1
|
Schwartz KS, Stanhewicz AE. Maternal Microvascular Dysfunction During and After Preeclamptic Pregnancy. Compr Physiol 2024; 14:5703-5727. [PMID: 39382165 DOI: 10.1002/cphy.c240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Preeclampsia, a pregnancy disorder characterized by de novo hypertension and maternal multisystem organ dysfunction, is the leading cause of maternal mortality worldwide and is associated with a fourfold greater risk of cardiovascular disease throughout the lifespan. Current understanding of the etiology of preeclampsia remains unclear, due in part to the varying phenotypical presentations of the disease, which has hindered the development of effective and mechanism-specific treatment or prevention strategies both during and after the affected pregnancy. These maternal sequelae of preeclampsia are symptoms of systemic vascular dysfunction in the maternal nonreproductive microvascular beds that drives the development and progression of adverse cardiovascular outcomes during preeclampsia. Despite normalization of vascular disturbances after delivery, subclinical dysfunction persists in the nonreproductive microvascular beds, contributing to an increased lifetime risk of cardiovascular and metabolic diseases and all-cause mortality. Given that women with a history of preeclampsia demonstrate vascular dysfunction despite an absence of traditional CVD risk factors, an understanding of the underlying mechanisms of microvascular dysfunction during and after preeclampsia is essential to identify potential therapeutic avenues to mitigate or reverse the development of overt disease. This article aims to provide a summary of the existing literature on the pathophysiology of maternal microvascular dysfunction during preeclampsia, the mechanisms underlying the residual dysfunction that remains after delivery, and current and potential treatments both during and after the affected pregnancy that may reduce microvascular dysfunction in these high-risk women. © 2024 American Physiological Society. Compr Physiol 14:5703-5727, 2024.
Collapse
Affiliation(s)
- Kelsey S Schwartz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Hongo H, Miyawaki S, Teranishi Y, Mitsui J, Katoh H, Komura D, Tsubota K, Matsukawa T, Watanabe M, Kurita M, Yoshimura J, Dofuku S, Ohara K, Ishigami D, Okano A, Kato M, Hakuno F, Takahashi A, Kunita A, Ishiura H, Shin M, Nakatomi H, Nagao T, Goto H, Takahashi SI, Ushiku T, Ishikawa S, Okazaki M, Morishita S, Tsuji S, Saito N. Somatic GJA4 gain-of-function mutation in orbital cavernous venous malformations. Angiogenesis 2023; 26:37-52. [PMID: 35902510 PMCID: PMC9908695 DOI: 10.1007/s10456-022-09846-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Orbital cavernous venous malformation (OCVM) is a sporadic vascular anomaly of uncertain etiology characterized by abnormally dilated vascular channels. Here, we identify a somatic missense mutation, c.121G > T (p.Gly41Cys) in GJA4, which encodes a transmembrane protein that is a component of gap junctions and hemichannels in the vascular system, in OCVM tissues from 25/26 (96.2%) individuals with OCVM. GJA4 expression was detected in OCVM tissue including endothelial cells and the stroma, through immunohistochemistry. Within OCVM tissue, the mutation allele frequency was higher in endothelial cell-enriched fractions obtained using magnetic-activated cell sorting. Whole-cell voltage clamp analysis in Xenopus oocytes revealed that GJA4 c.121G > T (p.Gly41Cys) is a gain-of-function mutation that leads to the formation of a hyperactive hemichannel. Overexpression of the mutant protein in human umbilical vein endothelial cells led to a loss of cellular integrity, which was rescued by carbenoxolone, a non-specific gap junction/hemichannel inhibitor. Our data suggest that GJA4 c.121G > T (p.Gly41Cys) is a potential driver gene mutation for OCVM. We propose that hyperactive hemichannel plays a role in the development of this vascular phenotype.
Collapse
Affiliation(s)
- Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Masakazu Kurita
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shogo Dofuku
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motoi Kato
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ayaka Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mutsumi Okazaki
- Department of Plastic, Reconstructive and Aesthetic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
3
|
Sedovy MW, Leng X, Leaf MR, Iqbal F, Payne LB, Chappell JC, Johnstone SR. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J Vasc Res 2022; 60:101-113. [PMID: 36513042 PMCID: PMC11073551 DOI: 10.1159/000527469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) is essential to the function of the vasculature. Cx43 proteins form gap junctions that allow for the exchange of ions and molecules between vascular cells to facilitate cell-to-cell signaling and coordinate vasomotor activity. Cx43 also has intracellular signaling functions that influence vascular cell proliferation and migration. Cx43 is expressed in all vascular cell types, although its expression and function vary by vessel size and location. This includes expression in vascular smooth muscle cells (vSMC), endothelial cells (EC), and pericytes. Cx43 is thought to coordinate homocellular signaling within EC and vSMC. Cx43 gap junctions also function as conduits between different cell types (heterocellular signaling), between EC and vSMC at the myoendothelial junction, and between pericyte and EC in capillaries. Alterations in Cx43 expression, localization, and post-translational modification have been identified in vascular disease states, including atherosclerosis, hypertension, and diabetes. In this review, we discuss the current understanding of Cx43 localization and function in healthy and diseased blood vessels across all vascular beds.
Collapse
Affiliation(s)
- Meghan W. Sedovy
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Translational Biology, Medicine, And Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | - Xinyan Leng
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Melissa R. Leaf
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Farwah Iqbal
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Laura Beth Payne
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - John C. Chappell
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Scott R. Johnstone
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Sathiyanadan K, Alonso F, Domingos-Pereira S, Santoro T, Hamard L, Cesson V, Meda P, Nardelli-Haefliger D, Haefliger JA. Targeting Endothelial Connexin37 Reduces Angiogenesis and Decreases Tumor Growth. Int J Mol Sci 2022; 23:2930. [PMID: 35328350 PMCID: PMC8948817 DOI: 10.3390/ijms23062930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Connexin37 (Cx37) and Cx40 form intercellular channels between endothelial cells (EC), which contribute to the regulation of the functions of vessels. We previously documented the participation of both Cx in developmental angiogenesis and have further shown that loss of Cx40 decreases the growth of different tumors. Here, we report that loss of Cx37 reduces (1) the in vitro proliferation of primary human EC; (2) the vascularization of subcutaneously implanted matrigel plugs in Cx37-/- mice or in WT using matrigel plugs supplemented with a peptide targeting Cx37 channels; (3) tumor angiogenesis; and (4) the growth of TC-1 and B16 tumors, resulting in a longer mice survival. We further document that Cx37 and Cx40 function in a collaborative manner to promote tumor growth, inasmuch as the injection of a peptide targeting Cx40 into Cx37-/- mice decreased the growth of TC-1 tumors to a larger extent than after loss of Cx37. This loss did not alter vessel perfusion, mural cells coverage and tumor hypoxia compared to tumors grown in WT mice. The data show that Cx37 is relevant for the control of EC proliferation and growth in different tumor models, suggesting that it may be a target, alone or in combination with Cx40, in the development of anti-tumoral treatments.
Collapse
Affiliation(s)
- Karthik Sathiyanadan
- Department of Urology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (K.S.); (S.D.-P.); (V.C.); (D.N.-H.)
| | - Florian Alonso
- Laboratory for the Bioengineering of Tissues (BioTis-INSERM U1026), Université de Bordeaux, 33607 Bordeaux, France;
| | - Sonia Domingos-Pereira
- Department of Urology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (K.S.); (S.D.-P.); (V.C.); (D.N.-H.)
| | - Tania Santoro
- Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (T.S.); (L.H.)
| | - Lauriane Hamard
- Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (T.S.); (L.H.)
| | - Valérie Cesson
- Department of Urology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (K.S.); (S.D.-P.); (V.C.); (D.N.-H.)
