1
|
Leonard J, Kepplinger D, Torres E, Hu CH, Veneziano R, Hoemann CD. Comparative analysis of Lox-1 and CD36 expression in human platelets and on circulating microparticles during ARDS-induced coagulopathy. Thromb Res 2024; 244:109202. [PMID: 39546984 DOI: 10.1016/j.thromres.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) patients are at risk of thrombosis through mechanisms implicating oxidized low-density lipoprotein (oxLDL). Endothelial cells, immune cells and platelets were reported to express scavenger receptors for oxLDL: Lox-1 and CD36. We hypothesized that platelets shed a soluble Lox-1 ectodomain (sLox-1) and release CD36-bearing procoagulant microparticles (MPs), that both become elevated in subjects with ARDS-induced coagulopathy. METHODS Using anti-extracellular and anti-intracellular Lox-1 antibodies, we first tested by western blot whether platelets express Lox-1 and shed sLox-1 upon activation. Next, we measured sLox-1 in blood plasma of 23 healthy donors and 48 ARDS Omega patients with and without coagulopathy, and assessed the corresponding MP fraction for Lox-1/sLox-1 and CD36. We evaluated mechanisms of sLox-1-MP association. Recombinant proteins were used as controls. RESULTS Resting platelets expressed abundant CD36 (7.8 ng/μg protein extract) which was released upon oxLDL stimulation, but undetectable levels of full-length 37 kDa Lox-1 receptor or 24 kDa sLox-1 (below 10 pg/μg). In an RNAseq meta-analysis, platelets expressed negligible OLR1, the mRNA encoding Lox-1, compared to CD36. A subset of ARDS patients showed elevated plasma sLox-1 and MP-associated sLox-1 compared to healthy controls that was positively associated with 90-day survival and low coagulopathy. MP-associated CD36 was reduced in ARDS plasma compared to healthy donors and did not correlate with survival, coagulopathy, or sLox-1. oxLDL promoted sLox-1 binding to CD36-deficient MPs. CONCLUSION sLox-1 arising from a non-platelet cell source associates with circulating MPs which could serve a protective role in ARDS.
Collapse
Affiliation(s)
- Julia Leonard
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - David Kepplinger
- Department of Statistics, College of Engineering and Computing, George Mason University, Fairfax, VA 22030, United States of America
| | - Elmer Torres
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Chih-Hsiang Hu
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Remi Veneziano
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America
| | - Caroline D Hoemann
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, United States of America.
| |
Collapse
|
2
|
Zhang K, Mishra A, Jagannath C. New insight into arginine and tryptophan metabolism in macrophage activation during tuberculosis. Front Immunol 2024; 15:1363938. [PMID: 38605962 PMCID: PMC11008464 DOI: 10.3389/fimmu.2024.1363938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Arginine and tryptophan are pivotal in orchestrating cytokine-driven macrophage polarization and immune activation. Specifically, interferon-gamma (IFN-γ) stimulates inducible nitric oxide synthase (iNOS) expression), leading to the conversion of arginine into citrulline and nitric oxide (NO), while Interleukin-4 (IL4) promotes arginase activation, shifting arginine metabolism toward ornithine. Concomitantly, IFN-γ triggers indoleamine 2,3-dioxygenase 1 (IDO1) and Interleukin-4 induced 1 (IL4i1), resulting in the conversion of tryptophan into kynurenine and indole-3-pyruvic acid. These metabolic pathways are tightly regulated by NAD+-dependent sirtuin proteins, with Sirt2 and Sirt5 playing integral roles. In this review, we present novel insights that augment our understanding of the metabolic pathways of arginine and tryptophan following Mycobacterium tuberculosis infection, particularly their relevance in macrophage responses. Additionally, we discuss arginine methylation and demethylation and the role of Sirt2 and Sirt5 in regulating tryptophan metabolism and arginine metabolism, potentially driving macrophage polarization.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Huang SS, Huang WC, Tsai CT, Chen YY, Lee SH, Lu TM. Plasma asymmetric dimethylarginine is associated with vulnerable plaque and long-term outcomes in stable coronary artery disease. Sci Rep 2023; 13:7541. [PMID: 37160906 PMCID: PMC10169809 DOI: 10.1038/s41598-023-32728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/31/2023] [Indexed: 05/11/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA) is considered to be an atherogenic molecule. We aimed to investigate the relationship between ADMA and plaque vulnerability assessed by optical coherence tomography (OCT) in patients with stable coronary artery disease (CAD). Two hundred and forty-five patients with stable CAD undergoing OCT-guided percutaneous coronary intervention were included in this study and were divided into two groups according to their ADMA levels. Micro-vessel, macrophage accumulation, thin-cap fibroatheroma, intra-plaque calcium and lipid core content, and vulnerable score (VS) were evaluated by OCT analysis. The patients with higher ADMA levels had significantly higher calcium and lipid content (p < 0.001, respectively). There were significantly more micro-vessel and macrophage (32.8%, p = 0.004 and 52.5%, p < 0.001, respectively) and higher VS (87.7 ± 17.6, p < 0.001) in the higher ADMA group. Moreover, plasma ADMA level was significantly correlated with the intra-plaque lipid, calcium content and VS (p < 0.001, respectively). Plasma ADMA level was identified as an independent predictor of future adverse cardiovascular events, following OCT-guided PCI. In patients with stable CAD, higher plasma ADMA levels were significantly associated with the presence of intra-plaque lipid, calcification, vulnerable plaque, and poor long-term outcomes.
Collapse
Affiliation(s)
- Shao-Sung Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Chieh Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Chuan-Tsai Tsai
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ying-Ying Chen
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Sheng-Hua Lee
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tse-Min Lu
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Department of Health Care Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Inflammatory gene silencing in activated monocytes by a cholesterol tagged-miRNA/siRNA: a novel approach to ameliorate diabetes induced inflammation. Cell Tissue Res 2022; 389:219-240. [PMID: 35604451 DOI: 10.1007/s00441-022-03637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
There is a major unmet need for the development of effective therapies for diabetes induced inflammation. Increased adenosine-uridine rich elements (AREs) containing mRNAs of inflammatory molecules are reported in inflamed monocytes. Destabilizing these inflammatory mRNAs by the miR-16 could reduce inflammation. DNA microarrays and in vitro cell studies showed that exogenous miR16 and its mimic treatment, in LPS/PMA induced monocytes, significantly downregulated several ARE containing inflammatory cytokine mRNAs similar to those seen in the normal monocytes. Ingenuity pathway analyses showed exogenous miR-16 or its synthetic mimic treatment alleviates inflammatory responses. To selectively target uptake, especially to inflamed cells, one of the CD36 substrate cholesterol was tagged to miR16/siRNA. Cholesterol tagged miR-16/ARE-siRNA showed enhanced uptake in CD36 expressing inflamed cells. In LPS or PMA, treated monocytes, candidate genes expressions levels such as IL-6, IL-8, IL-12β, IP-10, and TNF-α mRNA were increased, as measured by RT-qPCR as seen in primary monocytes of diabetes patients. Exogenous miR16 or ARE-siRNA transfection reduced mRNAs of pro-inflammatory cytokines levels in monocyte, and its adhesion. Increased uptake of cholesterol tagged miR-16 through the CD36 receptor was observed. This destabilizes numerous inflammatory ARE containing mRNAs and alleviates inflammatory responses. Cholesterol-tagged miR-16 and its mimic are novel anti-inflammatory molecules that can be specifically targeted to, via through CD36 expressing, "inflamed" cells and thus serve as therapeutic candidates to alleviate inflammatory diseases.
Collapse
|
6
|
Choi HY, Ruel I, Choi S, Genest J. New Strategies to Promote Macrophage Cholesterol Efflux. Front Cardiovasc Med 2022; 8:795868. [PMID: 35004908 PMCID: PMC8733154 DOI: 10.3389/fcvm.2021.795868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity of macrophages to dispose of cholesterol deposited in the atherosclerotic plaque depends on their ability to activate cholesterol efflux pathways. To develop athero-protective therapies aimed at promoting macrophage cholesterol efflux, cholesterol metabolism in THP-1 monocyte-derived macrophages has been extensively studied, but the intrinsic sensitivity of monocytes and the lack of a standardized procedure to differentiate THP-1 monocytes into macrophages have made it difficult to utilize THP-1 macrophages in the same or similar degree of differentiation across studies. The variability has resulted in lack of understanding of how the differentiation affects cholesterol metabolism, and here we review and investigate the effects of THP-1 differentiation on cholesterol efflux. The degree of THP-1 differentiation was inversely associated with ATP binding cassette A1 (ABCA1) transporter-mediated cholesterol efflux. The differentiation-associated decrease in ABCA1-mediated cholesterol efflux occurred despite an increase in ABCA1 expression. In contrast, DSC1 expression decreased during the differentiation. DSC1 is a negative regulator of the ABCA1-mediated efflux pathway and a DSC1-targeting agent, docetaxel showed high potency and efficacy in promoting ABCA1-mediated cholesterol efflux in THP-1 macrophages. These data suggest that pharmacological targeting of DSC1 may be more effective than increasing ABCA1 expression in promoting macrophage cholesterol efflux. In summary, the comparison of THP-1 macrophage subtypes in varying degrees of differentiation provided new insights into cholesterol metabolism in macrophages and allowed us to identify a viable target DSC1 for the promotion of cholesterol efflux in differentiated macrophages. Docetaxel and other pharmacological strategies targeting DSC1 may hold significant potential for reducing atherogenic cholesterol deposition.
