1
|
Zheng H, Drumm BT, Zhu MH, Xie Y, O'Driscoll KE, Baker SA, Perrino BA, Koh SD, Sanders KM. Na +/Ca 2 + Exchange and Pacemaker Activity of Interstitial Cells of Cajal. Front Physiol 2020; 11:230. [PMID: 32256387 PMCID: PMC7093646 DOI: 10.3389/fphys.2020.00230] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 01/30/2023] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical slow waves in gastrointestinal (GI) smooth muscles. Slow waves organize basic motor patterns, such as peristalsis and segmentation in the GI tract. Slow waves depend upon activation of Ca2+-activated Cl– channels (CaCC) encoded by Ano1. Slow waves consist of an upstroke depolarization and a sustained plateau potential that is the main factor leading to excitation-contraction coupling. The plateau phase can last for seconds in some regions of the GI tract. How elevated Ca2+ is maintained throughout the duration of slow waves, which is necessary for sustained activation of CaCC, is unknown. Modeling has suggested a role for Na+/Ca2+ exchanger (NCX) in regulating CaCC currents in ICC, so we tested this idea on murine intestinal ICC. ICC of small and large intestine express NCX isoforms. NCX3 is closely associated with ANO1 in ICC, as shown by immunoprecipitation and proximity ligation assays (PLA). KB-R7943, an inhibitor of NCX, increased CaCC current in ICC, suggesting that NCX, acting in Ca2+ exit mode, helps to regulate basal [Ca2+]i in these cells. Shifting NCX into Ca2+ entry mode by replacing extracellular Na+ with Li+ increased spontaneous transient inward currents (STICs), due to activation of CaCC. Stepping ICC from −80 to −40 mV activated slow wave currents that were reduced in amplitude and duration by NCX inhibitors, KB-R7943 and SN-6, and enhanced by increasing the NCX driving force. SN-6 reduced the duration of clustered Ca2+ transients that underlie the activation of CaCC and the plateau phase of slow waves. Our results suggest that NCX participates in slow waves as modeling has predicted. Dynamic changes in membrane potential and ionic gradients during slow waves appear to flip the directionality of NCX, facilitating removal of Ca2+ during the inter-slow wave interval and providing Ca2+ for sustained activation of ANO1 during the slow wave plateau phase.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Mei Hong Zhu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Kate E O'Driscoll
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| |
Collapse
|
2
|
Zhang J, Wang Y, Chen L, Wier WG, Blaustein MP. Na +/Ca 2+ exchanger overexpression in smooth muscle augments cytosolic Ca 2+ in femoral arteries of living mice. Am J Physiol Heart Circ Physiol 2019; 316:H298-H310. [PMID: 30461304 PMCID: PMC6397384 DOI: 10.1152/ajpheart.00185.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Plasma membrane Na+/Ca2+ exchanger-1 (NCX1) helps regulate the cytosolic Ca2+ concentration ([Ca2+]CYT) in arterial myocytes. NCX1 mediates both Ca2+ entry and exit and tends to promote net Ca2+ entry in partially constricted arteries. Mean blood pressure (telemetry) is elevated by ≈10 mmHg in transgenic (TG) mice that overexpress NCX1 specifically in smooth muscle. We tested the hypothesis that NCX1 overexpression mediates Ca2+ gain and elevated [Ca2+]CYT in exposed femoral arteries that also express the Ca2+ biosensor exogenous myosin light chain kinase. [Ca2+]CYT and the NCX1-dependent (SEA0400-sensitive) component, ≈15% of total basal constriction in controls, were increased in TG arteries, but constrictions to phenylephrine and ANG II were comparable in TG and control arteries. Normalized phenylephrine dose-response curves and constriction to 30 and 300 ng/kg iv ANG II were virtually identical in control and TG arteries. ANG II-evoked constrictions, superimposed on elevated basal tone, accounted for the larger blood pressure responses to ANG II in TG arteries. TG and control mouse arteries fit the same pCa-constriction relationship over a wide range of pCa (≈125-500 nM). Vasodilation to acetylcholine, normalized to passive diameter, was also comparable in TG and control arteries, implying normal endothelial function. TG artery Na+ nitroprusside (nitric oxide donor)-induced dilations were, however, shifted to lower Na+ nitroprusside concentrations, indicating that TG myocyte vasodilator mechanisms were augmented. Maximum arterial dilation was comparable in TG and control mice, although passive diameter was ≈6-7% smaller in TG mice. The changes in TG arteries were apparently largely functional rather than structural, despite the congenital hypertension. NEW & NOTEWORTHY Smooth muscle Na+/Ca2+ exchanger-1 transgene overexpression (TG mice) increases femoral artery basal cytosolic Ca2+ concentration ([Ca2+]CYT) and tone in vivo and raises blood pressure. Arterial constriction to phenylephrine and angiotensin II are normal but superimposed on the augmented basal [Ca2+]CYT and tone (constriction) in TG mouse arteries. Similar effects in resistance arteries would explain the elevated blood pressure. Acetylcholine-induced vasodilation is unimpaired, implying a normal endothelium, but TG arteries are hypersensitive to sodium nitroprusside.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Youhua Wang
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Physical Education, Shaanxi Normal University , Xi'an, Shaanxi , China
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
3
|
Hart NJ, Weber C, Papas KK, Limesand SW, Vagner J, Lynch RM. Multivalent activation of GLP-1 and sulfonylurea receptors modulates β-cell second-messenger signaling and insulin secretion. Am J Physiol Cell Physiol 2018; 316:C48-C56. [PMID: 30404557 DOI: 10.1152/ajpcell.00209.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Linking two pharmacophores that bind different cell surface receptors into a single molecule can enhance cell-targeting specificity to cells that express the complementary receptor pair. In this report, we developed and tested a synthetic multivalent ligand consisting of glucagon-like peptide-1 (GLP-1) linked to glibenclamide (Glb) (GLP-1/Glb) for signaling efficacy in β-cells. Expression of receptors for these ligands, as a combination, is relatively specific to the β-cell in the pancreas. The multivalent GLP-1/Glb increased both intracellular cAMP and Ca2+, although Ca2+ responses were significantly depressed compared with the monomeric Glb. Moreover, GLP-1/Glb increased glucose-stimulated insulin secretion in a dose-dependent manner. However, unlike the combined monomers, GLP-1/Glb did not augment insulin secretion at nonstimulatory glucose concentrations in INS 832/13 β-cells or human islets of Langerhans. These data suggest that linking two binding elements, such as GLP-1 and Glb, into a single bivalent ligand can provide a unique functional agent targeted to β-cells.