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, Medical Center, University of Geneva, 1206 Geneva, Switzerland;
| | - Denise Nardelli-Haefliger
- Department of Urology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (K.S.); (S.D.-P.); (V.C.); (D.N.-H.)
| | | |
Collapse
|
5
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
6
|
Mishra JS, More AS, Hankins GDV, Kumar S. Hyperandrogenemia reduces endothelium-derived hyperpolarizing factor-mediated relaxation in mesenteric artery of female rats. Biol Reprod 2018; 96:1221-1230. [PMID: 28486649 DOI: 10.1093/biolre/iox043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are often presented with hyperandrogenemia along with vascular dysfunction and elevated blood pressure. In animal models of PCOS, anti-androgen treatment decreased blood pressure, indicating a key role for androgens in the development of hypertension. However, the underlying androgen-mediated mechanism that contributes to increased blood pressure is not known. This study determined whether elevated androgens affect endothelium-derived hyperpolarizing factor (EDHF)-mediated vascular relaxation responses through alteration in function of gap junctional proteins. Female rats were implanted with placebo or dihydrotestosterone (DHT) pellets (7.5 mg, 90-day release). After 12 weeks of DHT exposure, blood pressure was assessed through carotid arterial catheter and endothelium-dependent mesenteric arterial EDHF relaxation using wire myograph. Connexin expression in mesenteric arteries was also examined. Elevated DHT significantly increased mean arterial pressure and decreased endothelium-dependent EDHF-mediated acetylcholine relaxation. Inhibition of Cx40 did not have any effect, while inhibition of Cx37 decreased EDHF relaxation to a similar magnitude in both controls and DHT females. On the other hand, inhibition of Cx43 significantly attenuated EDHF relaxation in mesenteric arteries of controls but not DHT females. Elevated DHT did not alter Cx37 or Cx40, but decreased Cx43 mRNA and protein levels in mesenteric arteries. In vitro exposure of DHT to cultured mesenteric artery smooth muscle cells dose-dependently downregulated Cx43 expression. In conclusion, increased blood pressure in hyperandrogenic females is due, at least in part, to decreased EDHF-mediated vascular relaxation responses. Decreased Cx43 expression and activity may play a role in contributing to androgen-induced decrease in EDHF function.
Collapse
Affiliation(s)
- Jay S Mishra
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Amar S More
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Gary D V Hankins
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Sathish Kumar
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
7
|
Affiliation(s)
- Styliani Goulopoulou
- From the Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| |
Collapse
|
8
|
Schinzari F, Tesauro M, Cardillo C. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease. Acta Physiol (Oxf) 2017; 219:124-137. [PMID: 28009486 DOI: 10.1111/apha.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022]
Abstract
Hyperpolarization causing smooth muscle relaxation contributes to the maintenance of vascular homeostasis, particularly in small-calibre arteries and arterioles. It may also become a compensatory vasodilator mechanism upregulated in states with impaired nitric oxide (NO) availability. Bioassay of vascular hyperpolarization in the human circulation has been hampered by the complexity of mechanisms involved and the limited availability of investigational tools. Firm evidence, however, supports the notion that hyperpolarization participates in the regulation of resting vasodilator tone and vascular reactivity in healthy subjects. In addition, an enhanced endothelium-derived hyperpolarization contributes to both resting and agonist-stimulated vasodilation in a variety of cardiovascular risk conditions and disease. Thus, hyperpolarization mediated by epoxyeicosatrienoic acids (EETs) and H2 O2 has been observed in coronary arterioles of patients with coronary artery disease. Similarly, ouabain-sensitive and EETs-mediated hyperpolarization has been observed to compensate for NO deficiency in patients with essential hypertension. Moreover, in non-hypertensive patients with multiple cardiovascular risk factors and in hypercholesterolaemia, KCa channel-mediated vasodilation appears to be activated. A novel paradigm establishes that perivascular adipose tissue (PVAT) is an additional regulator of vascular tone/function and endothelium is not the only agent in vascular hyperpolarization. Indeed, some PVAT-derived relaxing substances, such as adiponectin and angiotensin 1-7, may exert anticontractile and vasodilator actions by the opening of KCa channels in smooth muscle cells. Conversely, PVAT-derived factors impair coronary vasodilation via differential inhibition of some K+ channels. In view of adipose tissue abnormalities occurring in human obesity, changes in PVAT-dependent hyperpolarization may be relevant for vascular dysfunction also in this condition.
Collapse
Affiliation(s)
- F. Schinzari
- Department of Internal Medicine; Catholic University; Rome Italy
| | - M. Tesauro
- Department of Internal Medicine; Tor Vergata University; Rome Italy
| | - C. Cardillo
- Department of Internal Medicine; Catholic University; Rome Italy
| |
Collapse
|
9
|
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium-Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions. Microcirculation 2016; 23:15-32. [PMID: 26541094 DOI: 10.1111/micc.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
Abstract
Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.
Collapse
Affiliation(s)
| | - Shaun L Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nilima Shukla
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Yanping Liu
- Division of Research Infrastructure, National Center for Research Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie Y Jeremy
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - David D Gutterman
- Division of Cardiovascular Medicine, Departments of Medicine, Physiology and Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH, Farh KH, Cuenca-Leon E, Muona M, Furlotte NA, Kurth T, Ingason A, McMahon G, Ligthart L, Terwindt GM, Kallela M, Freilinger TM, Ran C, Gordon SG, Stam AH, Steinberg S, Borck G, Koiranen M, Quaye L, Adams HHH, Lehtimäki T, Sarin AP, Wedenoja J, Hinds DA, Buring JE, Schürks M, Ridker PM, Hrafnsdottir MG, Stefansson H, Ring SM, Hottenga JJ, Penninx BWJH, Färkkilä M, Artto V, Kaunisto M, Vepsäläinen S, Malik R, Heath AC, Madden PAF, Martin NG, Montgomery GW, Kurki MI, Kals M, Mägi R, Pärn K, Hämäläinen E, Huang H, Byrnes AE, Franke L, Huang J, Stergiakouli E, Lee PH, Sandor C, Webber C, Cader Z, Muller-Myhsok B, Schreiber S, Meitinger T, Eriksson JG, Salomaa V, Heikkilä K, Loehrer E, Uitterlinden AG, Hofman A, van Duijn CM, Cherkas L, Pedersen LM, Stubhaug A, Nielsen CS, Männikkö M, Mihailov E, Milani L, Göbel H, Esserlind AL, Christensen AF, Hansen TF, Werge T, Kaprio J, Aromaa AJ, Raitakari O, Ikram MA, Spector T, Järvelin MR, Metspalu A, Kubisch C, Strachan DP, Ferrari MD, Belin AC, Dichgans M, Wessman M, van den Maagdenberg AMJM, Zwart JA, Boomsma DI, Smith GD, Stefansson K, et alGormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH, Farh KH, Cuenca-Leon E, Muona M, Furlotte NA, Kurth T, Ingason A, McMahon G, Ligthart L, Terwindt GM, Kallela M, Freilinger TM, Ran C, Gordon SG, Stam AH, Steinberg S, Borck G, Koiranen M, Quaye L, Adams HHH, Lehtimäki T, Sarin AP, Wedenoja J, Hinds DA, Buring JE, Schürks M, Ridker PM, Hrafnsdottir MG, Stefansson H, Ring SM, Hottenga JJ, Penninx BWJH, Färkkilä M, Artto V, Kaunisto M, Vepsäläinen S, Malik R, Heath AC, Madden PAF, Martin NG, Montgomery GW, Kurki MI, Kals M, Mägi R, Pärn K, Hämäläinen E, Huang H, Byrnes AE, Franke L, Huang J, Stergiakouli E, Lee PH, Sandor C, Webber C, Cader Z, Muller-Myhsok B, Schreiber S, Meitinger T, Eriksson JG, Salomaa V, Heikkilä K, Loehrer E, Uitterlinden AG, Hofman A, van Duijn CM, Cherkas L, Pedersen LM, Stubhaug A, Nielsen CS, Männikkö M, Mihailov E, Milani L, Göbel H, Esserlind AL, Christensen AF, Hansen TF, Werge T, Kaprio J, Aromaa AJ, Raitakari O, Ikram MA, Spector T, Järvelin MR, Metspalu A, Kubisch C, Strachan DP, Ferrari MD, Belin AC, Dichgans M, Wessman M, van den Maagdenberg AMJM, Zwart JA, Boomsma DI, Smith GD, Stefansson K, Eriksson N, Daly MJ, Neale BM, Olesen J, Chasman DI, Nyholt DR, Palotie A. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet 2016; 48:856-66. [PMID: 27322543 DOI: 10.1038/ng.3598] [Show More Authors] [Citation(s) in RCA: 454] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/26/2016] [Indexed: 12/16/2022]
Abstract
Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.
