1
|
Miao X, Chen T, Lang Z, Wu Y, Wu X, Zhu Z, Xu RX. Design, fabrication, and application of bioengineering vascular networks based on microfluidic strategies. J Mater Chem B 2025; 13:1252-1269. [PMID: 39691980 DOI: 10.1039/d4tb02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Vascularization is a critical component of tissue engineering research and is essential for enhancing the success rate of tissue construction and function. Over the past decade, researchers have explored various methods to construct in vitro vascular networks, including 3D printing, cell sphere technology, and microfluidics. Microfluidic technology has garnered significant attention due to its notable advantages in precision, controllability, flexibility, and applicability. It can be primarily classified into two modes: (i) the pre-designed mode, which involves creating vascular networks by pre-designing vascular channels and seeding endothelial cells, encompassing microfluidic chips and microfluidic spinning technologies; and (ii) the self-assembly mode, where cell spheres are fabricated using microfluidic technology and subsequently self-assemble into vascular networks. In this review, we first provide a brief overview of the normal physiological and pathological characteristics of vascular networks, followed by a discussion of the factors to be considered in designing in vitro vascular networks, and conclude with an examination of the classification of technologies for the preparation of microfluidic vascular networks and recent advancements. It is anticipated that in vitro vascular network models will soon be successfully applied in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Xiaoping Miao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqiang Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ronald X Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Nishikata K, Doi K, Kaneoya N, Nakamura M, Futai N. In Vitro Model of Vascular Remodeling Under Microfluidic Perfusion. MICROMACHINES 2024; 16:14. [PMID: 39858670 PMCID: PMC11767722 DOI: 10.3390/mi16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
We developed a portable microfluidic system that combines spontaneous lumen formation from human umbilical endothelial cells (HUVECs) in fibrin-collagen hydrogels with active perfusion controlled by a braille actuator. Adaptive interstitial flow and feedthrough perfusion switching enabled the successful culture of spontaneously formed naturally branched lumens for more than one month. We obtained many large-area (2 mm × 3 mm) long-term (more than 30 days per run) time-lapse image datasets of the in vitro luminal network using this microfluidic system. We also developed an automatic image analysis pipeline to extract the morphology of the lumen network and node-edge network structure weighted with segmentwise flow parameters. The automatic lumen area measurements revealed that almost all lumens were successfully cultured in this system for approximately 50 days, following the meshwork, sprouting, remodeling, stability, and erosion stages. We found that the optimization of the lumen network during the remodeling stage can be explained by the decrease in the betweenness centrality of the WSS-weighted network and the increase in the strength centrality of the flow-rate-weighted network.
Collapse
Affiliation(s)
| | | | | | | | - Nobuyuki Futai
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan; (K.N.); (K.D.); (N.K.)
| |
Collapse
|
3
|
Nivlouei SJ, Guerra A, Belinha J, Mangir N, MacNeil S, Salgado C, Monteiro FJ, Natal Jorge R. Angiogenesis Dynamics: A Computational Model of Intravascular Flow Within a Structural Adaptive Vascular Network. Biomedicines 2024; 12:2845. [PMID: 39767751 PMCID: PMC11673541 DOI: 10.3390/biomedicines12122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Understanding vascular development and the key factors involved in regulating angiogenesis-the growth of new blood vessels from pre-existing vasculature-is crucial for developing therapeutic approaches to promote wound healing. Computational techniques offer valuable insights into improving angiogenic strategies, leading to enhanced tissue regeneration and improved outcomes for chronic wound healing. While chorioallantoic membrane (CAM) models are widely used for examining fundamental mechanisms in vascular development, they lack quantification of essential parameters such as blood flow rate, intravascular pressure, and changes in vessel diameter. METHODS To address this limitation, the current study develops a novel two-dimensional mathematical model of angiogenesis, integrating discrete and continuous modelling approaches to capture intricate cellular interactions and provide detailed information about the capillary network's structure. The proposed hybrid meshless-based model simulates sprouting angiogenesis using the in vivo CAM system. RESULTS The model successfully predicts the branching process with a total capillary volume fraction deviation of less than 15% compared to experimental data. Additionally, it implements blood flow through the capillary network and calculates the distribution of intravascular pressure and vessel wall shear stress. An adaptive network is introduced to consider capillary responses to hemodynamic and metabolic stimuli, reporting structural diameter changes across the generated vasculature network. The model demonstrates its robustness by verifying numerical outcomes, revealing statistically significant differences with deviations in key parameters, including diameter, wall shear stress (p < 0.05), circumferential wall stress, and metabolic stimuli (p < 0.01). CONCLUSION With its strong predictive capability in simulating intravascular flow and its ability to provide both quantitative and qualitative assessments, this research enhances our understanding of angiogenesis by introducing a biologically relevant network that addresses the functional demands of the tissue.
