokines were measured at 13 and 17 weeks of age. Cardiac fibrosis, inflammatory cell infiltration, and gene expression were determined at 17 weeks. RESULTS LLTS attenuated the increase in blood pressure; improved cardiac function; decreased inflammatory cytokines, macrophage infiltration, and fibrosis; and improved survival compared with other groups. Methyllycaconitine attenuated these effects, whereas olmesartan did not improve cardiac function or fibrosis despite maintaining similar blood pressure as LLTS. Heart rate variability was similarly improved in the LLTS and LLTS plus methyllycaconitine groups but remained low in the other groups. LLTS reversed the dysregulated inflammatory signaling pathways in HFpEF hearts. CONCLUSIONS Neuromodulation with LLTS improved cardiac function in a rat model of HFpEF through its anti-inflammatory and antifibrotic effects. These results provide the basis for further clinical trials in humans.
Collapse
Affiliation(s)
- Khaled Elkholey
- Cardiovascular Section, Department of Medicine (K.E., M.N., L.M., S.W., S.S.), University of Oklahoma Health Science Center, Oklahoma City
| | - Monika Niewiadomska
- Cardiovascular Section, Department of Medicine (K.E., M.N., L.M., S.W., S.S.), University of Oklahoma Health Science Center, Oklahoma City
| | - Lynsie Morris
- Cardiovascular Section, Department of Medicine (K.E., M.N., L.M., S.W., S.S.), University of Oklahoma Health Science Center, Oklahoma City
| | - Seabrook Whyte
- Cardiovascular Section, Department of Medicine (K.E., M.N., L.M., S.W., S.S.), University of Oklahoma Health Science Center, Oklahoma City
| | - Jeremy Houser
- Rheumatology Section, Department of Medicine (J.H., M.B.H.), University of Oklahoma Health Science Center, Oklahoma City
| | - Mary Beth Humphrey
- Rheumatology Section, Department of Medicine (J.H., M.B.H.), University of Oklahoma Health Science Center, Oklahoma City
| | - Stavros Stavrakis
- Cardiovascular Section, Department of Medicine (K.E., M.N., L.M., S.W., S.S.), University of Oklahoma Health Science Center, Oklahoma City
| |
Collapse
|
7
|
Mascarello A, Azevedo H, Ferreira Junior MA, Ishikawa EE, Guimarães CRW. Design, synthesis and antihypertensive evaluation of novel codrugs with combined angiotensin type 1 receptor antagonism and neprilysin inhibition. Eur J Pharm Sci 2021; 159:105731. [PMID: 33493668 DOI: 10.1016/j.ejps.2021.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
The multifactorial etiology of hypertension has promoted the research of blood pressure-lowering agents with multitarget actions to achieve better clinical outcomes. We describe here the discovery of novel dual-acting antihypertensive codrugs combining pharmacophores with angiotensin type 1 (AT1) receptor antagonism and neprilysin (NEP) inhibition. Specifically, the codrugs combine the AT1 antagonists losartan or its carboxylic acid active metabolite (E-3174) with selected monocarboxylic acid NEP inhibitors through a cleavable linker. The resulting codrugs exhibited high rates of in vitro conversion into the active molecules upon incubation with human/rat liver S9 fractions and in vivo conversion after oral administration in rodents. Moreover, the acute effects of one of the designed codrugs (3b) was confirmed at the doses of 10, 30 and 60 mg/kg p.o. in the spontaneous hypertensive rat (SHR) model, showing better antihypertensive response over 24 hours than the administration of an equivalent fixed-dose combination of 15 mg/kg of losartan and 14 mg/kg of the same NEP inhibitor used in 3b. The results demonstrate that the codrug approach is a plausible strategy to develop a single molecular entity with combined AT1 and NEP activities, aiming at achieving improved pharmacokinetics, efficacy and dosage convenience, as well as reduced drug-drug interaction for hypertension patients. In addition, the developability of the codrug should be comparable to the one of marketed AT1 antagonists, most of them prodrugs, but bearing only the AT1 pharmacophore.
