1
|
Krause PN, McGeorge G, McPeek JL, Khalid S, Nelin LD, Liu Y, Chen B. Pde3a and Pde3b regulation of murine pulmonary artery smooth muscle cell growth and metabolism. Physiol Rep 2024; 12:e70089. [PMID: 39435735 PMCID: PMC11494452 DOI: 10.14814/phy2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024] Open
Abstract
A role for metabolically active adipose tissue in pulmonary hypertension (PH) pathogenesis is emerging. Alterations in cellular metabolism in metabolic syndrome are triggers of PH-related vascular dysfunction. Metabolic reprogramming in proliferative pulmonary vascular cells causes a metabolic switch from oxidative phosphorylation to glycolysis. PDE3A and PDE3B subtypes in the regulation of metabolism in pulmonary artery smooth muscle cells (PASMC) are poorly understood. We previously found that PDE3A modulates the cellular energy sensor, AMPK, in human PASMC. We demonstrate that global Pde3a knockout mice have right ventricular (RV) hypertrophy, elevated RV systolic pressures, and metabolic dysfunction with elevated serum free fatty acids (FFA). Therefore, we sought to delineate Pde3a/Pde3b regulation of metabolic pathways in PASMC. We found that PASMC Pde3a deficiency, and to a lesser extent Pde3b deficiency, downregulates AMPK, CREB and PPARγ, and upregulates pyruvate kinase dehydrogenase expression, suggesting decreased oxidative phosphorylation. Interestingly, siRNA Pde3a knockdown in adipocytes led to elevated FFA secretion. Furthermore, PASMC exposed to siPDE3A-transfected adipocyte media led to decreased α-SMA, AMPK and CREB phosphorylation, and greater viable cell numbers compared to controls under the same conditions. These data demonstrate that deficiencies of Pde3a and Pde3b alter pathways that affect cell growth and metabolism in PASMC.
Collapse
MESH Headings
- Animals
- Male
- Mice
- AMP-Activated Protein Kinases/metabolism
- AMP-Activated Protein Kinases/genetics
- Cell Proliferation
- Cells, Cultured
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/cytology
Collapse
Affiliation(s)
- Paulina N. Krause
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Gabrielle McGeorge
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Jennifer L. McPeek
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Sidra Khalid
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Leif D. Nelin
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Yusen Liu
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Bernadette Chen
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| |
Collapse
|
2
|
Hu L, Yu Y, Shen Y, Huang H, Lin D, Wang K, Yu Y, Li K, Cao Y, Wang Q, Sun X, Qiu Z, Wei D, Shen B, Chen J, Fulton D, Ji Y, Wang J, Chen F. Ythdf2 promotes pulmonary hypertension by suppressing Hmox1-dependent anti-inflammatory and antioxidant function in alveolar macrophages. Redox Biol 2023; 61:102638. [PMID: 36801705 PMCID: PMC9975317 DOI: 10.1016/j.redox.2023.102638] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by irreversible pulmonary vascular remodeling (PVR) that causes right ventricular failure and death. The early alternative activation of macrophages is a critical event in the development of PVR and PH, but the underlying mechanisms remain elusive. Previously we have shown that N6-methyladenosine (m6A) modifications of RNA contribute to phenotypic switching of pulmonary artery smooth muscle cells and PH. In the current study, we identify Ythdf2, an m6A reader, as an important regulator of pulmonary inflammation and redox regulation in PH. In a mouse model of PH, the protein expression of Ythdf2 was increased in alveolar macrophages (AMs) during the early stages of hypoxia. Mice with a myeloid specific knockout of Ythdf2 (Ythdf2Lyz2 Cre) were protected from PH with attenuated right ventricular hypertrophy and PVR compared to control mice and this was accompanied by decreased macrophage polarization and oxidative stress. In the absence of Ythdf2, heme oxygenase 1 (Hmox1) mRNA and protein expression were significantly elevated in hypoxic AMs. Mechanistically, Ythdf2 promoted the degradation of Hmox1 mRNA in a m6A dependent manner. Furthermore, an inhibitor of Hmox1 promoted macrophage alternative activation, and reversed the protection from PH seen in Ythdf2Lyz2 Cre mice under hypoxic exposure. Together, our data reveal a novel mechanism linking m6A RNA modification with changes in macrophage phenotype, inflammation and oxidative stress in PH, and identify Hmox1 as a downstream target of Ythdf2, suggesting that Ythdf2 may be a therapeutic target in PH.
Collapse
Affiliation(s)
- Li Hu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyao Shen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Huijie Huang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Donghai Lin
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Kai Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxuan Sun
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dong Wei
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingyu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi, China
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Maruyama H, Sakai S, Dewachter L, Dewachter C, Rondelet B, Naeije R, Ieda M. Prostacyclin receptor agonists induce DUSP1 to inhibit pulmonary artery smooth muscle cell proliferation. Life Sci 2023; 315:121372. [PMID: 36608870 DOI: 10.1016/j.lfs.2023.121372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
AIMS Upregulated p38MAPK signaling is implicated in the accelerated proliferation of pulmonary artery smooth muscle cells (PA-SMCs) and the pathogenesis of pulmonary artery remodeling observed in pulmonary arterial hypertension (PAH). Previously, we reported that after endothelin-1 (ET-1) pretreatment, bone morphogenetic protein 2 (BMP2) activates p38MAPK signaling and accelerates PA-SMC proliferation. The activity of p38MAPK signaling is tightly regulated by the inactivation of dual-specificity phosphatase 1 (DUSP1). Activated p38MAPK induces DUSP1 expression, forming a negative feedback loop. Prostacyclin IP receptor agonists (prostacyclin and selexipag) are used to treat PAH. In this study, we aimed to verify whether IP receptor agonists affect DUSP1 expression and accelerate the proliferation of PA-SMCs. MAIN METHODS PA-SMCs were treated with BMP2, ET-1, prostacyclin, and MRE-269, an active metabolite of selexipag, either alone or in combination. We quantified mRNA expressions using real-time quantitative polymerase chain reaction. Pulmonary artery specimens and PA-SMCs were obtained during lung transplantation in patients with PAH. KEY FINDINGS Both prostacyclin and MRE-269 increased DUSP1 expression. Combined treatment with BMP2 and ET-1 induced cyclin D1 and DUSP1 expression and increased PA-SMC proliferation. MRE-269 attenuated BMP2/ET-1-induced cell proliferation. ET-1 increased DUSP1 expression in PA-SMCs from control patients but not in PA-SMCs from patients with PAH. SIGNIFICANCE This study showed that the p38MAPK/DUSP1 negative feedback loop is impaired in PAH, contributing to unregulated p38MAPK activation and PA-SMC hyperplasia. IP receptor agonist MRE-269 increases DUSP1 expression and inhibit p38MAPK-mediated PA-SMC proliferation. Future elucidation of the detailed mechanism underlying reduced DUSP1 expression would be informative for PAH treatment.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- Department of Cardiology, National Hospital Organization Kasumigaura Medical Center, 300-8585 Tsuchiura, Japan; Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, 305-8577 Tsukuba, Japan; Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Satoshi Sakai
- Faculty of Health Science, Tsukuba University of Technology, 305-8520 Tsukuba, Japan
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium; Department of Cardiology, Erasme Academic Hospital, 1070 Brussels, Belgium
| | - Benoit Rondelet
- Department of Cardiac, Vascular and Thoracic Surgery, CHU UCL Namur, 5530 Yvoir, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Masaki Ieda
- Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, 305-8577 Tsukuba, Japan
| |
Collapse
|
4
|
Sladeček S, Radaszkiewicz KA, Bőhmová M, Gybeľ T, Radaszkiewicz TW, Pacherník J. Dual specificity phosphatase 7 drives the formation of cardiac mesoderm in mouse embryonic stem cells. PLoS One 2022; 17:e0275860. [PMID: 36227898 PMCID: PMC9560500 DOI: 10.1371/journal.pone.0275860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phosphatases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyrosine residues within the same substrate. DUSP7 has been linked to the negative regulation of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic development, where their duration, magnitude, and spatiotemporal activity must be strictly controlled by other proteins, among others by DUSPs. In this study, we focused on the effect of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We showed that even though DUSP7 knock-out ES cells do retain some of their basic characteristics, when it comes to differentiation, they preferentially differentiate towards neural cells, while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm during the in vitro differentiation of ES cells.