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal;
| | - Ana Guerra
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal;
| | - Jorge Belinha
- ISEP—Instituto Superior de Engenharia do Porto, Departamento de Engenharia Mecânica, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Naside Mangir
- Department of Urology, Hacettepe University School of Medicine, 06230 Ankara, Turkey;
| | - Sheila MacNeil
- Kroto Research Institute, Department of Material Science and Engineering, University of Sheffield, North Campus, Sheffield S3 7HQ, UK;
| | - Christiane Salgado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.S.); (F.J.M.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.S.); (F.J.M.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Renato Natal Jorge
- LAETA—Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal;
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Mecânica, Universidade do Porto, 4200-165 Porto, Portugal
| |
Collapse
|
4
|
Palumbo C, Sisi F, Checchi M. CAM Model: Intriguing Natural Bioreactor for Sustainable Research and Reliable/Versatile Testing. BIOLOGY 2023; 12:1219. [PMID: 37759618 PMCID: PMC10525291 DOI: 10.3390/biology12091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
We are witnessing the revival of the CAM model, which has already used been in the past by several researchers studying angiogenesis and anti-cancer drugs and now offers a refined model to fill, in the translational meaning, the gap between in vitro and in vivo studies. It can be used for a wide range of purposes, from testing cytotoxicity, pharmacokinetics, tumorigenesis, and invasion to the action mechanisms of molecules and validation of new materials from tissue engineering research. The CAM model is easy to use, with a fast outcome, and makes experimental research more sustainable since it allows us to replace, reduce, and refine pre-clinical experimentation ("3Rs" rules). This review aims to highlight some unique potential that the CAM-assay presents; in particular, the authors intend to use the CAM model in the future to verify, in a microenvironment comparable to in vivo conditions, albeit simplified, the angiogenic ability of functionalized 3D constructs to be used in regenerative medicine strategies in the recovery of skeletal injuries of critical size (CSD) that do not repair spontaneously. For this purpose, organotypic cultures will be planned on several CAMs set up in temporal sequences, and a sort of organ model for assessing CSD will be utilized in the CAM bioreactor rather than in vivo.
Collapse
Affiliation(s)
| | | | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia—Largo del Pozzo, 41124 Modena, Italy
| |
Collapse
|
5
|
Du Q, Yi M, Li H, Liu J, Guan C, Zeng Y, Xiong H, Wang X, Zhong J, Wu Y, Tan H, Han D, Wang M. Multi-level optical angiography for photodynamic therapy. BIOMEDICAL OPTICS EXPRESS 2023; 14:1082-1095. [PMID: 36950238 PMCID: PMC10026572 DOI: 10.1364/boe.473644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Blood flow imaging is widely applied in photodynamic therapy (PDT) to provide vascular morphological and statistical parameters. This approach relies on the intensity of time-domain signal differences between blood vessels and background tissues; therefore, it often ignores differences within the vasculature and cannot accommodate abundant structural information. This study proposes a multi-level optical angiography (MOA) method for PDT. It can enhance capillaries and image vessels at different levels by measuring the signal frequency shift associated with red blood cell motion. The experimental results regarding the PDT-induced chorioallantoic membrane model showed that the proposed method could not only perform multi-level angiography but also provide more accurate quantitative information regarding various vascular parameters. This MOA method has potential applications in PDT studies.