Collapse
Affiliation(s)
- Padhraig Gormley
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Verneri Anttila
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bendik S Winsvold
- FORMI, Oslo University Hospital, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tonu Esko
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Estonian Genome Center, University of Tartu, Tartu, Estonia.,Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tune H Pers
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kai-How Farh
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Illumina, San Diego, California, USA
| | - Ester Cuenca-Leon
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Pediatric Neurology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Mikko Muona
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular Neurology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | | | - Tobias Kurth
- Institute of Public Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - George McMahon
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Lannie Ligthart
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mikko Kallela
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Tobias M Freilinger
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Caroline Ran
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Scott G Gordon
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anine H Stam
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Guntram Borck
- Institute of Human Genetics, Ulm University, Ulm, Germany
| | - Markku Koiranen
- Center for Life Course Epidemiology and Systems Medicine, University of Oulu, Oulu, Finland
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, School of Medicine, University of Tampere, Tampere, Finland
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Juho Wedenoja
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Markus Schürks
- Department of Neurology, University Duisburg-Essen, Essen, Germany
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Susan M Ring
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, VU University Medical Centre, Amsterdam, the Netherlands
| | - Markus Färkkilä
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Ville Artto
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Mari Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Salli Vepsäläinen
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas G Martin
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mitja I Kurki
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Mart Kals
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Kalle Pärn
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Hailiang Huang
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea E Byrnes
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jie Huang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Evie Stergiakouli
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Cynthia Sandor
- MRC Functional Genomics Unit, Department of Physiology, Anatomy &Genetics, Oxford University, Oxford, UK
| | - Caleb Webber
- MRC Functional Genomics Unit, Department of Physiology, Anatomy &Genetics, Oxford University, Oxford, UK
| | - Zameel Cader
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.,Oxford Headache Centre, John Radcliffe Hospital, Oxford, UK
| | - Bertram Muller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Kauko Heikkilä
- Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland
| | - Elizabeth Loehrer
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lynn Cherkas
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Audun Stubhaug
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway.,Medical Faculty, University of Oslo, Oslo, Norway
| | - Christopher S Nielsen
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway.,Department of Ageing and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Minna Männikkö
- Center for Life Course Epidemiology and Systems Medicine, University of Oulu, Oulu, Finland
| | | | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Ann-Louise Esserlind
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anne Francke Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, University of Copenhagen, Roskilde, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, Copenhagen, Denmark.,Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, Copenhagen, Denmark.,iPSYCH-The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Arpo J Aromaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Marjo-Riitta Järvelin
- Center for Life Course Epidemiology and Systems Medicine, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPE) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | | | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Andrea C Belin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maija Wessman
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - John-Anker Zwart
- FORMI, Oslo University Hospital, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Kari Stefansson
- deCODE Genetics, Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Mark J Daly
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Neale
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Pedersen CM, Venkatasubramanian S, Vase H, Hyldebrandt JA, Contractor H, Schmidt MR, Bøtker HE, Cruden NL, Newby DE, Kharbanda RK, Lang NN. Rotigaptide protects the myocardium and arterial vasculature from ischaemia reperfusion injury. Br J Clin Pharmacol 2016; 81:1037-45. [PMID: 26750458 DOI: 10.1111/bcp.12882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/19/2023] Open
Abstract
AIM Ischaemia-reperfusion injury (IRI) causes impaired endothelial function and is a major component of the adverse effects of reperfusion following myocardial infarction. Rotigaptide increases gap junction conductance via connexin-43. We tested the hypothesis that rotigaptide reduces experimental myocardial infarction size and ameliorates endothelial IRI in humans. METHODS Myocardial infarction study: porcine myocardial infarction was achieved by catheter-induced occlusion of the left anterior descending artery. In a randomized double-blind study, rotigaptide (n = 9) or placebo (n = 10) was administered intravenously as a 10 min bolus prior to reperfusion and continuously during 2 h of reperfusion. Myocardial infarction size (IS) was assessed as proportion of the area at risk (AAR). Human translational study: forearm IRI was induced in the presence or absence of intra-arterial rotigaptide. In a randomized double-blind study, forearm arterial blood flow was measured at rest and during intra-arterial infusion of acetylcholine (5-20 μg min(-1) ; n = 11) or sodium nitroprusside (2-8 mg min(-1) ; n = 10) before and after intra-arterial infusion of placebo or rotigaptide, and again following IRI. RESULTS Myocardial infarction study: Rotigaptide treatment was associated with a reduction of infarct size (IS/AAR[%]: 18.7 ± 4.1 [rotigaptide] vs. 43.6 ± 4.2 [placebo], P = 0.006). Human translational study: Endothelium-dependent vasodilatation to acetylcholine was attenuated after ischaemia-reperfusion in the presence of placebo (P = 0.007), but not in the presence of rotigaptide (P = NS). Endothelium-independent vasodilatation evoked by sodium nitroprusside was unaffected by IRI or rotigaptide (P = NS). CONCLUSIONS Rotigaptide reduces myocardial infarction size in a porcine model and protects from IRI-related endothelial dysfunction in man. Rotigaptide may have therapeutic potential in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Christian M Pedersen
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Department of Cardiology, Aarhus University Hospital Skejby, Aarhus
| | | | - Henrik Vase
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus
| | - Janus A Hyldebrandt
- Department of Anaesthesia and Intensive Care, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Hussain Contractor
- Oxford NIHR Biomedical Research Centre, The John Radcliffe Hospital, Oxford
| | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus
| | - Nicholas L Cruden
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Rajesh K Kharbanda
- Oxford NIHR Biomedical Research Centre, The John Radcliffe Hospital, Oxford
| | - Ninian N Lang
- Institute for Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Wong PS, Roberts RE, Randall MD. Sex differences in endothelial function in porcine coronary arteries: a role for H2O2 and gap junctions? Br J Pharmacol 2014; 171:2751-66. [PMID: 24467384 DOI: 10.1111/bph.12595] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/02/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardiovascular risk is higher in men and postmenopausal women compared with premenopausal women. This may be due to sex differences in endothelial function. Here, sex differences in endothelial function of porcine coronary arteries (PCAs) were investigated. EXPERIMENTAL APPROACH Distal PCAs were studied under myographic conditions and after precontraction with U46619. Concentration-response curves to bradykinin were constructed in the presence of a range of inhibitors. KEY RESULTS In male and female PCAs, bradykinin produced comparable vasorelaxant responses. Inhibition of NO and prostanoid synthesis produced greater inhibition in males compared with females. Removing H2 O2 with PEG-catalase reduced the maximum relaxation in the absence, but not the presence of L-NAME and indomethacin in females, and had no effect in males. Blocking gap junctions with 100 µM carbenoxolone or 18α-glycyrrhetinic acid further inhibited the endothelium-derived hyperpolarization (EDH)-mediated response in females but not in males. In female PCAs, the maximum EDH-mediated response was reduced by inhibiting SKCa with apamin and by inhibiting IKCa with TRAM-34, or with both. In male PCAs, at maximum bradykinin concentration, the EDH-mediated response was reduced in the presence of apamin but not TRAM-34. Western blot did not detect any differences in connexins 40 or 43 or in IKCa expression between male and female PCAs. CONCLUSIONS AND IMPLICATIONS H2 O2 mediated some part of endothelium-dependent vasorelaxation in female PCAs and EDH was more important in females, with differences in the contribution of gap junctions and IKCa channels. These findings may contribute to understanding vascular protection in premenopausal women.