Collapse
Affiliation(s)
- Stanislava Sladeček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Bőhmová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Gybeľ
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
5
|
Tettey A, Jiang Y, Li X, Li Y. Therapy for Pulmonary Arterial Hypertension: Glance on Nitric Oxide Pathway. Front Pharmacol 2021; 12:767002. [PMID: 34867394 PMCID: PMC8633825 DOI: 10.3389/fphar.2021.767002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with a resultant increase of the mean pulmonary arterial pressure, right ventricular hypertrophy and eventual death. Research in recent years has produced various therapeutic options for its clinical management but the high mortality even under treatment remains a big challenge attributed to the complex pathophysiology. Studies from clinical and non-clinical experiments have revealed that the nitric oxide (NO) pathway is one of the key pathways underlying the pathophysiology of PAH. Many of the essential drugs used in the management of PAH act on this pathway highlighting its significant role in PAH. Meanwhile, several novel compounds targeting on NO pathway exhibits great potential to become future therapy medications. Furthermore, the NO pathway is found to interact with other crucial pathways. Understanding such interactions could be helpful in the discovery of new drug that provide better clinical outcomes.
Collapse
Affiliation(s)
- Abraham Tettey
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Yujie Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
6
|
Kumari P, Wadhwa M, Chauhan G, Alam S, Roy K, Kumar Jha P, Kishore K, Ray K, Kumar S, Nag TC, Panjwani U. Hypobaric hypoxia induced fear and extinction memory impairment and effect of Ginkgo biloba in its amelioration: Behavioral, neurochemical and molecular correlates. Behav Brain Res 2020; 387:112595. [PMID: 32194184 DOI: 10.1016/j.bbr.2020.112595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
Regulated fear and extinction memory is essential for balanced behavioral response. Limbic brain regions are susceptible to hypobaric hypoxia (HH) and are putative target for fear extinction deficit and dysregulation. The present study aimed to examine the effect of HH and Ginkgo biloba extract (GBE) on fear and extinction memory with the underlying mechanism. Adult male Sprague-Dawley rats were evaluated for fear extinction and anxious behavior following GBE administration during HH exposure. Blood and tissue (PFC, hippocampus and amygdala) samples were collected for biochemical, morphological and molecular studies. Results revealed deficit in contextual and cued fear extinction following 3 days of HH exposure. Increased corticosterone, glutamate with decreased GABA level was found with marked pyknosis, decrease in apical dendritic length and number of functional spines. Decline in mRNA expression level of synaptic plasticity genes and immunoreactivity of BDNF, synaptophysin, PSD95, spinophilin was observed following HH exposure. GBE administration during HH exposure improved fear and extinction memory along with decline in anxious behavior. It restored corticosterone, glutamate and GABA levels with an increase in apical dendritic length and number of functional spines with a reduction in pyknosis. It also improved mRNA expression level and immunoreactivity of neurotrophic and synaptic proteins. The present study is the first which demonstrates fear extinction deficit and anxious behavior following HH exposure. GBE administration ameliorated fear and extinction memory dysregulation by restoration of neurotransmitter levels, neuronal pyknosis and synaptic connections along with improved neurotrophic and synaptic protein expressions.
Collapse
Affiliation(s)
- Punita Kumari
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Meetu Wadhwa
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Garima Chauhan
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Shahnawaz Alam
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Koustav Roy
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Prabhash Kumar Jha
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Krishna Kishore
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Koushik Ray
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Sanjeev Kumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Usha Panjwani
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
7
|
Chen LL, Zmuda EJ, Talavera MM, Frick J, Brock GN, Liu Y, Klebanoff MA, Trittmann JK. Dual-specificity phosphatase (DUSP) genetic variants predict pulmonary hypertension in patients with bronchopulmonary dysplasia. Pediatr Res 2020; 87:81-87. [PMID: 31330530 PMCID: PMC6962530 DOI: 10.1038/s41390-019-0502-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/10/2019] [Accepted: 07/10/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) in patients with bronchopulmonary dysplasia (BPD) results from vasoconstriction and/or vascular remodeling, which can be regulated by mitogen-activated protein kinases (MAPKs). MAPKs are deactivated by dual-specificity phosphatases (DUSPs). We hypothesized that single-nucleotide polymorphisms (SNPs) in DUSP genes could be used to predict PH in BPD. METHODS Preterm infants diagnosed with BPD (n = 188) were studied. PH was defined by echocardiographic criteria. Genomic DNA isolated from patient blood samples was analyzed for 31 SNPs in DUSP genes. Clinical characteristics and minor allele frequencies were compared between BPD-PH (cases) and BPD-without PH (control) groups. Biomarker models to predict PH in BPD using clinical and SNP data were tested by calculations of area under the ROC curve. RESULTS In our BPD cohort, 32% (n = 61) had PH. Of the DUSP SNPs evaluated, DUSP1 SNP rs322351 was less common, and DUSP5 SNPs rs1042606 and rs3793892 were more common in cases than in controls. The best fit biomarker model combines clinical and DUSP genetic data with an area under the ROC curve of 0.76. CONCLUSION We identified three DUSP SNPs as potential BPD-PH biomarkers. Combining clinical and DUSP genetic data yields the most robust predictor for PH in BPD.
Collapse
Affiliation(s)
- Lauren L Chen
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Erik J Zmuda
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Maria M Talavera
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jessica Frick
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Guy N Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yusen Liu
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mark A Klebanoff
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jennifer K Trittmann
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
8
|
Das M, Zawada WM, West J, Stenmark KR. JNK2 regulates vascular remodeling in pulmonary hypertension. Pulm Circ 2018; 8:2045894018778156. [PMID: 29718758 PMCID: PMC6055330 DOI: 10.1177/2045894018778156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2018] [Indexed: 01/04/2023] Open
Abstract
Pulmonary arterial (PA) wall modifications are key pathological features of pulmonary hypertension (PH). Although such abnormalities correlate with heightened phosphorylation of c-Jun N-terminal kinases 1/2 (JNK1/2) in a rat model of PH, the contribution of specific JNK isoforms to the pathophysiology of PH is unknown. Hence, we hypothesized that activation of either one, or both JNK isoforms regulates PA remodeling in PH. We detected increased JNK1/2 phosphorylation in the thickened vessels of PH patients' lungs compared to that in lungs of healthy individuals. JNK1/2 phosphorylation paralleled a marked reduction in MAP kinase phosphatase 1 (JNK dephosphorylator) expression in patients' lungs. Association of JNK1/2 activation with vascular modification was confirmed in the calf model of severe hypoxia-induced PH. To ascertain the role of each JNK isoform in pathophysiology of PH, wild-type (WT), JNK1 null (JNK1-/-), and JNK2 null (JNK2-/-) mice were exposed to chronic hypoxia (10% O2 for six weeks) to develop PH. In hypoxic WT lungs, an increase in JNK1/2 phosphorylation was associated with PH-like pathology. Hallmarks of PH pathophysiology, i.e. excessive accumulation of extracellular matrix and vessel muscularization with medial wall thickening, was also detected in hypoxic JNK1-/- lungs, but not in hypoxia-exposed JNK2-/- lungs. However, hypoxia-induced increases in right ventricular systolic pressure (RVSP) and in right ventricular hypertrophy (RVH) were similar in all three genotypes. Our findings suggest that JNK2 participates in PA remodeling (but likely not in vasoconstriction) in murine hypoxic PH and that modulating JNK2 actions might quell vascular abnormalities and limit the course of PH.