Collapse
Affiliation(s)
- Qianyi Du
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Min Yi
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Hongyi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Jiayi Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Caizhong Guan
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Yaguang Zeng
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Honglian Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Xuehua Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Junping Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Yanxiong Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Haishu Tan
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Dingan Han
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
| | - Mingyi Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| |
Collapse
|
6
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
7
|
Laser coagulation and hemostasis of large diameter blood vessels: effect of shear stress and flow velocity. Sci Rep 2022; 12:8375. [PMID: 35589781 PMCID: PMC9120470 DOI: 10.1038/s41598-022-12128-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022] Open
Abstract
Photocoagulation of blood vessels offers unambiguous advantages to current radiofrequency approaches considering the high specificity of blood absorption at available laser wavelengths (e.g., 532 nm and 1.064 µm). Successful treatment of pediatric vascular lesions, such as port-wine stains requiring microvascular hemostasis, has been documented. Although laser treatments have been successful in smaller diameter blood vessels, photocoagulation of larger sized vessels is less effective. The hypothesis for this study is that a primary limitation in laser coagulation of large diameter blood vessels (500-1000 µm) originates from shear stress gradients associated with higher flow velocities along with temperature-dependent viscosity changes. Laser (1.07 µm) coagulation of blood vessels was tested in the chicken chorio-allantoic membrane (CAM). A finite element model is developed that includes hypothetical limitations in laser coagulation during irradiation. A protocol to specify laser dosimetry is derived from OCT imaging and angiography observations as well as finite element model results. Laser dosimetry is applied in the CAM model to test the experimental hypothesis that blood shear stress and flow velocity are important parameters for laser coagulation and hemostasis of large diameter blood vessels (500-1000 µm). Our experimental results suggest that shear stress and flow velocity are fundamental in the coagulation of large diameter blood vessels (500-1000 µm). Laser dosimetry is proposed and demonstrated for successful coagulation and hemostasis of large diameter CAM blood vessels.
Collapse
|
8
|
Lucas A, Munoz CJ, Cabrales P. Hyperspectral Wide-Field-Of-View Imaging to Study Dynamic Microcirculatory Changes During Hypoxia. Am J Physiol Heart Circ Physiol 2022; 323:H49-H58. [PMID: 35522555 DOI: 10.1152/ajpheart.00624.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Hyperspectral imaging (HSI) provides a fast, reliable, and non-invasive way the study vascular microcirculation in animal models. Rapid hyperspectral imaging of large portions of the microcirculatory preparation is critical for understanding the function and regulation of vascular microcirculatory networks. METHODS This report presents the application of an off-the-shelf, benchtop, HSI linear scanning system to acquire larger field-of-view images of microcirculatory preparations. The HSI line detector was displaced perpendicular to the scanning direction to map larger areas, with a rate of displacement determined by the scanning rate and the exposure time. The collected image was analyzed to determine dynamic changes in the microcirculation. RESULTS The system records dynamic changes in microvascular hemoglobin (Hb) oxygen (O2) saturation and vascular morphology during hypoxia and reoxygenation and has similar acquisition speeds to commonly referenced spectral-scanning HSI systems. Additionally, the HbO2 saturations collected via HSI closely correlate with those collected by phosphorescence quenching microscopy. CONCLUSION The reported system enables dynamic functional microcirculation imaging for broad experimental and clinical applications.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Carlos Jose Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Bell K, Mukhangaliyeva L, Khalili L, Haji Reza P. Hyperspectral absorption microscopy using photoacoustic remote sensing. OPTICS EXPRESS 2021; 29:24338-24348. [PMID: 34614681 DOI: 10.1364/oe.430403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
An improved method of remote optical absorption spectroscopy and hyperspectral optical absorption imaging is described which takes advantage of the photoacoustic remote sensing detection architecture. A wide collection of photoacoustic excitation wavelengths ranging from 210 nm to 1550 nm was provided by a nanosecond tunable source allowing access to various salient endogenous chromophores such as DNA, hemeproteins, and lipids. Sensitivity of the device was demonstrated by characterizing the infrared absorption spectrum of water. Meanwhile, the efficacy of the technique was explored by recovering cell nuclei and oxygen saturation from a live chicken embryo model and by recovering adipocytes from freshly resected murine adipose tissue. This represents a continued investigation into the characteristics of the hyperspectral photoacoustic remote sensing technique which may represent an effective means of non-destructive endogenous contrast characterization and visualization.
