1
|
Wei W, Xu G, Gao J, Wang G, Wang Y, Li C, Zheng J, Lu H, Lu Y, Wang K, Xu H, Wang C, Pan X. Sacubitril/Valsartan partially alleviates myocardial infarction injury by activating the FGF21 signaling pathway via PPARs. Cardiovasc Diabetol 2025; 24:89. [PMID: 39987117 PMCID: PMC11847388 DOI: 10.1186/s12933-025-02627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025] Open
Abstract
The recent discovery of clinically significant data, alongside novel physiological and pathological occurrences surrounding sacubitril/valsartan (Sac/Val) beyond its approved indications, necessitates an urgent reevaluation of its underlying mechanism of action. In the present investigation, we observed a substantial elevation in the serum levels of fibroblast growth factor 21 (FGF21) among patients with acute myocardial infarction (AMI) who were administered Sac/Val, compared to those who were not, utilizing ELISA-based measurements. Furthermore, through the utilization of a mouse model of myocardial infarction induced by ligation of the left anterior descending branch, we confirmed that FGF21 mediates the cardioprotective effect of Sac/Val, employing both loss-of-function and gain-of-function approaches. Molecular docking and SPR experiments validated that Sac/Val can regulate FGF21 via its interaction with PPARs, and verified the role of PPARs in mediating Sac/Val regulation of FGF21 by inhibiting PPARs. In conclusion, we found that Sac/Val can act as an agonist of FGF21, which provides a new idea for the development of FGF21 drugs, and FGF21 as a new target of Sac/Val to ameliorate myocardial infarction, which provides a basis for new indications for Sac/Val.
Collapse
Affiliation(s)
- Wenjuan Wei
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Guangsen Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Jiaer Gao
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Guiyun Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Caiyan Li
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Junwei Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Huiying Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Yunyan Lu
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Kun Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Hongtao Xu
- Lishui Central Hospital, The Fifth Hospital Affiliated to Wenzhou Medical University, LiShui, 323000, Zhejiang, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China.
| | - Xuebo Pan
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
2
|
Izumihara R, Nomoto H, Kito K, Yamauchi Y, Omori K, Shibayama Y, Yanagiya S, Miya A, Kameda H, Cho KY, Nagai S, Sakuma I, Nakamura A, Atsumi T. Switching from Conventional Fibrates to Pemafibrate Has Beneficial Effects on the Renal Function of Diabetic Subjects with Chronic Kidney Disease. Diabetes Metab J 2024; 48:473-481. [PMID: 38419467 PMCID: PMC11140405 DOI: 10.4093/dmj.2023.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGRUOUND Fibrates have renal toxicity limiting their use in subjects with chronic kidney disease (CKD). However, pemafibrate has fewer toxic effects on renal function. In the present analysis, we evaluated the effects of pemafibrate on the renal function of diabetic subjects with or without CKD in a real-world clinical setting. METHODS We performed a sub-analysis of data collected during a multi-center, prospective, observational study of the effects of pemafibrate on lipid metabolism in subjects with type 2 diabetes mellitus complicated by hypertriglyceridemia (the PARM-T2D study). The participants were allocated to add pemafibrate to their existing regimen (ADD-ON), switch from their existing fibrate to pemafibrate (SWITCH), or continue conventional therapy (CTRL). The changes in estimated glomerular filtration rate (eGFR) over 52 weeks were compared among these groups as well as among subgroups created according to CKD status. RESULTS Data for 520 participants (ADD-ON, n=166; SWITCH, n=96; CTRL, n=258) were analyzed. Of them, 56.7% had CKD. The eGFR increased only in the SWITCH group, and this trend was also present in the CKD subgroup (P<0.001). On the other hand, eGFR was not affected by switching in participants with severe renal dysfunction (G3b or G4) and/or macroalbuminuria. Multivariate analysis showed that being older and a switch from fenofibrate were associated with elevation in eGFR (both P<0.05). CONCLUSION A switch to pemafibrate may be associated with an elevation in eGFR, but to a lesser extent in patients with poor renal function.
Collapse
Affiliation(s)
- Rimi Izumihara
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenichi Kito
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Yamauchi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuno Omori
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yui Shibayama
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Yanagiya
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Aika Miya
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kyu Yong Cho
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - So Nagai
- Division of Diabetes and Endocrinology, Department of Medicine, NTT Sapporo Medical Center, Sapporo, Japan
| | - Ichiro Sakuma
- Caress Sapporo Hokko Memorial Clinic, Sapporo, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - on Behalf of the PARM-T2D Study Group
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Diabetes and Endocrinology, Department of Medicine, NTT Sapporo Medical Center, Sapporo, Japan
- Caress Sapporo Hokko Memorial Clinic, Sapporo, Japan
| |
Collapse
|
3
|
Chan YH, Chao TF, Chen SW, Kao YW, Huang CY, Chu PH. The Association of Background Medications on Initial eGFR Change and Kidney Outcomes in Diabetic Patients Receiving SGLT2 Inhibitor. Clin J Am Soc Nephrol 2023; 18:858-868. [PMID: 36999982 PMCID: PMC10356138 DOI: 10.2215/cjn.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND To determine whether background medications modify the effects of sodium-glucose cotransporter-2 inhibitor (SGLT2i) on the eGFR and kidney outcomes among patients with type 2 diabetes. METHODS We used medical data from a multicenter health care facility in Taiwan and included 10,071 patients who received SGLT2i treatment from June 1, 2016, to December 31, 2018. Direct comparisons for use versus no use of specific background drugs were conducted after adjusting for baseline characteristics through propensity score matching. Patients were followed up until the occurrence of composite kidney outcomes (two-fold increase in the serum creatinine level or the development of end-stage kidney disease), mortality, or the end of the study period. RESULTS Patients exhibited an initial mean (SEM) decline of -2.72 (0.10) ml/min per 1.73 m 2 in eGFR dip from baseline to a mean treatment duration of 8.1±3.1 weeks after SGLT2i initiation. The eGFR trajectory stabilized 24 weeks after SGLT2i treatment with a mean (SEM) slope of -1.36 (0.25) ml/min per 1.73 m 2 per year. Compared with no drug use, the use of background renin-angiotensin inhibitor ( n =2073), thiazide diuretics ( n =1764), loop diuretics ( n =708), fenofibrate ( n =1043), xanthine oxidase inhibitor ( n =264), and insulin ( n =1656) was associated with a larger initial decrease in eGFR, while background metformin treatment ( n =827) was associated with a smaller initial decrease in eGFR after SGLT2i treatment. The only drugs associated with the long-term composite kidney outcome during SGLT2i treatment were renin-angiotensin inhibitor (hazard ratio [HR], 0.61; 95% confidence interval [CI], 0.40 to 0.95) and loop diuretics (HR, 1.88; 95% CI, 1.19 to 2.96). CONCLUSIONS Several background medications were associated with the initial eGFR dip after SGLT2i initiation. Most drugs were not associated with long-term composite kidney outcomes among patients treated with SGLT2i, except for renin-angiotensin system inhibitor associated with favorable outcomes and loop diuretics associated with worse composite kidney outcomes.
Collapse
Affiliation(s)
- Yi-Hsin Chan
- The Cardiovascular Department, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Taoyuan City, Taiwan
- Microscopy Core Laboratory, Linkou Chang Gung Memorial Hospital,Taoyuan City, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
- Cardiovascular Research Center, Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Shao-Wei Chen
- Division of Thoracic and Cardiovascular Surgery, Linkou Medical Center, Department of Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan
- Center for Big Data Analytics and Statistics, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yi-Wei Kao
- Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei City, Taiwan
- Department of Applied Statistics and Information Science, Ming Chuan University, Taoyuan City, Taiwan
| | - Chien-Ying Huang
- The Cardiovascular Department, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Pao-Hsien Chu
- The Cardiovascular Department, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
4
|
Kim YJ, Kim HJ, Lee SG, Kim DH, In Jang S, Go HS, Lee WJ, Seong JK. Aerobic exercise for eight weeks provides protective effects towards liver and cardiometabolic health and adipose tissue remodeling under metabolic stress for one week: A study in mice. Metabolism 2022; 130:155178. [PMID: 35227728 DOI: 10.1016/j.metabol.2022.155178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/07/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The relationship between exercise training and health benefits is under thorough investigation. However, the effects of exercise training on the maintenance of metabolic health are unclear. METHODS Our experimental design involved initial exercise training followed by a high-fat diet (HFD) challenge. Eight-week-old male was trained under voluntary wheel running aerobic exercise for eight weeks to determine the systemic metabolic changes induced by exercise training and whether such changes persisted even after discontinuing exercise. The mice were given either a normal chow diet (NCD) or HFD ad libitum for one week after discontinuation of exercise (CON-NCD, n = 29; EX-NCD, n = 29; CON-HFD, n = 30; EX-HFD, n = 31). RESULTS Our study revealed that metabolic stress following the transition to an HFD in mice that discontinued training failed to reverse the aerobic exercise training-induced improvement in metabolism. We report that the mice subjected to exercise training could better counteract weight gain, adipose tissue hypertrophy, insulin resistance, fatty liver, and mitochondrial dysfunction in response to an HFD compared with untrained mice. This observation could be attributed to the fact that exercise enhances the browning of white fat, whole-body oxygen uptake, and heat generation. Furthermore, we suggest that the effects of exercise persist due to PPARα-FGF21-FGFR1 mechanisms, although additional pathways cannot be excluded and require further research. Although our study suggests the preventive potential of exercise, appropriate human trials are needed to demonstrate the efficacy in subjects who cannot perform sustained exercise; this may provide an important basis regarding human health.