Collapse
Affiliation(s)
- Mita Das
- Department of Internal Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - W. Michael Zawada
- Department of Basic Medical Sciences, A. T. Still University, School of Osteopathic Medicine Arizona, Mesa, AZ, USA
| | - James West
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
10
|
Arginase Inhibition Reverses Monocrotaline-Induced Pulmonary Hypertension. Int J Mol Sci 2017; 18:ijms18081609. [PMID: 28757567 PMCID: PMC5578001 DOI: 10.3390/ijms18081609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 01/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous disorder associated with a poor prognosis. Thus, the development of novel treatment strategies is of great interest. The enzyme arginase (Arg) is emerging as important player in PH development. The aim of the current study was to determine the expression of ArgI and ArgII as well as the effects of Arg inhibition in a rat model of PH. PH was induced in 35 Sprague–Dawley rats by monocrotaline (MCT, 60 mg/kg as single-dose). There were three experimental groups: sham-treated controls (control group, n = 11), MCT-induced PH (MCT group, n = 11) and MCT-induced PH treated with the Arg inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA; MCT/NorNoha group, n = 13). ArgI and ArgII expression was determined by immunohistochemistry and Western blot. Right ventricular systolic pressure (RVPsys) was measured and lung tissue remodeling was determined. Induction of PH resulted in an increase in RVPsys (81 ± 16 mmHg) compared to the control group (41 ± 15 mmHg, p = 0.002) accompanied by a significant elevation of histological sum-score (8.2 ± 2.4 in the MCT compared to 1.6 ± 1.6 in the control group, p < 0.001). Both, ArgI and ArgII were relevantly expressed in lung tissue and there was a significant increase in the MCT compared to the control group (p < 0.01). Arg inhibition resulted in a significant reduction of RVPsys to 52 ± 19 mmHg (p = 0.006) and histological sum-score to 5.8 ± 1.4 compared to the MCT group (p = 0.022). PH leads to increased expression of Arg. Arg inhibition leads to reduction of RVPsys and diminished lung tissue remodeling and therefore represents a potential treatment strategy in PH.
Collapse
|
11
|
Pugliese SC, Kumar S, Janssen WJ, Graham BB, Frid MG, Riddle SR, El Kasmi KC, Stenmark KR. A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension. THE JOURNAL OF IMMUNOLOGY 2017; 198:4802-4812. [PMID: 28500078 DOI: 10.4049/jimmunol.1601692] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/12/2017] [Indexed: 01/10/2023]
Abstract
Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of PH in combination with FACS to quantify and isolate lung macrophages from two compartments over time and characterize their programing via RNA sequencing approaches. In response to hypoxia, we found an early increase in macrophage number that was restricted to the interstitial/perivascular compartment, without recruitment of macrophages to the alveolar compartment or changes in the number of resident alveolar macrophages. Principal component analysis demonstrated significant differences in overall gene expression between alveolar and interstitial macrophages (IMs) at baseline and after 4 and 14 d hypoxic exposure. Alveolar macrophages at both day 4 and 14 and IMs at day 4 shared a conserved hypoxia program characterized by mitochondrial dysfunction, proinflammatory gene activation, and mTORC1 signaling, whereas IMs at day 14 demonstrated a unique anti-inflammatory/proreparative programming state. We conclude that the pathogenesis of vascular remodeling in hypoxic PH involves an early compartment-independent activation of lung macrophages toward a conserved hypoxia program, with the development of compartment-specific programs later in the course of the disease. Thus, harnessing time- and compartment-specific differences in lung macrophage polarization needs to be considered in the therapeutic targeting of macrophages in hypoxic PH and potentially other inflammatory lung diseases.
Collapse
Affiliation(s)
- Steven C Pugliese
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO 80045
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - William J Janssen
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO 80045.,Department of Medicine, National Jewish Health, Denver, CO 80206
| | - Brian B Graham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO 80045
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Suzette R Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Karim C El Kasmi
- Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
12
|
Talavera MM, Nuthakki S, Cui H, Jin Y, Liu Y, Nelin LD. Immunostimulated Arginase II Expression in Intestinal Epithelial Cells Reduces Nitric Oxide Production and Apoptosis. Front Cell Dev Biol 2017; 5:15. [PMID: 28299311 PMCID: PMC5331049 DOI: 10.3389/fcell.2017.00015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
Increased production of nitric oxide (NO) and subsequent local cytotoxicity to mucosal epithelial cells has been proposed as a putative mechanism involved in the development of necrotizing enterocolitis (NEC). Intestinal epithelial cells (IECs) metabolize L-arginine to either nitric oxide (NO) by NO synthase (NOS) or to L-ornithine and urea by arginase. L-ornithine is the first step in polyamine synthesis important for cell proliferation, while NO production can lead to apoptosis. We hypothesized that in IECs immunostimulation increases both NOS and arginase expression, and that arginase activity mitigates NO production and apoptosis. Rat intestinal epithelial cells (rIEC-6) were immunostimulated by either incubation with lipopolysaccharide (LPS) alone for 24 h or by incubation with conditioned media (CM) for 24 h. CM was obtained from RAW 264.7 cells (a macrophage cell line) treated with LPS (E. coli 0127:B8; 1 μg/ml) for 4 h. The rIEC-6 stimulated with LPS or with CM had significantly higher levels of inducible NOS (iNOS) protein, NO production, and arginase II protein than did the control cells. Direct LPS stimulation of rIEC-6 produced a less robust increase in iNOS expression and NO (represented as nitrite percent of control) than did CM stimulation. Inhibition of arginase using Nω hydroxyl-L-arginine (NOHA) further increased stimulated NO production in rIEC-6. Viable cell numbers were significantly lower in CM stimulated cells after 24 h than in controls, and inhibition of arginase activity with NOHA resulted in a further significant decrease in viable cell numbers. We conclude that immunostimulated arginase expression of rIEC-6 cells tempers cytokine-induced iNOS-derived NO production and apoptosis.
Collapse
Affiliation(s)
- Maria M Talavera
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| | - Sushma Nuthakki
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital Houston, TX, USA
| | - Hongmei Cui
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Yi Jin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital Columbus, OH, USA
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's HospitalColumbus, OH, USA; Department of Pediatrics, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
13
|
Iwona BS. Growth Factors in the Pathogenesis of Retinal Neurodegeneration in Diabetes Mellitus. Curr Neuropharmacol 2017; 14:792-804. [PMID: 27528260 PMCID: PMC5333593 DOI: 10.2174/1570159x14666160813182009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/12/2015] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration is an initial process in the development of diabetic retinopathy (DR). High quantities of glutamate, oxidative stress, induction of the renin-angiotensin system (RAS) and elevated levels of RAGE are crucial elements in the retinal neurodegeneration caused by diabetes mellitus. At least, there is emerging proof to indicate that the equilibrium between the neurotoxic and neuroprotective components will affect the state of the retinal neurons. Somatostatin (SST), pigment epithelium-derived factor (PEDF), and erythropoietin (Epo) are endogenous neuroprotective peptides that are decreased in the eye of diabetic persons and play an essential role in retinal homeostasis. On the other hand, insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) are pivotal proteins which participate in the development of new capillaries and finally cause damage to the retinal neurons. During recent years, our knowledge about the function of growth factors in the pathogenesis of retinal neurodegeneration has increased. However, intensive investigations are needed to clarify the basic processes that contribute to retinal neurodegeneration and its association with damage to the capillary blood vessels. The objective of this review article is to show new insights on the role of neurotransmitters and growth factors in the pathogenesis of diabetic retinopathy. The information contained in this manuscript may provide the basis for novel strategies based on the factors of neurodegeneration to diagnose, prevent and treat DR in its earliest phases.