Collapse
|
10
|
Utilisation of Chick Embryo Chorioallantoic Membrane as a Model Platform for Imaging-Navigated Biomedical Research. Cells 2021; 10:cells10020463. [PMID: 33671534 PMCID: PMC7926796 DOI: 10.3390/cells10020463] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The fertilised chick egg and particularly its chorioallantoic membrane (CAM) have drawn continuing interest in biomedicine and bioengineering fields, especially for research on vascular study, cancer, drug screening and development, cell factors, stem cells, etc. This literature review systemically introduces the CAM's structural evolution, functions, vascular features and the circulation system, and cell regulatory factors. It also presents the major and updated applications of the CAM in assays for pharmacokinetics and biodistribution, drug efficacy and toxicology testing/screening in preclinical pharmacological research. The time course of CAM applications for different assays and their advantages and limitations are summarised. Among these applications, two aspects are emphasised: (1) potential utility of the CAM for preclinical studies on vascular-disrupting agents (VDAs), promising for anti-cancer vascular-targeted therapy, and (2) modern imaging technologies, including modalities and their applications for real-time visualisation, monitoring and evaluation of the changes in CAM vasculature as well as the interactions occurring after introducing the tested medical, pharmaceutical and biological agents into the system. The aim of this article is to help those working in the biomedical field to familiarise themselves with the chick embryo CAM as an alternative platform and to utilise it to design and optimise experimental settings for their specific research topics.
Collapse
|
11
|
Burggren W, Rojas Antich M. Angiogenesis in the Avian Embryo Chorioallantoic Membrane: A Perspective on Research Trends and a Case Study on Toxicant Vascular Effects. J Cardiovasc Dev Dis 2020; 7:jcdd7040056. [PMID: 33291457 PMCID: PMC7762154 DOI: 10.3390/jcdd7040056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The chorioallantoic membrane (CAM) of the avian embryo is an intrinsically interesting gas exchange and osmoregulation organ. Beyond study by comparative biologists, however, the CAM vascular bed has been the focus of translational studies by cardiovascular life scientists interested in the CAM as a model for probing angiogenesis, heart development, and physiological functions. In this perspective article, we consider areas of cardiovascular research that have benefited from studies of the CAM, including the themes of investigation of the CAM's hemodynamic influence on heart and central vessel development, use of the CAM as a model vascular bed for studying angiogenesis, and the CAM as an assay tool. A case study on CAM vascularization effects of very low doses of crude oil as a toxicant is also presented that embraces some of these themes, showing the induction of subtle changes in the pattern of the CAM vasculature growth that are not readily observed by standard vascular assessment methodologies. We conclude by raising several questions in the area of CAM research, including the following: (1) Do changes in patterns of CAM growth, as opposed to absolute CAM growth, have biological significance?; (2) How does the relative amount of CAM vascularization compared to the embryo per se change during development?; and (3) Is the CAM actually representative of the mammalian systemic vascular beds that it is presumed to model?
Collapse
|
12
|
Santamaría R, González-Álvarez M, Delgado R, Esteban S, Arroyo AG. Remodeling of the Microvasculature: May the Blood Flow Be With You. Front Physiol 2020; 11:586852. [PMID: 33178049 PMCID: PMC7593767 DOI: 10.3389/fphys.2020.586852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
The vasculature ensures optimal delivery of nutrients and oxygen throughout the body, and to achieve this function it must continually adapt to varying tissue demands. Newly formed vascular plexuses during development are immature and require dynamic remodeling to generate well-patterned functional networks. This is achieved by remodeling of the capillaries preserving those which are functional and eliminating other ones. A balanced and dynamically regulated capillary remodeling will therefore ensure optimal distribution of blood and nutrients to the tissues. This is particularly important in pathological contexts in which deficient or excessive vascular remodeling may worsen tissue perfusion and hamper tissue repair. Blood flow is a major determinant of microvascular reshaping since capillaries are pruned when relatively less perfused and they split when exposed to high flow in order to shape the microvascular network for optimal tissue perfusion and oxygenation. The molecular machinery underlying blood flow sensing by endothelial cells is being deciphered, but much less is known about how this translates into endothelial cell responses as alignment, polarization and directed migration to drive capillary remodeling, particularly in vivo. Part of this knowledge