Collapse
Affiliation(s)
- Youn Ju Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Hye Jin Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Sang Gyu Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Do Hyun Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Su In Jang
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Hye Sun Go
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Won Jun Lee
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, 08826 Seoul, Republic of Korea.
| |
Collapse
|
5
|
PPARG Drives Molecular Networks as an Inhibitor for the Pathologic Development and Progression of Lung Adenocarcinoma. PPAR Res 2020; 2020:6287468. [PMID: 32395124 PMCID: PMC7199583 DOI: 10.1155/2020/6287468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/25/2020] [Indexed: 02/03/2023] Open
Abstract
Previous studies showed that low PPARG expression was associated with poor prognosis of lung adenocarcinoma (LA) with limited mechanisms identified. We first conducted a large-scale literature-based data mining to identify potential molecular pathways where PPARG could exert influence on the pathological development of LA. Then a mega-analysis using 13 independent LA expression datasets and a Pathway Enrichment Analysis (PEA) was conducted to study the gene expression levels and the functionalities of PPARG and the PPARG-driven triggers within the molecular pathways. Finally, a protein-protein interaction (PPI) network was established to reveal the functional connection between PPARG and its driven molecules. We identified 25 PPARG-driven molecule triggers forming multiple LA-regulatory pathways. Mega-analysis using 13 LA datasets supported these pathways and confirmed the downregulation of PPARG in the case of LA (p = 1.07e−05). Results from the PEA and PPI analysis suggested that PPARG might inhibit the development of LA through the regulation of tumor cell proliferation and transmission-related molecules, including an LA tumor cell suppressor MIR145. Our results suggested that increased expression of PPARG could drive multiple molecular triggers against the pathologic development and prognosis of LA, indicating PPARG as a valuable therapeutic target for LA treatment.
Collapse
|
6
|
PPAR γ and Its Agonists in Chronic Kidney Disease. Int J Nephrol 2020; 2020:2917474. [PMID: 32158560 PMCID: PMC7060840 DOI: 10.1155/2020/2917474] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/11/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) has become a global healthcare issue. CKD can progress to irreversible end-stage renal diseases (ESRD) or renal failure. The major risk factors for CKD include obesity, diabetes, and cardiovascular diseases. Understanding the key process involved in the disease development may lead to novel interventive strategies, which is currently lagging behind. Peroxisome proliferator-activated receptor γ (PPARγ) is one of the ligand-activated transcription factor superfamily members and is globally expressed in human tissues. Its agonists such as thiazolidinediones (TZDs) have been applied as effective antidiabetic drugs as they control insulin sensitivity in multiple metabolic tissues. Besides, TZDs exert protective effects in multiple other CKD risk disease contexts. As PPARγ is abundantly expressed in major kidney cells, its physiological roles in those cells have been studied in both cell and animal models. The function of PPARγ in the kidney ranges from energy metabolism, cell proliferation to inflammatory suppression, although major renal side effects of existing agonists (including TZDs) have been reported, which limited their application in treating CKD. In the current review, we systemically assess the function of PPARγ in CKDs and the benefits and current limitations of its agonists in the clinical applications.
Collapse
|
7
|
Chhabra M, Sharma S. Potential role of Peroxisome Proliferator Activated Receptor gamma analogues in regulation of endothelial progenitor cells in diabetes mellitus: An overview. Diabetes Metab Syndr 2019; 13:1123-1129. [PMID: 31336454 DOI: 10.1016/j.dsx.2019.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
Abstract
Endothelial progenitor cells are recognized as the potential targets for the revascularization and angiogenesis because of their ability to get themselves transformed into mature endothelial cells. Underlying pathophysiology in diabetes mellitus leads to decrease in circulatory endothelial progenitor cells, resulting in diabetic macro-vascular and micro-vascular complications. Peroxisome Proliferator Activated Receptor (PPAR) gamma analogues serves as an effective therapy for controlling blood sugar levels and preventing its complications. Reports of clinical trials and meta-analysis of clinical trial suggests the beneficial aspects of PPAR gamma therapy in increasing the number and function of circulating endothelial progenitor cells. This review highlights the pleotropic effect of PPAR gamma analogs, apart from their antidiabetic action via reduction of oxidative stress, increasing expression of eNOS, reducing level of miR 22, miR 222 levels and positive modulation of rapamycin/Protein kinase B/phosphoinoside3-kinase pathways, preventing the early apoptosis, enhanced mobility proliferation and transformation into mature endothelial cells. PPAR gamma therapy in diabetes regulates endothelial progenitor cells, reduces complications of diabetes like retinopathy, nephropathy, neuropathy, cardiomyopathy, deep vein thrombosis, and maintains the healthy vasculature.
Collapse
Affiliation(s)
- Manik Chhabra
- PharmD Intern, Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India.
| | - Saurabh Sharma
- Department of Pharmacology, School of Pharmaceutical and Allied Medical Sciences, CT University, Ludhiana, Punjab, India
| |
Collapse
|
8
|
Protective effect of Xin-Ji-Er-Kang on cardiovascular remodeling in high salt-induced hypertensive mice. Exp Ther Med 2018; 17:1551-1562. [PMID: 30783421 PMCID: PMC6364186 DOI: 10.3892/etm.2018.7105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the effects of Xin-Ji-Er-Kang (XJEK) on high salt-induced hypertensive mice. Mice with high-salt diet-induced hypertension were divided into four groups: Control (standard diet alone for 8 weeks), model (diet containing 8% NaCl for 8 weeks and intragastric administration of distilled water for the last 4 weeks), XJEK + high-salt-treated (diet containing 8% NaCl for 8 weeks and intragastric administration of XJEK for the last 4 weeks) and irbesartan + high-salt-treated (diet containing 8% NaCl for 8 weeks with intragastric administration of irbesartan for the last 4 weeks). The hemodynamic index and cardiac pathological changes in the hypertensive mice were then examined. An aortic ring apparatus was used to detect acetylcholine-dependent endothelium relaxation function. Colorimetric analysis was applied to determine serum nitric oxide (NO), superoxide dismutase activity and malondialdehyde content; ELISA was employed to measure brain natriuretic peptide, serum angiotensin II (Ang II), endothelin-1 content and aldosterone; and immunohistochemistry was used to detect the expression of endothelial nitric oxide synthase (eNOS), interleukin (IL)-1β, IL-10 and tumor necrosis factor (TNF)-α in cardiac tissues. XJEK improved the heart systolic and diastolic function, ameliorated hemodynamic parameters and cardiovascular remodeling indices, blunted the cardiac pathological changes and improved endothelial dysfunction (ED) via boosting eNOS activity, promoting NO bioavailability and decreasing serum Ang II content. Furthermore, treatment with XJEK inhibited the increase of IL-1β and TNF-α expression and the decrease of IL-10 expression in cardiac tissues, and ameliorated oxidative stress status. Therefore, XJEK exerted protective effects against high salt-induced hypertension and cardiovascular remodeling in mice via improving ED, restoring pro- and anti-inflammatory factor balance and decreasing oxidative stress.
Collapse
|
9
|
Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep 2018; 20:62. [PMID: 29884931 DOI: 10.1007/s11906-018-0860-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Heterogeneous causes can determinate hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS. We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.
Collapse
|
10
|
Abushouk AI, El-Husseny MWA, Bahbah EI, Elmaraezy A, Ali AA, Ashraf A, Abdel-Daim MM. Peroxisome proliferator-activated receptors as therapeutic targets for heart failure. Biomed Pharmacother 2017; 95:692-700. [PMID: 28886529 DOI: 10.1016/j.biopha.2017.08.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/06/2023] Open
Abstract
Heart failure (HF) is a common clinical syndrome that affects more than 23 million individuals worldwide. Despite the marked advances in its management, the mortality rates in HF patients have remained unacceptably high. Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription regulators, involved in the regulation of fatty acid and glucose metabolism. PPAR agonists are currently used for the treatment of type II diabetes mellitus and hyperlipidemia; however, their role as therapeutic agents for HF remains under investigation. Preclinical studies have shown that pharmacological modulation of PPARs can upregulate the expression of fatty acid oxidation genes in cardiomyocytes. Moreover, PPAR agonists were proven able to improve ventricular contractility and reduce cardiac remodelling in animal models through their anti-inflammatory, anti-oxidant, anti-fibrotic, and anti-apoptotic activities. Whether these effects can be replicated in humans is yet to be proven. This article reviews the interactions of PPARs with the pathophysiological mechanisms of HF and how the pharmacological modulation of these receptors can be of benefit for HF patients.
Collapse
Affiliation(s)
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Ahmed Elmaraezy
- NovaMed Medical Research Association, Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aya Ashraf Ali
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Asmaa Ashraf
- Faculty of Medicine, Minia University, Minia, Egypt; Minia Medical Research Society, Minia University, Minia, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
11
|
Sun Y, Han M, Shen Z, Huang H, Miao X. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats. Saudi J Biol Sci 2017; 25:213-219. [PMID: 29472767 PMCID: PMC5816011 DOI: 10.1016/j.sjbs.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/01/2023] Open
Abstract
Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL), which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs). We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.