Collapse
Affiliation(s)
| | - Craig Weber
- Department of Physiology, University of Arizona , Tucson, Arizona
| | | | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona , Tucson, Arizona.,BIO5 Institute, University of Arizona , Tucson, Arizona
| | - Josef Vagner
- BIO5 Institute, University of Arizona , Tucson, Arizona
| | - Ronald M Lynch
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Pharmacology, University of Arizona , Tucson, Arizona.,BIO5 Institute, University of Arizona , Tucson, Arizona
| |
Collapse
|
4
|
Chen X, Kelly AC, Yates DT, Macko AR, Lynch RM, Limesand SW. Islet adaptations in fetal sheep persist following chronic exposure to high norepinephrine. J Endocrinol 2017; 232:285-295. [PMID: 27888197 PMCID: PMC5173394 DOI: 10.1530/joe-16-0445] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 11/08/2022]
Abstract
Complications in pregnancy elevate fetal norepinephrine (NE) concentrations. Previous studies in NE-infused sheep fetuses revealed that sustained exposure to high NE resulted in lower expression of α2-adrenergic receptors in islets and increased insulin secretion responsiveness after acutely terminating the NE infusion. In this study, we determined if the compensatory increase in insulin secretion after chronic elevation of NE is independent of hyperglycemia in sheep fetuses and whether it is persistent in conjunction with islet desensitization to NE. After an initial assessment of glucose-stimulated insulin secretion (GSIS) at 129 ± 1 days of gestation, fetuses were continuously infused for seven days with NE and maintained at euglycemia with a maternal insulin infusion. Fetal GSIS studies were performed again on days 8 and 12. Adrenergic sensitivity was determined in pancreatic islets collected at day 12. NE infusion increased (P < 0.01) fetal plasma NE concentrations and lowered (P < 0.01) basal insulin concentrations compared to vehicle-infused controls. GSIS was 1.8-fold greater (P < 0.05) in NE-infused fetuses compared to controls at both one and five days after discontinuing the infusion. Glucose-potentiated arginine-induced insulin secretion was also enhanced (P < 0.01) in NE-infused fetuses. Maximum GSIS in islets isolated from NE-infused fetuses was 1.6-fold greater (P < 0.05) than controls, but islet insulin content and intracellular calcium signaling were not different between treatments. The half-maximal inhibitory concentration for NE was 2.6-fold greater (P < 0.05) in NE-infused islets compared to controls. These findings show that chronic NE exposure and not hyperglycemia produce persistent adaptations in pancreatic islets that augment β-cell responsiveness in part through decreased adrenergic sensitivity.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Chongqing Key Laboratory of Forage & HerbivoreCollege of Animal Science and Technology, Southwest University, Chongqing, China
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Dustin T Yates
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Antoni R Macko
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Ronald M Lynch
- Department of PhysiologyUniversity of Arizona, Tucson, Arizona, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Nguy L, Shubbar E, Jernås M, Nookaew I, Lundgren J, Olsson B, Nilsson H, Guron G. Adenine-induced chronic renal failure in rats decreases aortic relaxation rate and alters expression of proteins involved in vascular smooth muscle calcium handling. Acta Physiol (Oxf) 2016; 218:250-264. [PMID: 27239807 DOI: 10.1111/apha.12724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 11/24/2015] [Accepted: 05/27/2016] [Indexed: 12/23/2022]
Abstract
AIM Rats with adenine-induced chronic renal failure (A-CRF) develop a reduced rate of relaxation of the thoracic aorta. The aim of this study was to elucidate the mechanisms underlying this abnormality. METHODS Male Sprague Dawley rats received either chow containing adenine or were pair-fed with normal chow (controls). After 8-14 weeks, arterial function was analysed ex vivo using wire myography and the expression of proteins involved in vascular smooth muscle excitation-contraction coupling in the thoracic aorta was analysed. RESULTS The rate of relaxation following washout of KCl was reduced in A-CRF rats vs. controls in the thoracic aorta (P < 0.01), abdominal aorta (P < 0.05), and common carotid artery (P < 0.05), but not in the common femoral artery. Relaxation rates of thoracic aortas increased (P < 0.01), but were not normalized, in response to washout of KCl with Ca2+ -free buffer. Microarray and qRT-PCR analyses of genes involved in excitation-contraction coupling identified 10 genes, which showed significantly altered expression in A-CRF thoracic aortas. At the protein level, the α2 subunit of the Na,K-ATPase (P < 0.001) and SERCA2 (P < 0.05) was significantly downregulated, whereas stromal interaction molecule 1 and calsequestrin-1 and calsequestrin-2 were significantly upregulated (P < 0.05). CONCLUSIONS Rats with A-CRF show a marked alteration in relaxation of larger conduit arteries localized proximal to the common femoral artery. This abnormality may be caused by reduced cytosolic Ca2+ clearance in vascular smooth muscle cells secondary to dysregulation of proteins crucially involved in this process.
