1
|
Rodríguez-Aparicio S, Ferrera C, Fuentes-Cañamero ME, García García J, Dueñas-Pamplona J. Morphing the left atrium geometry: The role of the pulmonary veins on flow patterns and thrombus formation. Comput Biol Med 2025; 186:109612. [PMID: 39765101 DOI: 10.1016/j.compbiomed.2024.109612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 02/20/2025]
Abstract
BACKGROUND Despite the significant advances made in the field of computational fluid dynamics (CFD) to simulate the left atrium (LA) in atrial fibrillation (AF) conditions, the connection between atrial structure, flow dynamics, and blood stagnation in the left atrial appendage (LAA) remains unclear. Deepening our understanding of this relationship would have important clinical implications, as the thrombi formed within the LAA are one of the main causes of stroke. AIM To highlight and better understand the fundamental role of the PV orientation in forming atrial flow patterns and systematically quantifying its effect on blood stasis within the LAA. METHODS Two patients with opposite atrial flow patterns were selected for the study. The atria were segmented and subsequently morphed to modify the pulmonary vein (PV) orientations in a highly controlled manner. CFD analysis were performed using a kinematic model able to reproduce AF conditions. Results were projected into the universal left atrial appendage coordinate (ULAAC) system to enhance data visualization and comparison. RESULTS The position of the main atrial vortex can be modified by controlled changes in the PV orientations, which to the best of our knowledge was not demonstrated before. This finding may have important clinical implications, as the behavior and position of the main atrial vortex is crucial to define the LA flow patterns and thus the LAA washing, making possible to assess the stroke risk for a particular patient.
Collapse
Affiliation(s)
- Sergio Rodríguez-Aparicio
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda.de Elvas s/n, Badajoz, 06006, Spain
| | - Conrado Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda.de Elvas s/n, Badajoz, 06006, Spain; Instituto de Computación Científica Avanzada (ICCAEX), Avda.de Elvas s/n, Badajoz, 06006, Spain
| | | | - Javier García García
- Departamento de Ingeniería Energética, Universidad Politécnica de Madrid, Avda. de Ramiro de Maeztu 7, Madrid, 28040, Spain
| | - Jorge Dueñas-Pamplona
- Departamento de Ingeniería Energética, Universidad Politécnica de Madrid, Avda. de Ramiro de Maeztu 7, Madrid, 28040, Spain.
| |
Collapse
|
2
|
Bannoud MA, Martins TD, Montalvão SADL, Annichino-Bizzacchi JM, Filho RM, Maciel MRW. Integrating biomarkers for hemostatic disorders into computational models of blood clot formation: A systematic review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:7707-7739. [PMID: 39807050 DOI: 10.3934/mbe.2024339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In the pursuit of personalized medicine, there is a growing demand for computational models with parameters that are easily obtainable to accelerate the development of potential solutions. Blood tests, owing to their affordability, accessibility, and routine use in healthcare, offer valuable biomarkers for assessing hemostatic balance in thrombotic and bleeding disorders. Incorporating these biomarkers into computational models of blood coagulation is crucial for creating patient-specific models, which allow for the analysis of the influence of these biomarkers on clot formation. This systematic review aims to examine how clinically relevant biomarkers are integrated into computational models of blood clot formation, thereby advancing discussions on integration methodologies, identifying current gaps, and recommending future research directions. A systematic review was conducted following the PRISMA protocol, focusing on ten clinically significant biomarkers associated with hemostatic disorders: D-dimer, fibrinogen, Von Willebrand factor, factor Ⅷ, P-selectin, prothrombin time (PT), activated partial thromboplastin time (APTT), antithrombin Ⅲ, protein C, and protein S. By utilizing this set of biomarkers, this review underscores their integration into computational models and emphasizes their integration in the context of venous thromboembolism and hemophilia. Eligibility criteria included mathematical models of thrombin generation, blood clotting, or fibrin formation under flow, incorporating at least one of these biomarkers. A total of 53 articles were included in this review. Results indicate that commonly used biomarkers such as D-dimer, PT, and APTT are rarely and superficially integrated into computational blood coagulation models. Additionally, the kinetic parameters governing the dynamics of blood clot formation demonstrated significant variability across studies, with discrepancies of up to 1, 000-fold. This review highlights a critical gap in the availability of computational models based on phenomenological or first-principles approaches that effectively incorporate affordable and routinely used clinical test results for predicting blood coagulation. This hinders the development of practical tools for clinical application, as current mathematical models often fail to consider precise, patient-specific values. This limitation is especially pronounced in patients with conditions such as hemophilia, protein C and S deficiencies, or antithrombin deficiency. Addressing these challenges by developing patient-specific models that account for kinetic variability is crucial for advancing personalized medicine in the field of hemostasis.