Collapse
Affiliation(s)
- Yanru Sun
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Mingfeng Han
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Zhenhuang Shen
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Haibo Huang
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Xiaoqing Miao
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China.,National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| |
Collapse
|
12
|
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol 2017; 13:279-296. [PMID: 28581362 PMCID: PMC5941699 DOI: 10.2217/fca-2017-0019] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
The PPARs are a subfamily of three ligand-inducible transcription factors, which belong to the superfamily of nuclear hormone receptors. In mammals, the PPAR subfamily consists of three members: PPAR-α, PPAR-β/δ and PPAR-γ. PPARs control the expression of a large number of genes involved in metabolic homeostasis, lipid, glucose and energy metabolism, adipogenesis and inflammation. PPARs regulate a large number of metabolic pathways that are implicated in the pathogenesis of metabolic diseases such as metabolic syndrome, Type 2 diabetes mellitus, nonalcoholic fatty liver disease and cardiovascular disease. The aim of this review is to provide up-to-date information about the biochemical and metabolic actions of PPAR-β/δ and PPAR-γ, the therapeutic potential of their agonists currently under clinical development and the cardiovascular disease outcome of clinical trials of PPAR-γ agonists, pioglitazone and rosiglitazone.
Collapse
Affiliation(s)
- Lu Han
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jun Shen
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stefanie Bittner
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Fredric B Kraemer
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Salman Azhar
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Peroxisome Proliferator-Activated Receptor α Reduces Endothelin-1-Caused Cardiomyocyte Hypertrophy by Inhibiting Nuclear Factor- κB and Adiponectin. Mediators Inflamm 2016; 2016:5609121. [PMID: 27807394 PMCID: PMC5078655 DOI: 10.1155/2016/5609121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/19/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) plays a role in the pathogenesis of cardiac hypertrophy, although its underlying mechanism remains unclear. The purpose of this study was to evaluate the effect of PPARα activation on endothelin-1- (ET-1-) caused cardiomyocyte hypertrophy and explore its underlying mechanisms. Human cardiomyocytes (HCMs) were cultured with or without ET-1, whereafter the inhibitory effects of fenofibrate, a PPARα activator, on cell size and adiponectin protein were tested. We examined the activation of extracellular signal-regulated kinase (ERK) and p38 proteins caused by ET-1 and the inhibition of the ERK and p38 pathways on ET-1-induced cell size and adiponectin expression. Moreover, we investigated the interaction of PPARα with adiponectin and nuclear factor-κB (NF-κB) by electrophoretic mobility shift assays and coimmunoprecipitation. ET-1 treatment significantly increased cell size, suppressed PPARα expression, and enhanced the expression of adiponectin. Pretreatment with fenofibrate inhibited the increase in cell size and enhancement of adiponectin expression. ET-1 significantly activated the ERK and p38 pathways, whereas PD98059 and SB205380, respectively, inhibited them. Our results suggest that activated PPARα can decrease activation of adiponectin and NF-κB and inhibit ET-1-induced cardiomyocyte hypertrophy.
Collapse
|
14
|
Jen HL, Yin WH, Chen JW, Lin SJ. Endothelin-1-Induced Cell Hypertrophy in Cardiomyocytes is Improved by Fenofibrate: Possible Roles of Adiponectin. J Atheroscler Thromb 2016; 24:508-517. [PMID: 27629528 PMCID: PMC5429166 DOI: 10.5551/jat.36368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Previous studies demonstrated that endothelin-1 (ET-1) can significantly increase the cell size and stimulate adiponectin expression in cultured human cardiomyocytes (HCM). The aim of the present study was to investigate the effects of fenofibrate, a peroxisome proliferator-activated receptor-α (PPARα) activator, on cell hypertrophy and adiponectin expression in vitro and in a rat model of daunorubicin-induced cardiomyopathy. Methods: The cultured human cardiomyocytes (HCM) were stimulated with or without ET-1. The cell size and the protein expressions of PPARα and adiponectin were tested by confocal Immunofluorescence study and Western blot, respectively. To study the effects of PPARα activation on ET-1-induced cell hypertrophy and adiponectin protein synthesis, HCM were pretreated with fenofibrate or small interfering RNA (siRNA) of PPARα. Echocardiographic parameters were measured and immunohistochemistry study of myocardial adiponectin expression was conducted in the in vivo study. Results: ET-1 significantly increased the cell size, dose-dependently suppressed the expression of PPARα, and enhanced the expression of adiponectin; whereas, such an increase of cell size and enhancement of adiponectin expression were inhibited by the pre-treatment with fenofibrate. Addition of siRNA of PPARα abolished the effects of fenofibrate. Moreover, we found that fenofibrate treatment can significantly improve the left ventricular function and reverse the myocardial expression of adiponectin. Conclusions: Our study shows that fenofibrate may protect against ET-1-induced cardiomyocyte hypertrophy and enhanced adiponectin expression through modulation of PPARα expression in vitro and limitation of daunorubicin cardiotoxicity in vivo, suggesting a novel mechanistic insight into the role of PPARα and adiponectin in cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Hsu-Lung Jen
- Division of Cardiology, Cheng-Hsin General Hospital.,Institute of Clinical Medicine, National Yang-Ming University
| | - Wei-Hsian Yin
- Division of Cardiology, Cheng-Hsin General Hospital.,Faculty of Medicine, National Yang-Ming University.,Cardiovascular Research Centre, School of Medicine, National Yang-Ming University
| | - Jaw-Wen Chen
- Department of Medical Research and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Institute of Pharmacology, National Yang-Ming University.,Cardiovascular Research Centre, School of Medicine, National Yang-Ming University
| | - Shing-Jong Lin
- Department of Medical Research and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital.,Institute of Clinical Medicine, National Yang-Ming University.,Cardiovascular Research Centre, School of Medicine, National Yang-Ming University
| |
Collapse
|
15
|
PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL. Apoptosis 2015; 21:60-8. [DOI: 10.1007/s10495-015-1186-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Yu Y, Xue BJ, Wei SG, Zhang ZH, Beltz TG, Guo F, Johnson AK, Felder RB. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension. Hypertension 2015; 66:403-11. [PMID: 26101342 DOI: 10.1161/hypertensionaha.115.05726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/20/2015] [Indexed: 01/17/2023]
Abstract
Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that the activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg per minute) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA-binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and angiotensin II type 1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA-binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension.
Collapse
Affiliation(s)
- Yang Yu
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Bao-Jian Xue
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Shun-Guang Wei
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Zhi-Hua Zhang
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Terry G Beltz
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Fang Guo
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Alan Kim Johnson
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Robert B Felder
- From the Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine (Y.Y., S.-G.W., Z.-H.Z., R.B.F.) and Department of Psychological and Brain Sciences (B.-.J.X., T.G.B., F.G., A.K.J.), University of Iowa, Iowa City; and Research Service, Veterans Affairs Medical Center, Iowa City, IA (R.B.F.).
| |
Collapse
|
17
|
Ochodnicky P, Mesarosova L, Cernecka H, Klimas J, Krenek P, Goris M, van Dokkum RPE, Henning RH, Kyselovic J. Pioglitazone, a PPARγ agonist, provides comparable protection to angiotensin converting enzyme inhibitor ramipril against adriamycin nephropathy in rat. Eur J Pharmacol 2014; 730:51-60. [PMID: 24582928 DOI: 10.1016/j.ejphar.2014.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to ameliorate diabetic nephropathy, but much less are known about their effects in non-diabetic nephropathies. In the present study, metabolic parameters, blood pressure, aortic endothelial function along with molecular and structural markers of glomerular and tubulointerstitial renal damage, were studied in a rat model of normotensive nephropathy induced by adriamycin and treated with PPARγ agonist pioglitazone (12mg/kg, po), angiotensin converting enzyme (ACE) inhibitor ramipril (1mg/kg, po) or their combination. Pioglitazone had no effect on systolic blood pressure, marginally reduced glycemia and improved aortic endothelium-dependent relaxation. In the kidney, pioglitazone prevented the development of proteinuria and focal glomerulosclerosis to the similar extent as blood-pressure lowering ramipril. Renoprotection provided by either treatment was associated with a reduction in the cortical expression of profibrotic plasminogen activator inhibitor-1 and microvascular damage-inducing endothelin-1, and a limitation of interstitial macrophage influx. Treatment with PPARγ agonist, as well as ACE inhibitor comparably affected renal expression of the renin-angiotensin system (RAS) components, normalizing increased renal expression of ACE and enhancing the expression of Mas receptor. Interestingly, combined pioglitazone and ramipril treatment did not provide any additional renoprotection. These results demonstrate that in a nondiabetic renal disease, such as adriamycin-induced nephropathy, PPARγ agonist pioglitazone provides renoprotection to a similar extent as an ACE inhibitor by interfering with the expression of local RAS components and attenuating related profibrotic and inflammatory mechanisms. The combination of the both agents, however, does not lead to any additional renal benefit.