is theoretical from computational models since blood flow hemodynamics are not easily recapitulated by in vitro or ex vivo approaches. Moreover, these events are difficult to visualize in vivo due to their infrequency and briefness. Studies had been limited to postnatal mouse retina and vascular beds in zebrafish but new tools as advanced microscopy and image analysis are strengthening our understanding of capillary remodeling. In this review we introduce the concept of remodeling of the microvasculature and its relevance in physiology and pathology. We summarize the current knowledge on the mechanisms contributing to capillary regression and to capillary splitting highlighting the key role of blood flow to orchestrate these processes. Finally, we comment the potential and possibilities that microfluidics offers to this field. Since capillary remodeling mechanisms are often reactivated in prevalent pathologies as cancer and cardiovascular disease, all this knowledge could be eventually used to improve the functionality of capillary networks in diseased tissues and promote their repair.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María González-Álvarez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Raquel Delgado
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Esteban
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
13
|
Johnson K, Oezdemir I, Hoyt K. Three-dimensional evaluation of microvascular networks using contrast-enhanced ultrasound and microbubble tracking. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2020; 2020:10.1109/ius46767.2020.9251525. [PMID: 36483236 PMCID: PMC9728804 DOI: 10.1109/ius46767.2020.9251525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evaluating tumor microvascular networks with use of contrast-enhanced ultrasound (CEUS) imaging and one-dimensional (1D) linear array transducers have inherit limitations as tumors exist in volume space. The use of a mechanical sweep allows users to overcome this limitation. To that end, we have developed a new method by which a 1D linear array transducer can be mechanically scanned over a region-of-interest to capture a volume of data allowing for the evaluation of microvasculature structures in 3D space. After intravascular injection of a microbubble (MB) contrast agent into a developing chicken embryo, a sequence of CEUS images were acquired using a Vevo 3100 scanner (VisualSonics Inc) and taken at multiple tissue cross-sections. The CEUS images were processed with a singular value filter (SVF) to help remove any clutter signal. MB localization was performed, and frame-to-frame MB movement was analyzed to produce spatial maps depicting blood flow and velocity at each tissue cross-section. Reconstruction of all images allowed visualization of microvascular networks and blood velocity distribution in volume space.
Collapse
Affiliation(s)
- Kenneth Johnson
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ipek Oezdemir
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Liu ZL, Clausen JR, Wagner JL, Butler KS, Bolintineanu DS, Lechman JB, Rao RR, Aidun CK. Heterogeneous partition of cellular blood-borne nanoparticles through microvascular bifurcations. Phys Rev E 2020; 102:013310. [PMID: 32795082 DOI: 10.1103/physreve.102.013310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Blood flowing through microvascular bifurcations has been an active research topic for many decades, while the partitioning pattern of nanoscale solutes in the blood remains relatively unexplored. Here we demonstrate a multiscale computational framework for direct numerical simulation of the nanoparticle (NP) partitioning through physiologically relevant vascular bifurcations in the presence of red blood cells (RBCs). The computational framework is established by embedding a particulate suspension inflow-outflow boundary condition into a multiscale blood flow solver. The computational framework is verified by recovering a tubular blood flow without a bifurcation and validated against the experimental measurement of an intravital bifurcation flow. The classic Zweifach-Fung (ZF) effect is shown to be well captured by the method. Moreover, we observe that NPs exhibit a ZF-like heterogeneous partition in response to the heterogeneous partition of the RBC phase. The NP partitioning prioritizes the high-flow-rate daughter branch except for extreme (large or small) suspension flow partition ratios under which the complete phase separation tends to occur. By analyzing the flow field and the particle trajectories, we show that the ZF-like heterogeneity in the NP partition can be explained by the RBC-entrainment effect caused by the deviation of the flow separatrix preceded by the tank treading of RBCs near the bifurcation junction. The recovery of homogeneity in the NP partition under extreme flow partition ratios is due to the plasma skimming of NPs in the cell-free layer. These findings, based on the multiscale computational framework, provide biophysical insights to the heterogeneous distribution of NPs in microvascular beds that are observed pathophysiologically.