Collapse
Affiliation(s)
- Mohamad Al Bannoud
- Laboratory of Optimization, Design, and Advanced Control, School of Chemical Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Centro de Doenças Tromboembólicas, Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Tiago Dias Martins
- Departamento de Engenharia Química, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Silmara Aparecida de Lima Montalvão
- Hematology and Hemotherapy Center, Instituto Nacional de Ciência e Tecnologia do Sangue, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Centro de Doenças Tromboembólicas, Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Joyce Maria Annichino-Bizzacchi
- Hematology and Hemotherapy Center, Instituto Nacional de Ciência e Tecnologia do Sangue, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Centro de Doenças Tromboembólicas, Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control, School of Chemical Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Centro de Doenças Tromboembólicas, Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Maria Regina Wolf Maciel
- Laboratory of Optimization, Design, and Advanced Control, School of Chemical Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Rodríguez-Aparicio S, Ferrera C, Millán-Núñez MV, García García J, Dueñas-Pamplona J. Influence of the flow split ratio on the position of the main atrial vortex: Implications for stasis on the left atrial appendage. Comput Biol Med 2024; 178:108772. [PMID: 38917532 DOI: 10.1016/j.compbiomed.2024.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Despite the recent advances in computational fluid dynamics (CFD) techniques applied to blood flow within the left atrium (LA), the relationship between atrial geometry, flow patterns, and blood stasis within the left atrial appendage (LAA) remains unclear. A better understanding of this relationship would have important clinical implications, as thrombi originating in the LAA are a common cause of stroke in patients with atrial fibrillation (AF). AIM To identify the most representative atrial flow patterns on a patient-specific basis and study their influence on LAA blood stasis by varying the flow split ratio and some common atrial modeling assumptions. METHODS Three recent techniques were applied to nine patient-specific computational fluid dynamics (CFD) models of patients with AF: a kinematic atrial model to isolate the influence of wall motion because of AF, projection on a universal LAA coordinate system, and quantification of stagnant blood volume (SBV). RESULTS We identified three different atrial flow patterns based on the position of the center of the main circulatory flow. The results also illustrate how atrial flow patterns are highly affected by the flow split ratio, increasing the SBV within the LAA. As the flow split ratio is determined by the patient's lying position, the results suggest that the most frequent position adopted while sleeping may have implications for the medium- and long-term risks of stroke.
Collapse
Affiliation(s)
- Sergio Rodríguez-Aparicio
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda. Elvas s/n, Badajoz 06006, Spain
| | - Conrado Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda. Elvas s/n, Badajoz 06006, Spain; Instituto de Computación Científica Avanzada (ICCAEX), Avda. Elvas s/n, Badajoz 06006, Spain
| | | | - Javier García García
- Departamento de Ingeniería Energética, Universidad Politécnica de Madrid, Avda. de Ramiro de Maeztu 7, Madrid 28040, Spain
| | - Jorge Dueñas-Pamplona
- Departamento de Ingeniería Energética, Universidad Politécnica de Madrid, Avda. de Ramiro de Maeztu 7, Madrid 28040, Spain.
| |
Collapse
|
4
|
Rodríguez-González E, Martínez-Legazpi P, González-Mansilla A, Espinosa MÁ, Mombiela T, Guzmán De-Villoria JA, Borja MG, Díaz-Otero F, Gómez de Antonio R, Fernández-García P, Fernández-Ávila AI, Pascual-Izquierdo C, Del Álamo JC, Bermejo J. Cardiac stasis imaging, stroke, and silent brain infarcts in patients with nonischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 327:H446-H453. [PMID: 38847759 PMCID: PMC11901348 DOI: 10.1152/ajpheart.00245.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024]
Abstract
Cardioembolic stroke is one of the most devastating complications of nonischemic dilated cardiomyopathy (NIDCM). However, in clinical trials of primary prevention, the benefits of anticoagulation are hampered by the risk of bleeding. Indices of cardiac blood stasis may account for the risk of stroke and be useful to individualize primary prevention treatments. We performed a cross-sectional study in patients with NIDCM and no history of atrial fibrillation (AF) from two sources: 1) a prospective enrollment of unselected patients with left ventricular (LV) ejection fraction <45% and 2) a retrospective identification of patients with a history of previous cardioembolic neurological event. The primary end point integrated a history of ischemic stroke or the presence intraventricular thrombus, or a silent brain infarction (SBI) by imaging. From echocardiography, we calculated blood flow inside the LV, its residence time (TR) maps, and its derived stasis indices. Of the 89 recruited patients, 18 showed a positive end point, 9 had a history of stroke or transient ischemic attack (TIA) and 9 were diagnosed with SBIs in the brain imaging. Averaged TR, [Formula: see text] performed well to identify the primary end point [AUC (95% CI) = 0.75 (0.61-0.89), P = 0.001]. When accounting only for identifying a history of stroke or TIA, AUC for [Formula: see text] was 0.92 (0.85-1.00) with odds ratio = 7.2 (2.3-22.3) per cycle, P < 0.001. These results suggest that in patients with NIDCM in sinus rhythm, stasis imaging derived from echocardiography may account for the burden of stroke.NEW & NOTEWORTHY Patients with nonischemic dilated cardiomyopathy (NIDCM) are at higher risk of stroke than their age-matched population. However, the risk of bleeding neutralizes the benefit of preventive oral anticoagulation. In this work, we show that in patients in sinus rhythm, the burden of stroke is related to intraventricular stasis metrics derived from echocardiography. Therefore, stasis metrics may be useful to personalize primary prevention anticoagulation in these patients.
Collapse
Affiliation(s)
- Elena Rodríguez-González
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Pablo Martínez-Legazpi
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - M Ángeles Espinosa
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Juan A Guzmán De-Villoria
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Radiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Maria Guadalupe Borja
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States
| | - Fernando Díaz-Otero
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rubén Gómez de Antonio
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Pilar Fernández-García
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Ana I Fernández-Ávila
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Cristina Pascual-Izquierdo
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Juan C Del Álamo
- Division of Cardiology, Department of Mechanical Engineering, Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
5
|
Balzotti C, Siena P, Girfoglio M, Stabile G, Dueñas-Pamplona J, Sierra-Pallares J, Amat-Santos I, Rozza G. A reduced order model formulation for left atrium flow: an atrial fibrillation case. Biomech Model Mechanobiol 2024; 23:1411-1429. [PMID: 38753292 PMCID: PMC11341613 DOI: 10.1007/s10237-024-01847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/07/2024] [Indexed: 08/24/2024]
Abstract
A data-driven reduced order model (ROM) based on a proper orthogonal decomposition-radial basis function (POD-RBF) approach is adopted in this paper for the analysis of blood flow dynamics in a patient-specific case of atrial fibrillation (AF). The full order model (FOM) is represented by incompressible Navier-Stokes equations, discretized with a finite volume (FV) approach. Both the Newtonian and the Casson's constitutive laws are employed. The aim is to build a computational tool able to efficiently and accurately reconstruct the patterns of relevant hemodynamics indices related to the stasis of the blood in a physical parametrization framework including the cardiac output in the Newtonian case and also the plasma viscosity and the hematocrit in the non-Newtonian one. Many FOM-ROM comparisons are shown to analyze the performance of our approach as regards errors and computational speed-up.