Collapse
Affiliation(s)
- Ben-Skowronek Iwona
- Department Pediatric Endocrinology and Diabetology, Medical University of Lublin, ul. Prof. A. Gebali 6, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Liu R, Molkentin JD. Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). J Mol Cell Cardiol 2016; 101:44-49. [PMID: 27575022 PMCID: PMC5154921 DOI: 10.1016/j.yjmcc.2016.08.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a critical role in regulating cardiac hypertrophy and remodeling in response to increased workload or pathological insults. The spatiotemporal activities and inactivation of MAPKs are tightly controlled by a family of dual-specificity MAPK phosphatases (DUSPs). Over the past 2 decades, we and others have determined the critical role for selected DUSP family members in controlling MAPK activity in the heart and the ensuing effects on ventricular growth and remodeling. More specifically, studies from mice deficient for individual Dusp genes as well as heart-specific inducible transgene-mediated overexpression have implicated select DUSPs as essential signaling effectors in the heart that function by dynamically regulating the level, subcellular and temporal activities of the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and p38 MAPKs. This review summarizes recent literature on the physiological and pathological roles of MAPK-specific DUSPs in regulating MAPK signaling in the heart and the effect on cardiac growth and remodeling.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
15
|
Huetsch JC, Suresh K, Bernier M, Shimoda LA. Update on novel targets and potential treatment avenues in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L811-L831. [PMID: 27591245 PMCID: PMC5130539 DOI: 10.1152/ajplung.00302.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition marked by a combination of constriction and remodeling within the pulmonary vasculature. It remains a disease without a cure, as current treatments were developed with a focus on vasodilatory properties but do not reverse the remodeling component. Numerous recent advances have been made in the understanding of cellular processes that drive pathologic remodeling in each layer of the vessel wall as well as the accompanying maladaptive changes in the right ventricle. In particular, the past few years have yielded much improved insight into the pathways that contribute to altered metabolism, mitochondrial function, and reactive oxygen species signaling and how these pathways promote the proproliferative, promigratory, and antiapoptotic phenotype of the vasculature during PH. Additionally, there have been significant advances in numerous other pathways linked to PH pathogenesis, such as sex hormones and perivascular inflammation. Novel insights into cellular pathology have suggested new avenues for the development of both biomarkers and therapies that will hopefully bring us closer to the elusive goal: a therapy leading to reversal of disease.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Meghan Bernier
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
16
|
Qualls JE, Murray PJ. Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Semin Immunopathol 2016; 38:139-52. [PMID: 26490974 PMCID: PMC4779414 DOI: 10.1007/s00281-015-0534-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/01/2015] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) granulomas are compact, organized agglomerations of infected and uninfected macrophages, T cells, neutrophils, and other immune cells. Within the granuloma, several unique metabolic adaptations occur to modify the behavior of immune cells, potentially favoring bacterial persistence balanced with protection against immunopathology. These include the induction of arginase-1 in macrophages to temper nitric oxide (NO) production and block T cell proliferation, inhibition of oxygen-requiring NO production in hypoxic regions, and induction of tryptophan-degrading enzymes that modify T cell proliferation and function. The spatial and time-dependent organization of granulomas further influences immunometabolism, for example through lactate production by activated macrophages, which can induce arginase-1. Although complex, the metabolic changes in and around TB granulomas can be potentially modified by host-directed therapies. While elimination of the TB bacilli is often the goal of any anti-TB therapy, host-directed approaches must also account for the possibility of immunopathologic damage to the lung.
Collapse
Affiliation(s)
- Joseph E Qualls
- Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Peter J Murray
- Department of Infectious Diseases and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
Mitogen-activated protein kinase phosphatase-1 prevents lipopolysaccharide-induced apoptosis in immature rat intestinal epithelial cells. Pediatr Res 2015; 78:128-36. [PMID: 25950450 PMCID: PMC7500060 DOI: 10.1038/pr.2015.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/31/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Necrotizing enterocolitis is characterized by intestinal inflammation and epithelial barrier dysfunction. Mitogen-activated protein kinase (MAPK) phosphatase (MKP)-1 plays a pivotal role in the feedback control of MAPK signaling, which regulates inflammation and apoptosis. We hypothesized that MKP-1 prevents lipopolysaccharide (LPS)-induced apoptosis in intestinal epithelial cells. METHODS Western blot analysis and qPCR were used to assess MKP-1, MAPK (p38, extracellular signal-regulated kinase (ERK), and c-Jun N terminal kinases (JNK)), caspase 3, caspase 9, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 expression levels in rIEC-6 enterocytes. MKP-1 expression was inhibited using small interfering RNA (siRNA) methodology. Viable cell number was determined using trypan blue exclusion. RESULTS LPS stimulation led to activation of p38, JNK, and ERK, and induction of MKP-1 mRNA and protein expression. The induction of MKP-1 was associated with a decrease in p38 phosphorylation, and knockdown of MKP-1 prolonged p38 phosphorylation. While LPS stimulation significantly attenuated proliferation of rIEC-6 cells transfected with scramble siRNA, LPS stimulation resulted in a net decrease in viable cell number in cells transfected with MKP-1 siRNA. Following LPS stimulation, MKP-1 knockdown resulted in greater caspase 3 and 9 activities and greater proinflammatory cytokine (TNF-α, COX-2) expression than in cells transfected with scramble siRNA. CONCLUSION Our results demonstrate that MKP-1 has a central role in preventing inflammation-induced apoptosis in rIEC-6 enterocytes.
Collapse
|
18
|
Caldwell RB, Toque HA, Narayanan SP, Caldwell RW. Arginase: an old enzyme with new tricks. Trends Pharmacol Sci 2015; 36:395-405. [PMID: 25930708 PMCID: PMC4461463 DOI: 10.1016/j.tips.2015.03.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 01/05/2023]
Abstract
Arginase has roots in early life-forms. It converts L-arginine to urea and ornithine. The former provides protection against NH3; the latter serves to stimulate cell growth and other physiological functions. Excessive arginase activity in mammals has been associated with cardiovascular and nervous system dysfunction and disease. Two relevant aspects of this elevated activity may be involved in these disease states. First, excessive arginase activity reduces the supply of L-arginine needed by nitric oxide (NO) synthase to produce NO. Second, excessive production of ornithine leads to vascular structural problems and neural toxicity. Recent research has identified inflammatory agents and reactive oxygen species (ROS) as drivers of this pathologic elevation of arginase activity and expression. We review the involvement of arginase in cardiovascular and nervous system dysfunction, and discuss potential therapeutic interventions targeting excess arginase.