Collapse
Affiliation(s)
- Hong Y Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Isabelle Ruel
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Shiwon Choi
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiovascular Research Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
7
|
Murdocca M, De Masi C, Pucci S, Mango R, Novelli G, Di Natale C, Sangiuolo F. LOX-1 and cancer: an indissoluble liaison. Cancer Gene Ther 2021; 28:1088-1098. [PMID: 33402733 PMCID: PMC8571092 DOI: 10.1038/s41417-020-00279-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Recently, a strong correlation between metabolic disorders, tumor onset, and progression has been demonstrated, directing new therapeutic strategies on metabolic targets. OLR1 gene encodes the LOX-1 receptor protein, responsible for the recognition, binding, and internalization of ox-LDL. In the past, several studied, aimed to clarify the role of LOX-1 receptor in atherosclerosis, shed light on its role in the stimulation of the expression of adhesion molecules, pro-inflammatory signaling pathways, and pro-angiogenic proteins, including NF-kB and VEGF, in vascular endothelial cells and macrophages. In recent years, LOX-1 upregulation in different tumors evidenced its involvement in cancer onset, progression and metastasis. In this review, we outline the role of LOX-1 in tumor spreading and metastasis, evidencing its function in VEGF induction, HIF-1alpha activation, and MMP-9/MMP-2 expression, pushing up the neoangiogenic and the epithelial-mesenchymal transition process in glioblastoma, osteosarcoma prostate, colon, breast, lung, and pancreatic tumors. Moreover, our studies contributed to evidence its role in interacting with WNT/APC/β-catenin axis, highlighting new pathways in sporadic colon cancer onset. The application of volatilome analysis in high expressing LOX-1 tumor-bearing mice correlates with the tumor evolution, suggesting a closed link between LOX-1 upregulation and metabolic changes in individual volatile compounds and thus providing a viable method for a simple, non-invasive alternative monitoring of tumor progression. These findings underline the role of LOX-1 as regulator of tumor progression, migration, invasion, metastasis formation, and tumor-related neo-angiogenesis, proposing this receptor as a promising therapeutic target and thus enhancing current antineoplastic strategies.
Collapse
Affiliation(s)
- M Murdocca
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy.
| | - C De Masi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - S Pucci
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - R Mango
- Cardiology Unit, Department of Emergency and Critical Care, Tor Vergata Hospital, Rome, Italy
| | - G Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - C Di Natale
- Department of Electronic Engineering, Tor Vergata University, Rome, Italy
| | - F Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
8
|
Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins (Basel) 2021; 13:toxins13020142. [PMID: 33668632 PMCID: PMC7917723 DOI: 10.3390/toxins13020142] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is a progressive loss of renal function. The gradual decline in kidney function leads to an accumulation of toxins normally cleared by the kidneys, resulting in uremia. Uremic toxins are classified into three categories: free water-soluble low-molecular-weight solutes, protein-bound solutes, and middle molecules. CKD patients have increased risk of developing cardiovascular disease (CVD), due to an assortment of CKD-specific risk factors. The accumulation of uremic toxins in the circulation and in tissues is associated with the progression of CKD and its co-morbidities, including CVD. Although numerous uremic toxins have been identified to date and many of them are believed to play a role in the progression of CKD and CVD, very few toxins have been extensively studied. The pathophysiological mechanisms of uremic toxins must be investigated further for a better understanding of their roles in disease progression and to develop therapeutic interventions against uremic toxicity. This review discusses the renal and cardiovascular toxicity of uremic toxins indoxyl sulfate, p-cresyl sulfate, hippuric acid, TMAO, ADMA, TNF-α, and IL-6. A focus is also placed on potential therapeutic targets against uremic toxicity.
Collapse
|
9
|
ADMA: A Key Player in the Relationship between Vascular Dysfunction and Inflammation in Atherosclerosis. J Clin Med 2020; 9:jcm9093026. [PMID: 32962225 PMCID: PMC7563400 DOI: 10.3390/jcm9093026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic cardiovascular disease which increases risk of major cardiovascular events including myocardial infarction and stroke. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) have long been recognised as a hallmark of cardiovascular disease and are associated with cardiovascular risk factors including hypertension, obesity and hypertriglyceridemia. In this review, we discuss the clinical literature that link ADMA concentrations to increased risk of the development of atherosclerosis. The formation of atherosclerotic lesions relies on the interplay between vascular dysfunction, leading to endothelial activation and the accumulation of inflammatory cells, particularly macrophages, within the vessel wall. Here, we review the mechanisms through which elevated ADMA contributes to endothelial dysfunction, activation and reactive oxygen species (ROS) production; how ADMA may affect vascular smooth muscle phenotype; and finally whether ADMA plays a regulatory role in the inflammatory processes occurring within the vessel wall.
Collapse
|
10
|
Łuczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS Uncoupling and the Nitric Oxide Metabolic Pathway in the Pathogenesis of Autoimmune Rheumatic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1417981. [PMID: 32351667 PMCID: PMC7174952 DOI: 10.1155/2020/1417981] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerosis and its clinical complications constitute the major healthcare problems of the world population. Due to the central role of endothelium throughout the atherosclerotic disease process, endothelial dysfunction is regarded as a common mechanism for various cardiovascular (CV) disorders. It is well established that patients with rheumatic autoimmune diseases are characterized by significantly increased prevalence of cardiovascular morbidity and mortality compared with the general population. The current European guidelines on cardiovascular disease (CVD) prevention in clinical practice recommend to use a 1,5-factor multiplier for CV risk in rheumatoid arthritis as well as in other autoimmune inflammatory diseases. However, mechanisms of accelerated atherosclerosis in these diseases, especially in the absence of traditional risk factors, still remain unclear. Oxidative stress plays the major role in the endothelial dysfunction and recently is strongly attributed to endothelial NO synthase dysfunction (eNOS uncoupling). Converted to a superoxide-producing enzyme, uncoupled eNOS not only leads to reduction of the nitric oxide (NO) generation but also potentiates the preexisting oxidative stress, which contributes significantly to atherogenesis. However, to date, there are no systemic analyses on the role of eNOS uncoupling in the excess CV mortality linked with autoimmune rheumatic diseases. The current review paper addresses this issue.
Collapse
Affiliation(s)
- Anna Łuczak
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Marta Madej
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Agata Kasprzyk
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| |
Collapse
|
11
|
Grosse GM, Schwedhelm E, Worthmann H, Choe CU. Arginine Derivatives in Cerebrovascular Diseases: Mechanisms and Clinical Implications. Int J Mol Sci 2020; 21:ijms21051798. [PMID: 32150996 PMCID: PMC7084464 DOI: 10.3390/ijms21051798] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
The amino acid L-arginine serves as substrate for the nitric oxide synthase which is crucial in vascular function and disease. Derivatives of arginine, such as asymmetric (ADMA) and symmetric dimethylarginine (SDMA), are regarded as markers of endothelial dysfunction and have been implicated in vascular disorders. While there is a variety of studies consolidating ADMA as biomarker of cerebrovascular risk, morbidity and mortality, SDMA is currently emerging as an interesting metabolite with distinct characteristics in ischemic stroke. In contrast to dimethylarginines, homoarginine is inversely associated with adverse events and mortality in cerebrovascular diseases and might constitute a modifiable protective risk factor. This review aims to provide an overview of the current evidence for the pathophysiological role of arginine derivatives in cerebrovascular ischemic diseases. We discuss the complex mechanisms of arginine metabolism in health and disease and its potential clinical implications in diverse aspects of ischemic stroke.
Collapse
Affiliation(s)
- Gerrit M. Grosse
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
- Correspondence:
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20249 Hamburg, Germany;
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), partner site Hamburg/Kiel/Lübeck, 20249 Hamburg, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Chi-un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20249 Hamburg, Germany;
| |
Collapse
|
12
|
Drouin M, Saenz J, Chiffoleau E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front Immunol 2020; 11:251. [PMID: 32133013 PMCID: PMC7040094 DOI: 10.3389/fimmu.2020.00251] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
C-type lectin-like receptors (CLRs) represent a family of transmembrane pattern recognition receptors, expressed primarily by myeloid cells. They recognize not only pathogen moieties for host defense, but also modified self-antigens such as damage-associated molecular patterns released from dead cells. Upon ligation, CLR signaling leads to the production of inflammatory mediators to shape amplitude, duration and outcome of the immune response. Thus, following excessive injury, dysregulation of these receptors leads to the development of inflammatory diseases. Herein, we will focus on four CLRs of the "Dectin family," shown to decode the immunogenicity of cell death. CLEC9A on dendritic cells links F-actin exposed by dying cells to favor cross-presentation of dead-cell associated antigens to CD8+ T cells. Nevertheless, CLEC9A exerts also feedback mechanisms to temper neutrophil recruitment and prevent additional tissue damage. MINCLE expressed by macrophages binds nuclear SAP130 released by necrotic cells to potentiate pro-inflammatory responses. However, the consequent inflammation can exacerbate pathogenesis of inflammatory diseases. Moreover, in a tumor microenvironment, MINCLE induces macrophage-induced immune suppression and cancer progression. Similarly, triggering of LOX-1 by oxidized LDL, amplifies pro-inflammatory response but promotes tumor immune escape and metastasis. Finally, CLEC12A that recognizes monosodium urate crystals formed during cell death, inhibits activating signals to prevent detrimental inflammation. Interestingly, CLEC12A also sustains type-I IFN response to finely tune immune responses in case of viral-induced collateral damage. Therefore, CLRs acting in concert as sensors of injury, could be used in a targeted way to treat numerous diseases such as allergies, obesity, tumors, and autoimmunity.