Collapse
Affiliation(s)
- Caterina Balzotti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathlab, Trieste, Italy
| | - Pierfrancesco Siena
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathlab, Trieste, Italy
| | - Michele Girfoglio
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathlab, Trieste, Italy
| | - Giovanni Stabile
- The Biorobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Jorge Dueñas-Pamplona
- Departamento de Ingeniería Energética, Universidad Politécnica de Madrid, Madrid, Spain
| | - José Sierra-Pallares
- Departamento de Ingeniería Energética y Fluidomecánica, Universidad de Valladolid, Valladolid, Spain
| | - Ignacio Amat-Santos
- Departamento de Ingeniería Energética y Fluidomecánica, Universidad de Valladolid, Valladolid, Spain
- Clinical University Hospital of Valladolid, Valladolid, Spain
| | - Gianluigi Rozza
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Mathlab, Trieste, Italy.
| |
Collapse
|
6
|
Guerrero-Hurtado M, Garcia-Villalba M, Gonzalo A, Martinez-Legazpi P, Kahn AM, McVeigh E, Bermejo J, del Alamo JC, Flores O. Efficient multi-fidelity computation of blood coagulation under flow. PLoS Comput Biol 2023; 19:e1011583. [PMID: 37889899 PMCID: PMC10659216 DOI: 10.1371/journal.pcbi.1011583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/20/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Clot formation is a crucial process that prevents bleeding, but can lead to severe disorders when imbalanced. This process is regulated by the coagulation cascade, a biochemical network that controls the enzyme thrombin, which converts soluble fibrinogen into the fibrin fibers that constitute clots. Coagulation cascade models are typically complex and involve dozens of partial differential equations (PDEs) representing various chemical species' transport, reaction kinetics, and diffusion. Solving these PDE systems computationally is challenging, due to their large size and multi-scale nature. We propose a multi-fidelity strategy to increase the efficiency of coagulation cascade simulations. Leveraging the slower dynamics of molecular diffusion, we transform the governing PDEs into ordinary differential equations (ODEs) representing the evolution of species concentrations versus blood residence time. We then Taylor-expand the ODE solution around the zero-diffusivity limit to obtain spatiotemporal maps of species concentrations in terms of the statistical moments of residence time, [Formula: see text], and provide the governing PDEs for [Formula: see text]. This strategy replaces a high-fidelity system of N PDEs representing the coagulation cascade of N chemical species by N ODEs and p PDEs governing the residence time statistical moments. The multi-fidelity order (p) allows balancing accuracy and computational cost providing a speedup of over N/p compared to high-fidelity models. Moreover, this cost becomes independent of the number of chemical species in the large computational meshes typical of the arterial and cardiac chamber simulations. Using a coagulation network with N = 9 and an idealized aneurysm geometry with a pulsatile flow as a benchmark, we demonstrate favorable accuracy for low-order models of p = 1 and p = 2. The thrombin concentration in these models departs from the high-fidelity solution by under 20% (p = 1) and 2% (p = 2) after 20 cardiac cycles. These multi-fidelity models could enable new coagulation analyses in complex flow scenarios and extensive reaction networks. Furthermore, it could be generalized to advance our understanding of other reacting systems affected by flow.
Collapse
Affiliation(s)
| | | | - Alejandro Gonzalo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Pablo Martinez-Legazpi
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Spain
- CIBERCV, Madrid, Spain
| | - Andrew M. Kahn
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Elliot McVeigh
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Javier Bermejo
- CIBERCV, Madrid, Spain
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan C. del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Division of Cardiology, University of Washington, Seattle, Washington, United States of America
| | - Oscar Flores
- Department of Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
7
|
Shim JJ, Maas SA, Weiss JA, Ateshian GA. Finite Element Implementation of Computational Fluid Dynamics With Reactive Neutral and Charged Solute Transport in FEBio. J Biomech Eng 2023; 145:091011. [PMID: 37219843 PMCID: PMC10321144 DOI: 10.1115/1.4062594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
The objective of this study was to implement a novel fluid-solutes solver into the open-source finite element software FEBio, that extended available modeling capabilities for biological fluids and fluid-solute mixtures. Using a reactive mixture framework, this solver accommodates diffusion, convection, chemical reactions, electrical charge effects, and external body forces, without requiring stabilization methods that were deemed necessary in previous computational implementations of the convection-diffusion-reaction equation at high Peclet numbers. Verification and validation problems demonstrated the ability of this solver to produce solutions for Peclet numbers as high as 1011, spanning the range of physiological conditions for convection-dominated solute transport. This outcome was facilitated by the use of a formulation that accommodates realistic values for solvent compressibility, and by expressing the solute mass balance such that it properly captured convective transport by the solvent and produced a natural boundary condition of zero diffusive solute flux at outflow boundaries. Since this numerical scheme was not necessarily foolproof, guidelines were included to achieve better outcomes that minimize or eliminate the potential occurrence of numerical artifacts. The fluid-solutes solver presented in this study represents an important and novel advancement in the modeling capabilities for biomechanics and biophysics as it allows modeling of mechanobiological processes via the incorporation of chemical reactions involving neutral or charged solutes within dynamic fluid flow. The incorporation of charged solutes in a reactive framework represents a significant novelty of this solver. This framework also applies to a broader range of nonbiological applications.