Collapse
Affiliation(s)
- Ruth B. Caldwell
- VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA
- Vision Discovery Institute, School of Allied Health Sciences, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, School of Allied Health Sciences, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Haroldo A. Toque
- Department of Pharmacology & Toxicology, School of Allied Health Sciences, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - S. Priya Narayanan
- Vision Discovery Institute, School of Allied Health Sciences, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, School of Allied Health Sciences, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Department of Occupational Therapy, School of Allied Health Sciences, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - R. William Caldwell
- Vision Discovery Institute, School of Allied Health Sciences, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Department of Pharmacology & Toxicology, School of Allied Health Sciences, Medical College of Georgia, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| |
Collapse
|
19
|
LI CHANGYI, YANG LINGCHAO, GUO KAI, WANG YUEPENG, LI YIGANG. Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review). Int J Mol Med 2015; 35:1095-102. [DOI: 10.3892/ijmm.2015.2104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
|
20
|
Grasemann H, Dhaliwal R, Ivanovska J, Kantores C, McNamara PJ, Scott JA, Belik J, Jankov RP. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs. Am J Physiol Lung Cell Mol Physiol 2015; 308:L503-10. [PMID: 25595650 DOI: 10.1152/ajplung.00328.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.
Collapse
Affiliation(s)
- Hartmut Grasemann
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada; Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada;
| | - Rupinder Dhaliwal
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada
| | - Crystal Kantores
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada
| | - Patrick J McNamara
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada; Division of Neonatology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Jeremy A Scott
- Faculty of Health and Behavioural Sciences, Division of Biomedical Sciences, Department of Health Sciences, Northern Ontario School of Medicine, Lakehead University, Ontario, Canada; and
| | - Jaques Belik
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada; Division of Neonatology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Robert P Jankov
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada; Division of Neonatology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 2014; 21:1926-42. [PMID: 24350610 PMCID: PMC4202910 DOI: 10.1089/ars.2013.5785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. RECENT ADVANCES PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. CRITICAL ISSUES General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. FUTURE DIRECTIONS Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center , Sacramento, California
| | | |
Collapse
|
22
|
Jin Y, Pang T, Nelin LD, Wang W, Wang Y, Yan J, Zhao C. MKP-1 is a target of miR-210 and mediate the negative regulation of miR-210 inhibitor on hypoxic hPASMC proliferation. Cell Biol Int 2014; 39:113-20. [PMID: 25044272 DOI: 10.1002/cbin.10339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/25/2014] [Indexed: 11/06/2022]
Abstract
Chonic hypoxia, smooth muscle cell (SMC) proliferation and vascular remodeling are hallmark features of pathogenic pulmonary artery hypertension. MicroRNAs (miRNAs), endogenously expressed small noncoding RNAs, regulate gene expression at the post-transcriptional level. MiR-210 is considered a "master miRNA" in the control of diverse functions in hypoxic cells and tissues and has a cytoprotective function in pulmonary artery SMCs during hypoxic stress. MiR-210 is also upregulated in lung tissue of chonically hypoxic mice suffering from pulmonary hypertension. Jin et al. () showed that mice deficient in mitogen-activated protein kinase phosphatase 1 (MKP-1) had severe hypoxia-induced pulmonary hypertension, so MKP-1 may be important in the progression of hypoxic pulmonary artery hypertension. We investigated the possible interactions between miR-210 and MKP-1 and the effect on cell proliferation in hypoxic human pulmonary artery SMCs (hPASMCs). miR-210 was significantly increased in cultured hPASMCs exposed to 1% O2 hypoxia for 48 h, as was MKP-1 mRNA and protein expression. Furthermore, inhibiting miR-210 expression increased MKP-1 mRNA and protein expression in hPASMCs and decreased cell proliferation under hypoxia. Conversely, overexpressing miR-210 prevented hypoxia-induced MKP-1 expression with no effect on cell proliferation. siRNA knockdown of MKP-1 abolished the miR-210-inhibition prevention of cell proliferation under hypoxia. MKP-1 is a target of miR-210 and could mediate the negative regulation of miR-210 inhibition on hypoxic hPASMCs.
Collapse
Affiliation(s)
- Youpeng Jin
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
23
|
El Kasmi KC, Pugliese SC, Riddle SR, Poth JM, Anderson AL, Frid MG, Li M, Pullamsetti SS, Savai R, Nagel MA, Fini MA, Graham BB, Tuder RM, Friedman JE, Eltzschig HK, Sokol RJ, Stenmark KR. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. THE JOURNAL OF IMMUNOLOGY 2014; 193:597-609. [PMID: 24928992 DOI: 10.4049/jimmunol.1303048] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPβ or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13-STAT6-mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6-activated STAT3, HIF1α, and C/EBPβ signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPβ or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling.
Collapse
Affiliation(s)
- Karim C El Kasmi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045;
| | - Steven C Pugliese
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Suzette R Riddle
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Jens M Poth
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Aimee L Anderson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Maria G Frid
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Min Li
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, University of Giessen and Marburg Lung Center, German Center for Lung Research, D-61231 Bad Nauheim, Germany
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, University of Giessen and Marburg Lung Center, German Center for Lung Research, D-61231 Bad Nauheim, Germany
| | - Maria A Nagel
- Department of Neurology, University of Colorado Denver, School of Medicine, Aurora, CO 80045
| | - Mehdi A Fini
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Brian B Graham
- Program in Translational Lung Research, Department of Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Rubin M Tuder
- Program in Translational Lung Research, Department of Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Jacob E Friedman
- Division of Biochemistry and Molecular Genetics, Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045; and
| | - Holger K Eltzschig
- Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Ronald J Sokol
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Kurt R Stenmark
- Division of Critical Care Medicine/Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, School of Medicine, University of Colorado Denver, Aurora, CO 80045;
| |
Collapse
|
24
|
Narayanan SP, Xu Z, Putluri N, Sreekumar A, Lemtalsi T, Caldwell RW, Caldwell RB. Arginase 2 deficiency reduces hyperoxia-mediated retinal neurodegeneration through the regulation of polyamine metabolism. Cell Death Dis 2014; 5:e1075. [PMID: 24556690 PMCID: PMC3944241 DOI: 10.1038/cddis.2014.23] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/27/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
Abstract
Hyperoxia treatment has been known to induce neuronal and glial death in the developing central nervous system. Retinopathy of prematurity (ROP) is a devastating disease in premature infants and a major cause of childhood vision impairment. Studies indicate that, in addition to vascular injury, retinal neurons are also affected in ROP. Using an oxygen-induced retinopathy (OIR) mouse model for ROP, we have previously shown that deletion of the arginase 2 (A2) significantly reduced neuro-glial injury and improved retinal function. In the current study, we investigated the mechanism of A2 deficiency-mediated neuroprotection in the OIR retina. Hyperoxia treatment has been known to induce neuronal death in neonates. During the hyperoxia phase of OIR, a significant increase in the number of apoptotic cells was observed in the wild-type (WT) OIR retina compared with A2-deficient OIR. Mass spectrometric analysis showed alterations in polyamine metabolism in WT OIR retina. Further, increased expression level of spermine oxidase was observed in WT OIR retina, suggesting increased oxidation of polyamines in OIR retina. These changes were minimal in A2-deficient OIR retina. Treatment using the polyamine oxidase inhibitor, N, N'-bis (2, 3-butadienyl)-1, 4-butanediamine dihydrochloride, significantly improved neuronal survival during OIR treatment. Our data suggest that retinal arginase is involved in the hyperoxia-induced neuronal degeneration in the OIR model, through the regulation of polyamine metabolism.