Collapse
Affiliation(s)
- Peter Ochodnicky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic.
| | - Lucia Mesarosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Hana Cernecka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Maaike Goris
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Richard P E van Dokkum
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacology, University Medical Center Groningen (UMCG) and Groningen Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | - Jan Kyselovic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| |
Collapse
|
18
|
HUANG YING, LEI YAN, ZHENG ZHIHUA, WANG XIAOHUA, HU MINGLIANG, LIU RONGJUN, YU XUEQING. Rosiglitazone alleviates injury in rats with adenine-induced chronic kidney disease. Mol Med Rep 2013; 8:1831-5. [DOI: 10.3892/mmr.2013.1715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/24/2013] [Indexed: 11/06/2022] Open
|
19
|
McCarthy FP, Delany AC, Kenny LC, Walsh SK. PPAR-γ -- a possible drug target for complicated pregnancies. Br J Pharmacol 2013. [PMID: 23186152 DOI: 10.1111/bph.12069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors expressed in trophoblasts, which regulate both cell differentiation and proliferation. In recent years, evidence has linked PPARs to playing an integral role in pregnancy; specifically, PPAR-β and PPAR-γ have been shown to play an integral role in placentation, with PPAR-γ additionally serving to regulate trophoblast differentiation. Recent evidence has shown that PPAR-γ expression is altered in many complications of pregnancy such as intrauterine growth restriction (IUGR), preterm birth, pre-clampsia and gestational diabetes. Thus, at present, accumulating evidence from the literature suggests both a pivotal role for PPAR-γ in the progression of a healthy pregnancy and the possibility that PPAR-γ may act as a therapeutic target in complicated pregnancies. This review aims to provide a succinct and comprehensive assessment of the role of PPAR-γ in normal pregnancy and pregnancy complications, and finally its potential as a therapeutic target in the treatment and/or prevention of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Fergus P McCarthy
- Department of Obstetrics & Gynaecology, Anu Research Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
20
|
Guzeloglu M, Reel B, Atmaca S, Bagrıyanık A, Hazan E. The effects of PPARγ agonist rosiglitazone on neointimal hyperplasia in rabbit carotid anastomosis model. J Cardiothorac Surg 2012; 7:57. [PMID: 22716287 PMCID: PMC3487767 DOI: 10.1186/1749-8090-7-57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/08/2012] [Indexed: 11/13/2022] Open
Abstract
Background Neointimal hyperplasia involving smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) degradation is an important component of atherosclerosis. It develops as a response to vascular injury after balloon angioplasty and vascular graft placement. Matrix metalloproteinases (MMPs) induce SMC proliferation, migration and contribute to intimal hyperplasia by degrading ECM. PPARγ agonists inhibit SMC proliferation, migration and lesion formation. In this study, we aimed to investigate the effects of PPARγ agonist rosiglitazone on neointimal hyperplasia and gelatinase (MMP-2 and MMP-9) expressions in rabbit carotid anastomosis model. Methods New Zealand white rabbits (n = 13, 2.7–3.2 kg) were divided into placebo and treatment groups. Right carotid artery (CA) was transected and both ends were anastomosed. Treatment group (n = 6) received rosiglitazone (3 mg/kg/day/p.o.) and placebo group (n = 7) received PBS (phosphate buffered saline, 2.5 ml/kg/day/p.o.) for 4 weeks postoperatively. After the sacrification, right and left CAs were isolated. Morphometric analyses and immunohistochemical examinations for gelatinases were performed. Results Intimal area (0.055 ± 0.005 control vs 0.291 ± 0.020 μm2 anastomosed, p < 0,05) and index (0.117 ± 0.002 control vs 0.574 ± 0.013 anastomosed, p < 0,01) significantly increased in anastomosed arteries compared to control arteries from placebo group. However, in rosiglitazone-treated group, intimal area (0.291 ± 0.020 PBS vs 0.143 ± 0.027 rosiglitazone, p < 0,05) and index (0.574 ± 0.013 PBS vs 0.263 ± 0.0078 rosiglitazone, p < 0,01) significantly decreased. Furthermore, gelatinase immunopositivity was found to have significantly increased in anastomosed arteries from placebo group and decreased with rosiglitazone treatment. Conclusions These results suggest that rosiglitazone may prevent neointimal hyperplasia, which is the most important factor involved in late graft failure, by inhibiting gelatinase enzyme expression.
Collapse
Affiliation(s)
- Mehmet Guzeloglu
- Department of Cardiovascular Surgery, Faculty of Medicine, İzmir University, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
21
|
Rosiglitazone inhibits angiotensin II-induced C-reactive protein production in human aortic endothelial cells through regulating AT1–ROS–MAPK signal pathway. Inflamm Res 2012; 61:1031-7. [DOI: 10.1007/s00011-012-0496-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/04/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022] Open
|
22
|
Bonds DE, Craven TE, Buse J, Crouse JR, Cuddihy R, Elam M, Ginsberg HN, Kirchner K, Marcovina S, Mychaleckyj JC, O'Connor PJ, Sperl-Hillen JA. Fenofibrate-associated changes in renal function and relationship to clinical outcomes among individuals with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) experience. Diabetologia 2012; 55:1641-50. [PMID: 22450889 PMCID: PMC3374398 DOI: 10.1007/s00125-012-2524-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/03/2012] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Fenofibrate has been noted to cause an elevation in serum creatinine in some individuals. Participants in the Action to Control Cardiovascular Risk in Diabetes Lipid Study were studied to better characterise who is at risk of an increase in creatinine level and to determine whether those with creatinine elevation have a differential risk of adverse renal or cardiovascular outcomes. METHODS A fenofibrate-associated creatinine increase (FACI) was defined as an increase in serum creatinine of at least 20% from baseline to month 4 in participants assigned to fenofibrate. Baseline patient characteristics, and baseline and 4-month drug, clinical, laboratory characteristics and study outcomes were examined by FACI status. RESULTS Of the sample, 48% of those randomised to receive fenofibrate had at least a 20% increase in serum creatinine within 4 months. In multivariable analysis, participants who were older, male, used an ACE inhibitor at baseline, used a thiazolidinedione (TZD) at 4 months post-randomisation, had baseline CVD, and had lower baseline serum creatinine and LDL-cholesterol levels were all more likely to meet the criteria for FACI. Participants in the FACI group were also more likely to have a decrease in their serum triacylglycerol level from baseline to 4 months. No differences in study outcomes were seen by FACI criteria. CONCLUSIONS/INTERPRETATION Several characteristics predict a rapid rise in serum creatinine upon starting fenofibrate. Participants who met the criteria for FACI also had a greater change in triacylglycerol levels. In the setting of careful renal function surveillance and reduction of fenofibrate dose as indicated, no increase in renal disease or cardiovascular outcome was seen in those individuals demonstrating FACI. TRIAL REGISTRATION ClincalTrials.gov: NCT00000620. FUNDING The ACCORD Trial was supported by grants (N01-HC-95178, N01-HC-95179, N01-HC-95180, N01-HC-95181, N01-HC-95182, N01-HC-95183, N01-HC-95184, IAA-Y1-HC-9035 and IAA-Y1-HC-1010) from the National Heart, Lung, and Blood Institute; by the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute on Aging, and the National Eye Institute; by the Centers for Disease Control and Prevention; by General Clinical Research Centers and by the Clinical and Translational Science Awards. Abbott Laboratories, Amylin Pharmaceutical, AstraZeneca Pharmaceuticals LP, Bayer HealthCare LLC, Closer Healthcare, GlaxoSmithKline Pharmaceuticals, King Pharmaceuticals, Merck, Novartis Pharmaceuticals, Novo Nordisk, Omron Healthcare, sanofi-aventis US and Takeda Pharmaceuticals provided study medications, equipment or supplies.
Collapse
Affiliation(s)
- D E Bonds
- Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, National Institutes of Health, Rockledge Center 2, MSC 7936, 6701 Rockledge Drive, Suite 10018, Bethesda, MD 20892-7936, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wölkart G, Schrammel A, Dörffel K, Haemmerle G, Zechner R, Mayer B. Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist. Br J Pharmacol 2012; 165:380-9. [PMID: 21585347 PMCID: PMC3268192 DOI: 10.1111/j.1476-5381.2011.01490.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Adipose triglyceride lipase (ATGL) has been identified as a rate-limiting enzyme of mammalian triglyceride catabolism. Deletion of the ATGL gene in mice results in severe lipid accumulation in a variety of tissues including the heart. In the present study we investigated cardiac function in ATGL-deficient mice and the potential therapeutic effects of the PPARα and γ agonists Wy14,643 and rosiglitazone, respectively. EXPERIMENTAL APPROACH Hearts isolated from wild-type (WT) mice and ATGL(-/-) mice treated with Wy14,643 (PPARα agonist), rosiglitazone (PPARγ agonist) or vehicle were perfused at a constant flow using the Langendorff technique. Left ventricular (LV) pressure–volume relationships were established, and the response to adrenergic stimulation was determined with noradrenaline (NA). KEY RESULTS Hearts from ATGL(-/-) mice generated higher LV end-diastolic pressure and lower LV developed pressure as a function of intracardiac balloon volume compared to those from WT mice. Likewise, passive wall stress was increased and active wall stress decreased in ATGL(-/-) hearts. Contractile and microvascular responses to NA were substantially reduced in ATGL(-/-) hearts. Cardiac contractility was improved by treating ATGL(-/-) mice with the PPARα agonist Wy14,643 but not with the PPARγ agonist rosiglitazone. CONCLUSIONS AND IMPLICATIONS Our results indicate that lipid accumulation in mouse hearts caused by ATGL gene deletion severely affects systolic and diastolic function, as well as the response to adrenergic stimulation. The beneficial effects of Wy14,643 suggest that the cardiac phenotype of these mice is partially due to impaired PPARα signalling.