Collapse
Affiliation(s)
- L. Nguy
- Department of Molecular and Clinical Medicine/Nephrology; Institute of Medicine; Gothenburg Sweden
- Department of Physiology; Institute of Neuroscience and Physiology; Gothenburg Sweden
| | - E. Shubbar
- Department of Molecular and Clinical Medicine/Nephrology; Institute of Medicine; Gothenburg Sweden
| | - M. Jernås
- Department of Internal Medicine; Institute of Medicine; Gothenburg Sweden
| | - I. Nookaew
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg Sweden
- Comparative Genomics Group; Biosciences Division; Oak Ridge National Laboratory; Oak Ridge TN USA
| | - J. Lundgren
- Department of Molecular and Clinical Medicine/Nephrology; Institute of Medicine; Gothenburg Sweden
| | - B. Olsson
- Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - H. Nilsson
- Department of Physiology; Institute of Neuroscience and Physiology; Gothenburg Sweden
| | - G. Guron
- Department of Molecular and Clinical Medicine/Nephrology; Institute of Medicine; Gothenburg Sweden
| |
Collapse
|
6
|
Blaustein MP, Chen L, Hamlyn JM, Leenen FHH, Lingrel JB, Wier WG, Zhang J. Pivotal role of α2 Na + pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 2016; 594:6079-6103. [PMID: 27350568 DOI: 10.1113/jp272419] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022] Open
Abstract
Reduced smooth muscle (SM)-specific α2 Na+ pump expression elevates basal blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl, whilst SM-α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged ouabain infusion induces hypertension in rodents, and ouabain-resistant mutation of the α2 ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure overload-induced heart hypertrophy and failure are attenuated in cardio-specific α2 knockout, cardio-specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and circulating endogenous ouabain (EO). Circulating EO modulates ouabain-sensitive α2 Na+ pump activity and Ca2+ transporter expression and, via Na+ /Ca2+ exchange, Ca2+ homeostasis. This regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, ON, Canada, K1Y 4W7
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524, USA
| | - W Gil Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
7
|
The role of Na+, K+-ATPase in the hypoxic vasoconstriction in isolated rat basilar artery. Vascul Pharmacol 2016; 81:53-60. [DOI: 10.1016/j.vph.2016.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 11/18/2022]
|
8
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
9
|
Acsai K, Ördög B, Varró A, Nánási PP. Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies? Eur J Pharmacol 2016; 779:91-101. [PMID: 26970182 DOI: 10.1016/j.ejphar.2016.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Abnormal Ca(2+)homeostasis is often associated with chronic cardiovascular diseases, such as hypertension, heart failure or cardiac arrhythmias, and typically contributes to the basic ethiology of the disease. Pharmacological targeting of cardiac Ca(2+)handling has great therapeutic potential offering invaluable options for the prevention, slowing down the progression or suppression of the harmful outcomes like life threatening cardiac arrhythmias. In this review we outline the existing knowledge on the involvement of malfunction of the ryanodine receptor and the Na(+)-Ca(2+)exchanger in disturbances of Ca(2+)homeostasis and discuss important proof of concept pharmacological studies targeting these mechanisms in context of hypertension, heart failure, atrial fibrillation and ventricular arrhythmias. We emphasize the promising results of preclinical studies underpinning the potential benefits of the therapeutic strategies based on ryanodine receptor or Na(+)-Ca(2+)exchanger inhibition.
Collapse
Affiliation(s)
- Károly Acsai
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter P Nánási
- Department of Physiology, University of Debrecen, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
10
|
Chen L, Song H, Wang Y, Lee JC, Kotlikoff MI, Pritchard TJ, Paul RJ, Zhang J, Blaustein MP. Arterial α2-Na+ pump expression influences blood pressure: lessons from novel, genetically engineered smooth muscle-specific α2 mice. Am J Physiol Heart Circ Physiol 2015. [PMID: 26209057 DOI: 10.1152/ajpheart.00430.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arterial myocytes express α1-catalytic subunit isoform Na(+) pumps (75-80% of total), which are ouabain resistant in rodents, and high ouabain affinity α2-Na(+) pumps. Mice with globally reduced α2-pumps (but not α1-pumps), mice with mutant ouabain-resistant α2-pumps, and mice with a smooth muscle (SM)-specific α2-transgene (α2 (SM-Tg)) that induces overexpression all have altered blood pressure (BP) phenotypes. We generated α2 (SM-DN) mice with SM-specific α2 (not α1) reduction (>50%) using nonfunctional dominant negative (DN) α2. We compared α2 (SM-DN) and α2 (SM-Tg) mice to controls to determine how arterial SM α2-pumps affect vasoconstriction and BP. α2 (SM-DN) mice had elevated basal mean BP (mean BP by telemetry: 117 ± 4 vs. 106 ± 1 mmHg, n = 7/7, P < 0.01) and enhanced BP responses to chronic ANG II infusion (240 ng·kg(-1)·min(-1)) and high (6%) NaCl. Several arterial Ca(2+) transporters, including Na(+)/Ca(2+) exchanger 1 (NCX1) and sarcoplasmic reticulum and plasma membrane Ca(2+) pumps [sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 (SERCA2) and plasma membrane Ca(2+)-ATPase 1 (PMCA1)], were also reduced (>50%). α2 (SM-DN) mouse isolated small arteries had reduced myogenic reactivity, perhaps because of reduced Ca(2+) transporter expression. In contrast, α2 (SM-Tg) mouse aortas overexpressed α2 (>2-fold), NCX1, SERCA2, and PMCA1 (43). α2 (SM-Tg) mice had reduced basal mean BP (104 ± 1 vs. 109 ± 2 mmHg, n = 15/9, P < 0.02) and attenuated BP responses to chronic ANG II (300-400 ng·kg(-1)·min(-1)) with or without 2% NaCl but normal myogenic reactivity. NCX1 expression was inversely related to basal BP in SM-α2 engineered mice but was directly related in SM-NCX1 engineered mice. NCX1, which usually mediates arterial Ca(2+) entry, and α2-Na(+) pumps colocalize at plasma membrane-sarcoplasmic reticulum junctions and functionally couple via the local Na(+) gradient to help regulate cell Ca(2+). Altered Ca(2+) transporter expression in SM-α2 engineered mice apparently compensates to minimize Ca(2+) overload (α2 (SM-DN)) or depletion (α2 (SM-Tg)) and attenuate BP changes. In contrast, Ca(2+) transporter upregulation, observed in many rodent hypertension models, should enhance Ca(2+) entry and signaling and contribute significantly to BP elevation.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hong Song
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Youhua Wang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jane C Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Tracy J Pritchard
- College of Nursing, College of Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Richard J Paul
- Department of Molecular and Cell Physiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
| |
Collapse
|
11
|
Scutt G, Allen M, Kemenes G, Yeoman M. A switch in the mode of the sodium/calcium exchanger underlies an age-related increase in the slow afterhyperpolarization. Neurobiol Aging 2015; 36:2838-49. [PMID: 26163984 DOI: 10.1016/j.neurobiolaging.2015.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/19/2022]