Collapse
Affiliation(s)
- S P Narayanan
- Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | - Z Xu
- Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
| | - N Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - A Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - T Lemtalsi
- Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
| | - R W Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, USA
| | - R B Caldwell
- Vision Discovery Institute, Georgia Regents University, Augusta, GA, USA
- Vascular Biology Center, Georgia Regents University, Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
25
|
Narayanan SP, Rojas M, Suwanpradid J, Toque HA, Caldwell RW, Caldwell RB. Arginase in retinopathy. Prog Retin Eye Res 2013; 36:260-80. [PMID: 23830845 PMCID: PMC3759622 DOI: 10.1016/j.preteyeres.2013.06.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/14/2013] [Accepted: 06/25/2013] [Indexed: 12/12/2022]
Abstract
Ischemic retinopathies, such as diabetic retinopathy (DR), retinopathy of prematurity and retinal vein occlusion are a major cause of blindness in developed nations worldwide. Each of these conditions is associated with early neurovascular dysfunction. However, conventional therapies target clinically significant macula edema or neovascularization, which occur much later. Intra-ocular injections of anti-VEGF show promise in reducing retinal edema, but the effects are usually transient and the need for repeated injections increases the risk of intraocular infection. Laser photocoagulation can control pathological neovascularization, but may impair vision and in some patients the retinopathy continues to progress. Moreover, neither treatment targets early stage disease or promotes repair. This review examines the potential role of the ureahydrolase enzyme arginase as a therapeutic target for the treatment of ischemic retinopathy. Arginase metabolizes l-arginine to form proline, polyamines and glutamate. Excessive arginase activity reduces the l-arginine supply for nitric oxide synthase (NOS), causing it to become uncoupled and produce superoxide and less NO. Superoxide and NO react and form the toxic oxidant peroxynitrite. The catabolic products of polyamine oxidation and glutamate can induce more oxidative stress and DNA damage, both of which can cause cellular injury. Studies indicate that neurovascular injury during retinopathy is associated with increased arginase expression/activity, decreased NO, polyamine oxidation, formation of superoxide and peroxynitrite and dysfunction and injury of both vascular and neural cells. Furthermore, data indicate that the cytosolic isoform arginase I (AI) is involved in hyperglycemia-induced dysfunction and injury of vascular endothelial cells whereas the mitochondrial isoform arginase II (AII) is involved in neurovascular dysfunction and death following hyperoxia exposure. Thus, we postulate that activation of the arginase pathway causes neurovascular injury by uncoupling NOS and inducing polyamine oxidation and glutamate formation, thereby reducing NO and increasing oxidative stress, all of which contribute to the retinopathic process.
Collapse
Affiliation(s)
- S. Priya Narayanan
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Modesto Rojas
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Jutamas Suwanpradid
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Haroldo A. Toque
- Department of Pharmacology & Toxicology, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - R. William Caldwell
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Department of Pharmacology & Toxicology, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Ruth B. Caldwell
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- VA Medical Center, One Freedom Way, Augusta, GA, USA
| |
Collapse
|
26
|
Abstract
Arginase metabolizes the semi-essential amino acid l-arginine to l-ornithine and urea. There are two distinct isoforms of arginase, arginase I and II, which are encoded by separate genes and display differences in tissue distribution, subcellular localization, and molecular regulation. Blood vessels express both arginase I and II but their distribution appears to be cell-, vessel-, and species-specific. Both isoforms of arginase are induced by numerous pathologic stimuli and contribute to vascular cell dysfunction and vessel wall remodeling in several diseases. Clinical and experimental studies have documented increases in the expression and/or activity of arginase I or II in blood vessels following arterial injury and in pulmonary and arterial hypertension, aging, and atherosclerosis. Significantly, pharmacological inhibition or genetic ablation of arginase in animals ameliorates abnormalities in vascular cells and normalizes blood vessel architecture and function in all of these pathological states. The detrimental effect of arginase in vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell and endothelial cell proliferation, and collagen deposition by promoting the synthesis of polyamines and l-proline, respectively. In addition, arginase adversely impacts arterial remodeling by directing macrophages toward an inflammatory phenotype. Moreover, the proliferative, fibrotic, and inflammatory actions of arginase in the vasculature are further amplified by its capacity to inhibit nitric oxide (NO) synthesis by competing with NO synthase for substrate, l-arginine. Pharmacologic or molecular approaches targeting specific isoforms of arginase represent a promising strategy in treating obstructive fibroproliferative vascular disease.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia Columbia, MO, USA
| |
Collapse
|
27
|
Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 2013; 154:993-1007. [PMID: 23384835 DOI: 10.1210/en.2012-2045] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids are anti-inflammatory drugs that are widely used for the treatment of numerous (autoimmune) inflammatory diseases. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor family of transcription factors. Upon ligand binding, the GR translocates to the nucleus, where it acts either as a homodimeric transcription factor that binds glucocorticoid response elements (GREs) in promoter regions of glucocorticoid (GC)-inducible genes, or as a monomeric protein that cooperates with other transcription factors to affect transcription. For decades, it has generally been believed that the undesirable side effects of GC therapy are induced by dimer-mediated transactivation, whereas its beneficial anti-inflammatory effects are mainly due to the monomer-mediated transrepressive actions of GR. Therefore, current research is focused on the development of dissociated compounds that exert only the GR monomer-dependent actions. However, many recent reports undermine this dogma by clearly showing that GR dimer-dependent transactivation is essential in the anti-inflammatory activities of GR. Many of these studies used GR(dim/dim) mutant mice, which show reduced GR dimerization and hence cannot control inflammation in several disease models. Here, we review the importance of GR dimers in the anti-inflammatory actions of GCs/GR, and hence we question the central dogma. We summarize the contribution of various GR dimer-inducible anti-inflammatory genes and question the use of selective GR agonists as therapeutic agents.
Collapse
Affiliation(s)
- Sofie Vandevyver
- VIB-Department for Molecular Biomedical Research /Ugent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | | | | | | |
Collapse
|
28
|
Abstract
Genetically modified mouse models have unparalleled power to determine the mechanisms behind different processes involved in the molecular and physiologic etiology of various classes of human pulmonary hypertension (PH). Processes known to be involved in PH for which there are extensive mouse models available include the following: (1) Regulation of vascular tone through secreted vasoactive factors; (2) regulation of vascular tone through potassium and calcium channels; (3) regulation of vascular remodeling through alteration in metabolic processes, either through alteration in substrate usage or through circulating factors; (4) spontaneous vascular remodeling either before or after development of elevated pulmonary pressures; and (5) models in which changes in tone and remodeling are primarily driven by inflammation. PH development in mice is of necessity faster and with different physiologic ramifications than found in human disease, and so mice make poor models of natural history of PH. However, transgenic mouse models are a perfect tool for studying the processes involved in pulmonary vascular function and disease, and can effectively be used to test interventions designed against particular molecular pathways and processes involved in disease.
Collapse
Affiliation(s)
- Mita Das
- Department of Internal Medicine, University of Arkansas Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | |
Collapse
|
29
|
Jin Y, Chen B, Calvert TJ, Chicoine LG, Liu Y, Nelin LD. Chronic hypoxia decreases arterial and venous compliance in isolated perfused rat lungs: an effect that is reversed by exogenous L-arginine. Am J Physiol Heart Circ Physiol 2012; 304:H195-205. [PMID: 23103497 DOI: 10.1152/ajpheart.00188.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is characterized by vasoconstriction and vascular remodeling, leading to right ventricular dysfunction. Given the role of arterial compliance (C(a)) in right ventricular work, a decrease in C(a) would add to right ventricular work. Nitric oxide (NO) is a potent vasodilator made by NO synthases from L-arginine (L-Arg). However, little is known of the effect of L-Arg on vascular compliance (C(v)) in the lung. We hypothesized that exposure to CH would decrease C(a) and that this effect would be reversed by exogenous L-Arg. Sprague-Dawley rats were exposed to either normoxia or CH for 14 days; the lungs were then isolated and perfused. Vascular occlusions were performed and modeled using a three-compliance, two-resistor model. Pressure-flow curves were generated, and a distensible vessel model was used to estimate distensibility and a vascular resistance parameter (R(0)). Hypoxia resulted in the expected increase in arterial resistance (R(a)) as well as a decrease in both C(a) and C(v). L-Arg had little effect on R(a), C(a), or C(v) in isolated lungs from normoxic animals. L-Arg decreased R(a) in lungs from CH rats and redistributed compliance to approximately that found in normoxic lungs. CH increased R(0), and L-Arg reversed this increase in R(0). L-Arg increased exhaled NO, and inhibition of L-Arg uptake attenuated the L-Arg-induced increase in exhaled NO. These data demonstrate that the CH-induced decrease in C(a) was reversed by L-Arg, suggesting that L-Arg may improve CH-induced right ventricular dysfunction.