Collapse
Affiliation(s)
- Marion Drouin
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,OSE Immunotherapeutics, Nantes, France
| | - Javier Saenz
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
13
|
Huang WC, Teng HI, Chen HY, Wu CJ, Tsai CT, Hsueh CH, Chen YY, Hau WK, Lu TM. Association between asymmetric dimethylarginine and in-stent restenosis tissue characteristics assessed by optical coherence tomography. Int J Cardiol 2019; 289:131-137. [DOI: 10.1016/j.ijcard.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 01/26/2023]
|
14
|
Douglas G, Hale AB, Patel J, Chuaiphichai S, Al Haj Zen A, Rashbrook VS, Trelfa L, Crabtree MJ, McNeill E, Channon KM. Roles for endothelial cell and macrophage Gch1 and tetrahydrobiopterin in atherosclerosis progression. Cardiovasc Res 2018; 114:1385-1399. [PMID: 29596571 PMCID: PMC6054219 DOI: 10.1093/cvr/cvy078] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/22/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Aims GTP cyclohydrolase I catalyses the first and rate-limiting reaction in the synthesis of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthases (NOS). Both eNOS and iNOS have been implicated in the progression of atherosclerosis, with opposing effects in eNOS and iNOS knockout mice. However, the pathophysiologic requirement for BH4 in regulating both eNOS and iNOS function, and the effects of loss of BH4 on the progression of atherosclerosis remains unknown. Methods and results Hyperlipidemic mice deficient in Gch1 in endothelial cells and leucocytes were generated by crossing Gch1fl/flTie2cre mice with ApoE-/- mice. Deficiency of Gch1 and BH4 in endothelial cells and myeloid cells was associated with mildly increased blood pressure. High fat feeding for 6 weeks in Gch1fl/flTie2CreApoE-/- mice resulted in significantly decreased circulating BH4 levels, increased atherosclerosis burden and increased plaque macrophage content. Gch1fl/flTie2CreApoE-/- mice showed hallmarks of endothelial cell dysfunction, with increased aortic VCAM-1 expression and decreased endothelial cell dependent vasodilation. Furthermore, loss of BH4 from pro-inflammatory macrophages resulted in increased foam cell formation and altered cellular redox signalling, with decreased expression of antioxidant genes and increased reactive oxygen species. Bone marrow chimeras revealed that loss of Gch1 in both endothelial cells and leucocytes is required to accelerate atherosclerosis. Conclusion Both endothelial cell and macrophage BH4 play important roles in the regulation of NOS function and cellular redox signalling in atherosclerosis.
Collapse
Affiliation(s)
- Gillian Douglas
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ashley B Hale
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jyoti Patel
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ayman Al Haj Zen
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Victoria S Rashbrook
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lucy Trelfa
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eileen McNeill
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
15
|
Uransilp N, Chaiyawatthanananthn P, Muengtaweepongsa S. Efficacy of High-Dose and Low-Dose Simvastatin on Vascular Oxidative Stress and Neurological Outcomes in Patient with Acute Ischemic Stroke: A Randomized, Double-Blind, Parallel, Controlled Trial. Neurol Res Int 2018; 2018:7268924. [PMID: 29850244 PMCID: PMC5932464 DOI: 10.1155/2018/7268924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/26/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS Stroke is the leading cause of death and long-term disability. Oxidative stress is elevated during occurrence of acute ischemic stroke (AIS). Soluble LOX-1 (sLOX-1) and NO are used as biomarkers for vascular oxidative stress that can reflect stabilization of atherosclerotic plaque. Previous study showed that simvastatin can reduce oxidative stress and LOX-1 expression. OBJECTIVES To evaluate neurological outcomes and serum sLOX-1 and NO levels in patients with AIS treatment with low dose 10 mg/day and high dose 40 mg/day of simvastatin. METHODS 65 patients with AIS within 24 hours after onset were randomized to treatment with simvastatin 10 mg/day or 40 mg/day for 90 days. Personal data and past history of all patients were recorded at baseline. The blood chemistries were measured by standard laboratory techniques. Serum sLOX-1 and NO levels and neurological outcomes including NIHSS, mRS, and Barthel index were tested at baseline and Day 90 after simvastatin therapy. RESULTS Baseline characteristics were not significantly different in both groups except history of hypertension. Serum sLOX-1 and NO levels significantly reduce in both groups (sLOX-1 = 1.19 ± 0.47 and 0.98 ± 0.37 ng/ml; NO = 49.28 ± 7.21 and 46.59 ± 9.36 μmol/l) in 10 mg/day and 40 mg/day simvastatin groups, respectively. Neurological outcomes including NIHSS, mRS, and Barthel index significantly improve in both groups. However, no difference in NO level and neurological outcomes was found at 90 days after treatment as compared between low dose 10 mg/day and high dose 40 mg/day of simvastatin. CONCLUSION High-dose simvastatin might be helpful to reduce serum sLOX-1. But no difference in clinical outcomes was found between high- and low-dose simvastatin. Further more intensive clinical trial is needed to confirm the appropriate dosage of simvastatin in patients with acute ischemic stroke. This trial is registered with ClinicalTrials.gov ID: NCT03402204.
Collapse
Affiliation(s)
- Nattaphol Uransilp
- Neurology, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | | | - Sombat Muengtaweepongsa
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
16
|
Dogan I, Dogan T, Yetim M, Kayadibi H, Yilmaz MB, Eser B, Kalcik M, Karavelioglu Y. Relation of Serum ADMA, Apelin-13 and LOX-1 Levels with Inflammatory and Echocardiographic Parameters in Hemodialysis Patients. Ther Apher Dial 2018; 22:109-117. [PMID: 29205940 DOI: 10.1111/1744-9987.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/12/2017] [Accepted: 08/18/2017] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases are the leading causes of mortality in patients with chronic kidney disease. Nitric oxide has a critical role in both endothelial dysfunction and the atherosclerosis process. We aimed to investigate the relationships between serum asymmetric dimethyl arginine (ADMA), LOX-1, and Apelin-13 levels, which are known to act over nitric oxide with endothelial dysfunction and cardiac morphology as well as with each other in hemodialysis patients. The study comprised a total of 120 patients (53 females and 67 males) receiving hemodialysis three times a week for at least 6 months and an age-gender matched control group (55 females and 58 males). Serum ADMA, LOX-1, and Apelin-13 levels were measured using the ELISA technique. Echocardiography, 24-h blood pressure monitoring by the Holter and carotid artery intima-media thickness (CIMT) measurement was performed on all of the included subjects. The associations between serum ADMA, LOX-1, and Apelin-13 levels with CIMT, echocardiographic parameters [left ventricular mass (LVM) and left ventricular mass index (LVMI)], and inflammatory markers [high sensitive C-reactive protein (hsCRP) and neutrophil lymphocyte ratio (NLR)] were evaluated by correlation analysis. Serum ADMA, Apelin-13, and LOX-1 levels were significantly higher in the hemodialysis group than the controls (P < 0.001, P < 0.001, and P < 0.001, respectively). CIMT, hsCRP, and NLR levels were also significantly higher in the hemodialysis group (P < 0.05, P < 0.001, P < 0.001, respectively). Significant correlations were observed among the serum ADMA, Apelin-13, and LOX-1 levels. Moreover, notably positive correlations were found between these three biochemical markers and LVM, LVMI, hsCRP, and CIMT. Serum ADMA, Apelin-13, and LOX-1 levels can be indicators not only for the inflammatory process but also for the pathogenesis of cardiovascular diseases in hemodialysis patients.
Collapse
Affiliation(s)
- Ibrahim Dogan
- Nephrology Department, Hitit University Corum Training and Research Hospital, Corum, Turkey
| | - Tolga Dogan
- Cardiology Department, Hitit University Corum Training and Research Hospital, Corum, Turkey
| | - Mucahit Yetim
- Cardiology Department, Hitit University Corum Training and Research Hospital, Corum, Turkey
| | - Huseyin Kayadibi
- Biochemistry Department, Hitit University Corum Training and Research Hospital, Corum, Turkey
| | - Mehmet B Yilmaz
- Biochemistry Department, Cukurova University Medical Faculty, Adana, Turkey
| | - Baris Eser
- Nephrology Department, Hitit University Corum Training and Research Hospital, Corum, Turkey
| | - Macit Kalcik
- Cardiology Department, Hitit University Corum Training and Research Hospital, Corum, Turkey
| | - Yusuf Karavelioglu
- Cardiology Department, Hitit University Corum Training and Research Hospital, Corum, Turkey
| |
Collapse
|
17
|
Zhu WW, Wang SR, Liu ZH, Cao YJ, Wang F, Wang J, Liu CF, Xie Y, Xie Y, Zhang YL. Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in macrophage-derived foam cells. Biochem Biophys Res Commun 2016; 482:93-99. [PMID: 27815075 DOI: 10.1016/j.bbrc.2016.10.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022]
Abstract
Foam cell formation, which is caused by imbalanced cholesterol influx and efflux by macrophages, plays a vital role in the occurrence and development of atherosclerosis. Humanin (HN), a mitochondria-derived peptide, can prevent the production of reactive oxygen species and death of human aortic endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL) and has a protective effect on patients with in early atherosclerosis. However, the effects of HN on the regulation of cholesterol metabolism in RAW 264.7 macrophages are still unknown. This study was designed to investigate the role of [Gly14]-humanin (HNG) in lipid uptake and cholesterol efflux in RAW 264.7 macrophages. Flow cytometry and live cell imaging results showed that HNG reduced Dil-ox-LDL accumulation in the RAW 264.7 macrophages. A similar result was obtained for lipid accumulation by measuring cellular cholesterol content. Western blot analysis showed that ox-LDL treatment upregulated not only the protein expression of CD36 and LOX-1, which mediate ox-LDL endocytosis, but also ATP-binding cassette (ABC) transporter A1 and ABCG1, which mediate ox-LDL exflux. HNG pretreatment inhibited the upregulation of CD36 and LOX-1 levels, prompting the upregulation of ABCA1 and ABCG1 levels induced by ox-LDL. Therefore we concluded that HNG could inhibit ox-LDL-induced macrophage-derived foam cell formation, which occurs because of a decrease in lipid uptake and an increase in cholesterol efflux from macrophage cells.