Collapse
Affiliation(s)
- P S Wong
- Pharmacology Research Group, Queen's Medical Centre, School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | | |
Collapse
|
13
|
Liu L, Zhang J, Zhu Y, Xiao X, Peng X, Yang G, Zang J, Liu S, Li T. Beneficial effects of platelet-derived growth factor on hemorrhagic shock in rats and the underlying mechanisms. Am J Physiol Heart Circ Physiol 2014; 307:H1277-87. [PMID: 25172895 DOI: 10.1152/ajpheart.00006.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies have shown that local application of platelet-derived growth factor (PDGF) can be used for the treatment of acute and chronic wounds. We investigated if systemic application of PDGF has a protective effect on acute hemorrhagic shock in rats in the present study. Using hemorrhagic shock rats and isolated superior mesenteric arteries, the effects of PDGF-BB on hemodynamics, animal survival, and vascular reactivity as well as the roles of the gap junction proteins connexin (Cx)40 and Cx43, PKC, and Rho kinase were observed. PDGF-BB (1–15 μg/kg iv) significantly improved the hemodynamics and blood perfusion to vital organs (liver and kidney) as well as vascular reactivity and improved the animal survival in hemorrhagic shock rats. PDGF recovering shock-induced vascular hyporeactivity depended on the integrity of the endothelium and myoendothelial gap junction. Cx43 antisense oligodeoxynucleotide abolished these improving effects of PDGF, whereas Cx40 oligodeoxynucleotide did not. Further study indicated that PDGF increased the activity of Rho kinase and PKC as well as vascular Ca2+ sensitivity, whereas it did not interfere with the intracellular Ca2+ concentration in hypoxia-treated vascular smooth muscle cells. In conclusion, systemic application of PDGF-BB may exert beneficial effects on hemorrhagic shock, which are closely related to the improvement of vascular reactivity and hemodynamics. The improvement of PDGF-BB in vascular reactivity is vascular endothelium and myoendothelial gap junction dependent. Cx43, Rho kinase, and PKC play very important role in this process. These findings suggest that PDGF may be a potential measure to treat acute clinical critical diseases such as severe trauma, shock, and sepsis.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Angiogenesis Inducing Agents/therapeutic use
- Animals
- Becaplermin
- Calcium Signaling
- Connexin 43/genetics
- Connexin 43/metabolism
- Connexins/genetics
- Connexins/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gap Junctions/drug effects
- Gap Junctions/metabolism
- Gap Junctions/physiology
- Hemodynamics/drug effects
- Liver Circulation
- Mesenteric Artery, Superior/cytology
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Kinase C/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Proto-Oncogene Proteins c-sis/therapeutic use
- Rats
- Rats, Wistar
- Renal Circulation
- Shock, Hemorrhagic/drug therapy
- Shock, Hemorrhagic/metabolism
- Shock, Hemorrhagic/physiopathology
- rho-Associated Kinases/metabolism
- Gap Junction alpha-5 Protein
Collapse
|
14
|
Mazzuca MQ, Dang Y, Khalil RA. Enhanced endothelin receptor type B-mediated vasodilation and underlying [Ca²⁺]i in mesenteric microvessels of pregnant rats. Br J Pharmacol 2014; 169:1335-51. [PMID: 23646960 DOI: 10.1111/bph.12225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/18/2013] [Accepted: 04/05/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Normal pregnancy is associated with decreased vascular resistance and increased release of vasodilators. Endothelin-1 (ET-1) causes vasoconstriction via endothelin receptor type A (ET(A)R), but could activate ET(B)R in the endothelium and release vasodilator substances. However, the roles of ET(B)R in the regulation of vascular function during pregnancy and the vascular mediators involved are unclear. EXPERIMENTAL APPROACH Pressurized mesenteric microvessels from pregnant and virgin Sprague-Dawley rats were loaded with fura-2/AM for simultaneous measurement of diameter and [Ca²⁺]i. KEY RESULTS High KCl (51 mM) and phenylephrine (PHE) caused increases in vasoconstriction and [Ca²⁺]i that were similar in pregnant and virgin rats. ET-1 caused vasoconstriction that was less in pregnant than virgin rats, with small increases in [Ca²⁺]i. Pretreatment with the ET(B)R antagonist BQ-788 caused greater enhancement of ET-1-induced vasoconstriction in pregnant rats. ACh caused endothelium-dependent relaxation and decreased [Ca²⁺]i, and was more potent in pregnant than in virgin rats. ET-1 + ET(A)R antagonist BQ-123, and the ET(B)R agonists sarafotoxin 6c (S6c) and IRL-1620 caused greater vasodilation in pregnant than in virgin rats with no changes in [Ca²⁺]i, suggesting up-regulated ET(B)R-mediated relaxation pathways. ACh-, S6c- and IRL-1620-induced relaxation was reduced by the NO synthase inhibitor Nω-nitro-L-arginine methyl ester, and abolished by tetraethylammonium or endothelium removal. Western blots revealed greater amount of ET(B)R in intact microvessels of pregnant than virgin rats, but reduced levels in endothelium-denuded microvessels, supporting a role of endothelial ET(B)R. CONCLUSIONS AND IMPLICATIONS The enhanced ET(B)R-mediated microvascular relaxation may contribute to the decreased vasoconstriction and vascular resistance during pregnancy.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Arefin S, Simoncini T, Wieland R, Hammarqvist F, Spina S, Goglia L, Kublickiene K. Vasodilatory effects of the selective GPER agonist G-1 is maximal in arteries of postmenopausal women. Maturitas 2014; 78:123-30. [DOI: 10.1016/j.maturitas.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/29/2014] [Accepted: 04/01/2014] [Indexed: 01/02/2023]
|
16
|
Conrad KP, Davison JM. The renal circulation in normal pregnancy and preeclampsia: is there a place for relaxin? Am J Physiol Renal Physiol 2014; 306:F1121-35. [PMID: 24647709 DOI: 10.1152/ajprenal.00042.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During the first trimester of human pregnancy, the maternal systemic circulation undergoes remarkable vasodilation. The kidneys participate in this vasodilatory response resulting in marked increases in renal plasma flow (RPF) and glomerular filtration rate (GFR). Comparable circulatory adaptations are observed in conscious gravid rats. Administration of the corpus luteal hormone relaxin (RLN) to nonpregnant rats and humans elicits vasodilatory changes like those of pregnancy. Systemic and renal vasodilation are compromised in midterm pregnant rats by neutralization or elimination of circulating RLN and in women conceiving with donor eggs who lack a corpus luteum and circulating RLN. Although RLN exerts both rapid (minutes) and sustained (hours to days) vasodilatory actions through different molecular mechanisms, a final common pathway is endothelial nitric oxide. In preeclampsia (PE), maternal systemic and renal vasoconstriction leads to hypertension and modest reduction in GFR exceeding that of RPF. Elevated level of circulating soluble vascular endothelial growth factor receptor-1 arising from the placenta is implicated in the hypertension and disruption of glomerular fenestrae and barrier function, the former causing reduced Kf and the latter proteinuria. Additional pathogenic factors are discussed. Last, potential clinical ramifications include RLN replacement in women conceiving with donor eggs and its therapeutic use in PE. Another goal has been to apply knowledge gained from investigating circulatory adaptations in pregnancy toward identifying and developing novel therapeutic strategies for renal and cardiovascular disease in the nonpregnant population. So far, one candidate to emerge is RLN and its potential therapeutic use in heart failure.
Collapse
Affiliation(s)
- Kirk P Conrad
- Departments of Physiology and Functional Genomics and Obstetrics and Gynecology, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida; and
| | - John M Davison
- Institute of Cellular Medicine and Royal Victoria Infirmary, Newcastle University and Newcastle Hospitals National Health Service Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
17
|
Ellinsworth DC, Shukla N, Fleming I, Jeremy JY. Interactions between thromboxane A₂, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res 2014; 102:9-16. [PMID: 24469536 DOI: 10.1093/cvr/cvu015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelium-dependent smooth muscle hyperpolarization (EDH) increasingly predominates over endothelium-derived nitric oxide (NO) as a participant in vasodilation as vessel size decreases. Its underlying nature is highly variable between vessel types, species, disease states, and exact experimental conditions, and is variably mediated by one or more transferable endothelium-derived hyperpolarizing factors and/or the electrotonic spread of endothelial hyperpolarization into the media via gap junctions. Although generally regarded (and studied) as a mechanism that is independent of NO and prostanoids, evidence has emerged that the endothelium-derived contracting factor and prostanoid thromboxane A2 can modulate several signalling components central to EDH, and therefore potentially curtail vasodilation through mechanisms that are distinct from those putatively involved in direct smooth muscle contraction. Notably, vascular production of thromboxane A2 is elevated in a number of cardiovascular disease states that promote endothelial dysfunction. This review will therefore discuss the mechanisms through which thromboxane A2 interacts with and modulates EDH, and will also consider the implications of such cross-talk in vasodilator control in health and disease.