Collapse
Affiliation(s)
| | - Hatylas Azevedo
- Aché Laboratórios Farmacêuticos, Guarulhos, São Paulo 07034-904, Brazil
| | | | | | | |
Collapse
|
8
|
Nordén ES, Bendiksen BA, Andresen H, Bergo KK, Espe EK, Hasic A, Hauge-Iversen IM, Veras I, Hussain RI, Sjaastad I, Christensen G, Cataliotti A. Sacubitril/valsartan ameliorates cardiac hypertrophy and preserves diastolic function in cardiac pressure overload. ESC Heart Fail 2021; 8:918-927. [PMID: 33497525 PMCID: PMC8006657 DOI: 10.1002/ehf2.13177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/15/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Aims Sacubitril/valsartan (sac/val) has shown superior effect compared with blockade of the renin–angiotensin–aldosterone system in heart failure with reduced ejection fraction. We aimed to investigate effects of sac/val compared with valsartan in a pressure overload model of heart failure with preserved ejection fraction (HFpEF). Methods and results Sprague–Dawley rats underwent aortic banding or sham (n = 16) surgery and were randomized to sac/val (n = 28), valsartan (n = 29), or vehicle (n = 26) treatment for 8 weeks. Sac/val reduced left ventricular weight by 11% compared with vehicle (P = 0.01) and 9% compared with valsartan alone (P = 0.04). Only valsartan reduced blood pressure compared with sham (P = 0.02). Longitudinal early diastolic strain rate was preserved in sac/val compared with sham, while it was reduced by 23% in vehicle (P = 0.03) and 24% in valsartan (P = 0.02). Diastolic dysfunction, measured by E/e'SR, increased by 68% in vehicle (P < 0.01) and 80% in valsartan alone (P < 0.001), while sac/val showed no increase. Neither sac/val nor valsartan prevented interstitial fibrosis. Although ejection fraction was preserved, we observed mild systolic dysfunction, with vehicle showing a 28% decrease in longitudinal strain (P < 0.01). Neither sac/val nor valsartan treatment improved this dysfunction. Conclusions In a model of HFpEF induced by cardiac pressure overload, sac/val reduced hypertrophy compared with valsartan alone and ameliorated diastolic dysfunction. These effects were independent of blood pressure. Early systolic dysfunction was not affected, supporting the notion that sac/val has the largest potential in conditions characterized by reduced ejection fraction. Observed anti‐hypertrophic effects in preserved ejection fraction implicate potential benefit of sac/val in the clinical setting of hypertrophic remodelling and impaired diastolic function.
Collapse
Affiliation(s)
- Einar Sjaastad Nordén
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department for Health Sciences, Bjørknes University College, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Bård Andre Bendiksen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department for Health Sciences, Bjørknes University College, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Henriette Andresen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kaja Knudsen Bergo
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Emil Knut Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department for Health Sciences, Bjørknes University College, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ida Marie Hauge-Iversen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ioanni Veras
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department for Health Sciences, Bjørknes University College, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Abstract
Cyclic GMP (cGMP) represents a classic intracellular second messenger molecule. Over the past 2 decades, important discoveries have identified that cGMP signaling becomes deranged in heart failure (HF) and that cGMP and its main kinase effector, protein kinase G, generally oppose the biological abnormalities contributing to HF, in experimental studies. These findings have influenced the design of clinical trials of cGMP-augmenting drugs in HF patients. At present, the trial results of cGMP-augmenting therapies in HF remain mixed. As detailed in this review, strong evidence now exists that protein kinase G opposes pathologic cardiac remodeling through regulation of diverse biological processes and myocardial substrates. Potential reasons for the failures of cGMP-augmenting drugs in HF may be related to biological mechanisms opposing cGMP or because of certain features of clinical trials, all of which are discussed.