Abstract
During aging, the Ca(2+)-sensitive slow afterhyperpolarization (sAHP) of hippocampal neurons is known to increase in duration. This change has also been observed in the serotonergic cerebral giant cells (CGCs) of the pond snail Lymnaea stagnalis, but has yet to be characterized. In this article, we confirm that there is a reduction in firing rate, an increase in the duration of the sAHP, and an alteration in the strength and speed of spike frequency adaptation in the CGCs during aging, a finding that is compatible with an increase in the sAHP current. We go on to show that age-related changes in the kinetics of spike frequency adaptation are consistent with a reduction in Ca(2+) clearance from the cell, which we confirm with Ca(2+) imaging and pharmacological manipulation of the sodium calcium exchanger. These experiments suggest that the sodium calcium exchanger may be switching to a reverse-mode configuration in the CGCs during aging.
Collapse
Affiliation(s)
- Greg Scutt
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | - Marcus Allen
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Mark Yeoman
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
12
|
Connexins form functional hemichannels in porcine ciliary epithelium. Exp Eye Res 2013; 118:20-9. [PMID: 24262135 DOI: 10.1016/j.exer.2013.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 01/20/2023]
Abstract
The expression of connexins in the ciliary epithelium is consistent with gap junctions between the pigmented (PE) and nonpigmented ciliary epithelium (NPE) that form when connexon hemichannels from adjacent cells pair to form a channel. Here we present evidence that suggests undocked connexons may form functional hemichannels that permit exchange of substances between NPE and the aqueous humor. Intact porcine eyes were perfused via the ciliary artery and propidium iodide (PI) (MW 668) was added to the aqueous humor compartment as a tracer. After calcium-free solution containing PI was introduced into the aqueous humor compartment for 30 min, fluorescence microscopy revealed PI in the NPE cell layer. PI entry into the NPE was inhibited by calcium and by the connexin antagonist 18α-glycyrrhetinic acid (18-AGA). Studies also were carried out with cultured porcine NPE. Under normal conditions, little PI entered the cultured cells but calcium-free medium stimulated PI accumulation and the entry was inhibited by 18-AGA. In cells loaded with calcein (MW 622), calcium-free solution stimulated calcein exit. 18-AGA partially suppressed calcein exit in calcium-free medium. Connexin 43 and connexin 50 proteins were detected by western blot analysis in both native and cultured NPE. In the intact eye, immunolocalization studies revealed connexin 50 at the basolateral, aqueous humor-facing, margin of the NPE. In contrast, connexin 43 was observed at the junction of the PE and NPE layer and on the basolateral membrane of PE. The results point to functional hemichannels at the NPE basolateral surface. It is feasible that hemichannels might contribute to the transfer of substances between the ciliary epithelium cytoplasm and aqueous humor.
Collapse
|
13
|
Zhang J. New insights into the contribution of arterial NCX to the regulation of myogenic tone and blood pressure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:329-43. [PMID: 23224892 DOI: 10.1007/978-1-4614-4756-6_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plasma membrane protein Na(+)/Ca(2+) exchanger (NCX) in vascular smooth muscle (VSM) cells plays an important role in intracellular Ca(2+) homeostasis, Ca(2+) signaling, and arterial contractility. Recent evidence in intact animals reveals that VSM NCX type 1 (NCX1) is importantly involved in the control of arterial blood pressure (BP) in the normal state and in hypertension. Increased expression of vascular NCX1 has been implicated in human primary pulmonary hypertension and several salt-dependent hypertensive animal models. Our aim is to determine the molecular and physiological mechanisms by which vascular NCX influences vasoconstriction and BP normally and in salt-dependent hypertension. Here, we describe the relative contribution of VSM NCX1 to Ca(2+) signaling and arterial contraction, including recent data from transgenic mice (NCX1(smTg/Tg), overexpressors; NCX1(sm-/-), knockouts) that has begun to elucidate the specific contributions of NCX to BP regulation. Arterial contraction and BP correlate with the level of NCX1 expression in smooth muscle: NCX1(sm-/-) mice have decreased arterial myogenic tone (MT), vasoconstriction, and low BP. NCX1(smTg/Tg) mice have high BP and are more sensitive to salt; their arteries exhibit upregulated transient receptor potential canonical channel 6 (TRPC6) protein, increased MT, and vasoconstriction. These observations suggest that NCX is a key component of certain distinct signaling pathways that activate VSM contraction in response to stretch (i.e., myogenic response) and to activation of certain G-protein-coupled receptors. Arterial NCX expression and mechanisms that control the local (sub-plasma membrane) Na(+) gradient, including cation-selective receptor-operated channels containing TRPC6, regulate arterial Ca(2+) and constriction, and thus BP.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Cuozzo F, Raciti M, Bertelli L, Parente R, Di Renzo L. Pro-death and pro-survival properties of ouabain in U937 lymphoma derived cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:95. [PMID: 23153195 PMCID: PMC3541998 DOI: 10.1186/1756-9966-31-95] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Epidemiological studies revealed significantly lower mortality rates in cancer patients receiving cardiac glycosides, which turned on interest in the anticancer properties of these drugs. However, cardiac glycosides have also been shown to stimulate cell growth in several cell types. In the present investigation we analyzed the pro-death and pro-survival properties of ouabain in the human lymphoma derived cell line U937. METHODS ROS, intracellular Ca++, cell cycle were evaluated by loading the cells with fluorescent probes under cytofluorimetry. Cell counts and evaluation of trypan blue-excluding cells were performed under optic microscope. Protein detection was done by specific antibodies after protein separation from cellular lysates by SDS-PAGE and transfer blot. RESULTS High doses of ouabain cause ROS generation, elevation of [Ca++]i and death of lymphoma derived U937 cells. Lower doses of OUA activate a survival pathway in which plays a role the Na+/Ca++-exchanger (NCX), active in the Ca++ influx mode rather than in the Ca++ efflux mode. Also p38 MAPK plays a pro-survival role. However, the activation of this MAPK does not appear to depend on NCX. CONCLUSION This investigation shows that the cardiac glycoside OUA is cytotoxic also for the lymphoma derived cell line U937 and that can activate a survival pathway in which are involved NCX and p38 MAPK. These molecules can represent potential targets of combined therapy.