Collapse
Affiliation(s)
- David C Ellinsworth
- Bristol Heart Institute, University of Bristol, Queens Building Level 7, Upper Maudlin St, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | | | | | | |
Collapse
|
18
|
Pregnancy Programming and Preeclampsia: Identifying a Human Endothelial Model to Study Pregnancy-Adapted Endothelial Function and Endothelial Adaptive Failure in Preeclamptic Subjects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:27-47. [DOI: 10.1007/978-1-4939-1031-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Abstract
Pregnancy encompasses substantial changes in vascular function to accommodate dramatic increases in blood volume and uteroplacental blood flow to the growing fetus. Despite increased hemodynamics, decreased peripheral resistance results in a reduction in mean arterial blood pressure. Vascular tone, and hence peripheral resistance, is determined by a delicate balance of constrictor and dilator capacities. In the normal physiological response to pregnancy, endothelial-derived hyperpolarization (EDH) has been shown to be a major contributor; both EDH and nitric oxide (NO) are predominantly involved in providing an increased vascular capacity for vasodilation. The ability of EDH and NO to adequately accommodate increased blood volume is tested in pathological states such as placental insufficiency or diabetes and both EDH and NO-dependent mechanisms seem to be impacted in these situations. Pregnancy complications also have an impact on the cardiovascular health of the offspring. In adult offspring born from complicated pregnancies, the data suggest that EDH mechanisms are largely maintained, whereas NO is commonly reduced. A diversity of EDH mechanisms may be useful in providing many targets for potential therapeutic avenues for compromised pregnancies; however, further research delineating the mechanisms of EDH and the interactions of NO and EDH, in normal and pathological pregnancies is required.
Collapse
|
20
|
Endothelial control of vasodilation: integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Pflugers Arch 2013; 466:389-405. [PMID: 23748495 DOI: 10.1007/s00424-013-1303-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/17/2022]
Abstract
Endothelium-derived epoxyeicosatrienoic acids (EETs) are fatty acid epoxides that play an important role in the control of vascular tone in selected coronary, renal, carotid, cerebral and skeletal muscle arteries. Vasodilation due to endothelium-dependent smooth muscle hyperpolarization (EDH) has been suggested to involve EETs as a transferable endothelium-derived hyperpolarizing factor. However, this activity may also be due to EETs interacting with the components of other primary EDH-mediated vasodilator mechanisms. Indeed, the transfer of hyperpolarization initiated in the endothelium to the adjacent smooth muscle via gap junction connexins occurs separately or synergistically with the release of K(+) ions at discrete myoendothelial microdomain signalling sites. The net effects of such activity are smooth muscle hyperpolarization, closure of voltage-dependent Ca(2+) channels, phospholipase C deactivation and vasodilation. The spatially localized and key components of the microdomain signalling complex are the inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum Ca(2+) store, Ca(2+)-activated K(+) (KCa), transient receptor potential (TRP) and inward-rectifying K(+) channels, gap junctions and the smooth muscle Na(+)/K(+)-ATPase. Of these, TRP channels and connexins are key endothelial effector targets modulated by EETs. In an integrated manner, endogenous EETs enhance extracellular Ca(2+) influx (thereby amplifying and prolonging KCa-mediated endothelial hyperpolarization) and also facilitate the conduction of this hyperpolarization to spatially remote vessel regions. The contribution of EETs and the receptor and channel subtypes involved in EDH-related microdomain signalling, as a candidate for a universal EDH-mediated vasodilator mechanism, vary with vascular bed, species, development and disease and thus represent potentially selective targets for modulating specific artery function.
Collapse
|
21
|
Nishida S, Satoh H. Role of gap junction involved with endothelium-derived hyperpolarizing factor for the quercetin-induced vasodilatation in rat mesenteric artery. Life Sci 2013; 92:752-6. [PMID: 23435092 DOI: 10.1016/j.lfs.2013.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
AIMS Modulation of vasodilating actions by quercetin, a kind of flavonoid, was investigated using rat mesenteric arterial ring strips. MAIN METHODS Ring strips (1mm) of rat mesenteric artery were used. The specimens were kept at 36.5 °C in Krebs-Henseleit solution oxygenated with 95% O(2) and 5% CO(2). KEY FINDINGS Quercetin (0.1 to 100 μM) dilated the contraction induced by norepinephrine (1 μM) in a concentration-dependent manner. The quercetin-induced vasodilatation was almost resistant to both 100 μM L-N(G)-nitro arginine methyl ester (L-NAME) and 100 μM indomethacin. At 1mM tetraethylammonium (a KCa channel inhibitor) decreased the quercetin-induced vasodilatation, which was resistant to L-NAME and indomethacin, but not significantly. L-NAME- and indomethacin-resistant quercetin-induced vasodilatation was significantly attenuated by 100 μM 18α- and 50 μM 18β-glycyrrhetinic acids (gap junction inhibitors). Endothelium removal as well significantly attenuated the vasodilatation to the same extent. SIGNIFICANCE These results indicate that quercetin dilates the mesenteric artery via endothelium-dependent mechanisms, and the dilatation is mainly mediated by gap junctions closely involved with endothelium-derived hyperpolarizing factor (EDHF).
Collapse
|
22
|
Mazzuca MQ, Tare M, Parkington HC, Dragomir NM, Parry LJ, Wlodek ME. Uteroplacental insufficiency programmes vascular dysfunction in non-pregnant rats: compensatory adaptations in pregnancy. J Physiol 2012; 590:3375-88. [PMID: 22586217 DOI: 10.1113/jphysiol.2012.230011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intrauterine growth restriction is a risk factor for cardiovascular disease in adulthood. We have previously shown that intrauterine growth restriction caused by uteroplacental insufficiency programmes uterine vascular dysfunction and increased arterial stiffness in adult female rat offspring. The aim of this study was to investigate vascular adaptations in growth restricted female offspring when they in turn become pregnant. Uteroplacental insufficiency was induced in WKY rats by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of pregnancy. F0 pregnant females delivered naturally at term. F1 Control and Restricted offspring were mated at 4 months of age and studied on day 20 of pregnancy. Age-matched non-pregnant F1 Control and Restricted females were also studied. Wire and pressure myography were used to test endothelial and smooth muscle function, and passive mechanical wall properties, respectively, in uterine, mesenteric, renal and femoral arteries of all four groups. Collagen and elastin fibres were quantified using polarized light microscopy and qRT-PCR. F1 Restricted females were born 10–15% lighter than Controls (P <0.05). Non-pregnant Restricted females had increased uterine and renal artery stiffness compared with Controls (P <0.05), but this difference was abolished at day 20 of pregnancy. Vascular smooth muscle and endothelial function were preserved in all arteries of non-pregnant and pregnant Restricted rats. Collagen and elastin content were unaltered in uterine arteries of Restricted females. Growth restricted females develop compensatory vascular changes during late pregnancy, such that region-specific vascular deficits observed in the non-pregnant state did not persist in late pregnancy.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Ozkor MA, Quyyumi AA. Endothelium-derived hyperpolarizing factor and vascular function. Cardiol Res Pract 2011; 2011:156146. [PMID: 21876822 PMCID: PMC3157651 DOI: 10.4061/2011/156146] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/27/2011] [Accepted: 05/27/2011] [Indexed: 01/20/2023] Open
Abstract
Endothelial function refers to a multitude of physiological processes that maintain healthy homeostasis of the vascular wall. Exposure of the endothelium to cardiac risk factors results in endothelial dysfunction and is associated with an alteration in the balance of vasoactive substances produced by endothelial cells. These include a reduction in nitric oxide (NO), an increase in generation of potential vasoconstrictor substances and a potential compensatory increase in other mediators of vasodilation. The latter has been surmised from data demonstrating persistent endothelium-dependent vasodilatation despite complete inhibition of NO and prostaglandins. This remaining non-NO, non-prostaglandin mediated endothelium-dependent vasodilator response has been attributed to endothelium-derived hyperpolarizing factor/s (EDHF). Endothelial hyperpolarization is likely due to several factors that appear to be site and species specific. Experimental studies suggest that the contribution of the EDHFs increase as the vessel size decreases, with a predominance of EDHF activity in the resistance vessels, and a compensatory up-regulation of hyperpolarization in states characterized by reduced NO availability. Since endothelial dysfunction is a precursor for atherosclerosis development and its magnitude is a reflection of future risk, then the mechanisms underlying endothelial dysfunction need to be fully understood, so that adequate therapeutic interventions can be designed.