Collapse
|
10
|
Polina I, Domondon M, Fox R, Sudarikova AV, Troncoso M, Vasileva VY, Kashyrina Y, Gooz MB, Schibalski RS, DeLeon-Pennell KY, Fitzgibbon WR, Ilatovskaya DV. Differential effects of low-dose sacubitril and/or valsartan on renal disease in salt-sensitive hypertension. Am J Physiol Renal Physiol 2020; 319:F63-F75. [PMID: 32463726 PMCID: PMC7468826 DOI: 10.1152/ajprenal.00125.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Diuretics and renin-angiotensin system blockers are often insufficient to control the blood pressure (BP) in salt-sensitive (SS) subjects. Abundant data support the proposal that the level of atrial natriuretic peptide may correlate with the pathogenesis of SS hypertension. We hypothesized here that increasing atrial natriuretic peptide levels with sacubitril, combined with renin-angiotensin system blockage by valsartan, can be beneficial for alleviation of renal damage in a model of SS hypertension, the Dahl SS rat. To induce a BP increase, rats were challenged with a high-salt 4% NaCl diet for 21 days, and chronic administration of vehicle or low-dose sacubitril and/or valsartan (75 μg/day each) was performed. Urine flow, Na+ excretion, and water consumption were increased on the high-salt diet compared with the starting point (0.4% NaCl) in all groups but remained similar among the groups at the end of the protocol. Upon salt challenge, we observed a mild decrease in systolic BP and urinary neutrophil gelatinase-associated lipocalin levels (indicative of alleviated tubular damage) in the valsartan-treated groups. Sacubitril, as well as sacubitril/valsartan, attenuated the glomerular filtration rate decline induced by salt. Alleviation of protein cast formation and lower renal medullary fibrosis were observed in the sacubitril/valsartan- and valsartan-treated groups, but not when sacubitril alone was administered. Interestingly, proteinuria was mildly mitigated only in rats that received sacubitril/valsartan. Further studies of the effects of sacubitril/valsartan in the setting of SS hypertension, perhaps involving a higher dose of the drug, are warranted to determine if it can interfere with the progression of the disease.
Collapse
Affiliation(s)
- Iuliia Polina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Mark Domondon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca Fox
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Anastasia V Sudarikova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Miguel Troncoso
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Valeriia Y Vasileva
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Yuliia Kashyrina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monika Beck Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Ryan S Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
11
|
Sharifi Kia D, Benza E, Bachman TN, Tushak C, Kim K, Simon MA. Angiotensin Receptor-Neprilysin Inhibition Attenuates Right Ventricular Remodeling in Pulmonary Hypertension. J Am Heart Assoc 2020; 9:e015708. [PMID: 32552157 PMCID: PMC7670537 DOI: 10.1161/jaha.119.015708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Pulmonary hypertension (PH) results in increased right ventricular (RV) afterload and ventricular remodeling. Sacubitril/valsartan (sac/val) is a dual acting drug, composed of the neprilysin inhibitor sacubitril and the angiotensin receptor blocker valsartan, that has shown promising outcomes in reducing the risk of death and hospitalization for chronic systolic left ventricular heart failure. In this study, we aimed to examine if angiotensin receptor‐neprilysin inhibition using sac/val attenuates RV remodeling in PH. Methods and Results RV pressure overload was induced in Sprague–Dawley rats via banding the main pulmonary artery. Three different cohorts of controls, placebo‐treated PH, and sac/val‐treated PH were studied in a 21‐day treatment window. Terminal invasive hemodynamic measurements, quantitative histological analysis, biaxial mechanical testing, and constitutive modeling were employed to conduct a multiscale analysis on the effects of sac/val on RV remodeling in PH. Sac/val treatment decreased RV maximum pressures (29% improvement, P=0.002), improved RV contractile (30%, P=0.012) and relaxation (29%, P=0.043) functions, reduced RV afterload (35% improvement, P=0.016), and prevented RV‐pulmonary artery uncoupling. Furthermore, sac/val attenuated RV hypertrophy (16% improvement, P=0.006) and prevented transmural reorientation of RV collagen and myofibers (P=0.011). The combined natriuresis and vasodilation resulting from sac/val led to improved RV biomechanical properties and prevented increased myofiber stiffness in PH (61% improvement, P=0.032). Conclusions Sac/val may prevent maladaptive RV remodeling in a pressure overload model via amelioration of RV pressure rise, hypertrophy, collagen, and myofiber reorientation as well as tissue stiffening both at the tissue and myofiber level.