Collapse
Affiliation(s)
- G Wölkart
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
24
|
Pioglitazone attenuates vascular fibrosis in spontaneously hypertensive rats. PPAR Res 2012; 2012:856426. [PMID: 22550475 PMCID: PMC3324923 DOI: 10.1155/2012/856426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/23/2011] [Accepted: 01/19/2012] [Indexed: 01/15/2023] Open
Abstract
Objective. We sought to investigate whether the peroxisome proliferator-activated receptor-γ (PPAR-γ) ligand pioglitazone can attenuate vascular fibrosis in spontaneously hypertensive rats (SHRs) and explore the possible molecular mechanisms. Methods. SHRs (8-week-old males) were randomly divided into 3 groups (n = 8 each) for treatment: pioglitazone (10 mg/kg/day), hydralazine (25 mg/kg/day), or saline. Normal male Wistar Kyoto (WKY) rats (n = 8) served as normal controls. Twelve weeks later, we evaluated the effect of pioglitazone on vascular fibrosis by Masson's trichrome and immunohistochemical staining of collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA.Vascular expression of PPAR-γ and connective tissue growth factor (CTGF) and transforming growth factor-β (TGF-β) expression were evaluated by immunohistochemical staining, western blot analysis, and real-time RT-PCR. Results. Pioglitazone and hydralazine treatment significantly decreased systolic blood pressure in SHRs. Masson's trichrome staining for collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA indicated that pioglitazone significantly inhibited extracellular matrix production in the aorta. Compared with Wistar Kyoto rats, SHRs showed significantly increased vascular CTGF expression. Pioglitazone treatment significantly increased PPAR-γ expression and inhibited CTGF expression but had no effect on TGF-β expression. Conclusions. The results indicate that pioglitazone attenuated vascular fibrosis in SHRs by inhibiting CTGF expression in a TGF-β-independent mechanism.
Collapse
|
25
|
Magri CJ, Gatt N, Xuereb RG, Fava S. Peroxisome proliferator-activated receptor-γ and the endothelium: implications in cardiovascular disease. Expert Rev Cardiovasc Ther 2012; 9:1279-94. [PMID: 21985541 DOI: 10.1586/erc.11.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisome proliferator-activated receptors-γ (PPARγs) are ligand-activated transcription factors that play a crucial regulatory role in the transcription of a large number of genes involved in lipid metabolism and inflammation. In addition to physiological ligands, synthetic ligands (the thiazoledinediones) have been developed. In spite of the much publicized adverse cardiovascular effects of one such thiazoledinedione (rosiglitazone), PPARγ activation may have beneficial cardiovascular effects. In this article we review the effects of PPARγ activation on the endothelium with special emphasis on the possible implications in cardiovascular disease. We discuss its possible role in inflammation, vasomotor function, thrombosis, angiogenesis, vascular aging and vascular rhythm. We also briefly review the clinical implications of these lines of research.
Collapse
Affiliation(s)
- Caroline Jane Magri
- Department of Cardiac Services, Mater Dei Hospital, Tal-Qroqq, Msida MSD 2090, Malta
| | | | | | | |
Collapse
|
26
|
Zarzuelo MJ, Jiménez R, Galindo P, Sánchez M, Nieto A, Romero M, Quintela AM, López-Sepúlveda R, Gómez-Guzmán M, Bailón E, Rodríguez-Gómez I, Zarzuelo A, Gálvez J, Tamargo J, Pérez-Vizcaíno F, Duarte J. Antihypertensive effects of peroxisome proliferator-activated receptor-β activation in spontaneously hypertensive rats. Hypertension 2011; 58:733-43. [PMID: 21825230 DOI: 10.1161/hypertensionaha.111.174490] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of nuclear hormone receptor peroxisome proliferator-activated receptor β/δ (PPARβ) has been shown to improve insulin resistance and plasma high-density lipoprotein levels, but nothing is known about its effects in genetic hypertension. We studied whether the PPARβ agonist GW0742 might exert antihypertensive effects in spontaneously hypertensive rats (SHRs). The rats were divided into 4 groups, Wistar Kyoto rat-control, Wistar Kyoto rat-treated (GW0742, 5 mg · kg(-1) · day(-1) by oral gavage), SHR-control, and SHR-treated, and followed for 5 weeks. GW0742 induced a progressive reduction in systolic arterial blood pressure and heart rate in SHRs and reduced the mesenteric arterial remodeling, the increased aortic vasoconstriction to angiotensin II, and the endothelial dysfunction characteristic of SHRs. These effects were accompanied by a significant increase in endothelial NO synthase activity attributed to upregulated endothelial NO synthase and downregulated caveolin 1 protein expression. Moreover, GW0742 inhibited vascular superoxide production, downregulated p22(phox) and p47(phox) proteins, decreased both basal and angiotensin II-stimulated NADPH oxidase activity, inhibited extracellular-regulated kinase 1/2 activation, and reduced the expression of the proinflammatory and proatherogenic genes, interleukin 1β, interleukin 6, or intercellular adhesion molecule 1. None of these effects were observed in Wistar Kyoto rats. PPARβ activation, both in vitro and in vivo, increased the expression of the regulators of G protein-coupled signaling proteins RGS4 and RGS5, which negatively modulated the vascular actions of angiotensin II. PPARβ activation exerted antihypertensive effects, restored the vascular structure and function, and reduced the oxidative, proinflammatory, and proatherogenic status of SHRs. We propose PPARβ as a new therapeutic target in hypertension.
Collapse
Affiliation(s)
- María José Zarzuelo
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
McCarthy FP, Drewlo S, Kingdom J, Johns EJ, Walsh SK, Kenny LC. Peroxisome proliferator-activated receptor-γ as a potential therapeutic target in the treatment of preeclampsia. Hypertension 2011; 58:280-6. [PMID: 21690483 DOI: 10.1161/hypertensionaha.111.172627] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Preeclampsia is a multisystemic disorder of pregnancy characterized by hypertension, proteinuria, and maternal endothelial dysfunction. It is a major cause of maternal and perinatal morbidity and mortality and is thought to be attributable, in part, to inadequate trophoblast invasion. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-activated transcription factor expressed in trophoblasts, and the vasculature of which activation has been shown to improve endothelium-dependent vasodilatation in hypertensive conditions. We investigated the effects of the administration of a PPAR-γ agonist using the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. The selective PPAR-γ agonist, rosiglitazone, was administered to pregnant rats that had undergone RUPP surgery. To investigate whether any observed beneficial effects of PPAR-γ activation were mediated by the antioxidant enzyme, heme oxygenase 1, rosiglitazone was administered in combination with the heme oxygenase 1 inhibitor tin-protoporphyrin IX. RUPP rats were characterized by hypertension, endothelial dysfunction, and elevated microalbumin:creatinine ratios. Rosiglitazone administration ameliorated hypertension, improved vascular function, and reduced the elevated microalbumin:creatinine ratio in RUPP rats. With the exception of microalbumin:creatinine ratio, these beneficial effects were abrogated in the presence of the heme oxygenase 1 inhibitor. Administration of a PPAR-γ agonist prevented the development of several of the pathophysiological characteristics associated with the RUPP model of preeclampsia, via a heme oxygenase 1-dependent pathway. The findings from this study provide further insight into the underlying etiology of preeclampsia and a potential therapeutic target for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Fergus P McCarthy
- Anu Research Centre, University College Cork, Cork University Maternity Hospital, Wilton, Cork, Ireland.
| | | | | | | | | | | |
Collapse
|
28
|
Yang W, Zhang J, Wang H, Shen W, Gao P, Singh M, Fang N. Peroxisome proliferator-activated receptor γ regulates angiotensin II-induced catalase downregulation in adventitial fibroblasts of rats. FEBS Lett 2011; 585:761-6. [PMID: 21295034 DOI: 10.1016/j.febslet.2011.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/27/2011] [Indexed: 12/30/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ ligands oppose the effect induced by angiotensin II (Ang II) to reduce oxidative stress and improve antioxidant status. In this study, Ang II inhibited catalase (CAT) and peroxisome proliferator-activated receptor γ (PPAR γ) protein and mRNA expressions. Transfection with PPAR γ small-interfering RNA (siRNA) led to a reduction in CAT expression. PPAR γ ligands enhanced CAT expression and inhibited extracellular signal-regulated kinase 1/2 activation. We further reveal that Ang II type 1 receptor is not involved in the inhibitory effects of PPAR γ ligands on Ang II stimulatory events.