Collapse
Affiliation(s)
- Wa-Wa Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shu-Rong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhi-Hua Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yong-Jun Cao
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Jing Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Feng Liu
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yan-Lin Zhang
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
18
|
Barrera G, Pizzimenti S, Ciamporcero ES, Daga M, Ullio C, Arcaro A, Cetrangolo GP, Ferretti C, Dianzani C, Lepore A, Gentile F. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxid Redox Signal 2015; 22:1681-702. [PMID: 25365742 DOI: 10.1089/ars.2014.6166] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress provokes the peroxidation of polyunsaturated fatty acids in cellular membranes, leading to the formation of aldheydes that, due to their high chemical reactivity, are considered to act as second messengers of oxidative stress. Among the aldehydes formed during lipid peroxidation (LPO), 4-hydroxy-2-nonenal (HNE) is produced at a high level and easily reacts with both low-molecular-weight compounds and macromolecules, such as proteins and DNA. In particular, HNE-protein adducts have been extensively investigated in diseases characterized by the pathogenic contribution of oxidative stress, such as cancer, neurodegenerative, chronic inflammatory, and autoimmune diseases. RECENT ADVANCES In this review, we describe and discuss recent insights regarding the role played by covalent adducts of HNE with proteins in the development and evolution of those among the earlier mentioned disease conditions in which the functional consequences of their formation have been characterized. CRITICAL ISSUES Results obtained in recent years have shown that the generation of HNE-protein adducts can play important pathogenic roles in several diseases. However, in some cases, the generation of HNE-protein adducts can represent a contrast to the progression of disease or can promote adaptive cell responses, demonstrating that HNE is not only a toxic product of LPO but also a regulatory molecule that is involved in several biochemical pathways. FUTURE DIRECTIONS In the next few years, the refinement of proteomical techniques, allowing the individuation of novel cellular targets of HNE, will lead to a better understanding the role of HNE in human diseases.
Collapse
Affiliation(s)
- Giuseppina Barrera
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Stefania Pizzimenti
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | | | - Martina Daga
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Chiara Ullio
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Alessia Arcaro
- 2Dipartimento di Medicina e Scienze della Salute, Università del Molise, Campobasso, Italy
| | | | - Carlo Ferretti
- 4Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Chiara Dianzani
- 4Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Alessio Lepore
- 5Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Fabrizio Gentile
- 2Dipartimento di Medicina e Scienze della Salute, Università del Molise, Campobasso, Italy
| |
Collapse
|
19
|
Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:296146. [PMID: 26078803 PMCID: PMC4452872 DOI: 10.1155/2015/296146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed.
Collapse
|
20
|
Xia W, Li D, Zhang C, Xu L, Xu W, Shao Y. Asymmetric dimethylarginine is associated with high-sensitivity C-reactive protein and early carotid atherosclerosis in women with previous gestational diabetes mellitus. Endocrine 2015; 48:528-32. [PMID: 24962795 DOI: 10.1007/s12020-014-0330-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/05/2014] [Indexed: 12/22/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is increased in subjects with previous gestational diabetes mellitus (GDM). The aim of this study was to investigate the relationship between serum ADMA levels and early carotid atherosclerosis in women with history of GDM. A total of 42 normoglycemic women with previous GDM and 42 age-matched healthy controls were enrolled. Serum levels of ADMA, lipids, insulin, fasting and 2-h glucose following 75-g oral glucose tolerance test, and high sensitivity C-reactive protein (hsCRP) were measured. Carotid atherosclerosis was evaluated by ultrasonographically determined intima-media thickness (IMT). Serum ADMA and hsCRP were higher in women with previous GDM compared to the healthy controls (0.72 ± 0.16 vs. 0.41 ± 0.15 μmol/L, p < 0.001; 1.81 ± 0.32 vs. 1.05 ± 0.26 mg/L, p < 0.001; respectively). Carotid IMT was also increased in the previous GDM group (0.77 ± 0.14 vs. 0.52 ± 0.13 mm, p < 0.001). In women with previous GDM, ADMA was positively correlated with hsCRP (r = 41, p < 0.001) and carotid IMT (r = 0.38, p < 0.001). Multiple linear regression analysis revealed that ADMA was a significant predictor for elevated carotid IMT in subjects with previous GDM after adjusting for traditional risk factors (β = 0.26, p = 0.017). Our data demonstrated that serum ADMA was associated with hsCRP and carotid IMT in normoglycemic women with previous GDM.
Collapse
Affiliation(s)
- Wei Xia
- Department of Cardiology, Qingdao Municipal Hospital, 5 Donghai Middle Road, Qingdao, 266071, Shandong, China
| | | | | | | | | | | |
Collapse
|
21
|
Xia W, Xu L, Xu W, Wang X, Yao Y. Asymmetric dimethylarginine is associated with carotid atherosclerosis in patients with essential hypertension. Clin Exp Hypertens 2014; 37:393-7. [PMID: 25496381 DOI: 10.3109/10641963.2014.987393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was to assess the relationship between asymmetric dimethylarginine (ADMA) and carotid atherosclerosis in patients with essential hypertension. A total of 182 individuals with never-treated essential hypertension and 182 age-matched healthy controls were studied. Plasma ADMA levels, mean intima-media thickness (IMT) and plaque score were significantly greater in hypertensive patients than normotensive controls. ADMA was positively correlated with mean IMT. On multiple logistic regression analysis, ADMA was a crucial independent predictor of carotid plaque formation (plaque score ≥1.1). Our results suggest that increased levels of ADMA are associated with the development of carotid atherosclerosis in hypertensive patients.
Collapse
Affiliation(s)
- Wei Xia
- Department of Cardiology, Qingdao Municipal Hospital , Shandong , China
| | | | | | | | | |
Collapse
|
22
|
Bao MH, Zhang YW, Lou XY, Cheng Y, Zhou HH. Protective effects of let-7a and let-7b on oxidized low-density lipoprotein induced endothelial cell injuries. PLoS One 2014; 9:e106540. [PMID: 25247304 PMCID: PMC4172475 DOI: 10.1371/journal.pone.0106540] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023] Open
Abstract
Lectin-like low-density lipoprotein receptor 1 (LOX-1) is a receptor for oxidized low density lipoprotein (oxLDL) in endothelial cells. The activation of LOX-1 by oxLDL stimulates the apoptosis and dysfunction of endothelial cells, and contributes to atherogenesis. However, the regulatory factors for LOX-1 are still unclear. MicroRNAs are small, endogenous, non-coding RNAs that regulate gene expressions at a post-transcriptional level. The let-7 family is the second microRNA been discovered, which plays important roles in cardiovascular diseases. Let-7a and let-7b were predicted to target LOX-1 3′-UTR and be highly expressed in endothelial cells. The present study demonstrated that LOX-1 was a target of let-7a and let-7b. They inhibited the expression of LOX-1 by targeting the positions of 310-316 in LOX-1 3′-UTR. Over-expression of let-7a and let-7b inhibited the oxLDL-induced endothelial cell apoptosis, NO deficiency, ROS over-production, LOX-1 upregulation and endothelial nitric oxide synthase (eNOS) downregulation. Moreover, we found that oxLDL treatment induced p38MAPK phosphorylation, NF-κB nuclear translocation, IκB degradation and PKB dephosphorylation. Let-7a or let-7b over-expression attenuated these alterations significantly. The present study may provide a new insight into the protective properties of let-7a and let-7b in preventing the endothelial dysfunction associated with cardiovascular disease, such as atherosclerosis.
Collapse
Affiliation(s)
- Mei-hua Bao
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Yi-wen Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Xiao-ya Lou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Yu Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Hong-hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
- * E-mail:
| |
Collapse
|
23
|
Hong D, Gao HC, Wang X, Li LF, Li CC, Luo Y, Wang KK, Bai YP, Zhang GG. Asymmetric dimethylarginine triggers macrophage apoptosis via the endoplasmic reticulum stress pathway. Mol Cell Biochem 2014; 398:31-8. [DOI: 10.1007/s11010-014-2202-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/30/2014] [Indexed: 12/01/2022]
|
24
|
Zhao W, Ma G, Chen X. Lipopolysaccharide induced LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK-NF-κB pathway. Vascul Pharmacol 2014; 63:162-72. [PMID: 25135647 DOI: 10.1016/j.vph.2014.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/25/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
Lectin-like receptor for oxidized low density lipoprotein (LOX-1) plays a key role in endothelial ox-LDL endocytosis, endothelial dysfunction and atherogenesis. In the present study, the effect of lipopolysaccharide (LPS) on LOX-1 expression and the underlying molecular pathways were investigated. Human umbilical vein endothelial cells (HUVECs) were treated with LPS and the protein expressions of LOX-1, TLR4, TLR2, MyD88, Nox4, Nox2, PI3K, p38MAPK, JNK, ERK, Nrf1, Nrf2 and p65 were examined by Western blotting. The intracellular reactive oxygen species (ROS) production was examined by flow cytometry with fluorescence probe DCFH2-DA. The role of TLR4, MyD88 and Nox4 were determined with specific siRNA. The endothelial ox-LDL uptake and the endothelial-monocyte adhesion were evaluated with DiI-ox-LDL and Hoechst 33342 respectively. The effect of LPS on LOX-1 expression in aorta tissue was also studied with male C57/BL6 mice by intraperitoneal injection of LPS. The results showed that LPS induced LOX-1 protein expression in a time- and concentration-dependent manner. The mRNA expression of LOX-1 was also upregulated. The protein expression of LOX-1 and phosphorylated p38MAPK, p65 was significantly enhanced by LPS both in vitro and in vivo. LPS induced LOX-1 expression was blocked by siRNA for TLR4, MyD88, and Nox4 and inhibitors for p38MAPK, NF-κB, cyclooxygenase-2, and NADPH oxidase. Both LPS induced ox-LDL uptake and endothelial-monocyte adhesion were significantly inhibited by anti-LOX-1 antibody. LPS dramatically induced LOX-1 protein expression in aorta tissues. In conclusion, our data suggested that LPS induces LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK/NF-κB pathway in endothelial cells, which provides new regulatory mechanisms for LOX-1 expression.
