1
|
Rajakulasingam R, Ferreira PF, Scott AD, Khalique Z, Azzu A, Molto M, Conway M, Falaschetti E, Cheng K, Hammersley DJ, Cantor EJ, Tindale A, Beattie CJ, Banerjee A, Wage R, Soundarajan RK, Dalby M, Nielles-Vallespin S, Pennell DJ, de Silva R. Characterization of dynamic changes in cardiac microstructure after reperfused ST-elevation myocardial infarction by biphasic diffusion tensor cardiovascular magnetic resonance. Eur Heart J 2025; 46:454-469. [PMID: 39405409 DOI: 10.1093/eurheartj/ehae667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND AIMS Microstructural disturbances underlie dysfunctional contraction and adverse left ventricular (LV) remodelling after ST-elevation myocardial infarction (STEMI). Biphasic diffusion tensor cardiovascular magnetic resonance (DT-CMR) quantifies dynamic reorientation of sheetlets (E2A) from diastole to systole during myocardial thickening, and markers of tissue integrity [mean diffusivity (MD) and fractional anisotropy (FA)]. This study investigated whether microstructural alterations identified by biphasic DT-CMR: (i) enable contrast-free detection of acute myocardial infarction (MI); (ii) associate with severity of myocardial injury and contractile dysfunction; and (iii) predict adverse LV remodelling. METHODS Biphasic DT-CMR was acquired 4 days (n = 70) and 4 months (n = 66) after reperfused STEMI and in healthy volunteers (HVOLs) (n = 22). Adverse LV remodelling was defined as an increase in LV end-diastolic volume ≥ 20% at 4 months. MD and FA maps were compared with late gadolinium enhancement images. RESULTS Widespread microstructural disturbances were detected post-STEMI. In the acute MI zone, diastolic E2A was raised and systolic E2A reduced, resulting in reduced E2A mobility (all P < .001 vs. adjacent and remote zones and HVOLs). Acute global E2A mobility was the only independent predictor of adverse LV remodelling (odds ratio .77; 95% confidence interval .63-.94; P = .010). MD and FA maps had excellent sensitivity and specificity (all > 90%) and interobserver agreement for detecting MI presence and location. CONCLUSIONS Biphasic DT-CMR identifies microstructural alterations in both diastole and systole after STEMI, enabling detection of MI presence and location as well as predicting adverse LV remodelling. DT-CMR has potential to provide a single contrast-free modality for MI detection and prognostication of patients after acute STEMI.
Collapse
Affiliation(s)
- Ramyah Rajakulasingam
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Pedro F Ferreira
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Andrew D Scott
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Zohya Khalique
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Alessia Azzu
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Maria Molto
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Miriam Conway
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | | | - Kevin Cheng
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Daniel J Hammersley
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
- King's College Hospital NHS Foundation Trust, UK
| | - Emily-Jane Cantor
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Alexander Tindale
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Catherine J Beattie
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Arjun Banerjee
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Ricardo Wage
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Raj K Soundarajan
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Miles Dalby
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Dudley J Pennell
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Ranil de Silva
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| |
Collapse
|
2
|
Mehri M, Sharifi H, Mann CK, Rockward AL, Campbell KS, Lee LC, Wenk JF. Multiscale fiber remodeling in the infarcted left ventricle using a stress-based reorientation law. Acta Biomater 2024; 189:337-350. [PMID: 39362453 PMCID: PMC11570337 DOI: 10.1016/j.actbio.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
The organization of myofibers and extra cellular matrix within the myocardium plays a significant role in defining cardiac function. When pathological events occur, such as myocardial infarction (MI), this organization can become disrupted, leading to degraded pumping performance. The current study proposes a multiscale finite element (FE) framework to determine realistic fiber distributions in the left ventricle (LV). This is achieved by implementing a stress-based fiber reorientation law, which seeks to align the fibers with local traction vectors, such that contractile force and load bearing capabilities are maximized. By utilizing the total stress (passive and active), both myofibers and collagen fibers are reoriented. Simulations are conducted to predict the baseline fiber configuration in a normal LV as well as the adverse fiber reorientation that occurs due to different size MIs. The baseline model successfully captures the transmural variation of helical fiber angles within the LV wall, as well as the transverse fiber angle variation from base to apex. In the models of MI, the patterns of fiber reorientation in the infarct, border zone, and remote regions closely align with previous experimental findings, with a significant increase in fibers oriented in a left-handed helical configuration and increased dispersion in the infarct region. Furthermore, the severity of fiber reorientation and impairment of pumping performance both showed a correlation with the size of the infarct. The proposed multiscale modeling framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future. STATEMENT OF SIGNIFICANCE: The organization of muscle and collagen fibers within the heart plays a significant role in defining cardiac function. This organization can become disrupted after a heart attack, leading to degraded pumping performance. In the current study, we implemented a stress-based fiber reorientation law into a computer model of the heart, which seeks to realign the fibers such that contractile force and load bearing capabilities are maximized. The primary goal was to evaluate the effects of different sized heart attacks. We observed substantial fiber remodeling in the heart, which matched experimental observations. The proposed computational framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future.