Collapse
Affiliation(s)
- Jay J Shim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
8
|
Ranc A, Bru S, Mendez S, Giansily-Blaizot M, Nicoud F, Méndez Rojano R. Critical evaluation of kinetic schemes for coagulation. PLoS One 2023; 18:e0290531. [PMID: 37639392 PMCID: PMC10461854 DOI: 10.1371/journal.pone.0290531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
Two well-established numerical representations of the coagulation cascade either initiated by the intrinsic system (Chatterjee et al., PLOS Computational Biology 2010) or the extrinsic system (Butenas et al., Journal of Biological Chemistry, 2004) were compared with thrombin generation assays under realistic pathological conditions. Biochemical modifications such as the omission of reactions not relevant to the case studied, the modification of reactions related to factor XI activation and auto-activation, the adaptation of initial conditions to the thrombin assay system, and the adjustment of some of the model parameters were necessary to align in vitro and in silico data. The modified models are able to reproduce thrombin generation for a range of factor XII, XI, and VIII deficiencies, with the coagulation cascade initiated either extrinsically or intrinsically. The results emphasize that when existing models are extrapolated to experimental parameters for which they have not been calibrated, careful adjustments are required.
Collapse
Affiliation(s)
- Alexandre Ranc
- Department of Haematology Biology, CHU, Univ Montpellier, Montpellier, France
| | - Salome Bru
- Polytech, Univ Montpellier, Montpellier, France
| | - Simon Mendez
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | | | | | | |
Collapse
|
9
|
Guerrero-Hurtado M, Garcia-Villalba M, Gonzalo A, Martinez-Legazpi P, Kahn AM, McVeigh E, Bermejo J, Del Alamo JC, Flores O. Efficient multi-fidelity computation of blood coagulation under flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542763. [PMID: 37398367 PMCID: PMC10312426 DOI: 10.1101/2023.05.29.542763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Clot formation is a crucial process that prevents bleeding, but can lead to severe disorders when imbalanced. This process is regulated by the coagulation cascade, a biochemical network that controls the enzyme thrombin, which converts soluble fibrinogen into the fibrin fibers that constitute clots. Coagulation cascade models are typically complex and involve dozens of partial differential equations (PDEs) representing various chemical species' transport, reaction kinetics, and diffusion. Solving these PDE systems computationally is challenging, due to their large size and multi-scale nature. We propose a multi-fidelity strategy to increase the efficiency of coagulation cascade simulations. Leveraging the slower dynamics of molecular diffusion, we transform the governing PDEs into ordinary differential equations (ODEs) representing the evolution of species concentrations versus blood residence time. We then Taylor-expand the ODE solution around the zero-diffusivity limit to obtain spatiotemporal maps of species concentrations in terms of the statistical moments of residence time, , and provide the governing PDEs for . This strategy replaces a high-fidelity system of N PDEs representing the coagulation cascade of N chemical species by N ODEs and p PDEs governing the residence time statistical moments. The multi-fidelity order( p ) allows balancing accuracy and computational cost, providing a speedup of over N/p compared to high-fidelity models. Using a simplified coagulation network and an idealized aneurysm geometry with a pulsatile flow as a benchmark, we demonstrate favorable accuracy for low-order models of p = 1 and p = 2. These models depart from the high-fidelity solution by under 16% ( p = 1) and 5% ( p = 2) after 20 cardiac cycles. The favorable accuracy and low computational cost of multi-fidelity models could enable unprecedented coagulation analyses in complex flow scenarios and extensive reaction networks. Furthermore, it can be generalized to advance our understanding of other systems biology networks affected by blood flow.
Collapse
|
10
|
Wang Y, Luan J, Luo K, Fan J, Zhu T. Model reduction of coagulation cascade based on genetic algorithm. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3652. [PMID: 36167948 DOI: 10.1002/cnm.3652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Fibrin is an important product of the coagulation cascade, and plays an eminent role in platelet stabilization. Since coagulation cascade models typically involve the reaction kinetics of dozens of proteins, which will incur burdensome computational costs when coupled to blood flow in complex geometries, researchers often ignore this process when constructing thrombosis models. However, previous studies have shown that fundamental aspects of coagulation can be reproduced with simpler models, which motivated us to obtain a reduced-order model of fibrin generation through a systematic approach. Therefore, we introduced a semi-automatic framework to perform model-reduction of cascade reactions in this study, which consisted of two processes. Specifically, the retained protein species and cascade reactions were determined based on published studies and simulation results from the full cascade model, while the optimal reaction rates for the new cascade network were determined using a genetic algorithm. The framework has been applied to a 19-species coagulation model that triggers fibrin generation in internal fields via reactive boundaries, and a 10-species reduced-order model was obtained to reproduce the kinetics of fibrinogenesis in the full cascade model at different boundary tissue factor concentrations. This reduced-order model of fibrinogenesis would be valuable for thrombosis modeling that considers both the coagulation cascade and platelet activity. Furthermore, the framework proposed herein can also be applied to the reductions of other cascade reaction models.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jingyang Luan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Ting Zhu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Computational Methods for Fluid-Structure Interaction Simulation of Heart Valves in Patient-Specific Left Heart Anatomies. FLUIDS 2022. [DOI: 10.3390/fluids7030094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Given the complexity of human left heart anatomy and valvular structures, the fluid–structure interaction (FSI) simulation of native and prosthetic valves poses a significant challenge for numerical methods. In this review, recent numerical advancements for both fluid and structural solvers for heart valves in patient-specific left hearts are systematically considered, emphasizing the numerical treatments of blood flow and valve surfaces, which are the most critical aspects for accurate simulations. Numerical methods for hemodynamics are considered under both the continuum and discrete (particle) approaches. The numerical treatments for the structural dynamics of aortic/mitral valves and FSI coupling methods between the solid Ωs and fluid domain Ωf are also reviewed. Future work toward more advanced patient-specific simulations is also discussed, including the fusion of high-fidelity simulation within vivo measurements and physics-based digital twining based on data analytics and machine learning techniques.