Collapse
Affiliation(s)
- Wenwen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guixin Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
25
|
Abstract
BACKGROUND Early endothelial outgrowth cells (eEOCs) protect mice from acute kidney injury (AKI). Peroxisome proliferator-activated receptor-alpha (PPAR-α) has been shown to mediate renoprotective effects under different experimental conditions. The aim of the study was to investigate consequences of fibrate treatment of murine eEOCs in a cell-based therapeutic approach to AKI. METHODS Male C57/Bl6N mice, subjected to unilateral renal ischemia (40 min) post-uninephrectomy, were systemically injected with 0.5 × 10(6) untreated or fenofibrate (FF 1, 5, 10 or 50 μm)/clofibrate (CF 1 mm) pretreated syngeneic murine eEOCs. Renal function and morphology were analyzed 48 h later. Cellular consequences of eEOC treatment with fibrates (FF 1, 5, 10, 50 μm, CF 1 mm) were evaluated using different in vitro assays (direct cell migration, apoptosis/necrosis, ELISA studies). RESULTS Administration of untreated eEOCs did not protect mice from AKI. Injection of eEOCs treated with CF (1 mm) or FF 50 μm did not result in any protection from ischemia-induced renal dysfunction. In vitro analysis showed reduced cellular secretion of vasoprotective vascular endothelial growth factor (VEGF), an effect that was more pronounced with CF; FF increased percentages of apoptotic/necrotic eEOCs, and both substances failed to stimulate migration of cultured cells. With lower FF concentrations (1, 5, 10 μm) cell survival was increased and 10 μm FF stimulated VEGF secretion. In vivo administration of FF-treated eEOCs (10 μm) also did not result in any renoprotective effect. CONCLUSION PPAR-α activation using fibrates does not stimulate renoprotective effects of syngeneic murine eEOCs in ischemic AKI, although lower fibrate concentrations significantly activate eEOCs in vitro.
Collapse
|
26
|
Bao MH, Zhang YW, Lou XY, Xiao Y, Cheng Y, Zhou HH. Puerarin protects endothelial cells from oxidized low density lipoprotein induced injuries via the suppression of LOX-1 and induction of eNOS. Can J Physiol Pharmacol 2014; 92:299-306. [PMID: 24708212 DOI: 10.1139/cjpp-2013-0322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidized low density lipoprotein (oxLDL) induced injury of endothelial cells is considered to be the first step in the pathogenesis of atherosclerosis. This study aimed to investigate some of the effects and mechanisms of puerarin on oxLDL-induced endothelial injuries. We measured cell viability, and the release of lactate dehydrogenase (LDH), nitric oxide (NO), and interleukin-8 (IL-8) to evaluate the protective effects of puerarin. Intracellular reactive oxygen species (ROS) were detected using 2',7'-dichlorofluorescein diacetate (DCFH-DA). The expression of lectin-like low-density lipoprotein receptor-1 (LOX-1), endothelial nitric oxide synthase (eNOS), cyclooxygenase 2 (COX-2), p38MAPK, and protein kinase B (PKB) phosphorylation, nuclear factor-κB (NF-κB) nuclear translocation, and inhibitor of κB (IκB) degradation were detected using quantitative real-time PCR or Western blot. The results showed that oxLDL significantly decreased cell viability, increased LDH and IL-8 release, inhibited NO production, and induced COX-2 expression. Pretreatment with puerarin led to a strong inhibition of these effects. OxLDL stimulated the expression of LOX-1, the overproduction of ROS, the phosphorylation of p38MAPK, the dephosphorylation of PKB, activation of NF-κB, and the degradation of IκB. These oxLDL-induced effects were suppressed after puerarin pretreatment. These results suggest that puerarin inhibits oxLDL-induced endothelial cell injuries, at least in part, via inhibition of the LOX-1-mediated p38MAPK-NF-κB inflammatory and the PKB-eNOS signaling pathways.
Collapse
Affiliation(s)
- Mei-hua Bao
- a Institute of Clinical Pharmacology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | | | | | | | | | | |
Collapse
|
27
|
Arjuman A, Chandra NC. Effect of IL-10 on LOX-1 expression, signalling and functional activity: an atheroprotective response. Diab Vasc Dis Res 2013; 10:442-51. [PMID: 23811604 DOI: 10.1177/1479164113489042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has gained attention for its pro-inflammatory potential in atherogenesis. This study evaluates LOX-1 receptor modulation in the presence of an atheroprotective cytokine, interleukin-10 (IL-10). Both oxidized low-density lipoprotein (oxLDL) and IL-10 stimulated LOX-1 cell surface expression on THP-1 macrophages. However, our study demonstrates differential roles of oxLDL and IL-10 on LOX-1 functionality. Seemingly, oxLDL-induced LOX-1 promoted pro-inflammatory signalling by increasing intracellular NO, a substrate for pro-inflammatory peroxynitrite. In contrast, IL-10-induced LOX-1 facilitated scavenging of extracellular oxLDL without any effect on pro-inflammatory signalling. The atheroprotective effects of IL-10 were demonstrated by both facilitation of cellular oxLDL uptake and expression of LOXIN, an atheroprotective haplotype of the LOX-1 gene. Thus, increased expression of IL-10 may help to attenuate the risk of atherosclerosis developed by pro-inflammatory signal(s) generated through the interaction of oxLDL with its cognate receptor LOX-1 on macrophages.
Collapse
Affiliation(s)
- Albina Arjuman
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
28
|
Makino J, Nakanishi R, Kamiya T, Hara H, Ninomiya M, Koketsu M, Adachi T. Luteolin suppresses the differentiation of THP-1 cells through the Inhibition of NOX2 mRNA expression and the membrane translocation of p47phox. JOURNAL OF NATURAL PRODUCTS 2013; 76:1285-1290. [PMID: 23786520 DOI: 10.1021/np400224w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Luteolin (1), a natural product occurring in many vegetables and fruits, is known to have several biological activities. Cluster for differentiation (CD) families, such as CD11b, -14, and -36, are expressed during pathological processes of atherosclerosis and are used broadly as markers of monocytic differentiation into macrophages. Herein, it was investigated whether 1 and three other flavonoids [chrysin (2), apigenin (3), and tricetin (4)] blocked 12-O-tetradecanoylphorbol 13-acetate (TPA)-triggered induction of CD families, which were induced through the activation of protein kinase C (PKC), mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK), and NADPH oxidase (NOX)-derived reactive oxygen species (ROS). When compared to flavonoids 2-4, 1 blocked TPA-triggered induction of CD families and cell adherence of monocytic THP-1 cells. Luteolin completely blocked intracellular ROS generation, whereas it did not inhibit MEK/ERK phosphorylation. Moreover, pretreatment with 1 suppressed TPA-triggered induction of NOX2 and membrane translocation of p47(phox). Overall, it is revealed that 1 suppresses TPA-triggered induction of CD families by the prevention of NOX2 activation.
Collapse
Affiliation(s)
- Junya Makino
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Pekarova M, Kubala L, Martiskova H, Bino L, Twarogova M, Klinke A, Rudolph TK, Kuchtova Z, Kolarova H, Ambrozova G, Kuchta R, Kadlec J, Lojek A. Asymmetric dimethylarginine regulates the lipopolysaccharide-induced nitric oxide production in macrophages by suppressing the activation of NF-kappaB and iNOS expression. Eur J Pharmacol 2013; 713:68-77. [PMID: 23665490 DOI: 10.1016/j.ejphar.2013.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/17/2013] [Accepted: 05/02/2013] [Indexed: 01/29/2023]
Abstract
Two major effector systems are frequently implicated in the immune and endothelial cell alternations associated with inflammation. They include the enhanced production of reactive oxygen species and diminished bioavailability of nitric oxide (NO). Importantly, these processes can be regulated by endogenously produced methylarginines, inhibitors for NO derived from macrophages and endothelial cells. Therefore, the aim of this study was to show the potential pharmacological intervention of methylarginines (N(G)-methyl-L-arginine, L-NMMA; N(G), N(G)'-dimethyl-L-arginine-symmetric dimethylarginine, SDMA; and N(G), N(G)-dimethyl-L-arginine-asymmetric dimethylarginine, ADMA) in activation of murine peritoneal (RAW 264.7) and alveolar (MHS) macrophages with lipopolysaccharide from Gram-negative bacteria (LPS). The data presented in this study clearly declare that L-NMMA (1-50μM) and ADMA (10-50 μM) significantly inhibited the LPS-induced NO production from macrophages in a concentration-dependent manner. It was demonstrated, for the first time, that the ADMA- and L-NMMA-induced down regulation of NO production was accompanied by reduced expression of mRNA and protein for inducible NO synthase as well as decreased activation of nuclear factor-κB. Importantly, we found a negative correlation between the ADMA-dependent reduction of NO production and ADMA-increased superoxide formation, which indicates that ADMA can negatively affect the balance in LPS-induced macrophage-derived production of reactive mediators. The only effect of SDMA was observed for LPS-triggered superoxide production, which was significantly decreased in its highest concentration (50 μM). In summary, L-NMMA and ADMA can mediate their effects on macrophage activation via regulation of intracellular signaling pathways, which can affect critical functions in activated macrophages.