Collapse
Affiliation(s)
- Mohammad Mehri
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Hossein Sharifi
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Charles K Mann
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Alexus L Rockward
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Jonathan F Wenk
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Curry BA, Drane AL, Atencia R, Feltrer Y, Calvi T, Milnes EL, Moittié S, Weigold A, Knauf-Witzens T, Sawung Kusuma A, Howatson G, Palmer C, Stembridge MR, Gorzynski JE, Eves ND, Dawkins TG, Shave RE. Left ventricular trabeculation in Hominidae: divergence of the human cardiac phenotype. Commun Biol 2024; 7:682. [PMID: 38877299 PMCID: PMC11178792 DOI: 10.1038/s42003-024-06280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Although the gross morphology of the heart is conserved across mammals, subtle interspecific variations exist in the cardiac phenotype, which may reflect evolutionary divergence among closely-related species. Here, we compare the left ventricle (LV) across all extant members of the Hominidae taxon, using 2D echocardiography, to gain insight into the evolution of the human heart. We present compelling evidence that the human LV has diverged away from a more trabeculated phenotype present in all other great apes, towards a ventricular wall with proportionally greater compact myocardium, which was corroborated by post-mortem chimpanzee (Pan troglodytes) hearts. Speckle-tracking echocardiographic analyses identified a negative curvilinear relationship between the degree of trabeculation and LV systolic twist, revealing lower rotational mechanics in the trabeculated non-human great ape LV. This divergent evolution of the human heart may have facilitated the augmentation of cardiac output to support the metabolic and thermoregulatory demands of the human ecological niche.
Collapse
Affiliation(s)
- Bryony A Curry
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Aimee L Drane
- International Primate Heart Project, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK.
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, UK.