Collapse
Affiliation(s)
- Francesca Cuozzo
- Department of Experimental Medicine, University of Rome La Sapienza, Viale Regina Elena 324, Rome 00161, Italy
| | | | | | | | | |
Collapse
|
15
|
Linde CI, Antos LK, Golovina VA, Blaustein MP. Nanomolar ouabain increases NCX1 expression and enhances Ca2+ signaling in human arterial myocytes: a mechanism that links salt to increased vascular resistance? Am J Physiol Heart Circ Physiol 2012; 303:H784-94. [PMID: 22842068 DOI: 10.1152/ajpheart.00399.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms by which NaCl raises blood pressure (BP) in hypertension are unresolved, but much evidence indicates that endogenous ouabain is involved. In rodents, arterial smooth muscle cell (ASMC) Na(+) pumps with an α(2)-catalytic subunit (ouabain EC(50) ≤1.0 nM) are crucial for some hypertension models, even though ≈80% of ASMC Na(+) pumps have an α(1)-subunit (ouabain EC(50) ≈ 5 μM). Human α(1)-Na(+) pumps, however, have high ouabain affinity (EC(50) ≈ 10-20 nM). We used immunoblotting, immunocytochemistry, and Ca(2+) imaging (fura-2) to examine the expression, distribution, and function of Na(+) pump α-subunit isoforms in human arteries and primary cultured human ASMCs (hASMCs). hASMCs express α(1)- and α(2)-Na(+) pumps. Further, α(2)-, but not α(1)-, pumps are confined to plasma membrane microdomains adjacent to sarcoplasmic reticulum (SR), where they colocalize with Na/Ca exchanger-1 (NCX1) and C-type transient receptor potential-6 (receptor-operated channels, ROCs). Prolonged inhibition (72 h) with 100 nM ouabain (blocks nearly all α(1)- and α(2)-pumps) was toxic to most cultured hASMCs. Treatment with 10 nM ouabain (72 h), however, increased NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and augmented ATP (10 μM)-induced SR Ca(2+) release in 0 Ca(2+), ouabain-free media, and Ca(2+) influx after external Ca(2+) restoration. The latter was likely mediated primarily by ROCs and store-operated Ca(2+) channels. These hASMC protein expression and Ca(2+) signaling changes are comparable with previous observations on myocytes isolated from arteries of many rat hypertension models. We conclude that the same structurally and functionally coupled mechanisms (α(2)-Na(+) pumps, NCX1, ROCs, and the SR) regulate Ca(2+) homeostasis and signaling in hASMCs and rodent ASMCs. These ouabain/endogenous ouabain-modulated mechanisms underlie the whole body autoregulation associated with increased vascular resistance and elevation of BP in human, salt-sensitive hypertension.
Collapse
Affiliation(s)
- Cristina I Linde
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
16
|
Matchkov VV, Moeller-Nielsen N, Dam VS, Nourian Z, Briggs Boedtkjer DM, Aalkjaer C. The α2 isoform of the Na,K-pump is important for intercellular communication, agonist-induced contraction, and EDHF-like response in rat mesenteric arteries. Am J Physiol Heart Circ Physiol 2012; 303:H36-46. [PMID: 22561302 DOI: 10.1152/ajpheart.00673.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The specific role of different isoforms of the Na,K-pump in the vascular wall is still under debate. We have previously suggested that the α(2) isoform of the Na,K-pump (α(2)), Na(+), Ca(2+)-exchange (NCX), and connexin43 form a regulatory microdomain in smooth muscle cells (SMCs), which controls intercellular communication and contractile properties of the vascular wall. We have tested this hypothesis by downregulating α(2) in cultured SMCs and in small arteries with siRNA in vivo. Intercellular communication was assessed by using membrane capacitance measurements. Arteries transfected in vivo were tested for isometric and isobaric force development in vitro; [Ca(2+)](i) was measured simultaneously. Cultured rat SMCs were well-coupled electrically, but 10 μM ouabain uncoupled them. Downregulation of α(2) reduced electrical coupling between SMCs and made them insensitive to ouabain. Downregulation of α(2) in small arteries was accompanied with significant reduction in NCX expression. Acetylcholine-induced relaxation was not different between the groups, but the endothelium-dependent hyperpolarizing factor-like component of the response was significantly diminished in α(2)-downregulated arteries. Micromolar ouabain reduced in a concentration-dependent manner the amplitude of norepinephrine (NE)-induced vasomotion. Sixty percent of the α(2)-downregulated arteries did not have vasomotion, and vasomotion in the remaining 40% was ouabain insensitive. Although ouabain increased the sensitivity to NE in the control arteries, it had no effect on α(2)-downregulated arteries. In the presence of a low NE concentration the α(2)-downregulated arteries had higher [Ca(2+)](i) and tone. However, the NE EC50 was reduced under isometric conditions, and maximal contraction was reduced under isometric and isobaric conditions. The latter was caused by a reduced Ca(2+)-sensitivity. The α(2)-downregulated arteries also had reduced contraction to vasopressin, whereas the contractile response to high K(+) was not affected. Our results demonstrate the importance of α(2) for intercellular coupling in the vascular wall and its involvement in the regulation of vascular tone.