Collapse
Affiliation(s)
| | - Evan Benza
- Heart and Vascular InstituteUniversity of Pittsburgh Medical Center (UPMC)Pittsburgh PA
| | - Timothy N Bachman
- Department of BioengineeringUniversity of PittsburghPA.,Pittsburgh Heart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh and University of Pittsburgh Medical Center (UPMC)Pittsburgh PA
| | - Claire Tushak
- Department of BioengineeringUniversity of PittsburghPA
| | - Kang Kim
- Department of BioengineeringUniversity of PittsburghPA.,Heart and Vascular InstituteUniversity of Pittsburgh Medical Center (UPMC)Pittsburgh PA.,Pittsburgh Heart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh and University of Pittsburgh Medical Center (UPMC)Pittsburgh PA.,Division of CardiologySchool of MedicineUniversity of PittsburghPA.,McGowan Institute for Regenerative MedicineUniversity of PittsburghPA.,Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPA.,Center for Ultrasound Molecular Imaging and TherapeuticsUniversity of PittsburghPA
| | - Marc A Simon
- Department of BioengineeringUniversity of PittsburghPA.,Heart and Vascular InstituteUniversity of Pittsburgh Medical Center (UPMC)Pittsburgh PA.,Pittsburgh Heart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh and University of Pittsburgh Medical Center (UPMC)Pittsburgh PA.,Division of CardiologySchool of MedicineUniversity of PittsburghPA.,McGowan Institute for Regenerative MedicineUniversity of PittsburghPA
| |
Collapse
|
12
|
Ogilvie LM, Edgett BA, Huber JS, Platt MJ, Eberl HJ, Lutchmedial S, Brunt KR, Simpson JA. Hemodynamic assessment of diastolic function for experimental models. Am J Physiol Heart Circ Physiol 2020; 318:H1139-H1158. [PMID: 32216614 DOI: 10.1152/ajpheart.00705.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traditionally, the evaluation of cardiac function has focused on systolic function; however, there is a growing appreciation for the contribution of diastolic function to overall cardiac health. Given the emerging interest in evaluating diastolic function in all models of heart failure, there is a need for sensitivity, accuracy, and precision in the hemodynamic assessment of diastolic function. Hemodynamics measure cardiac pressures in vivo, offering a direct assessment of diastolic function. In this review, we summarize the underlying principles of diastolic function, dividing diastole into two phases: 1) relaxation and 2) filling. We identify parameters used to comprehensively evaluate diastolic function by hemodynamics, clarify how each parameter is obtained, and consider the advantages and limitations associated with each measure. We provide a summary of the sensitivity of each diastolic parameter to loading conditions. Furthermore, we discuss differences that can occur in the accuracy of diastolic and systolic indices when generated by automated software compared with custom software analysis and the magnitude each parameter is influenced during inspiration with healthy breathing and a mild breathing load, commonly expected in heart failure. Finally, we identify key variables to control (e.g., body temperature, anesthetic, sampling rate) when collecting hemodynamic data. This review provides fundamental knowledge for users to succeed in troubleshooting and guidelines for evaluating diastolic function by hemodynamics in experimental models of heart failure.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mathew J Platt
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hermann J Eberl
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - Sohrab Lutchmedial
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,Department of Cardiology, New Brunswick Heart Center, Saint John Regional Hospital, Horizon Health Network, Saint John, New Brunswick, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
13
|
Packer M. Do most patients with obesity or type 2 diabetes, and atrial fibrillation, also have undiagnosed heart failure? A critical conceptual framework for understanding mechanisms and improving diagnosis and treatment. Eur J Heart Fail 2019; 22:214-227. [PMID: 31849132 DOI: 10.1002/ejhf.1646] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity and diabetes can lead to heart failure with preserved ejection fraction (HFpEF), potentially because they both cause expansion and inflammation of epicardial adipose tissue and thus lead to microvascular dysfunction and fibrosis of the underlying left ventricle. The same process also causes an atrial myopathy, which is clinically