Collapse
Affiliation(s)
- Zixiang L Liu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jonathan R Clausen
- Thermal and Fluid Processes, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Justin L Wagner
- Aerosciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Kimberly S Butler
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Dan S Bolintineanu
- Fluid and Reactive Processes, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jeremy B Lechman
- Fluid and Reactive Processes, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Rekha R Rao
- Fluid and Reactive Processes, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Cyrus K Aidun
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
15
|
Lowerison MR, Huang C, Lucien F, Chen S, Song P. Ultrasound localization microscopy of renal tumor xenografts in chicken embryo is correlated to hypoxia. Sci Rep 2020; 10:2478. [PMID: 32051485 PMCID: PMC7015937 DOI: 10.1038/s41598-020-59338-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Ultrasound localization microscopy (ULM) permits the reconstruction of super-resolved microvascular images at clinically relevant penetration depths, which can be potentially leveraged to provide non-invasive quantitative measures of tissue hemodynamics and hypoxic status. We demonstrate that ULM microbubble data processing methods, applied to images acquired with a Verasonics Vantage 256 system, can provide a non-invasive imaging surrogate biomarker of tissue oxygenation status. This technique was applied to evaluate the microvascular structure, vascular perfusion, and hypoxia of a renal cell carcinoma xenograft model grown in the chorioallantoic membrane of chicken embryos. Histological microvascular density was significantly correlated to ULM measures of intervessel distance (R = -0.92, CI95 = [-0.99,-0.42], p = 0.01). The Distance Metric, a measure of vascular tortuosity, was found to be significantly correlated to hypoxyprobe quantifications (R = 0.86, CI95 = [0.17, 0.99], p = 0.03). ULM, by providing non-invasive in vivo microvascular structural information, has the potential to be a crucial clinical imaging modality for the diagnosis and therapy monitoring of solid tumors.
Collapse
Affiliation(s)
- Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Maibier M, Bintig W, Goede A, Höpfner M, Kuebler WM, Secomb TW, Nitzsche B, Pries AR. Gap junctions regulate vessel diameter in chick chorioallantoic membrane vasculature by both tone-dependent and structural mechanisms. Microcirculation 2019; 27:e12590. [PMID: 31520425 DOI: 10.1111/micc.12590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE In this study, we examined the impact of gap junction blockade on chick chorioallantoic membrane microvessels. METHODS Expression of Cx37, Cx40/42, and Cx43 in chick chorioallantoic membrane tissue was studied by PCR, Western blot, and confocal immunofluorescence microscopy. Vessel diameter changes occurring under gap junction blockade with carbenoxolone (175 µmol/L), palmitoleic acid (100 µmol/L), 43 GAP27 (1 mmol/L) were analyzed by intravital microscopy. To analyze vascular tone, chick chorioallantoic membrane vessels were exposed to a vasodilator cocktail consisting of acetylcholine (10 μmol/L), adenosine (100 μmol/L), papaverine (200 μmol/L), and sodium nitroprusside (10 μmol/L). RESULTS In chick chorioallantoic membrane lysates, Western blot analysis revealed the expression of Cx40 and Cx43. Immunofluorescence in intact chick chorioallantoic membrane vasculature showed only Cx43, limited to arterial vessel walls. Upon gap junction blockade (3 hours) arterial and venous diameters decreased to 0.50 ± 0.03 and 0.36 ± 0.06 (carbenoxolone), 0.72 ± 0.08 and 0.63 ± 0.15 (palmitoleic acid) and 0.77 ± 0.004 and 0.58 ± 0.05 (GAP27), relative to initial values. Initially, diameter decrease was dominated by increasing vascular tone. After 6 hours, however, vessel tone was reduced, suggesting structural network remodeling. CONCLUSIONS Our findings suggest a major role for connexins in mediating acute and chronic diameter changes in developing vascular networks.
Collapse
Affiliation(s)
- Martin Maibier
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Willem Bintig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Biochemistry & Neuro Cure Cluster of Excellence, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrean Goede
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Michael Höpfner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Wolfgang M Kuebler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Bianca Nitzsche
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Axel R Pries
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
17
|
Kodama Y, Aoki H, Yamagata Y, Tsubota K. In vitro analysis of blood flow in a microvascular network with realistic geometry. J Biomech 2019; 88:88-94. [PMID: 30975487 DOI: 10.1016/j.jbiomech.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
Abstract
In vitro blood flow was measured in a polydimethysiloxane micro channel to reflect the complex geometry of a microvascular network. Flow rates were determined from the velocities of tracer particles moving along the center line of the flow channel, and the flow rates of two working fluids were then compared: water and blood. In some bifurcating channels, the measured flow rate showed that the effects of bifurcation in the apparent viscosity depend on the hematocrit, such that the flow rate in the daughter channel with the higher (lower) flow rate was lower (higher) for blood than for water. The measured flow rates in other bifurcating channels reflected effects from the surrounding flow channels acting as bypasses, which tended to balance out the effects of bifurcation.