Collapse
|
12
|
Seo JH, Mittal R. Computational Modeling of Drug Dissolution in the Human Stomach. Front Physiol 2022; 12:755997. [PMID: 35082685 PMCID: PMC8785969 DOI: 10.3389/fphys.2021.755997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
A computational model of drug dissolution in the human stomach is developed to investigate the interaction between gastric flow and orally administrated drug in the form of a solid tablet. The stomach model is derived from the anatomical imaging data and the motion and dissolution of the drug in the stomach are modeled via fluid-structure interaction combined with mass transport simulations. The effects of gastric motility and the associated fluid dynamics on the dissolution characteristics are investigated. Two different pill densities are considered to study the effects of the gastric flow as well as the gravitational force on the motion of the pill. The average mass transfer coefficient and the spatial distributions of the dissolved drug concentration are analyzed in detail. The results show that the retropulsive jet and recirculating flow in the antrum generated by the antral contraction wave play an important role in the motion of the pill as well as the transport and mixing of the dissolved drug concentration. It is also found that the gastric flow can increase the dissolution mass flux, especially when there is substantial relative motion between the gastric flow and the pill.
Collapse
Affiliation(s)
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Méndez Rojano R, Zhussupbekov M, Antaki JF. Multi-constituent simulation of thrombus formation at LVAD inlet cannula connection: Importance of Virchow's triad. Artif Organs 2021; 45:1014-1023. [PMID: 33683718 PMCID: PMC9987618 DOI: 10.1111/aor.13949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
As pump thrombosis is reduced in current-generation ventricular assist devices (VAD), adverse events such as bleeding or stroke remain at unacceptable rates. Thrombosis around the VAD inlet cannula (IC) has been highlighted as a possible source of stroke events. Recent computational fluid dynamics (CFD) studies have attempted to characterize the thrombosis risk of different IC-ventricle configurations. However, purely CFD simulations relate thrombosis risk to ad hoc criteria based on flow characteristics, with little consideration of biochemical factors. This study investigates the genesis of IC thrombosis including two elements of the Virchow's triad: endothelial injury and hypercoagulability. To this end a multi-scale thrombosis simulation that includes platelet activity and coagulation reactions was performed. Our results show significant thrombin formation in stagnation regions (|u| < 0.005 m/s) close to the IC wall. In addition, high shear-mediated platelet activation was observed over the leading-edge tip of the cannula. The current study reveals the importance of biochemical factors to the genesis of thrombosis at the ventricular-cannula junction in a perioperative state. This study is a first step toward the long-term objective of including clinically relevant pharmacological kinetics such as heparin or aspirin in simulations of inflow cannula thrombosis.
Collapse
Affiliation(s)
| | - Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
García-Villalba M, Rossini L, Gonzalo A, Vigneault D, Martinez-Legazpi P, Durán E, Flores O, Bermejo J, McVeigh E, Kahn AM, del Álamo JC. Demonstration of Patient-Specific Simulations to Assess Left Atrial Appendage Thrombogenesis Risk. Front Physiol 2021; 12:596596. [PMID: 33716763 PMCID: PMC7953154 DOI: 10.3389/fphys.2021.596596] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Atrial fibrillation (AF) alters left atrial (LA) hemodynamics, which can lead to thrombosis in the left atrial appendage (LAA), systemic embolism and stroke. A personalized risk-stratification of AF patients for stroke would permit improved balancing of preventive anticoagulation therapies against bleeding risk. We investigated how LA anatomy and function impact LA and LAA hemodynamics, and explored whether patient-specific analysis by computational fluid dynamics (CFD) can predict the risk of LAA thrombosis. We analyzed 4D-CT acquisitions of LA wall motion with an in-house immersed-boundary CFD solver. We considered six patients with diverse atrial function, three with either a LAA thrombus (removed digitally before running the simulations) or a history of transient ischemic attacks (LAAT/TIA-pos), and three without a LAA thrombus or TIA (LAAT/TIA-neg). We found that blood inside the left atrial appendage of LAAT/TIA-pos patients had marked alterations in residence time and kinetic energy when compared with LAAT/TIA-neg patients. In addition, we showed how the LA conduit, reservoir and booster functions distinctly affect LA and LAA hemodynamics. Finally, fixed-wall and moving-wall simulations produced different LA hemodynamics and residence time predictions for each patient. Consequently, fixed-wall simulations risk-stratified our small cohort for LAA thrombosis worse than moving-wall simulations, particularly patients with intermediate LAA residence time. Overall, these results suggest that both wall kinetics and LAA morphology contribute to LAA blood stasis and thrombosis.