Collapse
Affiliation(s)
- Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
30
|
Vattakuzhi Y, Abraham SM, Freidin A, Clark AR, Horwood NJ. Dual-specificity phosphatase 1-null mice exhibit spontaneous osteolytic disease and enhanced inflammatory osteolysis in experimental arthritis. ACTA ACUST UNITED AC 2012; 64:2201-10. [PMID: 22275313 DOI: 10.1002/art.34403] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Bone formation and destruction are usually tightly linked; however, in disorders such as rheumatoid arthritis, periodontal disease, and osteoporosis, elevated osteoclast activity leads to bone destruction. Osteoclast formation and activation are controlled by many signaling pathways, including p38 MAPK. Dual-specificity phosphatase 1 (DUSP-1) is a factor involved in the negative regulation of p38 MAPK. The purpose of this study was to examine the effect of Dusp1 deficiency on bone destruction. METHODS Penetrance, onset, and severity of collagen-induced arthritis were recorded in DUSP-1+/+ and DUSP-1-/- mice. Bone destruction was assessed by histologic and micro-computed tomographic examination of the joints. The in vitro formation and activation of osteoclasts from DUSP-1+/+ and DUSP-1-/- precursors were assessed in the absence or presence of tumor necrosis factor (TNF). RESULTS The formation and activation of osteoclasts in vitro in the presence of TNF were enhanced by Dusp1 gene disruption. DUSP-1-/- mice exhibited higher penetrance, earlier onset, and increased severity of experimental arthritis, accompanied by greater numbers of osteoclasts in inflamed joints and more extensive loss of bone. A DUSP-1-/- mouse colony of mixed genetic background also demonstrated striking spontaneous osteolytic destruction of distal phalanges. CONCLUSION DUSP-1 is a critical regulator of osteoclast activity and limits bone destruction in an experimental model of rheumatoid arthritis. Defects in the expression or activity of DUSP1 in humans may correlate with a propensity to develop osteolytic lesions in arthritis.
Collapse
|
31
|
Bebee TW, Dominguez CE, Samadzadeh-Tarighat S, Akehurst KL, Chandler DS. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum Mol Genet 2012; 21:4301-13. [PMID: 22763238 DOI: 10.1093/hmg/dds263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease associated with low levels of the essential survival motor neuron (SMN) protein. Reduced levels of SMN is due to the loss of the SMN1 gene and inefficient splicing of the SMN2 gene caused by a C>T mutation in exon 7. Global analysis of the severe SMNΔ7 SMA mouse model revealed altered splicing and increased levels of the hypoxia-inducible transcript, Hif3alpha, at late stages of disease progression. Severe SMA patients also develop respiratory deficiency during disease progression. We sought to evaluate whether hypoxia was capable of altering SMN2 exon 7 splicing and whether increased oxygenation could modulate disease in a severe SMA mouse model. Hypoxia treatment in cell culture increased SMN2 exon 7 skipping and reduced SMN protein levels. Concordantly, the treatment of SMNΔ7 mice with hyperoxia treatment increased the inclusion of SMN2 exon 7 in skeletal muscles and resulted in improved motor function. Transfection splicing assays of SMN minigenes under hypoxia revealed that hypoxia-induced skipping is dependent on poor exon definition due to the SMN2 C>T mutation and suboptimal 5' splice site. Hypoxia treatment in cell culture led to increased hnRNP A1 and Sam68 levels. Mutation of hnRNP A1-binding sites prevented hypoxia-induced skipping of SMN exon 7 and was found to bind both hnRNP A1 and Sam68. These results implicate hypoxic stress as a modulator of SMN2 exon 7 splicing in disease progression and a coordinated regulation by hnRNP A1 and Sam68 as modifiers of hypoxia-induced skipping of SMN exon 7.
Collapse
Affiliation(s)
- Thomas W Bebee
- The Center for Childhood Cancer at the Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
32
|
Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. Cell Mol Life Sci 2012; 70:223-37. [PMID: 22695679 DOI: 10.1007/s00018-012-1041-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/09/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
The balance of protein phosphorylation is achieved through the actions of a family of protein serine/threonine kinases called the mitogen-activated protein kinases (MAPKs). The propagation of MAPK signals is attenuated through the actions of the MAPK phosphatases (MKPs). The MKPs specifically inactivate the MAPKs by direct dephosphorylation. The archetypal MKP family member, MKP-1 has garnered much of the attention amongst its ten other MKP family members. Initially viewed to play a redundant role in the control of MAPK signaling, it is now clear that MKP-1 exerts profound regulatory functions on the immune, metabolic, musculoskeletal and nervous systems. This review focuses on the physiological functions of MKP-1 that have been revealed using mouse genetic approaches. The implications from studies using MKP-1-deficient mice to uncover the role of MKP-1 in disease will be discussed.
Collapse
|
33
|
Eryilmaz OG, Aksakal FN, Cicek N, Eyi EG, Avci A. L-arginine pathway in neonates with meconium-stained amniotic fluid. Eur J Obstet Gynecol Reprod Biol 2012; 161:26-9. [PMID: 22239939 DOI: 10.1016/j.ejogrb.2011.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 11/13/2011] [Accepted: 12/18/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To study the arginase, nitric oxide synthase and nitric oxide pathways associated with passage of meconium. STUDY DESIGN Cord blood samples were collected from 20 newborns with meconium-stained amniotic fluid (MSAF) and from 23 newborns with clear amniotic fluid. Cord blood pH, arginase, nitric oxide synthase and nitric oxide levels were compared between the groups. RESULT The differences between the arginase and nitric oxide measurements of the newborns with MSAF and those with clear amniotic fluid were significant. In the MSAF group arginase levels were significantly lower (p=0.007) and nitric oxide levels were significantly higher (p=0.032) than the clear amniotic fluid group. CONCLUSION Hypoxia may be involved in the pathogenesis of meconium passage due to decreased arginase and increased nitric oxide levels.