Collapse
Affiliation(s)
- Muhiddin A Ozkor
- The Heart Hospital, University College London, London WIG 8PH, UK
| | | |
Collapse
|
24
|
Chadha PS, Liu L, Rikard-Bell M, Senadheera S, Howitt L, Bertrand RL, Grayson TH, Murphy TV, Sandow SL. Endothelium-dependent vasodilation in human mesenteric artery is primarily mediated by myoendothelial gap junctions intermediate conductance calcium-activated K+ channel and nitric oxide. J Pharmacol Exp Ther 2011; 336:701-8. [PMID: 21172909 DOI: 10.1124/jpet.110.165795] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Myoendothelial microdomain signaling via localized calcium-activated potassium channel (K(Ca)) and gap junction connexins (Cx) is critical for endothelium-dependent vasodilation in rat mesenteric artery. The present study determines the relative contribution of NO and gap junction-K(Ca) mediated microdomain signaling to endothelium-dependent vasodilation in human mesenteric artery. The hypothesis tested was that such activity is due to NO and localized K(Ca) and Cx activity. In mesenteric arteries from intestinal surgery patients, endothelium-dependent vasodilation was characterized using pressure myography with pharmacological intervention. Vessel morphology was examined using immunohistochemical and ultrastructural techniques. In vessel segments at 80 mm Hg, the intermediate (I)K(Ca) blocker 1-[(2-chlorophenyl)diphenyl-methyl]-1H-pyrazole (TRAM-34; 1 μM) inhibited bradykinin (0.1 nM-3 μM)-induced vasodilation, whereas the small (S) K(Ca) blocker apamin (50 and 100 nM) had no effect. Direct IK(Ca) activation with 1-ethyl-2-benzimidazolinone (1-EBIO; 10-300 μM) induced vasodilation, whereas cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (1-30 μM), the SK(Ca) activator, failed to dilate arteries, whereas dilation induced by 1-EBIO (10-100 μM) was blocked by TRAM-34. Bradykinin-mediated vasodilation was attenuated by putative gap junction block with carbenoxolone (100 μM), with remaining dilation blocked by N-nitro l-arginine methyl ester (100 μM) and [1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (10 μM), NO synthase and soluble guanylate cyclase blockers, respectively. In human mesenteric artery, myoendothelial gap junction and IK(Ca) activity are consistent with Cx37 and IK(Ca) microdomain expression and distribution. Data suggest that endothelium-dependent vasodilation is primarily mediated by NO, IK(Ca), and gap junction Cx37 in this vessel. Myoendothelial microdomain signaling sites are present in human mesenteric artery and are likely to contribute to endothelium-dependent vasodilation via a mechanism that is conserved between species.
Collapse
Affiliation(s)
- Preet S Chadha
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Luksha L, Luksha N, Kublickas M, Nisell H, Kublickiene K. Diverse Mechanisms of Endothelium-Derived Hyperpolarizing Factor-Mediated Dilatation in Small Myometrial Arteries in Normal Human Pregnancy and Preeclampsia1. Biol Reprod 2010; 83:728-35. [DOI: 10.1095/biolreprod.110.084426] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
26
|
Chang CJ, Wu LS, Hsu LA, Chang GJ, Chen CF, Yeh HI, Ko YS. Differential endothelial gap junction expression in venous vessels exposed to different hemodynamics. J Histochem Cytochem 2010; 58:1083-92. [PMID: 20805582 DOI: 10.1369/jhc.2010.956425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After being anastomosed with the artery, vein graft is exposed to abruptly increased hemodynamic stresses. These hemodynamic stresses may change the profile of endothelial gap junction expression as demonstrated in the artery, which may subsequently play active roles in physiological adaptation or pathophysiological changes of the vein grafts. We investigated the endothelial expression of gap junction in the venous vessels exposed to different hemodynamic stresses. Immunocytochemical analysis of the endothelial Cx expression was performed by observing the whole mounts of inferior vena cava (IVC) of aortocaval fistula (ACF) rats or IVC-banded ACF rats using confocal microscope. Immunocytochemical analysis demonstrated that in the endothelium of the native vein, the gap-junctional spot numbers (GJSNs) and the total gap-junctional areas (TGJAs) of Cx40 and Cx43 were lower than those of the thoracic aorta and that Cx37 was hardly detectable. In the IVCs of ACF rats, which were demonstrated to be exposed to a hemodynamic condition of high flow velocity and low pressure, the GJSNs and the TGJAs of all three Cxs were increased. In the IVCs of IVC-banded ACF rats, which were exposed to a hemodynamic condition of high pressure and low flow velocity, the GJSNs and the TGJAs of Cx37 increased markedly and those of Cx40 and Cx43 remained without significant changes. In conclusion, the endothelial expressions of gap junctions in the native veins were lower than those of the arteries. When exposed to different hemodynamic stresses, the gap junctions were expressed in specific patterns.
Collapse
Affiliation(s)
- Chi-Jen Chang
- The First Cardiovascular Division, Chang Gung Memorial Hospital, 5 Fu-Hsing St., Kuei-Shan, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 2010; 459:897-914. [PMID: 20379740 DOI: 10.1007/s00424-010-0830-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly evident that electrical signaling via gap junctions plays a central role in the physiological control of vascular tone via two related mechanisms (1) the endothelium-derived hyperpolarizing factor (EDHF) phenomenon, in which radial transmission of hyperpolarization from the endothelium to subjacent smooth muscle promotes relaxation, and (2) responses that propagate longitudinally, in which electrical signaling within the intimal and medial layers of the arteriolar wall orchestrates mechanical behavior over biologically large distances. In the EDHF phenomenon, the transmitted endothelial hyperpolarization is initiated by the activation of Ca(2+)-activated K(+) channels channels by InsP(3)-induced Ca(2+) release from the endoplasmic reticulum and/or store-operated Ca(2+) entry triggered by the depletion of such stores. Pharmacological inhibitors of direct cell-cell coupling may thus attenuate EDHF-type smooth muscle hyperpolarizations and relaxations, confirming the participation of electrotonic signaling via myoendothelial and homocellular smooth muscle gap junctions. In contrast to isolated vessels, surprisingly little experimental evidence argues in favor of myoendothelial coupling acting as the EDHF mechanism in arterioles in vivo. However, it now seems established that the endothelium plays the leading role in the spatial propagation of arteriolar responses and that these involve poorly understood regenerative mechanisms. The present review will focus on the complex interactions between the diverse cellular signaling mechanisms that contribute to these phenomena.