Collapse
Affiliation(s)
- Michaela Pekarova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Asymmetric dimethylarginine predicts clinical outcomes in ischemic chronic heart failure. Atherosclerosis 2012; 225:504-10. [DOI: 10.1016/j.atherosclerosis.2012.09.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 09/10/2012] [Accepted: 09/26/2012] [Indexed: 11/23/2022]
|
31
|
Chen S, Li N, Deb-Chatterji M, Dong Q, Kielstein JT, Weissenborn K, Worthmann H. Asymmetric dimethyarginine as marker and mediator in ischemic stroke. Int J Mol Sci 2012; 13:15983-6004. [PMID: 23443106 PMCID: PMC3546674 DOI: 10.3390/ijms131215983] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/14/2012] [Accepted: 11/21/2012] [Indexed: 02/07/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, is known as mediator of endothelial cell dysfunction and atherosclerosis. Circulating ADMA levels are correlated with cardiovascular risk factors such as hypercholesterolemia, arterial hypertension, diabetes mellitus, hyperhomocysteinemia, age and smoking. Accordingly, clinical studies found evidence that increased ADMA levels are associated with a higher risk of cerebrovascular events. After the acute event of ischemic stroke, levels of ADMA and its analog symmetric dimethylarginine (SDMA) are elevated through augmentation of protein methylation and oxidative stress. Furthermore, cleavage of ADMA through dimethylarginine dimethylaminohydrolases (DDAHs) is reduced. This increase of dimethylarginines might be predictive for adverse clinical outcome. However, the definite role of ADMA after acute ischemic stroke still needs to be clarified. On the one hand, ADMA might contribute to brain injury by reduction of cerebral blood flow. On the other hand, ADMA might be involved in NOS-induced oxidative stress and excitotoxic neuronal death. In the present review, we highlight the current knowledge from clinical and experimental studies on ADMA and its role for stroke risk and ischemic brain injury in the hyperacute stage after stroke. Finally, further studies are warranted to unravel the relevance of the close association of dimethylarginines with stroke.
Collapse
Affiliation(s)
- Shufen Chen
- Department of Neurology, Hannover Medical School, 30623 Hannover, Germany; E-Mails: (S.C.); (N.L.); (M.D.-C.); (K.W.)
- Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; E-Mail:
| | - Na Li
- Department of Neurology, Hannover Medical School, 30623 Hannover, Germany; E-Mails: (S.C.); (N.L.); (M.D.-C.); (K.W.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 10050, China
| | - Milani Deb-Chatterji
- Department of Neurology, Hannover Medical School, 30623 Hannover, Germany; E-Mails: (S.C.); (N.L.); (M.D.-C.); (K.W.)
| | - Qiang Dong
- Department of Neurology, Huashan Hospital Fudan University, Shanghai 200040, China; E-Mail:
| | - Jan T. Kielstein
- Department of Nephrology and Hypertension, Hannover Medical School, 30623 Hannover, Germany; E-Mail:
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, 30623 Hannover, Germany; E-Mails: (S.C.); (N.L.); (M.D.-C.); (K.W.)
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, 30623 Hannover, Germany; E-Mails: (S.C.); (N.L.); (M.D.-C.); (K.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-511-532-3580; Fax: +49-511-532-3115
| |
Collapse
|
32
|
Xia W, Shao Y, Wang Y, Wang X, Chi Y. Asymmetric dimethylarginine and carotid atherosclerosis in Type 2 diabetes mellitus. J Endocrinol Invest 2012; 35:824-7. [PMID: 23135319 DOI: 10.1007/bf03347101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circulating asymmetric dimethylarginine (ADMA) concentration is elevated in patients with Type 2 diabetes mellitus (T2DM). AIM To assess the relationship between plasma ADMA concentration and carotid atherosclerosis in patients with T2DM. SUBJECTS AND METHODS A total of 72 newly diagnosed and untreated T2DM individuals and 72 healthy controls were studied. Carotid atherosclerosis was determined by ultrasonographically evaluated intima- media thickness (IMT) and plaque score. Plasma concentration of ADMA was measured by high-performance liquid chromatography. RESULTS Plasma ADMA, mean IMT, and plaque score were higher in diabetic patients compared with controls. Univariate and multivariate analyses demonstrated an independent association between ADMA and mean IMT in diabetic patients. On a multiple logistic regression analysis, ADMA was the sole predictor of carotid plaque formation (plaque score ≥1.1) (odds ratio 2.43, 95% confidence interval 1.19 to 4.94, p<0.05). CONCLUSION Our results suggest that increased levels of ADMA might be involved in the development of carotid atherosclerosis in T2DM.
Collapse
Affiliation(s)
- W Xia
- Department of Cardiology, Qingdao Municipal Hospital, the Affiliated Hospital of Ocean University of China, Shandong, China
| | | | | | | | | |
Collapse
|
33
|
Xie J. The C-type lectin-like receptors of Dectin-1 cluster in natural killer gene complex. Glycoconj J 2012; 29:273-84. [DOI: 10.1007/s10719-012-9419-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 11/30/2022]
|
34
|
Allahverdian S, Pannu PS, Francis GA. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res 2012; 95:165-72. [PMID: 22345306 DOI: 10.1093/cvr/cvs094] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle cells (SMCs) are the main cell type in intimal thickenings and some stages of human atherosclerosis. Like monocyte-derived macrophages, SMCs accumulate excess lipids and contribute to the total intimal foam cell population. In contrast, apolipoprotein (Apo)E-deficient and LDL receptor-deficient mice develop atherosclerotic lesions that are macrophage- as opposed to SMC-rich. The lesser contribution of SMCs to lesion development in these mouse models has distracted attention away from the importance of SMC cholesterol homeostasis in the artery wall. Intimal SMCs accumulate excess amounts of cholesteryl esters when compared with medial layer SMCs, possibly explained by reduced ATP-binding cassette transporter A1 expression and ApoA-I binding to intimal-type SMCs. The aim of this review is to compare the relative contribution of monocyte-derived macrophages and SMCs to human vs. mouse atherosclerosis, and describe what is known about lipid uptake and removal mechanisms contributing to arterial macrophage and SMC foam cell formation. An increased understanding of the contribution of these cell types to lesion development will help to delineate their relative importance in atherogenesis and as potential therapeutic targets.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, UBC James Hogg Research Centre, Providence Heart + Lung Institute at St Paul's Hospital, Room 166, Burrard Building, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | |
Collapse
|
35
|
Lu TM, Chung MY, Lin MW, Hsu CP, Lin SJ. Plasma asymmetric dimethylarginine predicts death and major adverse cardiovascular events in individuals referred for coronary angiography. Int J Cardiol 2011; 153:135-40. [DOI: 10.1016/j.ijcard.2011.06.120] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/27/2011] [Accepted: 06/25/2011] [Indexed: 11/28/2022]
|
36
|
Tuygun AK, Tuygun A, Yurtseven N, Şensöz Y, Günay R, Keser M, Tuygun UH, Ketenci B, Şahin S, Yekeler I. Asymmetric Dimethylarginine Levels in Buerger’s Disease. Ann Vasc Surg 2011; 25:547-54. [DOI: 10.1016/j.avsg.2010.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/10/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
|
37
|
Zhao ZW, Zhu XL, Luo YK, Lin CG, Chen LL. Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are associated with angiographic coronary lesion complexity in patients with coronary artery disease. Clin Cardiol 2011; 34:172-7. [PMID: 21400544 DOI: 10.1002/clc.20847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/11/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Angiographic coronary lesion complexity has been reported to predict plaque vulnerability. It is important to develop a noninvasive blood biomarker for accurate prognostication of angiographically complex lesions in patients with coronary artery disease (CAD). HYPOTHESIS Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels may be correlated with coronary lesion complexity in patients with CAD. METHODS We measured serum sLOX-1 levels in 180 consecutive patients undergoing coronary angiography for the evaluation of CAD. Coronary lesions were classified as simple or complex lesions based on coronary plaque morphology. RESULTS Stable CAD patients with complex lesions (n=50) had significantly higher serum sLOX-1 levels than those with simple lesions (n=72), at 0.914 ng/mL (range, 0.489-1.296 ng/mL) vs 0.426 ng/mL (range, 0.195-1.075 ng/mL), respectively, P<0.01. Multivariate logistic regression analysis revealed that sLOX-1 levels were independently associated with the presence of complex lesions in patients with stable CAD (odds ratio [OR]: 1.964, 95% confidence interval [CI]: 1.149-3.356, P<0.05). Among patients with acute coronary syndrome (n=58), who had significantly higher circulating sLOX-1 levels than stable CAD patients (n=122) at 1.610 ng/mL (range, 0.941-2.264 ng/mL) vs 0.579 ng/mL (range, 0.265-1.172 ng/mL), respectively, P<0.01, sLOX-1 levels were independently associated with the presence of multiple complex coronary lesions (OR: 1.967, 95% CI: 1.075-3.600, P < 0.05). CONCLUSIONS Serum sLOX-1 levels were associated with complex lesions that might predict vulnerable plaques. This study suggested sLOX-1 might be a useful biomarker of coronary plaque vulnerability in patients with CAD.