evident as atrial fibrillation (AF); thus, AF may be the first manifestation of HFpEF. Many patients with apparently isolated AF have latent HFpEF or subsequently develop HFpEF. Most patients with obesity or diabetes who have AF and exercise intolerance have increased left atrial pressures at rest or during exercise, even in the absence of diagnosed HFpEF. Among patients with AF, those who also have latent HFpEF have increased risk for systemic thromboembolism and death. The identification of HFpEF in patients with obesity or diabetes alters the risk-to-benefit relationship of commonly prescribed treatments. Bariatric surgery and statins can ameliorate AF and reduce the risk for HFpEF. Conversely, antihyperglycaemic drugs that promote adipogenesis or cause sodium retention (insulin and thiazolidinediones) may increase the risk for heart failure in patients with an underlying ventricular myopathy. Patients with obesity and diabetes who undergo catheter ablation for AF are at increased risk for AF recurrence and for post-ablation increases in pulmonary venous pressures and worsening heart failure, especially if HFpEF coexists. Therefore, AF may be the earliest indicator of HFpEF in patients with obesity or type 2 diabetes, and recognition of HFpEF alters the management of these patients.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA.,Imperial College London, London, UK
| |
Collapse
|
14
|
Maslov MY, Foianini S, Mayer D, Orlov MV, Lovich MA. Interaction Between Sacubitril and Valsartan in Preventing Heart Failure Induced by Aortic Valve Insufficiency in Rats. J Card Fail 2019; 25:921-931. [PMID: 31539619 DOI: 10.1016/j.cardfail.2019.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/03/2019] [Accepted: 09/12/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Synergistic interactions between neprilysin inhibition (NEPi) with sacubitril and angiotensin receptor type1 blockade (ARB) with valsartan have been implicated in improvement of left ventricular (LV) contractility, relaxation, exercise tolerance, and fibrosis in preexisting heart failure (HF) induced by aortic valve insufficiency (AVI). It is not known whether this pharmacologic synergy can prevent cardiovascular pathology in a similar AVI model. Our aim was to investigate the pharmacology of sacubitril/valsartan in an experimental setting with therapy beginning immediately after creation of AVI. METHODS HF was induced through partial disruption of the aortic valve in rats. Therapy began 3 hours after valve disruption and lasted 8 weeks. Sacubitril/valsartan (68 mg/kg), valsartan (31 mg/kg), sacubitril (31 mg/kg), or vehicle were administered daily via oral gavage (N=8 in each group). Hemodynamic assessments were conducted using Millar technology, and an exercise tolerance test was conducted using a rodent treadmill. RESULTS Only sacubitril/valsartan increased total arterial compliance and ejection fraction (EF). Therapies with sacubitril/valsartan and valsartan similarly improved load-dependent (dP/dtmax) and load independent indices (Ees) of LV contractility, and exercise tolerance, whereas sacubitril did not. None of the therapies improved LV relaxation (dP/dtmin), whereas all reduced myocardial fibrosis. CONCLUSIONS 1) The synergistic interaction between NEPi and ARB in early therapy with sacubitril/valsartan leads to increased total arterial compliance and EF. 2) Improvement in indices of LV contractility, and exercise tolerance with sacubitril/valsartan is likely because of ARB effect of valsartan. 3) All three therapies provided antifibrotic effects, suggesting both ARB and NEPi are capable of reducing myocardial fibrosis.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts.
| | - Stephan Foianini
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| | - Dita Mayer
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| | - Michael V Orlov
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Cardiology, Boston, Massachusetts
| | - Mark A Lovich
- Steward St. Elizabeth's Medical Center/Tufts University School of Medicine, Department of Anesthesiology, Pain Medicine and Critical Care, Boston, Massachusetts
| |
Collapse
|
15
|
Katz MG, Fargnoli AS, Gubara SM, Chepurko E, Bridges CR, Hajjar RJ. Surgical and physiological challenges in the development of left and right heart failure in rat models. Heart Fail Rev 2019; 24:759-777. [PMID: 30903356 PMCID: PMC6698228 DOI: 10.1007/s10741-019-09783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA.