Collapse
Affiliation(s)
- Manuel García-Villalba
- Bioengineering and Aerospace Engineering Department, Carlos III University of Madrid, Leganés, Spain
| | - Lorenzo Rossini
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Alejandro Gonzalo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Davis Vigneault
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Pablo Martinez-Legazpi
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio MaraMarañón, Facultad de Medicina, Universidad Complutense de Madrid, and CIBERCV, Madrid, Spain
| | - Eduardo Durán
- Bioengineering and Aerospace Engineering Department, Carlos III University of Madrid, Leganés, Spain
| | - Oscar Flores
- Bioengineering and Aerospace Engineering Department, Carlos III University of Madrid, Leganés, Spain
| | - Javier Bermejo
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio MaraMarañón, Facultad de Medicina, Universidad Complutense de Madrid, and CIBERCV, Madrid, Spain
| | - Elliot McVeigh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Andrew M. Kahn
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Nguyen TD, Kadri OE, Voronov RS. An Introductory Overview of Image-Based Computational Modeling in Personalized Cardiovascular Medicine. Front Bioeng Biotechnol 2020; 8:529365. [PMID: 33102452 PMCID: PMC7546862 DOI: 10.3389/fbioe.2020.529365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases account for the number one cause of deaths in the world. Part of the reason for such grim statistics is our limited understanding of the underlying mechanisms causing these devastating pathologies, which is made difficult by the invasiveness of the procedures associated with their diagnosis (e.g., inserting catheters into the coronal artery to measure blood flow to the heart). Likewise, it is also difficult to design and test assistive devices without implanting them in vivo. However, with the recent advancements made in biomedical scanning technologies and computer simulations, image-based modeling (IBM) has arisen as the next logical step in the evolution of non-invasive patient-specific cardiovascular medicine. Yet, due to its novelty, it is still relatively unknown outside of the niche field. Therefore, the goal of this manuscript is to review the current state-of-the-art and the limitations of the methods used in this area of research, as well as their applications to personalized cardiovascular investigations and treatments. Specifically, the modeling of three different physics – electrophysiology, biomechanics and hemodynamics – used in the cardiovascular IBM is discussed in the context of the physiology that each one of them describes and the mechanisms of the underlying cardiac diseases that they can provide insight into. Only the “bare-bones” of the modeling approaches are discussed in order to make this introductory material more accessible to an outside observer. Additionally, the imaging methods, the aspects of the unique cardiac anatomy derived from them, and their relation to the modeling algorithms are reviewed. Finally, conclusions are drawn about the future evolution of these methods and their potential toward revolutionizing the non-invasive diagnosis, virtual design of treatments/assistive devices, and increasing our understanding of these lethal cardiovascular diseases.
Collapse
Affiliation(s)
- Thanh Danh Nguyen
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Olufemi E Kadri
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.,UC-P&G Simulation Center, University of Cincinnati, Cincinnati, OH, United States
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.,Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
16
|
Delgado-Montero A, Martinez-Legazpi P, Desco MM, Rodríguez-Pérez D, Díaz-Otero F, Rossini L, Pérez del Villar C, Rodríguez-González E, Chazo C, Benito Y, Flores O, Antoranz JC, Fernández-Avilés F, del Álamo JC, Bermejo J. Blood Stasis Imaging Predicts Cerebral Microembolism during Acute Myocardial Infarction. J Am Soc Echocardiogr 2020; 33:389-398. [DOI: 10.1016/j.echo.2019.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
17
|
Collia D, Zovatto L, Pedrizzetti G. Analysis of mitral valve regurgitation by computational fluid dynamics. APL Bioeng 2019; 3:036105. [PMID: 31893254 PMCID: PMC6932856 DOI: 10.1063/1.5097245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/31/2019] [Indexed: 02/05/2023] Open
Abstract
The clinical syndrome of mitral insufficiency is a common consequence of mitral valve (MV) prolapse, when the MV leaflets do not seal the closed orifice and blood regurgitates back to the atrium during ventricular contraction. There are different types of MV prolapse that may influence the degree of regurgitation also in relation to the left ventricle (LV) geometry. This study aims to provide some insight into the fluid dynamics of MV insufficiency in view of improving the different measurements available in the clinical setting. The analysis is performed by a computational fluid dynamics model coupled with an asymptotic model of the MV motion. The computational fluid dynamics solution uses the immersed boundary method that is efficiently integrated with clinical imaging technologies. Healthy and dilated LVs obtained by multislice cardiac MRI are combined with simplified models of healthy and pathological MVs deduced from computed tomography and 4D-transesophageal echocardiography. The results demonstrated the properties of false regurgitation, blood that did not cross the open MV orifice and returns into the atrium during the backward motion of the MV leaflets, whose entity should be accounted when evaluating small regurgitation. The regurgitating volume is found to be proportional to the effective orifice area, with the limited dependence of the LV geometry and type of prolapse. These affect the percentage of old blood returning to the atrium which may be associated with thrombogenic risk.
Collapse
Affiliation(s)
- Dario Collia
- Department of Engineering and Architecture, University of Trieste, P. Europa 1, 34127 Trieste, Italy
| | - Luigino Zovatto
- Department of Engineering and Architecture, University of Trieste, P. Europa 1, 34127 Trieste, Italy
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, P. Europa 1, 34127 Trieste, Italy
| |
Collapse
|
18
|
Eslami P, Seo JH, Lardo AC, Chen MY, Mittal R. Flow Dynamics in the Aortic Arch and Its Effect on the Arterial Input Function in Cardiac Computed Tomography. J Biomech Eng 2019; 141:2728067. [PMID: 30840028 DOI: 10.1115/1.4043076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 02/04/2023]
Abstract
The arterial input function (AIF)-time-density curve (TDC) of contrast at the coronary ostia-plays a central role in contrast enhanced computed tomography angiography (CTA). This study employs computational modeling in a patient-specific aorta to investigate mixing and dispersion of contrast in the aortic arch (AA) and to compare the TDCs in the coronary ostium and the descending aorta. Here, we examine the validity of the use of TDC in the descending aorta as a surrogate for the AIF. Computational fluid dynamics was used to study hemodynamics and contrast dispersion in a CTA-based patient model of the aorta. Variations in TDC between the aortic root, through the AA and at the descending aorta and the effect of flow patterns on contrast dispersion was studied via post-processing of the results. Simulations showed complex unsteady patterns of contrast mixing and dispersion in the AA that are driven by the pulsatile flow. However, despite the relatively long intra-aortic distance between the coronary ostia and the descending aorta, the TDCs at these two locations were similar in terms of rise-time and up-slope, and the time lag between the two TDCs was 0.19 seconds. TDC in the descending aorta is an accurate analog of the AIF. Methods that use quantitative metrics such as rise-time and slope of the AIF to estimate coronary flowrate and myocardial ischemia can continue with the current practice of using the TDC at the descending aorta as a surrogate for the AIF.