Collapse
Affiliation(s)
- Zi-Wen Zhao
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Ginsenoside-Rd, a purified component from panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. Eur J Pharmacol 2010; 652:104-10. [PMID: 21122802 DOI: 10.1016/j.ejphar.2010.11.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 11/12/2010] [Accepted: 11/12/2010] [Indexed: 02/02/2023]
Abstract
Recently, it was revealed that the dysfunction of transmembrane Ca(2+) transport, results in an increase in intracellular Ca(2+)[Ca(2+)](i), which is involved in the process of atherosclerosis. We previously demonstrated that ginsenoside-Rd, a purified component from panax notoginseng, is a voltage-independent Ca(2+) channels blocker. In this study, we investigated the effects of ginsenoside-Rd on atherosclerosis and the underlying mechanisms in apolipoprotein E deficient (apoE(-/-)) mice and RAW264.7 cells. Atherosclerotic plaques were stained by Red oil O staining. Ca(2+) influx was measured by Fura-2 dyed Mn(2+) quenching. Intracellular cholesterol and uptake of lipid was assayed by enzymatic, fluorometric method and DiI-labeled Ox-LDL. Western blot was used to determine protein expression. We found that Ginsenoside-Rd (20mg/kg/day. i.p.) significantly reduced the atherosclerotic plaque areas, oxidized low-density lipoprotein (ox-LDL) uptake and thapsigargin and l-oleoyl-2-acetyl-glycerol (OAG, membrane-permeable diacylglycerol analog)-induced Ca(2+) influx in macrophages from high-fat diet apoE(-/-) mice. In vitro, 20μM ginsenoside-Rd significantly inhibited ox-LDL-induced foam cell formation and the increase of thapsigargin- and OAG-induced Ca(2+) influx. Ox-LDL induced an increase in scavenger receptor A (SR-A) expression, and ginsenoside-Rd inhibited this effect of ox-LDL significantly. The results suggest that ginsenoside-Rd prevents the development of atherosclerosis. The underlying mechanism may be related to the inhibition of Ca(2+) influx through voltage-independent Ca(2+) channels, resulting in the inhibition of SR-A activity and expression, followed by reductions of ox-LDL uptake and cholesterol accumulation in macrophages.
Collapse
|
39
|
Stephen SL, Freestone K, Dunn S, Twigg MW, Homer-Vanniasinkam S, Walker JH, Wheatcroft SB, Ponnambalam S. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int J Hypertens 2010; 2010:646929. [PMID: 20981357 PMCID: PMC2958427 DOI: 10.4061/2010/646929] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/07/2010] [Indexed: 12/12/2022] Open
Abstract
Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis.
Collapse
Affiliation(s)
- Sam L Stephen
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Qiu Y, Yanase T, Hu H, Tanaka T, Nishi Y, Liu M, Sueishi K, Sawamura T, Nawata H. Dihydrotestosterone suppresses foam cell formation and attenuates atherosclerosis development. Endocrinology 2010; 151:3307-16. [PMID: 20427482 DOI: 10.1210/en.2009-1268] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of testosterone in atherosclerosis remains unclear because it is aromatized to estrogen. We investigated the effect of the nonaromatized natural androgen 5alpha-dihydrotestosterone (DHT) on the rabbit atherogenesis in relation to the proatherogenic molecule lectin-like oxidized-low-density lipoprotein receptor-1 (LOX-1) and its downstream molecules. Thirty-nine male New Zealand white rabbits were divided into four groups: 1) noncastrated group with normal chow diet (n = 6); 2) noncastrated group with high-cholesterol diet (HCD) (n = 10); 3) castrated group with HCD plus sc placebo pellet (n = 11); and 4) castrated group with HCD plus sc 150 mg DHT pellet (n = 12). Implantation of sc DHT or placebo pellet was performed at the time of castration. After castration or sham operation, the rabbits were fed the HCD for 8 wk, and plaque areas were assessed in the entire aorta. The HCD-induced increase in plaque area, which was most aggravated in the castration plus placebo group, was attenuated in the castration plus DHT group. Microscopic examination of the proximal descending aorta revealed that DHT significantly reduced HCD-induced foam cell formation, which was mostly composed of macrophages in the intima layer, compared with the placebo group. The decreased accumulation of foam cells with DHT treatment was accompanied by a marked reduction in the expression of LOX-1 mRNA in these cells. In cultured macrophages prepared from male wild-type mice that express the androgen receptor (AR), 1 x 10(-8) m and 1 x 10(-9) m DHT inhibited the formation of foam cells induced by oxidized low-density lipoprotein. Moreover, the expression of LOX-1 and inflammatory cytokines in the cultured macrophages was significantly suppressed by DHT. Such suppressive effects of DHT on foam cell formation and cytokine expression were not observed in cultured macrophages prepared from male AR-null mice, suggesting an involvement of AR in the mechanism. In conclusion, physiological levels of DHT attenuated the development of atherosclerosis in rabbits through the suppression of intimal foam cell formation of macrophage partly via the suppression of LOX-1 expression.
Collapse
Affiliation(s)
- Yang Qiu
- Department of Medicine and Bioregulatory Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Association between plasma asymmetrical dimethylarginine activity and saphenous vein graft disease in patients with coronary bypass. Coron Artery Dis 2009; 21:20-5. [PMID: 19996737 DOI: 10.1097/mca.0b013e328332a6da] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Coronary vein graft disease is an important contributor to the morbidity after coronary artery bypass graft surgery. Graft occlusion is a serious complication, which limits the use of the saphenous vein as a coronary bypass conduit. Asymmetrical dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and it reduces the bioavailability of nitric oxide and begets endothelial dysfunction. The goal of this study was to examine the association between plasma ADMA activity and saphenous vein graft disease. METHODS One hundred and three patients were enrolled in this study. Group 1 consisted of 42 patients (13 female, 29 male) who had diseased saphenous vein grafts and group 2 consisted of 61 patients (10 female, 51 male) with nondiseased saphenous vein grafts. ADMA activity was measured by the enzyme-linked immunosorbent assay kit. RESULTS Mean ADMA activity in group 1 was significantly higher than in group 2 (2.0+/-0.6 vs. 1.1+/-0.5 micromol/l, P<0.001, respectively). Mean platelet volume was also significantly higher in group 1 than in group 2 (8.7+/-1.5 vs. 8.2+/-0.6 fl, P=0.03, respectively). In a multivariate linear regression analysis, ADMA activity (beta=2.902, P<0.001) and mean platelet volume (beta=0.595, P=0.03) were found to be independent predictors of saphenous vein graft disease. CONCLUSION Our results showed that ADMA activity was higher in patients with saphenous vein graft disease. Increased ADMA activity might lead to the acceleration of saphenous vein graft disease. ADMA may be a precious marker for detecting late saphenous vein graft patency.
Collapse
|
42
|
Jia SJ, Zhou Z, Zhang BK, Hu ZW, Deng HW, Li YJ. Asymmetric dimethylarginine damages connexin43-mediated endothelial gap junction intercellular communication. Biochem Cell Biol 2009; 87:867-74. [PMID: 19935872 DOI: 10.1139/o09-042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA), a major endogenous inhibitor of nitric oxide synthase, is recently defined as a novel atherogenic factor. Communication via gap junction (GJIC) is involved in the regulation of a variety of endothelial activities, such as cell differentiation and senescence. The aim of this study is to explore the effects of ADMA on connexin43 (Cx43) mediated endothelial GJIC. Lysophosphatidylcholine (LPC) caused the downregulation of Cx43 expression and GJIC dysfunction in cultured human umbilical vein endothelial cells (HUVECs), which were significantly ameliorated by decreasing ADMA accumulation. Furthermore, we found that ADMA (10 µmol·L–1, 24 h) markedly downregulated Cx43 expression and damaged GJIC function in HUVECs. ADMA also increased production of intracellular reactive oxygen species (ROS) and induced phosphorylation of p38 MAPK. Furthermore, the inhibitory effect of ADMA on Cx43-mediated GJIC could be attenuated by NADPH oxidase inhibitor diphenyleneiodonium and apocynin as well as p38 MAPK inhibitor SB203580, respectively. In conclusion, our present results suggest that ADMA inhibits endothelial GJIC function via downregulating Cx43 expression, which suggesting a novel mechanism linking between elevated ADMA level and progression of atherosclerosis.
Collapse
Affiliation(s)
- Su-Jie Jia
- Department of Pharmaceutics, The Third XiangYa Hospital of Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
- Institute of Material Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Zhou
- Department of Pharmaceutics, The Third XiangYa Hospital of Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
- Institute of Material Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Bi-Kui Zhang
- Department of Pharmaceutics, The Third XiangYa Hospital of Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
- Institute of Material Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo-Wei Hu
- Department of Pharmaceutics, The Third XiangYa Hospital of Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
- Institute of Material Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Han-Wu Deng
- Department of Pharmaceutics, The Third XiangYa Hospital of Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
- Institute of Material Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan-Jian Li
- Department of Pharmaceutics, The Third XiangYa Hospital of Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
- Institute of Material Medica, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Ishiyama J, Taguchi R, Yamamoto A, Murakami K. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis 2009; 209:118-24. [PMID: 19782984 DOI: 10.1016/j.atherosclerosis.2009.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/26/2009] [Accepted: 09/02/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Elevated levels of nonesterified fatty acids (NEFA) in obesity and type 2 diabetes may contribute to the development of atherosclerosis. Therefore, we examined whether NEFA could regulate expression of scavenger receptors responsible for uptake of oxidized LDL (oxLDL) in macrophages, a critical step in atherogenesis. METHODS AND RESULTS Expression level of scavenger receptors in NEFA-treated macrophage-like THP-1 and Raw264.7 cells were analyzed by real-time PCR. Palmitic acid showed the greatest enhancement of expression of lectin-like oxidized LDL receptor (LOX-1) among 7 NEFA examined (4 saturated and 3 unsaturated fatty acids). Upregulation of LOX-1 was selective as increases in expression level of other scavenger receptors (CD36, SR-AI, SR-BI, and CD68) were not observed. Western blotting analysis indicated that upregulation of LOX-1 also occurred at the protein level. Uptake of oxLDL by Raw264.7 cells was promoted by palmitic acid, and the enhanced uptake was abrogated when the cells were transfected with siRNA against LOX-1. Downregulation of Toll-like receptor (TLR) 2, TLR4, or IRAK4 with siRNA did not prevent LOX-1 upregulation, whereas inhibitors of p38 MAPK (p38) and reactive oxygen species (ROS) signal inhibited the upregulation of LOX-1 induced by palmitic acid. CONCLUSIONS These results suggest that elevated level of palmitic acid may contribute to development of atherosclerosis through enhanced uptake of oxLDL via upregulation of LOX-1 in macrophages. The effects of palmitic acid may be mediated by ROS-p38 pathway rather than TLRs.