Collapse
|
17
|
Blaustein MP, Leenen FHH, Chen L, Golovina VA, Hamlyn JM, Pallone TL, Van Huysse JW, Zhang J, Wier WG. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 2011; 302:H1031-49. [PMID: 22058154 DOI: 10.1152/ajpheart.00899.2011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na(+) and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na(+)]. This leads, via the Na(+)-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na(+) pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na(+)]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na(+) channels, EO, ouabain-sensitive α(2) Na(+) pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na(+) channel-EO-α(2) Na(+) pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α(2) Na(+) pump-Na(+)/Ca(2+) exchanger-Ca(2+) signaling pathway. Circulating EO also activates an EO-α(2) Na(+) pump-Src kinase signaling cascade. This increases the expression of the Na(+)/Ca(2+) exchanger-transient receptor potential cation channel Ca(2+) signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ata H, Rawat DK, Lincoln T, Gupte SA. Mechanism of glucose-6-phosphate dehydrogenase-mediated regulation of coronary artery contractility. Am J Physiol Heart Circ Physiol 2011; 300:H2054-63. [PMID: 21398595 DOI: 10.1152/ajpheart.01155.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously identified glucose-6-phosphate dehydrogenase (G6PD) as a regulator of vascular smooth muscle contraction. In this study, we tested our hypothesis that G6PD activated by KCl via a phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-protein kinase C (PKC) pathway increases vascular smooth muscle contraction and that inhibition of G6PD relaxes smooth muscle by decreasing intracellular Ca(2+) ([Ca(2+)](i)) and Ca(2+) sensitivity to the myofilament. Here we show that G6PD is activated by membrane depolarization via PKC and PTEN pathway and that G6PD inhibition decreases intracellular free calcium ([Ca(2+)](i)) in vascular smooth muscle cells and thus arterial contractility. In bovine coronary artery (CA), KCl (30 mmol/l) increased PKC activity and doubled G6PD V(max) without affecting K(m). KCl-induced PKC and G6PD activation was inhibited by bisperoxo(pyridine-2-carboxyl)oxovanadate (Bpv; 10 μmol/l), a PTEN inhibitor, which also inhibited (P < 0.05) KCl-induced CA contraction. The G6PD blockers 6-aminonicotinamide (6AN; 1 mmol/l) and epiandrosterone (EPI; 100 μmol/l) inhibited KCl-induced increases in G6PD activity, [Ca(2+)](i), Ca(2+)-dependent myosin light chain (MLC) phosphorylation, and contraction. Relaxation of precontracted CA by 6AN and EPI was not blocked by calnoxin (10 μmol/l), a plasma membrane Ca(2+) ATPase inhibitor or by lowering extracellular Na(+), which inhibits the Na(+)/Ca(2+) exchanger (NCX), but cyclopiazonic acid (200 μmol/l), a sarcoplasmic reticulum Ca(2+) ATPase inhibitor, reduced (P < 0.05) 6AN- and EPI-induced relaxation. 6AN also attenuated phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Ser855, a site phosphorylated by Rho kinase, inhibition of which reduced (P < 0.05) KCl-induced CA contraction and 6AN-induced relaxation. By contrast, 6AN increased (P < 0.05) vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239, indicating that inhibition of G6PD increases PKA or PKG activity. Inhibition of PKG by RT-8-Br-PET-cGMPs (100 nmol/l) diminished 6AN-evoked VASP phosphorylation (P < 0.05), but RT-8-Br-PET-cGMPs increased 6AN-induced relaxation. These findings suggest G6PD inhibition relaxes CA by decreasing Ca(2+) influx, increasing Ca(2+) sequestration, and inhibiting Rho kinase but not by increasing Ca(2+) extrusion or activating PKG.
Collapse
Affiliation(s)
- Hirotaka Ata
- Biochemistry & Molecular Biology, MSB 2312, Univ. of South Alabama, College of Medicine, 307 N Univ. Blvd., Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
19
|
Panayiotidis MI, Franco R, Bortner CD, Cidlowski JA. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis. Apoptosis 2010; 15:834-49. [PMID: 20422450 DOI: 10.1007/s10495-010-0494-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na(+)-K(+)-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na(+)-K(+)-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H(2)O(2), thapsigargin or UV-C implicating a role for the Na(+)-K(+)-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca(2+) homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca(2+) levels in response to H(2)O(2), thapsigargin or UV-C. FasL-induced alterations in Ca(2+) were not abolished in Ca(2+)-free medium but incubation of cells with BAPTA-AM inhibited both Ca(2+) perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na(+)-K(+)-ATPase activity during apoptosis is linked to perturbations in cell Ca(2+) homeostasis that modulate apoptosis induced by the activation of Fas by FasL.