Collapse
Affiliation(s)
- Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | | |
Collapse
|
28
|
López D, Rodríguez-Sinovas A, Agulló E, García A, Sánchez JA, García-Dorado D. Replacement of connexin 43 by connexin 32 in a knock-in mice model attenuates aortic endothelium-derived hyperpolarizing factor-mediated relaxation. Exp Physiol 2009; 94:1088-97. [PMID: 19617266 DOI: 10.1113/expphysiol.2009.048413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies demonstrated that intercellular communication through endothelial, smooth muscle or myoendothelial connexin channels contributes to the control of vascular tone. At least four connexin types are present in the arterial wall. The aim of the present work was to assess the role played by connexin 43 (Cx43)-formed gap junctions on vessel function. Aortic reactivity to noradrenaline, acetylcholine and sodium nitroprusside, and endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxations, were analysed in a Cx43KI32 mouse model in which the coding region of Cx43 was replaced by that of connexin 32 (Cx32). Aortic rings were placed in organ baths containing a Krebs solution oxygenated at 37 degrees C (pH 7.4). Confocal images of aortic rings confirmed connexin substitution in mutant mice. In control conditions, replacement of Cx43 by Cx32 in homozygous mutant mice did not modify endothelium-independent contractile responses to noradrenaline, or relaxations in response to sodium nitroprusside (endothelium independent) or acetylcholine (endothelium dependent). However, residual endothelium-dependent relaxations in response to acetylcholine after nitric oxide synthase and cyclooxygenase inhibition (EDHF type) were significantly reduced in homozygous Cx43KI32 mice (maximal effect values: 4.86 +/- 0.37% of noradrenaline precontraction versus 7.06 +/- 0.31% in wild-type, n = 8, P < 0.05). This attenuation was mimicked by treatment of rings from wild-type animals with the connexin-mimetic peptide (37,43)Gap27 (5 x 10(-6)m). In conclusion, replacement of Cx43 by Cx32 attenuates EDHF-mediated relaxations in mice aortic rings, suggesting that they are, at least in part, dependent on Cx43-formed gap junctions. In contrast, aortic responses to tested endothelium-independent agonists were not modified in knock-in animals.
Collapse
Affiliation(s)
- Diego López
- Institut de Recerca Hospitals Vall d'Hebron, Hospital Universitario Vall d'Hebron, Passeig Vall d'Hebron 119, 08035 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The endothelium controls vascular tone not only by releasing NO and prostacyclin, but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the term 'endothelium-derived hyperpolarizing factor' (EDHF). However, this acronym includes different mechanisms. Arachidonic acid metabolites derived from the cyclo-oxygenases, lipoxygenases and cytochrome P450 pathways, H(2)O(2), CO, H(2)S and various peptides can be released by endothelial cells. These factors activate different families of K(+) channels and hyperpolarization of the vascular smooth muscle cells contribute to the mechanisms leading to their relaxation. Additionally, another pathway associated with the hyperpolarization of both endothelial and vascular smooth muscle cells contributes also to endothelium-dependent relaxations (EDHF-mediated responses). These responses involve an increase in the intracellular Ca(2+) concentration of the endothelial cells, followed by the opening of SK(Ca) and IK(Ca) channels (small and intermediate conductance Ca(2+)-activated K(+) channels respectively). These channels have a distinct subcellular distribution: SK(Ca) are widely distributed over the plasma membrane, whereas IK(Ca) are preferentially expressed in the endothelial projections toward the smooth muscle cells. Following SK(Ca) activation, smooth muscle hyperpolarization is preferentially evoked by electrical coupling through myoendothelial gap junctions, whereas, following IK(Ca) activation, K(+) efflux can activate smooth muscle Kir2.1 and/or Na(+)/K(+)-ATPase. EDHF-mediated responses are altered by aging and various pathologies. Therapeutic interventions can restore these responses, suggesting that the improvement in the EDHF pathway contributes to their beneficial effect. A better characterization of EDHF-mediated responses should allow the determination of whether or not new drugable targets can be identified for the treatment of cardiovascular diseases.
Collapse
|
30
|
Heberlein KR, Straub AC, Isakson BE. The myoendothelial junction: breaking through the matrix? Microcirculation 2009; 16:307-22. [PMID: 19330678 DOI: 10.1080/10739680902744404] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Within the vasculature, specialized cellular extensions from endothelium (and sometimes smooth muscle) protrude through the extracellular matrix where they interact with the opposing cell type. These structures, termed myoendothelial junctions, have been cited as a possible key element in the control of several vascular physiologies and pathologies. This review will discuss observations that have led to a focus on the myoendothelial junction as a cellular integration point in the vasculature for both homeostatic and pathological conditions and as a possible independent signaling entity. We will also highlight the need for novel approaches to studying the myoendothelial junction in order to comprehend the cellular biology associated with this structure.
Collapse
Affiliation(s)
- Katherine R Heberlein
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottsville, Virginia 22908, USA
| | | | | |
Collapse
|
31
|
Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis 2009; 202:330-44. [DOI: 10.1016/j.atherosclerosis.2008.06.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/16/2008] [Accepted: 06/11/2008] [Indexed: 12/20/2022]
|
32
|
Brisset AC, Isakson BE, Kwak BR. Connexins in vascular physiology and pathology. Antioxid Redox Signal 2009; 11:267-82. [PMID: 18834327 PMCID: PMC2819334 DOI: 10.1089/ars.2008.2115] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/06/2008] [Accepted: 07/10/2008] [Indexed: 12/13/2022]
Abstract
Cellular interaction in blood vessels is maintained by multiple communication pathways, including gap junctions. They consist of intercellular channels ensuring direct interaction between endothelial and smooth muscle cells and the synchronization of their behavior along the vascular wall. Gap-junction channels arise from the docking of two hemichannels or connexons, formed by the assembly of six connexins, and achieve direct cellular communication by allowing the transport of small metabolites, second messengers, and ions between two adjacent cells. Physiologic variations in connexin expression are observed along the vascular tree, with most common connexins being Cx37, Cx40, and Cx43. Changes in the level of expression of connexins have been correlated to the development of vascular disease, such as hypertension, atherosclerosis, or restenosis. Recent studies on connexin-deficient mice highlighted key roles of these communication pathways in the development of these pathologies and confirmed the need for targeted pharmacologic approaches for their prevention and treatment. The aim of this issue is to review the current knowledge on the implication of gap junctions in vascular function and most common cardiovascular diseases.
Collapse
Affiliation(s)
- Anne C. Brisset
- Division of Cardiology, Geneva University Hospitals, Geneva, Switzerland
- Department of Pediatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Brant E. Isakson
- Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brenda R. Kwak
- Division of Cardiology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
33
|
The vascular effects of rotigaptide in vivo in man. Biochem Pharmacol 2008; 76:1194-200. [DOI: 10.1016/j.bcp.2008.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/12/2008] [Accepted: 08/18/2008] [Indexed: 11/22/2022]
|
34
|
Bellien J, Thuillez C, Joannides R. Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans. Fundam Clin Pharmacol 2008; 22:363-77. [DOI: 10.1111/j.1472-8206.2008.00610.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Isakson BE, Best AK, Duling BR. Incidence of protein on actin bridges between endothelium and smooth muscle in arterioles demonstrates heterogeneous connexin expression and phosphorylation. Am J Physiol Heart Circ Physiol 2008; 294:H2898-904. [PMID: 18408134 DOI: 10.1152/ajpheart.91488.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although much physiology in resistance vessels has been attributed to the cytoplasmic connection between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), little is known of the protein expression between the two cell types. In an attempt to identify the proteins between ECs and VSMCs, mouse cremaster arterioles were stained with phalloidin-Alexa 594 and viewed on a confocal microscope that resolved "actin bridges" within the internal elastic lamina between ECs and VSMCs. To determine the incidence of protein, the pixel intensity from the antibodies on actin bridges were compared with the pixel intensity from antibodies within ECs or VSMCs. N-cadherin, desmin, connexin (Cx)40, and Cx43 and phosphorylated Cx43 at serine-368 were identified on actin bridges, but NG2, CD31, and Cx45 were not evident. Cx37 expression was more variable than the other connexins examined. Using this method on rat mesentery, we confirm the previously published predominance of Cx37 and Cx40 at the myoendothelial junction that was determined using electron microscopy. We conclude that this new method represents an important screening mechanism in which to rapidly test for protein expression between ECs and VSMCs and possibly a first-step in quantifying protein expression at the myoendothelial junction.