Collapse
Affiliation(s)
- Junichi Ishiyama
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | | | | | | |
Collapse
|
44
|
Jiang DJ, Cao Y, Xin HY, Li XH, Luo ZQ, Li YJ. Asymmetric dimethylarginine induces tissue factor expression in monocytes via NF-kappaB-dependent pathway: Role in acute coronary syndromes. Atherosclerosis 2009; 205:554-60. [DOI: 10.1016/j.atherosclerosis.2008.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 11/24/2022]
|
45
|
Schaeffer DF, Riazy M, Parhar KS, Chen JH, Duronio V, Sawamura T, Steinbrecher UP. LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res 2009; 50:1676-84. [PMID: 19359704 DOI: 10.1194/jlr.m900167-jlr200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidized LDL (oxLDL) promotes lipid accumulation as well as growth and survival signaling in macrophages. OxLDL uptake is mainly due to scavenger receptors SR-AI/II and CD36. However, other scavenger receptors such as lectin-like oxLDL receptor-1 (LOX-1) may also play a role. We used mice with targeted inactivation of the LOX-1 gene to define the role of this receptor in the uptake of oxLDL and in activation of survival pathways. There was no difference in uptake or degradation of 125I-oxLDL in unstimulated macrophages from wild-type and LOX-1 knockout mice and no difference in the rate of clearance of oxLDL from plasma in vivo. However, when expression of LOX-1 was induced with lysophosphatidylcholine, oxLDL uptake and degradation increased 2-fold in wild-type macrophages but did not change in LOX-1 knockout macrophages. Macrophages lacking LOX-1 showed the same stimulation of PKB phosphorylation and enhancement of survival by oxLDL as wild-type cells. These data show that LOX-1 does not alter the uptake of oxLDL in unstimulated macrophages and is not essential for the pro-survival effect of oxLDL in these cells. However, LOX-1 expression is highly inducible by lysophosphatidylcholine and pro-inflammatory cytokines, and if that occurred in macrophages within atheromas, LOX-1 could substantially increase oxLDL uptake by lesion macrophages.
Collapse
Affiliation(s)
- David F Schaeffer
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhou QG, Zhou M, Hou FF, Peng X. Asymmetrical dimethylarginine triggers lipolysis and inflammatory response via induction of endoplasmic reticulum stress in cultured adipocytes. Am J Physiol Endocrinol Metab 2009; 296:E869-78. [PMID: 19208851 DOI: 10.1152/ajpendo.91011.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein energy wasting, a state of decreased stores of body protein and fat, is a risk factor for mortality in advanced chronic kidney disease (CKD). Little is known about the mechanism underlying loss of fat in CKD. Accumulation of asymmetric dimethylarginine (ADMA) is prevalent in advanced CKD. Here we assessed the effect of ADMA on cellular perturbation in cultured 3T3-L1 adipocytes. Exposure of adipocytes to ADMA induced lipolysis and decreased perilipin A, with no alteration of lipases expression or activity. ADMA treatment also upregulated the expression of inflammatory adipocytokines via activation of nuclear factor-kappaB (NF-kappaB). Blocking the inflammatory responses with NF-kappaB inhibitor partly inhibited the ADMA-induced lipolysis. Furthermore, ADMA treatment triggered endoplasmic reticulum (ER) stress, revealed by phosphorylation of PKR-like eukaryotic initiation factor 2alpha kinase, eukaryotic translational initiation factor 2alpha, c-Jun NH2-terminal kinase, and overexpression of glucose-regulated protein 78. Treatment with ER stress inhibitor completely abolished the ADMA-induced lipolysis and inflammatory responses. Moreover, conditioned medium from the ADMA-treated adipocytes increased protein degradation in cultured C2C12 myotubes, suggesting that the ADMA-induced adipocyte perturbation may promote skeletal muscle proteolysis. These data suggest that elevated ADMA promoted the adipocyte perturbation through induction of ER stress, which might have implication for protein energy wasting in CKD.
Collapse
Affiliation(s)
- Qiu Gen Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Laboratory of Organ Failure, Ministry of Education, 1838 North Guangzhou Ave., Guangzhou 510515, PR China
| | | | | | | |
Collapse
|
47
|
Guldiken B, Demir M, Guldiken S, Turgut N, Ozkan H, Kabayel L, Tugrul A. Asymmetric dimethylarginine and nitric oxide levels in migraine during the interictal period. J Clin Neurosci 2009; 16:672-4. [PMID: 19282179 DOI: 10.1016/j.jocn.2008.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/11/2008] [Accepted: 08/21/2008] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO), which modulates endothelial function, is thought to be pivotal in the pathophysiology of migraines. The connection between migraine and cardiovascular diseases has also drawn attention to the endothelial dysfunctions and NO pathway abnormalities seen in patients with migraine. Our goal was to assess the levels of NO and the endogenous NO synthase inhibitor, asymmetric dimethylarginine (ADMA), in people with migraine during the interictal period. A total of 49 patients with migraine and 22 control subjects were enrolled in the study. Their plasma NO metabolites (nitrite [NO2-] and nitrate [NO3-]) and ADMA levels were measured using the enzyme-linked immunosorbent assay method, and were then compared with their cardiovascular risk factors, anthropometric measurements, and headache frequency and severity. The plasma ADMA, NO2- and NO3- levels of the patients with migraine during the interictal period did not differ from the control group, and no relationship was found between cardiovascular risk factors and migraine attack severity and frequency. We conclude that, in patients with migraine, there is no dysfunction of baseline NO and ADMA metabolism during the interictal period.
Collapse
Affiliation(s)
- B Guldiken
- Department of Neurology, Medical Faculty, Trakya University, and Social Security Hospital, 22030 Edirne, Turkey.
| | | | | | | | | | | | | |
Collapse
|
48
|
McNeal CJ, Wilson DP, Christou D, Bush RL, Shepherd LG, Santiago J, Wu GY. The use of surrogate vascular markers in youth at risk for premature cardiovascular disease. J Pediatr Endocrinol Metab 2009; 22:195-211. [PMID: 19492575 DOI: 10.1515/jpem.2009.22.3.195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Premature cardiovascular disease (CVD) begins in youth--a crucial period when modification of the disease may have the greatest impact. Failure to diagnose preclinical CVD at this stage misses a major opportunity to prevent the long-term consequences of this disease. An array of surrogate vascular markers (SVMs) are now available that can determine the extent of preclinical vascular injury in the pediatric population. These SVMs include flow-mediated vasodilatation, carotid intima media thickness, arterial stiffness, and biomarkers including high sensitivity C-reactive protein, cell adhesion molecules and methylarginines. We believe that the use of these SVMs will help to develop a better understanding of early pathological vascular changes in youth, facilitate earlier diagnosis of preclinical atherosclerosis and provide an objective measure of the vascular effects of any therapeutic intervention aimed at risk factor modification. Ultimately, our future health will depend on carefully balancing the benefits of early diagnosis and treatment in high-risk youth with the long-term risk of CVD. The application of SVMs in the pediatric population will help us achieve this balance.
Collapse
Affiliation(s)
- C J McNeal
- Department of Pediatrics, Scott & White Memorial Hospital and the Texas A&M Health Science Center, Temple, TX 76508, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Losartan inhibits monocytic adhesion induced by ADMA via downregulation of chemokine receptors in monocytes. Eur J Clin Pharmacol 2009; 65:457-64. [DOI: 10.1007/s00228-008-0607-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 12/18/2008] [Indexed: 01/09/2023]
|
50
|
Kuge Y, Kume N, Ishino S, Takai N, Ogawa Y, Mukai T, Minami M, Shiomi M, Saji H. Prominent lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1) expression in atherosclerotic lesions is associated with tissue factor expression and apoptosis in hypercholesterolemic rabbits. Biol Pharm Bull 2008; 31:1475-82. [PMID: 18670075 DOI: 10.1248/bpb.31.1475] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Despite increasing in vitro evidence that lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1), a cell-surface receptor for oxidized LDL, is implicated in the atherogenesis and thrombus formation, its in vivo participation to the atherosclerotic plaque destabilization, rupture and thrombus formation remains unclear. Here, we compared the in vivo expression of LOX-1, with tissue factor (TF) expression and cell apoptosis, in atherosclerotic lesions of myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits. METHODS AND RESULTS We prepared sixty series of cross sections in the aortic arch and the thoracic aorta from four WHHLMI rabbits. LOX-1 and TF expression, as well as apoptotic events were determined by immunohistochemical staining and TUNEL methods, respectively. LOX-1 expression was mainly observed in the macrophage-rich lipid areas of vulnerable plaque-like atheromatous lesions where TF expression and apoptotic events were prominent. LOX-1 expression was positively correlated with TF expression (r=0.53, p<0.0001), apoptotic events (r=0.52, p<0.0001) and morphological vulnerability (r=0.63, p<0.0001). CONCLUSIONS LOX-1 expression appears to be closely associated with TF expression, apoptotic events and the morphological vulnerability, suggesting the in vivo involvement of LOX-1 in the destabilization and rupture of atherosclerotic lesions and the subsequent thrombus formation. The present findings in hypercholesterolemic rabbits should help advance our understanding of the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Yuji Kuge
- Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|