Collapse
Affiliation(s)
- Weiwei Yang
- Division of Geriatrics, RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Higashi Y, Holder K, Delafontaine P. Thiazolidinediones up-regulate insulin-like growth factor-1 receptor via a peroxisome proliferator-activated receptor gamma-independent pathway. J Biol Chem 2010; 285:36361-8. [PMID: 20843793 PMCID: PMC2978564 DOI: 10.1074/jbc.m110.137661] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2010] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that thiazolidinediones (TZDs), antidiabetic compounds that are synthetic ligands for the peroxisome proliferator-activated receptor γ (PPARγ), have cardiovascular effects through as yet poorly defined mechanisms. We tested the effect of two TZD class drugs, rosiglitazone and pioglitazone, on human aortic smooth muscle cell (SMC) expression of insulin-like growth factor-1 receptor (IGF-1R). Both TZDs dose dependently up-regulated IGF-1R protein levels (rosiglitazone, 10 μmol/liter, 67% increase, n = 4, p < 0.01; pioglitazone, 10 μmol/liter, 41% increase, n = 4, p < 0.01) and increased IGF-1R signaling activity (36% increase in Akt phosphorylation). However, the endogenous PPARγ ligand, 15-deoxy-Δ(12,14)-prostaglandin J(2), dose dependently reduced IGF-1R (10 μmol/liter, 80% decrease, n = 4, p < 0.01), and overexpression of PPARγ using an adenovirus likewise reduced IGF-1R (50% decrease versus SMC infected with control adenovirus), suggesting a PPARγ-independent action of TZDs. All three PPARγ ligands (rosiglitazone, pioglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2)), however, did not change IGF-1R mRNA levels, indicating that their effects were posttranscriptional. Use of bicistronic constructs revealed that TZD induction of IGF-1R translation occurred via internal ribosomal entry. To examine the potential physiological relevance of TZD up-regulation of IGF-1R, we determined the effect of rosiglitazone on oxidized LDL (oxLDL)-induced apoptosis. 20 μmol/liter of rosiglitazone reduced oxidized LDL-induced apoptosis by 40% and neutralizing antibody to IGF-1R (αIR3) counteracted this rescue, suggesting the rosiglitazone survival effect was, at least in part, mediated by IGF-1R. In conclusion, TZDs markedly up-regulate SMC IGF-1R expression and signaling, likely via a PPARγ-independent mechanism. This novel action of TZDs may play an important role in their cardiovascular effects.
Collapse
MESH Headings
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Cells, Cultured
- Humans
- Hypoglycemic Agents/pharmacology
- Lipoproteins, LDL/genetics
- Lipoproteins, LDL/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Phosphorylation
- RNA, Messenger/genetics
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rosiglitazone
- Signal Transduction/drug effects
- Thiazolidinediones/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Yusuke Higashi
- From the Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Kevin Holder
- From the Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Patrice Delafontaine
- From the Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
30
|
Azhar S. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Future Cardiol 2010; 6:657-91. [PMID: 20932114 PMCID: PMC3246744 DOI: 10.2217/fca.10.86] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/ß and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
31
|
Rosiglitazone prevents the progression of renal injury in DOCA-salt hypertensive rats. Hypertens Res 2010; 33:255-62. [PMID: 20057489 DOI: 10.1038/hr.2009.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was designed to evaluate the possible renoprotective effects of rosiglitazone (RGT), a peroxisome proliferator-activated subtype gamma receptor agonist, in deoxycorticosterone acetate (DOCA)-salt hypertension and its role in endogenous endothelin-1 (ET-1) production and renal fibrosis associated with inflammation. Rats were implanted with DOCA strips (200 mg kg(-1)) at 1 week after unilateral nephrectomy. DOCA-salt rats received control diet with or without RGT (10 mg kg(-1) per day). Systolic blood pressure was measured by the tail-cuff method. Glomerulosclerosis and tubulointerstitial fibrosis were evaluated on kidney sections. The expression of ED-1, cyclooxygenase-2 (COX-2), heat shock protein-25 (HSP25) and transforming growth factor-beta1 (TGF-beta1) was determined in the kidney by semiquantitative immunoblotting. In DOCA-salt rats, systolic blood pressure was increased, whereas creatinine clearance decreased compared with controls, which were counteracted by RGT treatment. Tubular injury and glomerulosclerois in the histological study were prominent in DOCA-salt rats, which were counteracted by RGT treatment. ET-1 expression was increased in DOCA-salts rats, which was attenuated by RGT treatment. The expression of TGF-beta1, ED-1 and COX-2 was increased in DOCA-salt, which was attenuated by RGT treatment. In conclusion, RGT treatment decreases blood pressure and is effective in preventing the progression of renal injury in DOCA-salt hypertension, the mechanisms of which are associated with anti-inflammatory and anti-fibrotic effects through reducing the overexpression of ET-1, ED-1, COX-2 and TGF-beta1 in the kidney.
Collapse
|
32
|
Dai W, chen H, Jiang J, Kong W, Wang Y. Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII. Biochem Biophys Res Commun 2010; 391:1573-8. [DOI: 10.1016/j.bbrc.2009.12.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
|
33
|
Miura M, Satoh S, Kagaya H, Saito M, Inoue T, Ohkubo T, Habuchi T, Suzuki T. Effect of telmisartan, valsartan and candesartan on mycophenolate mofetil pharmacokinetics in Japanese renal transplant recipients. J Clin Pharm Ther 2009; 34:683-92. [DOI: 10.1111/j.1365-2710.2009.01053.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Huang WP, Yin WH, Chen JW, Jen HL, Young MS, Lin SJ. Fenofibrate attenuates endothelial monocyte adhesion in chronic heart failure: an in vitro study. Eur J Clin Invest 2009; 39:775-83. [PMID: 19531154 DOI: 10.1111/j.1365-2362.2009.02176.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Inflammation is implicated in chronic heart failure (CHF). In this study, the potential inhibitory effect of peroxisome proliferator-activated receptor-alpha (PPARalpha) activator fenofibrate on monocyte adhesion in CHF patients was investigated in vitro. MATERIALS AND METHODS Isolated peripheral blood mononuclear cells (PBMCs) were collected from 36 patients (aged 65 +/- 8 years) with symptomatic CHF and from 12 healthy control subjects. The cultured human aortic endothelial cells (HAECs) were stimulated with or without 2 ng mL(-1) tumour necrosis factor-alpha (TNF-alpha) and the inhibitory effects of fenofibrate at 25, 50, 100 and 200 microM on endothelial mononuclear cell adhesion were tested. Furthermore, the HAECs were stimulated with 70% sera obtained from CHF patients and control individuals, respectively, with or without pretreatments with fenofibrate. The endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) was then confirmed by mRNA expression and Western blot. RESULTS We found that the increased adhesion of PBMCs to TNF-alpha-stimulated HAECs in CHF patients was reduced when the HAECs were pretreated with fenofibrate (31% inhibition, P = 0.0121). However, pretreatment of the isolated PBMCs collected from CHF patients with fenofibrate failed to suppress their adherence to TNF-alpha-stimulated HAECs. Furthermore, stimulation of cultured HAECs with CHF patient sera significantly increased VCAM-1 and ICAM-1 expression, which could also be inhibited by fenofibrate. CONCLUSIONS The fenofibrate directly inhibits monocyte binding by TNF-alpha-activated HAECs, probably through preventing up-regulation of cell adhesion molecules by endothelial cells in response to inflammatory stimuli. This PPARalpha activator may have the potential to ameliorate vascular inflammation in patients with CHF.