Collapse
Affiliation(s)
- Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Science System, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
36
|
Luksha L, Nisell H, Luksha N, Kublickas M, Hultenby K, Kublickiene K. Endothelium-derived hyperpolarizing factor in preeclampsia: heterogeneous contribution, mechanisms, and morphological prerequisites. Am J Physiol Regul Integr Comp Physiol 2008; 294:R510-9. [DOI: 10.1152/ajpregu.00458.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that in preeclampsia (PE), contribution of endothelium-derived hyperpolarizing factor (EDHF) and the mechanism/s of its action differ from that in normal pregnancy (NP). We aimed to assess endothelial function and morphology in arteries from NP and PE with particular focus on EDHF. Arteries (≈200 μm) were dissected from subcutaneous fat biopsies obtained from women undergoing cesarean section. With the use of wire myography, responses to the endothelium-dependent agonist bradykinin (BK) were determined before and after inhibition of pathways relevant to EDHF activity. The overall responses to BK in arteries from PE ( n = 13) and NP ( n = 17) were similar. However, in PE, EDHF-mediated relaxation was reduced ( P < 0.05). All women within the PE group were divided into two subgroups: with more ( group 1) or less ( group 2) than 50% reduction of EDHF-typed responses after 18-α-glycyrrhetinic acid (an inhibitor of myoendothelial gap junctions, MEGJs). The division showed that 1) MEGJs are principally involved when the EDHF contribution is reduced; and 2) when the EDHF contribution is similar to that in NP, the H2O2 and/or cytochrome P-450 epoxygenase products of arachidonic acid (AA), along with MEGJs, confer EDHF-mediated relaxation. In contrast, MEGJs were the main pathway for EDHF in NP. The abundant presence of MEGJs in arteries from NP but deficiency of them in PE was observed using transmission electron microscopy. We conclude that PE is associated with heterogeneous contribution of EDHF, and the mechanism behind EDHF-typed responses is mediated either by MEGJs alone or in combination with H2O2 or cytochrome P-450 epoxygenase metabolites of AA.
Collapse
|
37
|
Berhane Y, Bailey SR, Putignano C, Elliott J. Characterization of agonist-induced endothelium-dependent vasodilatory responses in the vascular bed of the equine digit. J Vet Pharmacol Ther 2008; 31:1-8. [PMID: 18177312 DOI: 10.1111/j.1365-2885.2007.00912.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of endothelium-derived relaxing factors was studied in the regulation of vascular responses in the Krebs perfused equine isolated digit. Perfusion pressure was recorded in response to bolus doses of 5-hydroxytryptamine (6 nmol) alone or co-administered with carbachol (CCh; 0.2 micromol), bradykinin (BK; 0.2 nmol), substance P (SP; 0.2 nmol) or sodium nitroprusside (SNP; 0.2 micromol). N(omega)-Nitro-L-Arginine methyl ester hydrochloride (L-NAME; 300 microm) caused partial but significant inhibition of CCh-induced vasodilatory response, whereas BK and SP-induced responses were resistant to L-NAME. High potassium (K(+), 30 mm) and the cytochrome P-450 (CYP) epoxygenase inhibitor, clotrimazole (10 microm) plus L-NAME (100 microm), completely abolished the CCh, BK and SP-induced vasodilatory responses, whereas the response to SNP was unaffected. In contrast, the L-NAME-resistant proportion of CCh, BK and SP-induced vasodilatory response was not inhibited by the highly selective CYP2C9 inhibitor, sulphaphenazole (10 microm). The cyclo-oxygenase inhibitor, ibuprofen (10 microm) did not affect the CCh, BK and SP-induced responses. These data demonstrate that CCh, BK and SP-induced relaxation in the equine digit involve a combination of the NO and endothelium-derived hyperpolarizing factor (EDHF) pathways. These results do not support the evidence for the involvement of CYP-derived epoxyeicosatrienoic acids and the exact nature of EDHF in the equine digit remains to be established.
Collapse
Affiliation(s)
- Y Berhane
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK.
| | | | | | | |
Collapse
|
38
|
Abstract
Connexins form intercellular channels that span two plasma membranes and directly couple the cytoplasm of adjacent cells. This morphological contact enables the exchange of ions, second messengers, and metabolites, which act to regulate several biological functions. This review focuses on the significance of connexins in the renal circulation. Cells of the renal vasculature are coupled and express connexins in a vessel and cell-specific pattern. This finding indicates that renal connexins likely play an important role in renal autoregulatory mechanisms (Bayliss effect, tubuloglomerular feedback) and in the control of vasomotor responses. The described coupling of endothelial and vascular smooth muscle cells in the afferent arterioles may also contribute to the communication of neighboring nephrons, called 'nephron coupling.' Furthermore, deletion of the Cx40 and Cx43 genes results in an altered functional behavior of the renin-producing cells, suggesting involvement of these connexin isoforms in the regulation of renin secretion and synthesis. In addition, this review discusses the role of renal connexin expression in the pathogenesis of hypertension or diabetes.
Collapse
Affiliation(s)
- C Wagner
- Physiologisches Institut der Universität Regensburg, Regensburg, Germany.
| |
Collapse
|
39
|
Ceroni L, Ellis A, Wiehler WB, Jiang YF, Ding H, Triggle CR. Calcium-activated potassium channel and connexin expression in small mesenteric arteries from eNOS-deficient (eNOS-/-) and eNOS-expressing (eNOS+/+) mice. Eur J Pharmacol 2007; 560:193-200. [PMID: 17300779 DOI: 10.1016/j.ejphar.2007.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 12/14/2006] [Accepted: 01/08/2007] [Indexed: 11/20/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF), notably in the microcirculation, plays an important role in the regulation of vascular tone. The cellular events that mediate EDHF are critically dependent, in a vessel dependent manner, on small conductance calcium-activated potassium channels (SK) and intermediate conductance calcium-activated potassium channels (IK) as well as the presence of the gap junction connexins 37, 40, and 43. We hypothesized that the expression levels of SK, IK, as well as vascular connexins, notably 37, 40 and 43 but, potentially, connexin 45, would show correlation with the contribution of EDHF to acetylcholine-mediated vasodilatation as well as, in the absence of endothelial-derived NO, higher expression levels in eNOS(-/-) mice. Wire myograph studies were performed to confirm the contribution of EDHF to endothelium-dependent relaxation in 1st, 2nd and 3rd order small mesenteric arteries from C57BL/6J eNOS-expressing (eNOS(+/+)) and eNOS-deficient C57BL/6J (eNOS(-/-)) mice. Small mesenteric arteries, as well as the branch points between 1st and 2nd and 2nd and 3rd order vessels, were analysed for the expression of mRNA for SK1, SK2, SK3, IK and large conductance calcium-activated potassium channels (BK) and comparable studies were performed for connexins 37, 40, 43 and 45. Although the contribution of EDHF to endothelium-dependent relaxation was significantly greater in the 3rd order vessels from the eNOS(+/+) the real-time (RT) polymerase chain reaction (PCR) data showed no differences for the expression levels of mRNA for any of the channel subtypes or the connexins within the small mesenteric arteries from either the eNOS(+/+) or eNOS(-/-) mice, nor, based on RT PCR analysis, were there differences in expression of the potassium channels studied in the branch points versus 1st, 2nd or 3rd order vessels. These data suggest that neither the gene expression of calcium-activated potassium channels nor vascular connexins are modulated by NO; however, their functional contribution to endothelium-dependent relaxation may be modulated by other physiological parameters.
Collapse
Affiliation(s)
- Lisa Ceroni
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Endothelium-dependent relaxations are attributed to the release of various factors, such as nitric oxide, carbon monoxide, reactive oxygen species, adenosine, peptides and arachidonic acid metabolites derived from the cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases pathways. The hyperpolarization of the smooth muscle cell can contribute to or be an integral part of the mechanisms underlying the relaxations elicited by virtually all these endothelial mediators. These endothelium-derived factors can activate different families of K(+) channels of the vascular smooth muscle. Other events associated with the hyperpolarization of both the endothelial and the vascular smooth muscle cells (endothelium-derived hyperpolarizing factor (EDHF)-mediated responses) contribute also to endothelium-dependent relaxations. These responses involve an increase in the intracellular Ca(2+) concentration of the endothelial cells followed by the opening of Ca(2+)-activated K(+) channels of small and intermediate conductance and the subsequent hyperpolarization of these cells. Then, the endothelium-dependent hyperpolarization of the underlying smooth muscle cells can be evoked by direct electrical coupling through myoendothelial junctions and/or the accumulation of K(+) ions in the intercellular space between the two cell types. These various mechanisms are not necessarily mutually exclusive and, depending on the vascular bed and the experimental conditions, can occur simultaneously or sequentially, or also may act synergistically.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | | |
Collapse
|