Collapse
Affiliation(s)
- Mihalis I Panayiotidis
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | | | | | | |
Collapse
|
20
|
Pritchard TJ, Bowman PS, Jefferson A, Tosun M, Lynch RM, Paul RJ. Na(+)-K(+)-ATPase and Ca(2+) clearance proteins in smooth muscle: a functional unit. Am J Physiol Heart Circ Physiol 2010; 299:H548-56. [PMID: 20543086 DOI: 10.1152/ajpheart.00527.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Na(+)-K(+)-ATPase (NKA) can affect intracellular Ca(2+) concentration regulation via coupling to the Na(+)-Ca(2+) exchanger and may be important in myogenic tone. We previously reported that in mice carrying a transgene for the NKA alpha(2)-isoform in smooth muscle (alpha(2sm+)), the alpha(2)-isoform protein as well as the alpha(1)-isoform (not contained in the transgene) increased to similar degrees (2-7-fold). Aortas from alpha(2sm+) mice relaxed faster from a KCl-induced contraction, hypothesized to be related to more rapid Ca(2+) clearance. To elucidate the mechanisms underlying this faster relaxation, we therefore measured the expression and distribution of proteins involved in Ca(2+) clearance. Na(+)-Ca(2+) exchanger, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), and plasma membrane Ca(2+)-ATPase (PMCA) proteins were all elevated up to approximately fivefold, whereas actin, myosin light chain, and calponin proteins were not changed in smooth muscle from alpha(2sm+) mice. Interestingly, the corresponding Ca(2+) clearance mRNA levels were unchanged. Immunocytochemical data indicate that the Ca(2+) clearance proteins are distributed similarly in wild-type and alpha(2sm+) aorta cells. In studies measuring relaxation half-times from a KCl-induced contraction in the presence of pharmacological inhibitors of SERCA and PMCA, we estimated that together these proteins were responsible for approximately 60-70% of relaxation in aorta. Moreover, the percent contribution of SERCA and PMCA to relaxation rates in alpha(2sm+) aorta was not significantly different from that in wild-type aorta. The coordinate expressions of NKA and Ca(2+) clearance proteins without change in the relative contributions of each individual protein to smooth muscle function suggest that NKA may be but one component of a larger functional Ca(2+) clearance system.
Collapse
Affiliation(s)
- Tracy J Pritchard
- Molecular and Cellular Physiology, Univ. of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0576, USA
| | | | | | | | | | | |
Collapse
|
21
|
Jimenez T, Sánchez G, Wertheimer E, Blanco G. Activity of the Na,K-ATPase alpha4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction 2010; 139:835-45. [PMID: 20179187 DOI: 10.1530/rep-09-0495] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While the function of the ubiquitous Na,K-ATPase alpha1 subunit has been well documented, the role of the sperm-specific alpha4 isoform of this ion transporter is less known. We have explored the importance of alpha4 in rat sperm physiology by taking advantage of the high sensitivity of this isoform for the inhibitor ouabain. Using concentrations that selectively block alpha4 activity, we found ouabain to reduce not only sperm total motility, but also multiple parameters of sperm movement, including progressive motility, straight line, curvilinear, and average path velocities, lateral head displacement, beat cross frequency, and linearity. According to a direct role of alpha4 in Na(+) transport, ouabain inhibition of alpha4 increased [Na(+)](i) in the male gametes. In addition, interference of alpha4 activity with ouabain produced cell membrane depolarization, diminished pH, and increased [Ca(2)(+)](i) in spermatozoa. Inhibition of alpha4 was sufficient to cause all these effects and additional blockage of alpha1, the other Na,K-ATPase alpha isoform expressed in sperm, and higher doses of ouabain did not result in further changes in the cell parameters studied. These results show that alpha4 is the Na,K-ATPase isoform primarily involved in controlling the transmembrane Na(+) gradient in sperm, and that alpha4 activity is necessary for maintaining membrane potential, [Ca(2)(+)](i), and [H(+)](i) in the cells. The high dependence of sperm motility on membrane excitability, [Ca(2)(+)](i), and acid-base balance suggests that their regulation is the mechanism by which alpha4 maintains motility of the male gametes.
Collapse
Affiliation(s)
- Tamara Jimenez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
22
|
Zhang J, Ren C, Chen L, Navedo MF, Antos LK, Kinsey SP, Iwamoto T, Philipson KD, Kotlikoff MI, Santana LF, Wier WG, Matteson DR, Blaustein MP. Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol 2010; 298:H1472-83. [PMID: 20173044 DOI: 10.1152/ajpheart.00964.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice with smooth muscle (SM)-specific knockout of Na(+)/Ca(2+) exchanger type-1 (NCX1(SM-/-)) and the NCX inhibitor, SEA0400, were used to study the physiological role of NCX1 in mouse mesenteric arteries. NCX1 protein expression was greatly reduced in arteries from NCX1(SM-/-) mice generated with Cre recombinase. Mean blood pressure (BP) was 6-10 mmHg lower in NCX1(SM-/-) mice than in wild-type (WT) controls. Vasoconstriction was studied in isolated, pressurized mesenteric small arteries from WT and NCX1(SM-/-) mice and in heterozygotes with a global null mutation (NCX1(Fx/-)). Reduced NCX1 activity was manifested by a marked attenuation of responses to low extracellular Na(+) concentration, nanomolar ouabain, and SEA0400. Myogenic tone (MT, 70 mmHg) was reduced by approximately 15% in NCX1(SM-/-) arteries and, to a similar extent, by SEA0400 in WT arteries. MT was normal in arteries from NCX1(Fx/-) mice, which had normal BP. Vasoconstrictions to phenylephrine and elevated extracellular K(+) concentration were significantly reduced in NCX1(SM-/-) arteries. Because a high extracellular K(+) concentration-induced vasoconstriction involves the activation of L-type voltage-gated Ca(2+) channels (LVGCs), we measured LVGC-mediated currents and Ca(2+) sparklets in isolated mesenteric artery myocytes. Both the currents and the sparklets were significantly reduced in NCX1(SM-/-) (vs. WT or NCX1(Fx/-)) myocytes, but the voltage-dependent inactivation of LVGCs was not augmented. An acute application of SEA0400 in WT myocytes had no effect on LVGC current. The LVGC agonist, Bay K 8644, eliminated the differences in LVGC currents and Ca(2+) sparklets between NCX1(SM-/-) and control myocytes, suggesting that LVGC expression was normal in NCX1(SM-/-) myocytes. Bay K 8644 did not, however, eliminate the difference in myogenic constriction between WT and NCX1(SM-/-) arteries. We conclude that, under physiological conditions, NCX1-mediated Ca(2+) entry contributes significantly to the maintenance of MT. In NCX1(SM-/-) mouse artery myocytes, the reduced Ca(2+) entry via NCX1 may lower cytosolic Ca(2+) concentration and thereby reduce MT and BP. The reduced LVGC activity may be the consequence of a low cytosolic Ca(2+) concentration.