Collapse
Affiliation(s)
- Yuya Kodama
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan; RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyoshi Aoki
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yutaka Yamagata
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Tsubota
- Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan; RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
18
|
Abstract
The hemodynamics of the microcirculation reflect system properties of the involved components. The blood itself is a complex suspension of water, small and large molecules and different cell types. Under most conditions, its rheologic properties are dominated by the different behaviour of fluid and cellular compartments. When perfused through small-bore tubes or vessels, the suspension exhibits specific emergent properties. The Fahraeus-effect and the Fahreaeus-Lindqvist-effect result from the interaction of cellular particles with each other and with the vessel wall. Additional phenomena occur in vascular networks due to the uneven distribution of blood cells and blood plasma at divergent microvascular bifurcations. In order to understand microvascular hemodynamics in vivo but also in artificial microfluidic geometries it is thus necessary to recognize the pertinent system properties on the level of the blood, the microvessels and the microvascular networks or perfused structures.
Collapse
Affiliation(s)
- Axel R Pries
- Department of Physiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
- Deutsches Herzzentrum Berlin, Augustenburger Platz 1, Berlin, Germany
| |
Collapse
|
19
|
Direct imaging of capillaries reveals the mechanism of arteriovenous interlacing in the chick chorioallantoic membrane. Commun Biol 2018; 1:235. [PMID: 30588514 PMCID: PMC6303259 DOI: 10.1038/s42003-018-0229-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022] Open
Abstract
Understanding vascular development in vertebrates is an important scientific endeavor. Normal vasculatures generally start off as a disorganized capillary lattice which progressively matures into a well-organized vascular loop comprising a hierarchy of arteries and veins. One striking feature of vascular development is the interlacing of arteries and veins. How arteries and veins manage to avoid themselves and interlace with such a perfect architecture is not understood. Here we present a detailed view of the development of the vasculature in the chorioallantoic membrane of the chicken embryo. We find that the origin of arteriovenous interlacing lies in the presence of an increased hemodynamic resistance at the distal part of the arteries due to vascular flattening onto the ectodermal surface. This reduces the vascular conductance distally, thus repelling veins away. In more proximal parts, vessels round off into cylinders and the increased flow attracts veins.
Collapse
|
20
|
Yang TR, Chen YH, Wiemann J, Spiering B, Sander PM. Fossil eggshell cuticle elucidates dinosaur nesting ecology. PeerJ 2018; 6:e5144. [PMID: 30002976 PMCID: PMC6037156 DOI: 10.7717/peerj.5144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
The cuticle layer consisting mainly of lipids and hydroxyapatite (HAp) atop the mineralized avian eggshell is a protective structure that prevents the egg from dehydration and microbial invasions. Previous ornithological studies have revealed that the cuticle layer is also involved in modulating the reflectance of eggshells in addition to pigments (protoporphyrin and biliverdin). Thus, the cuticle layer represents a crucial trait that delivers ecological signals. While present in most modern birds, direct evidence for cuticle preservation in stem birds and non-avian dinosaurs is yet missing. Here we present the first direct and chemical evidence for the preservation of the cuticle layer on dinosaur eggshells. We analyze several theropod eggshells from various localities, including oviraptorid Macroolithus yaotunensis eggshells from the Late Cretaceous deposits of Henan, Jiangxi, and Guangdong in China and alvarezsaurid Triprismatoolithus eggshell from the Two Medicine Formation of Montana, United States, with the scanning electron microscope (SEM), electron probe micro-analysis (EPMA), and Raman spectroscopy (RS). The elemental analysis with EPMA shows high concentration of phosphorus at the boundary between the eggshell and sediment, representing the hydroxyapatitic cuticle layer (HAp). Depletion of phosphorus in sediment excludes the allochthonous origin of the phosphorus in these eggshells. The chemometric analysis of Raman spectra collected from fossil and extant eggs provides further supportive evidence for the cuticle preservation in oviraptorid and probable alvarezsaurid eggshells. In accordance with our previous discovery of pigments preserved in Cretaceous oviraptorid dinosaur eggshells, we validate the cuticle preservation on dinosaur eggshells through deep time and offer a yet unexplored resource for chemical studies targeting the evolution of dinosaur nesting ecology. Our study also suggests that the cuticle structure can be traced far back to maniraptoran dinosaurs and enhance their reproductive success in a warm and mesic habitat such as Montana and southern China during the Late Cretaceous.