Collapse
Affiliation(s)
- W P Huang
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Ji Y, Liu J, Wang Z, Liu N, Gou W. PPARgamma agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. J Transl Med 2009; 89:887-902. [PMID: 19451898 DOI: 10.1038/labinvest.2009.45] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is increasingly recognized as a chronic inflammatory disease. Angiotensin II (Ang II) is a critical factor in inflammatory responses, so as to promote the pathogenesis of atherosclerosis. Toll-like receptor 4 (TLR4) activates signaling pathways leading to the expression of pro-inflammatory cytokines implicated in the etiology of atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are considered to be important in modulating vascular inflammation and atherosclerosis. Herein, we investigated the modulatory effects of rosiglitazone on Ang II-mediated inflammatory responses both in vivo and in vitro. We also examined whether TLR4-dependent signaling pathway was involved in the inhibitory effects of rosiglitazone on Ang II-induced pro-inflammatory responses in vascular smooth muscle cells (VSMCs). Male Sprague-Dawley rats received Ang II by subcutaneous infusion and/or rosiglitazone per os for 7 days. Systolic blood pressure rise in Ang II-infused rats was attenuated by rosiglitazone. Rosiglitazone also reduced Ang II-induced generation of pro-inflammatory mediators (TLR4, matrix metalloproteinase-9 and tumor necrosis factor-alpha), but enhanced production of anti-inflammatory mediators (PPARgamma and 6-keto-PGF(1alpha)) both in vivo and in vitro. Furthermore, treatment of VSMCs with both the TLR4 inhibitor and TLR4 small-interfering RNA (siRNA) showed that the modulatory effects of rosiglitazone on Ang II-mediated inflammatory responses in VSMCs were related to TLR4. Treatment of the cells with rosiglitazone had little effect on Ang II receptors expression (AT1 and AT2), but downregulated AT1-dependent ERK1/2 activation. Then, treatment of VSMCs with TLR4 siRNA, interferon-gamma-inducible protein 10 (IP-10) siRNA and with the special protein kinase C (PKC) inhibitor further revealed that the signaling pathway (TLR4/IP-10/PKC/NF-kappaB) was involved in the inhibitory effects of rosiglitazone on Ang II-induced pro-inflammatory responses in VSMCs. In conclusion, TLR4 may be a drug target involved in the ameliorative effects of PPARgamma agonist, rosiglitazone, on Ang II-mediated inflammatory responses in VSMCs. Moreover, rosiglitazone exerts its anti-inflammatory effect by interfering with the TLR4-dependent signaling pathway (ERK1/2/TLR4/IP-10/PKC/NF-kappaB) to prevent and treat atherosclerotic diseases.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | |
Collapse
|
36
|
Ji YY, Liu JT, Liu N, Wang ZD, Liu CH. PPARalpha activator fenofibrate modulates angiotensin II-induced inflammatory responses in vascular smooth muscle cells via the TLR4-dependent signaling pathway. Biochem Pharmacol 2009; 78:1186-97. [PMID: 19576184 DOI: 10.1016/j.bcp.2009.06.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 01/10/2023]
Abstract
Angiotensin II (Ang II) is a crucial contributor to inflammatory processes involved in development and progression of atherosclerotic lesion. Toll-like receptor 4 (TLR4) signaling responsible for the initiation of inflammation also participates in pathogenesis of atherosclerosis. The protective effect of peroxisome proliferator-activated receptor alpha (PPARalpha) activators on atherosclerosis may be due to their impact on vascular inflammation, plaque instability and thrombosis. However, mechanisms underlying the inhibitory effects of PPARalpha activators on Ang II-induced vascular inflammation and the TLR4-dependent signaling pathway involved in vascular smooth muscle cells (VSMCs) remain unclear. The present study demonstrated that PPARalpha activator fenofibrate decreased Ang II-induced generation of pro-inflammatory mediators such as TLR4, MMP-9 and TNF-alpha, but enhanced production of anti-inflammatory molecules like PPARalpha and 6-keto-PGF(1alpha) both in vivo and in vitro. Meanwhile, treatment of VSMCs with the TLR4 inhibitor or TLR4 siRNA showed that the inhibitory effects of fenofibrate on Ang II-induced inflammatory responses in VSMCs were dependent on TLR4. Furthermore, fenofibrate depressed Ang II-induced inflammatory responses in VSMCs by intervening the downstream effector molecules of the TLR4-dependent signaling pathway, including interferon-gamma inducible protein 10 (IP-10), protein kinases C (PKC) and nuclear factor kappaB (NF-kappaB). Thus, these findings provide the evidence for beneficial effects of PPARalpha activator fenofibrate to counter-regulate vascular inflammation induced by Ang II. More importantly, anti-inflammatory action of fenofibrate via interfering with the TLR4-dependent signaling pathway (TLR4/IP-10/PKC/NF-kappaB) works in concert to protect against atherosclerosis.
Collapse
Affiliation(s)
- Yuan-Yuan Ji
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
37
|
Effects of chronic PPAR-agonist treatment on cardiac structure and function, blood pressure, and kidney in healthy sprague-dawley rats. PPAR Res 2009; 2009:237865. [PMID: 19536351 PMCID: PMC2696219 DOI: 10.1155/2009/237865] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/25/2009] [Accepted: 03/23/2009] [Indexed: 01/02/2023] Open
Abstract
PPAR-γ agonists have been associated with heart failure (HF) in diabetic patients. These incidences have been reported mostly in patient populations who were at high risk for HF or had pre-existing impaired cardiovascular function. However, whether there are similar effects of these agents in subjects with no or reduced cardiovascular pathophysiology is not clear. In this study, the effects of chronic treatment with PD168, a potent peroxisome proliferator activated receptor (PPAR) subtype-γ agonist with weak activity at PPAR-α, and rosiglitazone (RGZ), a less potent PPAR-γ agonist with no PPAR-α activity, were evaluated on the cardiovascular-renal system in healthy male Sprague-Dawley (SD) rats by serial echocardiography and radiotelemetry. Rats were treated with vehicle (VEH), PD168, @ 10 or 50 mg/kg.bw/day (PD-10 or PD-50, resp.) or RGZ @ 180 mg/kg.bw/day for 28 days (n = 10/group). Relative to VEH, RGZ, and both doses of PD168 resulted in a significant fall in blood pressure. Furthermore, RGZ and PD168 increased plasma volume (% increase from baseline) 18%, 22%, and 48% for RGZ, PD-10, and PD-50, respectively. PD168 and RGZ significantly increased urinary aldosterone excretion and heart-to-body weight ratio relative to VEH. In addition, PD168 significantly decreased (10-16%) cardiac ejection fraction (EF) and increased left ventricular area (LVA) in systole (s) and diastole (d) in PD-10 and -50 rats. RGZ significantly increased LVAd; however, it did not affect EF relative to VEH. In conclusion, chronic PPAR-γ therapy may predispose the cardiorenal system to a potential sequela of structural and/or functional changes that may be deleterious with regard to morbidity and mortality.
Collapse
|
38
|
Robinson E, Grieve DJ. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009; 122:246-63. [PMID: 19318113 DOI: 10.1016/j.pharmthera.2009.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Collapse
Affiliation(s)
- Emma Robinson
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 3rd Floor, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL UK
| | | |
Collapse
|
39
|
Gressner OA, Gao C, Rehbein K, Lahme B, Siluschek M, Berg T, Müller T, Gressner AM. Elevated concentrations of 15-deoxy-Delta12,14-prostaglandin J2 in chronic liver disease propose therapeutic trials with peroxisome proliferator activated receptor gamma-inducing drugs. Liver Int 2009; 29:730-5. [PMID: 19018984 DOI: 10.1111/j.1478-3231.2008.01895.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND/AIMS Current knowledge confers a crucial role to connective tissue growth factor (CTGF/CCN2) in hepatic fibrogenesis. Hepatocytes are likely to be the major cellular source of CTGF in the liver in which CTGF is sensitively upregulated by TGF-beta. Recently, we demonstrated that the methylxanthine derivate caffeine leads to an upregulation of peroxisome proliferator activated receptor gamma (PPARgamma) expression in hepatocytes, thus sensitizing these cells to the well-known inhibitory effect of 15-deoxy-Delta(12,14)-prostaglandin J(2) (15-d-PGJ(2)) on CTGF expression. However, upregulation of the receptor alone is not sufficient per se; its physiological ligand 15-d-PGJ(2) is required to exert an inhibitory effect on transforming growth factor-beta (TGF-beta) target genes such as CTGF. METHODS This study compared serum concentrations of 15-d-PGJ(2) in Caucasian patients with fibrotic liver diseases (n=289), Caucasian controls (n=136) and Caucasian non-liver disease (NLD) sick (n=307), as well as of Chinese patients with hepatocellular carcinoma (HCC) (n=43) and Chinese healthy controls (n=63) in order to characterize their suitability for therapeutic approaches with PPARgamma-inducing (i.e. CTGF inhibitory) drugs such as caffeine. RESULTS The presented data showed that Caucasian patients with ongoing hepatic fibrogenesis (mean 6.2+/-5.9 microg/L) displayed strikingly higher serum concentrations of 15-d-PGJ(2) than healthy probands (mean 2.3+/-1.0) and Caucasian patients with NLD (mean 2.7+/-1.4 microg/L). Similar results were found in Chinese patients with fully developed HCC (mean 1.3+/-0.7 microg/L) compared with Chinese healthy controls (mean 0.4+/-0.2 microg/L). CONCLUSIONS In conclusion, our data thus proposed an increased suitability of these patient groups for therapeutic approaches with drugs inducing PPARgamma expression, such as methylxanthine derivates.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schiffrin EL, Paradis P. Suppression of peroxisome proliferator-activated receptor-gamma activity by angiotensin II in vascular smooth muscle involves Bcr kinase: the fire that drowns the water. Circ Res 2009; 104:4-6. [PMID: 19118280 DOI: 10.1161/circresaha.108.191155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Besler C, Doerries C, Giannotti G, Lüscher TF, Landmesser U. Pharmacological approaches to improve endothelial repair mechanisms. Expert Rev Cardiovasc Ther 2008; 6:1071-82. [PMID: 18793110 DOI: 10.1586/14779072.6.8.1071] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endothelial injury is thought to play a pivotal role in the development and progression of vascular diseases, such as atherosclerosis, hypertension or restenosis, as well as their complications, including myocardial infarction or stroke. Accumulating evidence suggests that bone marrow-derived endothelial progenitor cells (EPCs) promote endothelial repair and contribute to ischemia-induced neovascularization. Coronary artery disease and its risk factors, such as diabetes, hypercholesterolemia, hypertension and smoking, are associated with a reduced number and impaired functional activity of circulating EPCs. Moreover, initial data suggest that reduced EPC levels are associated with endothelial dysfunction and an increased risk of cardiovascular events, compatible with the concept that impaired EPC-mediated vascular repair promotes progression of vascular disease. In this review we summarize recent data on the effects of pharmacological agents on mobilization and functional activity of EPCs. In particular, several experimental and clinical studies have suggested that statins, angiotensin-converting enzyme inhibitors, angiotensin II type 1 receptor blockers, PPAR-gamma agonists and erythropoietin increase the number and functional activity of EPCs. The underlying mechanisms remain largely to be defined; however, they likely include activation of the PI3-kinase/Akt pathway and endothelial nitric oxide synthase, as well as inhibition of NAD(P)H oxidase activity of progenitor cells.