| | - Anthony S Fargnoli
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Sarah M Gubara
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Charles R Bridges
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| |
Collapse
|
16
|
Weeks KL, Henstridge DC, Salim A, Shaw JE, Marwick TH, McMullen JR. CORP: Practical tools for improving experimental design and reporting of laboratory studies of cardiovascular physiology and metabolism. Am J Physiol Heart Circ Physiol 2019; 317:H627-H639. [PMID: 31347916 DOI: 10.1152/ajpheart.00327.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The exercise consisted of: 1) a short survey to acquire baseline data on current practices regarding the conduct of animal studies, 2) a series of presentations for promoting awareness and providing advice and practical tools for improving experimental design, and 3) a follow-up survey 12 mo later to assess whether practices had changed. The surveys were compulsory for responsible investigators (n = 16; paired data presented). Other investigators named on animal ethics applications were encouraged to participate (2017, total of 36 investigators; 2018, 37 investigators). The major findings to come from the exercise included 1) a willingness of investigators to make changes when provided with knowledge/tools and solutions that were relatively simple to implement (e.g., proportion of responsible investigators showing improved practices using a structured method for randomization was 0.44, 95% CI (0.19; 0.70), P = 0.003, and deidentifying drugs/interventions was 0.40, 95% CI (0.12; 0.68), P = 0.010); 2) resistance to change if this involved more personnel and time (e.g., as required for allocation concealment); and 3) evidence that changes to long-term practices ("habits") require time and follow-up. Improved practices could be verified based on changes in reporting within publications or documented evidence provided during laboratory visits. In summary, this exercise resulted in changed attitudes, practices, and reporting, but continued follow-up, monitoring, and incentives are required. Efforts to improve experimental rigor will reduce bias and will lead to findings with the greatest translational potential.NEW & NOTEWORTHY The goal of this exercise was to encourage preclinical researchers to improve the quality of their cardiac and metabolic animal studies by 1) increasing awareness of concerns, which can arise from suboptimal experimental designs; 2) providing knowledge, tools, and templates to overcome bias; and 3) conducting two short surveys over 12 mo to monitor change. Improved practices were identified for the uptake of structured methods for randomization, and de-identifying interventions/drugs.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/experimental-design-survey-training-practical-tools/.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | | | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Mathematics and Statistics, La Trobe University Victoria, Australia
| | | | | | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Volpe M, Rubattu S, Battistoni A. ARNi: A Novel Approach to Counteract Cardiovascular Diseases. Int J Mol Sci 2019; 20:ijms20092092. [PMID: 31035359 PMCID: PMC6539682 DOI: 10.3390/ijms20092092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) still represent the greatest burden on healthcare systems worldwide. Despite the enormous efforts over the last twenty years to limit the spread of cardiovascular risk factors, their prevalence is growing and control is still suboptimal. Therefore, the availability of new therapeutic tools that may interfere with different pathophysiological pathways to slow the establishment of clinical CVDs is important. Previously, the inhibition of neurohormonal systems, namely the renin–angiotensin–aldosterone system (RAAS) and the sympathetic nervous system, has proven to be useful in the treatment of many CVDs. Attempts have recently been made to target an additional hormonal system, that of the natriuretic peptides (NPs), which, when dysregulated, can also play a role in the development CVDs. Indeed, a new class of drug, the angiotensin receptor–neprilysin inhibitors (ARNi), has the ability to counteract the effects of angiotensin II as well as to increase the activity of NPs. ARNi have already been proven to be effective in the treatment of heart failure with reduced ejection fraction. New evidence has suggested that, in the next years, the field of ARNi application will widen to include other CVDs, such as heart failure, with preserved ejection fraction and hypertension.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine; School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine; School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| | - Allegra Battistoni
- Department of Clinical and Molecular Medicine; School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
| |
Collapse
|