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Selli C, Erac Y, Kosova B, Tosun M. Post-transcriptional silencing of TRPC1 ion channel gene by RNA interference upregulates TRPC6 expression and store-operated Ca2+ entry in A7r5 vascular smooth muscle cells. Vascul Pharmacol 2009; 51:96-100. [PMID: 19386284 DOI: 10.1016/j.vph.2009.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 04/06/2009] [Accepted: 04/13/2009] [Indexed: 01/23/2023]
Abstract
This study investigates functional consequences of TRPC1 ion channel downregulation observed in aging rat aorta by employing RNA interference in cultured vascular smooth muscle cells. For this purpose, A7r5 aortic smooth muscle cells were used in quantitative gene and protein expression as well as in functional analyses. According to quantitative RT-PCR results, TRPC3, TRPC4 and TRPC5 mRNAs were not at detectable levels. In siTRPC1-transfected cells, TRPC1 mRNA and protein levels were decreased by 40% and 64%; however, those of TRPC6 were drastically increased by 100% and 200%, respectively. In fura-2-loaded TRPC1 knockdown cells, despite the decreased TRPC1 levels, cyclopiazonic acid-induced Ca2+ entry and store-operated Ca2+ entry following Ca2+ addition were elevated by 77% and 135%, respectively. Results suggest that decrease in TRPC1 may be compensated by upregulated TRPC6 that possibly takes part in store-operated Ca2+ entry in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Cigdem Selli
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| | | | | | | |
Collapse
|
24
|
Gargus JJ. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann N Y Acad Sci 2009; 1151:133-56. [PMID: 19154521 DOI: 10.1111/j.1749-6632.2008.03572.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calcium ion is one of the most versatile, ancient, and universal of biological signaling molecules, known to regulate physiological systems at every level from membrane potential and ion transporters to kinases and transcription factors. Disruptions of intracellular calcium homeostasis underlie a host of emerging diseases, the calciumopathies. Cytosolic calcium signals originate either as extracellular calcium enters through plasma membrane ion channels or from the release of an intracellular store in the endoplasmic reticulum (ER) via inositol triphosphate receptor and ryanodine receptor channels. Therefore, to a large extent, calciumopathies represent a subset of the channelopathies, but include regulatory pathways and the mitochondria, the major intracellular calcium repository that dynamically participates with the ER stores in calcium signaling, thereby integrating cellular energy metabolism into these pathways, a process of emerging importance in the analysis of the neurodegenerative and neuropsychiatric diseases. Many of the calciumopathies are common complex polygenic diseases, but leads to their understanding come most prominently from rare monogenic channelopathy paradigms. Monogenic forms of common neuronal disease phenotypes-such as seizures, ataxia, and migraine-produce a constitutionally hyperexcitable tissue that is susceptible to periodic decompensations. The gene families and genetic lesions underlying familial hemiplegic migraine, FHM1/CACNA1A, FHM2/ATP1A2, and FHM3/SCN1A, and monogenic mitochondrial migraine syndromes, provide a robust platform from which genes, such as CACNA1C, which encodes the calcium channel mutated in Timothy syndrome, can be evaluated for their role in autism and bipolar disease.
Collapse
Affiliation(s)
- J Jay Gargus
- Department of Physiology & Biophysics, Section of Human Genetics, School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
25
|
Song J, Zhang XQ, Wang J, Cheskis E, Chan TO, Feldman AM, Tucker AL, Cheung JY. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase. Am J Physiol Heart Circ Physiol 2008; 295:H1615-25. [PMID: 18708446 DOI: 10.1152/ajpheart.00287.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.
Collapse
Affiliation(s)
- Jianliang Song
- Division of Nephrology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Oloizia B, Paul RJ. Ca2+ clearance and contractility in vascular smooth muscle: evidence from gene-altered murine models. J Mol Cell Cardiol 2008; 45:347-62. [PMID: 18598701 DOI: 10.1016/j.yjmcc.2008.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/17/2008] [Accepted: 05/29/2008] [Indexed: 01/15/2023]
Abstract
The central importance of calcium clearance proteins, and their regulators, in the modulation of myocardial contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) has long been established. Key players identified include the Na(+)-Ca(2+) exchanger, the Na(+)-K(+) ATPase, the sarco(endo)plasmic reticulum Ca(2+)-ATPase and associated phospholamban. Gene-targeted and transgenic murine models have been critical in the elucidation of their function. The study of these proteins in the regulation of contractile parameters in vascular smooth muscle, on the other hand, is less well studied. More recently, gene-targeted and transgenic models have expanded our knowledge of Ca(2+) clearance proteins and their role in both tonic and phasic smooth muscle contractility. In this review, we will briefly treat the mechanisms which underlie Ca(2+) clearance in smooth muscle. These will be addressed in light of studies using gene-modified mouse models, the results of which will be compared and contrasted with those in the cardiomyocyte. The recently identified human mutations in phospholamban, which lead to dilated cardiomyopathy, are also present in vascular and other smooth muscle. Given the importance of these Ca(2+) clearance systems to modulation of smooth muscle, it is likely that mutations will also lead to smooth muscle pathology.
Collapse
Affiliation(s)
- Brian Oloizia
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | | |
Collapse
|