Collapse
Affiliation(s)
- Parastou Eslami
- Department of Radiology, Massachusetts General Hospital, Harvard University, Boston, MA 02114
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Albert C Lardo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Marcus Y Chen
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD 20892
| | - Rajat Mittal
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21287
| |
Collapse
|
19
|
Hansen KB, Arzani A, Shadden SC. Finite element modeling of near-wall mass transport in cardiovascular flows. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3148. [PMID: 30171673 DOI: 10.1002/cnm.3148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Many cardiovascular processes involve mass transport between blood and the vessel wall. Finite element methods are commonly used to numerically simulate these processes. Cardiovascular mass transport problems are typically characterized by high Péclet numbers, requiring fine near-wall mesh resolution as well as the use of stabilization techniques to avoid numerical instabilities. In this work, we develop a set of guidelines for solving high-Péclet-number near-wall mass transport problems using the finite element method. We use a steady, idealized test case to investigate the required mesh resolution and finite element basis order to accurately capture near-wall concentration boundary layers, as well as the performance of several commonly used stabilization techniques. Linear tetrahedral meshes were found to outperform quadratic tetrahedral meshes of equivalent degrees of freedom, and the commonly used discontinuity-capturing stabilization technique was found to be overly diffusive for these types of problems. Best practices derived from the idealized test case were then applied to a typical patient-specific vascular blood flow modeling application, where it was found that the commonly applied technique of avoiding numerical difficulties by artificially increasing mass diffusivity provides qualitatively similar but quantitatively erroneous results.
Collapse
Affiliation(s)
- Kirk B Hansen
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California
| | - Amirhossein Arzani
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona
| | - Shawn C Shadden
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, California
| |
Collapse
|
20
|
Hosseinzadegan H, Tafti DK. A Predictive Model of Thrombus Growth in Stenosed Vessels with Dynamic Geometries. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0443-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Seo JH, Eslami P, Caplan J, Tamargo RJ, Mittal R. A Highly Automated Computational Method for Modeling of Intracranial Aneurysm Hemodynamics. Front Physiol 2018; 9:681. [PMID: 29946264 PMCID: PMC6005827 DOI: 10.3389/fphys.2018.00681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Intracranial aneurysms manifest in a vast variety of morphologies and their growth and rupture risk are subject to patient-specific conditions that are coupled with complex, non-linear effects of hemodynamics. Thus, studies that attempt to understand and correlate rupture risk to aneurysm morphology have to incorporate hemodynamics, and at the same time, address a large enough sample size so as to produce reliable statistical correlations. In order to perform accurate hemodynamic simulations for a large number of aneurysm cases, automated methods to convert medical imaging data to simulation-ready configuration with minimal (or no) human intervention are required. In the present study, we develop a highly-automated method based on the immersed boundary method framework to construct computational models from medical imaging data which is the key idea is the direct use of voxelized contrast information from the 3D angiograms to construct a level-set based computational “mask” for the hemodynamic simulation. Appropriate boundary conditions are provided to the mask and the dynamics of blood flow inside the vessels and aneurysm is simulated by solving the Navier-Stokes equations on the Cartesian grid using the sharp-interface immersed boundary method. The present method does not require body conformal surface/volume mesh generation or other intervention for model clean-up. The viability of the proposed method is demonstrated for a number of distinct aneurysms derived from actual, patient-specific data.
Collapse
Affiliation(s)
- Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Parastou Eslami
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Justin Caplan
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Rafael J Tamargo
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Sampath K, Harfi TT, George RT, Katz J. Optimized Time-Resolved Echo Particle Image Velocimetry– Particle Tracking Velocimetry Measurements Elucidate Blood Flow in Patients With Left Ventricular Thrombus. J Biomech Eng 2018; 140:2668583. [DOI: 10.1115/1.4038886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 02/04/2023]
Abstract
Contrast ultrasound is a widely used clinical tool to obtain real-time qualitative blood flow assessments in the heart, liver, etc. Echocardiographic particle image velocimetry (echo-PIV) is a technique for obtaining quantitative velocity maps from contrast ultrasound images. However, unlike optical particle image velocimetry (PIV), routine echo images are prone to nonuniform spatiotemporal variations in tracer distribution, making analysis difficult for standard PIV algorithms. This study introduces optimized procedures that integrate image enhancement, PIV, and particle tracking velocimetry (PTV) to obtain reliable time-resolved two-dimensional (2D) velocity distributions. During initial PIV analysis, multiple results are obtained by varying processing parameters. Optimization involving outlier removal and smoothing is used to select the correct vector. These results are used in a multiparameter PTV procedure. To demonstrate their clinical value, the procedures are implemented to obtain velocity and vorticity distributions over multiple cardiac cycles using images acquired from four left ventricular thrombus (LVT) patients. Phase-averaged data elucidate flow structure evolution over the cycle and are used to calculate penetration depth and strength of left ventricular (LV) vortices, as well as apical velocity induced by them. The present data are consistent with previous time-averaged results for the minimum vortex penetration depth associated with LVT occurrence. However, due to decay and fragmentation of LV vortices, as they migrate away from the mitral annulus, in two cases with high penetration, there is still poor washing near the resolved clot throughout the cycle. Hence, direct examination of entire flow evolution may be useful for assessing risk of LVT relapse before prescribing anticoagulants.