Collapse
Affiliation(s)
- Ozlem Gun Eryilmaz
- Zekai Tahir Burak Women Education and Research Hospital, Obstetrics and Gynecology, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
34
|
Prieto CP, Krause BJ, Quezada C, San Martin R, Sobrevia L, Casanello P. Hypoxia-reduced nitric oxide synthase activity is partially explained by higher arginase-2 activity and cellular redistribution in human umbilical vein endothelium. Placenta 2011; 32:932-40. [PMID: 21962305 DOI: 10.1016/j.placenta.2011.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/18/2011] [Accepted: 09/07/2011] [Indexed: 01/08/2023]
Abstract
Hypoxia relates with altered placental vasodilation, and in isolated endothelial cells, it reduces activity of the endothelial nitric oxide synthase (eNOS) and l-arginine transport. It has been reported that arginase-2 expression, an alternative pathway for l-arginine metabolism, is increased in adult endothelial cells exposed to hypoxia as well as in pre-eclamptic placentae. We studied in human umbilical vein endothelial cells (HUVEC) whether hypoxia-reduced NO synthesis results from increased arginase-mediated l-arginine metabolism and changes in subcellular localization of eNOS and arginase-2. In HUVEC exposed (24 h) to 5% (normoxia) or 2% (hypoxia) oxygen, l-arginine transport kinetics, arginase activity (urea assay), and NO synthase (NOS) activity (l-citrulline assay) were determined. Arginase-1, arginase-2 and eNOS expression were determined by RT-PCR and Western blot. Subcellular localization of arginase-2 and eNOS were studied using confocal microscopy and indirect immunofluorescence. Experiments were done in absence or presence of S-(2-boronoethyl)-l-cysteine-HCl (BEC, arginase inhibitor) or N(G)-nitro-l-arginine methyl ester (l-NAME). Hypoxia-induced reduction in eNOS activity was associated with a reduction in eNOS phosphorylation at Serine-1177 and increased phosphorylation at Threonine-495. This was paralleled with an induction in arginase-2 expression and activity, and decreased l-arginine transport. In hypoxia the arginase inhibition, restored NO synthesis and l-arginine transport, without changes in the eNOS post-translational modification status. Hypoxia increased arginase-2/eNOS colocalization, and eNOS redistribution to the cell periphery. Altogether these data reinforce the thought that eNOS cell location, post-translational modification and substrate availability are important mechanisms regulating eNOS activity. If these mechanisms occur in pregnancy diseases where feto-placental oxygen levels are reduced remains to be clarified.
Collapse
Affiliation(s)
- C P Prieto
- Perinatology Research Laboratory (PRL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
35
|
Down syndrome patients with pulmonary hypertension have elevated plasma levels of asymmetric dimethylarginine. Eur J Pediatr 2011; 170:859-63. [PMID: 21120524 DOI: 10.1007/s00431-010-1361-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Down syndrome (DS) patients have an increased risk of developing pulmonary hypertension (PH). Increased plasma levels of asymmetric dimethylarginine (ADMA) may contribute to vascular dysfunction in adults with idiopathic pulmonary hypertension. Our goal was to test the hypothesis that DS patients with PH have higher plasma levels of ADMA than DS patients without PH. DS patients with definitive PH (n = 6) and DS patients with no evidence of PH (n = 12) were studied. Plasma levels of arginine, ADMA, and nitrite/nitrate (NOx; stable metabolites of nitric oxide (NO)) were measured. Plasma arginine concentration was lower (p < 0.05) in PH patients (23 ± 11 μM) versus non-PH patients (46 ± 24 μM). Plasma ADMA concentration was higher (p < 0.005) in PH patients (18.0 ± 4.2 μM) versus non-PH patients (8.6 ± 5.9 μM). Plasma NOx was lower (p < 0.05) in PH patients (4.5 ± 1.7 μM) versus non-PH patients (8.5 ± 7.3 μM). These results are consistent with ADMA contributing to lower NO production in DS patients with PH and suggest that ADMA levels may be a potential biomarker for PH in DS patients.
Collapse
|
36
|
Vergadi E, Chang MS, Lee C, Liang OD, Liu X, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation 2011; 123:1986-95. [PMID: 21518986 DOI: 10.1161/circulationaha.110.978627] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however, its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and to elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1, an anti-inflammatory enzyme, is protective in HPH. METHODS AND RESULTS We generated bitransgenic mice that overexpress human heme oxygenase-1 under doxycycline control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of doxycycline resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of found in inflammatory zone-1, arginase-1, and chitinase-3-like-3. A brief 2-day pulse of doxycycline delayed, but did not prevent, the peak of hypoxic inflammation, and could not protect against HPH. In contrast, a 7-day doxycycline treatment sustained high heme oxygenase-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage interleukin-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted the proliferation of pulmonary artery smooth muscle cells, whereas treatment with carbon monoxide, a heme oxygenase-1 enzymatic product, abrogated this effect. CONCLUSIONS Early recruitment and alternative activation of macrophages in hypoxic lungs are critical for the later development of HPH. Heme oxygenase-1 may confer protection from HPH by effectively modifying the macrophage activation state in hypoxia.
Collapse
Affiliation(s)
- Eleni Vergadi
- Division of Newborn Medicine, Children's Hospital Boston, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hebbel RP. Reconstructing sickle cell disease: a data-based analysis of the "hyperhemolysis paradigm" for pulmonary hypertension from the perspective of evidence-based medicine. Am J Hematol 2011; 86:123-54. [PMID: 21264896 DOI: 10.1002/ajh.21952] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The "hyperhemolytic paradigm" (HHP) posits that hemolysis in sickle disease sequentially and causally establishes increased cell-free plasma Hb, consumption of NO, a state of NO biodeficiency, endothelial dysfunction, and a high prevalence of pulmonary hypertension. The basic science underpinning this concept has added an important facet to the complexity of vascular pathobiology in sickle disease, and clinical research has identified worrisome clinical issues. However, this critique identifies and explains a number of significant concerns about the various HHP component tenets. In addressing these issues, this report presents: a very brief history of the HHP, an integrated synthesis of mechanisms underlying sickle hemolysis, a review of the evidentiary value of hemolysis biomarkers, an examination of evidence bearing on existence of a hyperhemolytic subgroup, and a series of questions that should naturally be applied to the HHP if it is examined using critical thinking skills, the fundamental basis of evidence-based medicine. The veracity of different HHP tenets is found to vary from true, to weakly supported, to demonstrably false. The thesis is developed that the HHP has misidentified the mechanism and clinical significance of its findings. The extant research questions identified by these analyses are delineated, and a conservative, evidence-based approach is suggested for application in clinical medicine.
Collapse
Affiliation(s)
- Robert P. Hebbel
- Department of Medicine, Division of Hematology‐Oncology‐Transplantation, Vascular Biology Center, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
38
|
Mitogen-activated protein kinase phosphatase-1 is a key regulator of hypoxia-induced vascular endothelial growth factor expression and vessel density in lung. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:98-109. [PMID: 21224048 DOI: 10.1016/j.ajpath.2010.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 08/25/2010] [Accepted: 09/17/2010] [Indexed: 12/16/2022]
Abstract
Although mitogen-activated protein kinase phosphatase-1 (MKP-1) is a key deactivator of MAP kinases, known effectors of lung vessel formation, whether it plays a role in the expression of proangiogenic vascular endothelial growth factor (VEGF) in hypoxic lung is unknown. We therefore hypothesized that MKP-1 is a crucial modulator of hypoxia-stimulated vessel development by regulating lung VEGF levels. Wild-type MKP-1(+/+), heterozygous MKP-1(+/-), and deficient MKP-1(-/-) mice were exposed to sea level (SL), Denver altitude (DA) (1609 m [5280 feet]), and severe high altitude (HYP) (∼5182 m [∼17,000 feet]) for 6 weeks. Hypoxia enhanced phosphorylation of p38 MAP kinase, a substrate of MKP-1, as well as α smooth muscle actin (αSMA) expression in vessels, respiratory epithelium, and interstitium of phosphatase-deficient lung. αSMA-positive vessel (<50 μm outside diameter) densities were markedly reduced, whereas vessel wall thickness was increased in hypoxic MKP-1(-/-) lung. Mouse embryonic fibroblasts (MEFs) of all three genotypes were isolated to pinpoint the mechanism involved in hypoxia-induced vascular abnormalities of MKP-1(-/-) lung. Sustained phosphorylation of p38 MAP kinase was observed in MKP-1-null MEFs in response to hypoxia exposure. Although hypoxia up-regulated VEGF levels in MKP-1(+/+) MEFs eightfold, only a 70% increase in VEGF expression was observed in MKP-1-deficient cells. Therefore, our data strongly suggest that MKP-1 might be the key regulator of vascular densities through the regulation of VEGF levels in hypoxic lung.
Collapse
|