| | - Rebeca Atencia
- Jane Goodall Institute, Tchimpounga Chimpanzee Rehabilitation Centre, Pointe-Noire, Republic of Congo
| | - Yedra Feltrer
- International Primate Heart Project, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - Thalita Calvi
- Chimfunshi Wildlife Orphanage, Solwesi Road, Chingola, Zambia
| | - Ellie L Milnes
- Wildlife Health, Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
- Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Sophie Moittié
- Tacugama Chimpanzee Sanctuary, Congo Dam Access Road, Freetown, Sierra Leone
- School of Veterinary Medicine, St. George's University, St. George's, West Indies, Grenada
| | - Annika Weigold
- Wilhelma Zoological-Botanical Gardens, Wilhelma 13, Stuttgart, 70376, Germany
| | | | - Arga Sawung Kusuma
- Borneo Orangutan Survival Foundation, Central Kalimantan Orangutan Reintroduction Project at Nyaru Menteng, Jalan Cilik Riwut km 28, Palangkaraya, 73111, Central Kalimantan, Indonesia
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
- Water Research Group, Faculty of Natural and Environmental Sciences, North West University, Potchefstroom, 2531, South Africa
| | - Christopher Palmer
- Biological Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mike R Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, CF23 6XD, UK
| | - John E Gorzynski
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Tony G Dawkins
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Rob E Shave
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
4
|
Cook MP, Dhahri W, Laflamme MA, Ghugre NR, Wright GA. Using diffusion tensor imaging to depict myocardial changes after matured pluripotent stem cell-derived cardiomyocyte transplantation. J Cardiovasc Magn Reson 2024; 26:101045. [PMID: 38795790 PMCID: PMC11278291 DOI: 10.1016/j.jocmr.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Novel treatment strategies are needed to improve the structure and function of the myocardium post-infarction. In vitro-matured pluripotent stem cell-derived cardiomyocytes (PSC-CMs) have been shown to be a promising regenerative strategy. We hypothesized that mature PSC-CMs will have anisotropic structure and improved cell alignment when compared to immature PSC-CMs using cardiovascular magnetic resonance (CMR) in a guinea pig model of cardiac injury. METHODS Guinea pigs (n = 16) were cryoinjured on day -10, followed by transplantation of either 108 polydimethylsiloxane (PDMS)-matured PSC-CMs (n = 6) or 108 immature tissue culture plastic (TCP)-generated PSC-CMs (n = 6) on day 0. Vehicle (sham-treated) subjects were injected with a pro-survival cocktail devoid of cells (n = 4), while healthy controls (n = 4) did not undergo cryoinjury or treatment. Animals were sacrificed on either day +14 or day +28 post-transplantation. Animals were imaged ex vivo on a 7T Bruker MRI. A 3D diffusion tensor imaging (DTI) sequence was used to quantify structure via fractional anisotropy (FA), mean diffusivity (MD), and myocyte alignment measured by the standard deviation of the transverse angle (TA). RESULTS MD and FA of mature PDMS grafts demonstrated anisotropy was not significantly different than the healthy control hearts (MD = 1.1 ± 0.12 × 10-3 mm2/s vs 0.93 ± 0.01 × 10-3 mm2/s, p = 0.4 and FA = 0.22 ± 0.05 vs 0.26 ± 0.001, p = 0.5). Immature TCP grafts exhibited significantly higher MD than the healthy control (1.3 ± 0.08 × 10-3 mm2/s, p < 0.05) and significantly lower FA than the control (0.12 ± 0.02, p < 0.05) but were not different from mature PDMS grafts in this small cohort. TA of healthy controls showed low variability and was not significantly different than mature PDMS grafts (p = 0.4) while immature TCP grafts were significantly different (p < 0.001). DTI parameters of mature graft tissue trended toward that of the healthy myocardium, indicating the grafted cardiomyocytes may have a similar phenotype to healthy tissue. Contrast-enhanced magnetic resonance images corresponded well to histological staining, demonstrating a non-invasive method of localizing the repopulated cardiomyocytes within the scar. CONCLUSIONS The DTI measures within graft tissue were indicative of anisotropic structure and showed greater myocyte organization compared to the scarred territory. These findings show that MRI is a valuable tool to assess the structural impacts of regenerative therapies.
Collapse
Affiliation(s)
- Moses P Cook
- Department of Medical Biophysics, University of Toronto, ON, Canada.
| | - Wahiba Dhahri
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.