Collapse
Affiliation(s)
- Kaushik Sampath
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Latrobe 223, Baltimore, MD 21218 e-mail:
| | - Thura T. Harfi
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287 e-mail:
| | - Richard T. George
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287 e-mail:
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Latrobe 122, Baltimore, MD 21218 e-mail:
| |
Collapse
|
23
|
Imanparast A, Fatouraee N, Sharif F. Comprehensive computational assessment of blood flow characteristics of left ventricle based on in-vivo MRI in presence of artificial myocardial infarction. Math Biosci 2017; 294:143-159. [PMID: 29080776 DOI: 10.1016/j.mbs.2017.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/02/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Understanding the effects of cardiac diseases on the heart's functionality which is the purpose of many biomedical researches, directly affects the diagnostic and therapeutic methods. Myocardial infarction (MI) is a common complication of cardiac ischemia, however, the impact of MI on the left ventricle (LV) flow patterns has not been widely considered by computational fluid dynamics studies thus far. METHODS In this study, we present an insightful numerical method that creates an artificial MI on an image-based fluid-structure interactional model of normal LV to investigate its influence on the flow in comparison with the normal case. Seventeen different models were developed to evaluate the effects of location, percentage, myocardial material properties and dilation size of MI on the LV's performance, area strain, wall displacement, pressure-volume loop, wall shear stress and velocity field. RESULTS The results show that MI considerably changes blood flow features which are fully dependent on MI parameters. For the case of constant MI location, the effect of a decrease of infarcted myocardium stiffness, increase of dilation size and increase of MI percentage are mostly similar. Although the location differences of MI under other constant conditions have similar impact on the ejection fraction, they also lead to dissimilar variations in the LV flow pattern and other indicators. CONCLUSIONS The presented model showed a capable computational method for investigating various mechanical MI conditions with respect to cardiac flow pattern. The perspective of this model development seems to be an applicable tool for MI clinical diagnosis and prediction of complications related to MI.
Collapse
Affiliation(s)
- Ali Imanparast
- Department of Mechanical Engineering, University of Zabol, Zabol, Iran
| | - Nasser Fatouraee
- Biological Fluid Mechanics Research Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Farhad Sharif
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Iran
| |
Collapse
|
24
|
Vedula V, Lee J, Xu H, Kuo CCJ, Hsiai TK, Marsden AL. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling. PLoS Comput Biol 2017; 13:e1005828. [PMID: 29084212 PMCID: PMC5679653 DOI: 10.1371/journal.pcbi.1005828] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/09/2017] [Accepted: 10/15/2017] [Indexed: 01/09/2023] Open
Abstract
Blood flow and mechanical forces in the ventricle are implicated in cardiac development and trabeculation. However, the mechanisms of mechanotransduction remain elusive. This is due in part to the challenges associated with accurately quantifying mechanical forces in the developing heart. We present a novel computational framework to simulate cardiac hemodynamics in developing zebrafish embryos by coupling 4-D light sheet imaging with a stabilized finite element flow solver, and extract time-dependent mechanical stimuli data. We employ deformable image registration methods to segment the motion of the ventricle from high resolution 4-D light sheet image data. This results in a robust and efficient workflow, as segmentation need only be performed at one cardiac phase, while wall position in the other cardiac phases is found by image registration. Ventricular hemodynamics are then quantified by numerically solving the Navier-Stokes equations in the moving wall domain with our validated flow solver. We demonstrate the applicability of the workflow in wild type zebrafish and three treated fish types that disrupt trabeculation: (a) chemical treatment using AG1478, an ErbB2 signaling inhibitor that inhibits proliferation and differentiation of cardiac trabeculation; (b) injection of gata1a morpholino oligomer (gata1aMO) suppressing hematopoiesis and resulting in attenuated trabeculation; (c) weak-atriumm58 mutant (wea) with inhibited atrial contraction leading to a highly undeveloped ventricle and poor cardiac function. Our simulations reveal elevated wall shear stress (WSS) in wild type and AG1478 compared to gata1aMO and wea. High oscillatory shear index (OSI) in the grooves between trabeculae, compared to lower values on the ridges, in the wild type suggest oscillatory forces as a possible regulatory mechanism of cardiac trabeculation development. The framework has broad applicability for future cardiac developmental studies focused on quantitatively investigating the role of hemodynamic forces and mechanotransduction during morphogenesis.
Collapse
Affiliation(s)
- Vijay Vedula
- Department of Pediatrics (Cardiology), Stanford University, Stanford, California, United States of America
| | - Juhyun Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Hao Xu
- Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - C.-C. Jay Kuo
- Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Alison L. Marsden
- Department of Pediatrics (Cardiology), Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, California, United States of America
| |
Collapse
|
25
|
Hosseinzadegan H, Tafti DK. Modeling thrombus formation and growth. Biotechnol Bioeng 2017; 114:2154-2172. [DOI: 10.1002/bit.26343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/03/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Hamid Hosseinzadegan
- Mechanical Engineering DepartmentVirginia Polytechnic Institute and State University, 213E Goodwin Hall ‐ 0238, 635 Prices Fork RoadBlacksburgVirginia24061
| | - Danesh K. Tafti
- Mechanical Engineering DepartmentVirginia Polytechnic Institute and State University, 213E Goodwin Hall ‐ 0238, 635 Prices Fork RoadBlacksburgVirginia24061
| |
Collapse
|
26
|
The E-wave propagation index (EPI): A novel echocardiographic parameter for prediction of left ventricular thrombus. Derivation from computational fluid dynamic modeling and validation on human subjects. Int J Cardiol 2017; 227:662-667. [DOI: 10.1016/j.ijcard.2016.10.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/28/2016] [Indexed: 01/19/2023]
|
27
|
Arzani A, Gambaruto AM, Chen G, Shadden SC. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows. Biomech Model Mechanobiol 2016; 16:787-803. [DOI: 10.1007/s10237-016-0853-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
|