Collapse
Affiliation(s)
- Christian Besler
- Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
42
|
Fenofibrate and Pioglitazone Do Not Ameliorate the Altered Vascular Reactivity in Aorta of Isoproterenol-treated Rats. J Cardiovasc Pharmacol 2008; 52:413-21. [DOI: 10.1097/fjc.0b013e31818a8927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Inflammatory reaction versus endogenous peroxisome proliferatoractivated receptors expression, re-exploring secondary organ complications of spontaneously hypertensive rats. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200811020-00017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Jing L, Li WM, Zhou LJ, Li S, Kou JJ, Song J. Expression of renin-angiotensin system and peroxisome proliferator-activated receptors in alcoholic cardiomyopathy. Alcohol Clin Exp Res 2008; 32:1999-2007. [PMID: 18783396 DOI: 10.1111/j.1530-0277.2008.00781.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcoholic cardiomyopathy (ACM) develops in response to chronic alcohol intake and it is hypothesized that activation of the renin-angiotensin system (RAS) and disorders in energy metabolism may play important roles in its onset. Given that the expression of peroxisome proliferator-activated receptors (PPARalpha and PPARgamma) changes with alterations in cardiac metabolism and myocardial remodeling, this study was designed to test the hypothesis that protein expression of PPARalpha and PPARgamma is correlated with RAS activation in ACM. METHODS For the first experiment, rats were divided into 3 groups: 30 received alcohol (intragastric administration with ad libitum drinking), 30 received alcohol and irbesartan (5 mg/kg/d, p.o.), and 30 served as controls. RAS activity and protein expression of PPARalpha and PPARgamma were evaluated in rats following 6 months of alcohol feeding using radioimmunoassay, reverse transcriptase PCR, and Western blot methods. For the second experiment, rats were divided into 4 groups: 10 rats received alcohol/irbesartan (5 mg/kg/d, p.o.)/PD98059 (methyl ethyl ketone [MEK]-1 inhibitor) (0.3 mg/kg/d, p.o.), 10 rats received alcohol/PD98059, 10 rats received alcohol/irbesartan, and 10 rats received alcohol alone. Myocardial PPARalpha and PPARgamma protein expression was detected following 6 months of alcohol feeding using Western blot method. RESULTS Compared with controls, myocardial angiotensin (Ang) I, Ang II, and renin levels were progressively increased at 2, 4, and 6 months of alcohol intake. mRNA expression of renin, angiotensinogen, angiotensin-converting enzyme (ACE), and AT1 was increased at 6 months. Moreover, activated RAS downregulated PPARalpha and upregulated PPARgamma protein expression as ACM progressed. Finally, extracellular signal regulated kinase 1 and 2 (ERK1/2) was shown to play a key role in the regulation of protein expression of PPARalpha and PPARgamma. CONCLUSION These results suggest that RAS is activated during the development of ACM. Moreover, ERK1/2 plays a key role in the regulation of protein expression of PPARalpha and PPARgamma by RAS in ACM.
Collapse
Affiliation(s)
- Ling Jing
- Department of Cardiology, First Clinical College of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
45
|
Peroxisome proliferator-activated receptors and the vascular system: beyond their metabolic effects. ACTA ACUST UNITED AC 2008; 2:227-38. [DOI: 10.1016/j.jash.2007.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/28/2007] [Accepted: 12/28/2007] [Indexed: 12/19/2022]
|
46
|
|
47
|
Dichotomous effects of rosiglitazone in transplantation-induced systemic vasodilator dysfunction in rats. Transplantation 2008; 85:582-8. [PMID: 18347538 DOI: 10.1097/tp.0b013e3181639c83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transplantation-induced systemic endothelial dysfunction causes severe cardiovascular morbidity and mortality after transplantation. Interventions that improve systemic endothelial function after transplantation and furthermore reduce intragraft vascular dysfunction might improve graft and patient survival. Treatment with the PPARgamma agonist rosiglitazone is an intervention that potentially fulfills these criteria. In this study, we determined the effect of rosiglitazone treatment on transplantation-induced endothelial dysfunction and vasomotor activity in an experimental model for chronic transplant dysfunction in rats. METHODS Lewis abdominal aortic allografts were orthotopically transplanted into Brown Norway recipients that received either regular chow or chow containing rosiglitazone (approximately 4.2 mg/day). Endothelium-dependent (response to metacholine) and total (response to sodium nitrite) vasodilatory responses were determined in autologous thoracic aortic rings using an ex vivo organ bath setup. Measurements were performed 8 weeks after transplantation. RESULTS Aortic allografting induced systemic endothelial dysfunction as measured by reduced endothelium-dependent vasodilation in the recipient's vascular system. Rosiglitazone treatment restored endothelium-dependent vasodilatory responses to pretransplantation levels. However, rosiglitazone treatment reduced the total dilatory response despite normalized endothelial function, indicating impairment of vascular smooth muscle cell vasomotor activity. CONCLUSIONS Rosiglitazone treatment after allogeneic transplantation restores endothelial function but impairs vascular smooth muscle cell vasomotor activity. This dichotomous effect of rosiglitazone might impede use of rosiglitazone after organ transplantation since this potentially increases cardiovascular risk despite improved endothelial cell function.
Collapse
|
48
|
Malesker MA. Optimizing Antidiabetic Treatment Options for Patients with Type 2 Diabetes Mellitus and Cardiovascular Comorbidities. Pharmacotherapy 2008; 28:193-206. [DOI: 10.1592/phco.28.2.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Olmesartan and pravastatin additively reduce development of atherosclerosis in APOE*3Leiden transgenic mice. J Hypertens 2008; 25:2454-62. [PMID: 17984667 DOI: 10.1097/hjh.0b013e3282ef79f7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM This study was designed to investigate the effect of the angiotensin II receptor blocker olmesartan alone, or in combination with standard treatment with a statin, pravastatin, on atherosclerosis development in APOE*3Leiden transgenic mice. METHODS AND RESULTS Four groups of 15 mice received an atherogenic diet alone (plasma cholesterol 17.4 +/- 2.7 mmol/l) or supplemented with either 0.008% (w/w) olmesartan (9.3 mg/kg per day) (plasma cholesterol 16.4 +/- 3.9 mmol/l), 0.03% (w/w) pravastatin (35 mg/kg per day) (plasma cholesterol 14.6 +/- 2.6 mmol/l), or the combination of both (plasma cholesterol 14.5 +/- 2.9 mmol/l) for 6 months. Treatment with olmesartan or pravastatin reduced the development of atherosclerosis as compared to the control group (-46 and -39%, respectively). Pravastatin also reduced the severity of the lesions. As compared to control the combination of both treatments almost fully prevented atherosclerosis (-91%, P < 0.001) and strongly reduced lesion number (-69%), lesion severity (-79%), number of macrophages (-89%) and T lymphocytes (-86%) per cross-section. Treatment with olmesartan alone and in combination with pravastatin inhibited the adhesion of monocytes to the vessel wall (-22%; P < 0.05 and -25%; P < 0.01, respectively), and reduced the relative quantity of macrophages in the lesions (-38%; P < 0.05 and -26%; NS, respectively) as compared to control. CONCLUSION Olmesartan reduced atherosclerosis development mainly by decreasing monocyte adhesion and the relative amount of macrophages, whereas pravastatin inhibited the progression of atherosclerosis to more advanced lesions, reflecting different anti-atherosclerotic modes of action of the two drugs. Combination therapy with olmesartan and pravastatin additively reduced atherosclerosis development, resulting in less and less severe lesions.
Collapse
|
50
|
Li Y, Qi Y, Huang THW, Yamahara J, Roufogalis BD. Pomegranate flower: a unique traditional antidiabetic medicine with dual PPAR-alpha/-gamma activator properties. Diabetes Obes Metab 2008; 10:10-7. [PMID: 18095947 DOI: 10.1111/j.1463-1326.2007.00708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PPARs are transcription factors belonging to the superfamily of nuclear receptors. PPAR-alpha is involved in the regulation of fatty acid (FA) uptake and oxidation, inflammation and vascular function, while PPAR-gamma participates in FA uptake and storage, glucose homeostasis and inflammation. The PPARs are thus major regulators of lipid and glucose metabolism. Synthetic PPAR-alpha or PPAR-gamma agonists have been widely used in the treatment of dyslipidaemia, hyperglycaemia and their complications. However, they are associated with an incidence of adverse events. Given the favourable metabolic effects of both PPAR-alpha and PPAR-gamma activators, as well as their potential to modulate vascular disease, combined PPAR-alpha/-gamma activation has recently emerged as a promising concept, leading to the development of mixed PPAR-alpha/-gamma activators. However, some major side effects associated with the synthetic dual activators have been reported. It is unclear whether this is a specific effect of the particular synthetic compounds or a class effect. To date, a medication that may combine the beneficial metabolic effects of PPAR-alpha and PPAR-gamma activation with fewer undesirable side effects has not been successfully developed. Pomegranate plant parts are used traditionally for the treatment of various disorders. However, only pomegranate flower has been prescribed in Unani and Ayurvedic medicines for the treatment of diabetes. This review provides a new understanding of the dual PPAR-alpha/-gamma activator properties of pomegranate flower in the potential treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
- Yuhao Li
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|