Collapse
Affiliation(s)
- Tzu-Ruei Yang
- Bereich Paläontologie, Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Bonn, Germany
| | | | - Jasmina Wiemann
- Department of Geology and Geophysics, Yale University, New Haven, CT, United States of America
| | - Beate Spiering
- Bereich Mineralogie, Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Bonn, Germany
| | - P. Martin Sander
- Bereich Paläontologie, Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Bonn, Germany
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| |
Collapse
|
21
|
Xiang W, Reglin B, Nitzsche B, Maibier M, Rong WW, Hoffmann B, Ruggeri A, Guimarães P, Secomb TW, Pries AR. Dynamic remodeling of arteriolar collaterals after acute occlusion in chick chorioallantoic membrane. Microcirculation 2018; 24. [PMID: 28075525 DOI: 10.1111/micc.12351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/09/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE After arteriolar occlusion, collaterals enlarge and initially elevated WSS normalizes. While most previous studies focused on endpoints of such adaptive changes in larger collaterals, the present investigation aimed to continuously determine the relation between WSS and diameter in microvascular collaterals during adaptive reactions. METHODS In Hamburger-Hamilton stage 40 CAMs, junction points between arteriolar segments were identified and the third upstream segment on one side was occluded. Intravital microscopy recordings were taken for 24 hours post-occlusion. Segment diameter and blood velocity were measured: WSS and capillary density were calculated. RESULTS After occlusion, vascular diameters exhibited an immediate decrease, then increased with a time constant of 2.5 ± 0.8 hours and reached a plateau of up to 60% above baseline after about 7 hours. Vascular tone showed no significant change. WSS exhibited an immediate increase post-occlusion and linearly returned to baseline after about 12 hours. Local WSS change and diameter change rate showed similar patterns during the initial but not the later phase of post-occlusive adaptation. CONCLUSIONS CAM collaterals undergo fast structural remodeling within 24 hours post-occlusion. This remodeling might be driven by local WSS and by other regulators within the vascular network.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Bettina Reglin
- Department of Physiology, Charité Berlin, Berlin, Germany
| | | | - Martin Maibier
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Wen Wei Rong
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Björn Hoffmann
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Alfredo Ruggeri
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Pedro Guimarães
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Axel R Pries
- Department of Physiology, Charité Berlin, Berlin, Germany.,Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
22
|
Smith AF, Nitzsche B, Maibier M, Pries AR, Secomb TW. Microvascular hemodynamics in the chick chorioallantoic membrane. Microcirculation 2018; 23:512-522. [PMID: 27510444 DOI: 10.1111/micc.12301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/08/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The microvasculature of the CAM in the developing chick embryo is characterized by interdigitating arteriolar and venular trees, connected at multiple points along their lengths to a mesh-like capillary plexus. Theoretical modeling techniques were employed to investigate the resulting hemodynamic characteristics of the CAM. METHODS Based on previously obtained anatomical data, a model was developed in which the capillary plexus was treated as a porous medium. Supply of blood from arterioles and drainage into venules were represented by distributions of flow sources and sinks. Predicted flow velocities were compared with measurements in arterioles and venules obtained via video microscopy. RESULTS If it was assumed that blood flowed into and out of the capillary plexus only at the ends of terminal arterioles and venules, the predicted velocities increased with decreasing diameter in vessels below 50 μm in diameter, contrary to the observations. Distributing sources/sinks along arterioles/venules led to velocities consistent with the data. CONCLUSIONS These results imply that connections to the capillary plexus distributed along the arterioles and venules strongly affect the hemodynamic characteristics of the CAM. The theoretical model provides a basis for quantitative simulations of structural adaptation in CAM networks in response to hemodynamic stimuli.
Collapse
Affiliation(s)
- Amy F Smith
- Microcirculation Division, University of Arizona, Tucson, AZ, USA
| | | | - Martin Maibier
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Axel R Pries
- Department of Physiology, Charité Berlin, Berlin, Germany
| | - Timothy W Secomb
- Microcirculation Division, University of Arizona, Tucson, AZ, USA. .,Department of Physiology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|