| | - Nilesh R Ghugre
- Department of Medical Biophysics, University of Toronto, ON, Canada; Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Graham A Wright
- Department of Medical Biophysics, University of Toronto, ON, Canada; Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
5
|
Park CH, Kim PK, Kim Y, Kim TH, Hong YJ, Ahn E, Cha YJ, Choi BW. Development and validation of cardiac diffusion weighted magnetic resonance imaging for the diagnosis of myocardial injury in small animal models. Sci Rep 2024; 14:3552. [PMID: 38346998 PMCID: PMC10861543 DOI: 10.1038/s41598-024-52746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Cardiac diffusion weighted-magnetic resonance imaging (DWI) has slowly developed due to its technical difficulties. However, this limitation could be overcome by advanced techniques, including a stimulated echo technique and a gradient moment nulling technique. This study aimed to develop and validate a high-order DWI sequence, using echo-planar imaging (EPI) and second-order motion-compensated (M012) diffusion gradient applied to cardiac imaging in small-sized animals with fast heart and respiratory rates, and to investigate the feasibility of cardiac DWI, diagnosing acute myocardial injury in isoproterenol-induced myocardial injury rat models. The M012 diffusion gradient sequence was designed for diffusion tensor imaging of the rat myocardium and validated in the polyvinylpyrrolidone phantom. Following sequence optimization, 23 rats with isoproterenol-induced acute myocardial injury and five healthy control rats underwent cardiac MRI, including cine imaging, T1 mapping, and DWI. Diffusion gradient was applied using a 9.4-T MRI scanner (Bruker, BioSpec 94/20, gradient amplitude = 440 mT/m, maximum slew rate = 3440 T/m/s) with double gating (electrocardiogram and respiratory gating). Troponin I was used as a serum biomarker for myocardial injury. Histopathologic examination of the heart was subsequently performed. The developed DWI sequence using EPI and M012 provided the interpretable images of rat hearts. The apparent diffusion coefficient (ADC) values were significantly higher in rats with acute myocardial injury than in the control group (1.847 ± 0.326 * 10-3 mm2/s vs. 1.578 ± 0.144 * 10-3 mm2/s, P < 0.001). Troponin I levels were increased in the blood samples of rats with acute myocardial injury (P < 0.001). Histopathologic examinations detected myocardial damage and subendocardial fibrosis in rats with acute myocardial injury. The newly developed DWI technique has the ability to detect myocardial injury in small animal models, representing high ADC values on the myocardium with isoproterenol-induced injury.
Collapse
Affiliation(s)
- Chul Hwan Park
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pan Ki Kim
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Hong
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunkyung Ahn
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Byoung Wook Choi
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Dileep D, Syed TA, Sloan TFW, Dhandapany PS, Siddiqi K, Sirajuddin M. Cardiomyocyte orientation recovery at micrometer scale reveals long-axis fiber continuum in heart walls. EMBO J 2023; 42:e113288. [PMID: 37671467 PMCID: PMC10548172 DOI: 10.15252/embj.2022113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
Coordinated cardiomyocyte contraction drives the mammalian heart to beat and circulate blood. No consensus model of cardiomyocyte geometrical arrangement exists, due to the limited spatial resolution of whole heart imaging methods and the piecemeal nature of studies based on histological sections. By combining microscopy and computer vision, we produced the first-ever three-dimensional cardiomyocyte orientation reconstruction across mouse ventricular walls at the micrometer scale, representing a gain of three orders of magnitude in spatial resolution. We recovered a cardiomyocyte arrangement aligned to the long-axis direction of the outer ventricular walls. This cellular network lies in a thin shell and forms a continuum with longitudinally arranged cardiomyocytes in the inner walls, with a complex geometry at the apex. Our reconstruction methods can be applied at fine spatial scales to further understanding of heart wall electrical function and mechanics, and set the stage for the study of micron-scale fiber remodeling in heart disease.
Collapse
Affiliation(s)
- Drisya Dileep
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
- The University of Trans‐Disciplinary Health Sciences and Technology (TDU)BengaluruIndia
| | - Tabish A Syed
- School of Computer Science and Centre for Intelligent MachinesMcGill University, and MILA – Québec AI InstituteMontréalQCCanada
| | | | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
| | - Kaleem Siddiqi
- School of Computer Science and Centre for Intelligent MachinesMcGill University, and MILA – Québec AI InstituteMontréalQCCanada
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and DiseaseInstitute for Stem Cell Science and Regenerative MedicineBengaluruIndia
| |
Collapse
|
7
|
Jing Y, Magnin IE, Frindel C. Monte Carlo simulation of water diffusion through cardiac tissue models. Med Eng Phys 2023; 120:104013. [PMID: 37673779 DOI: 10.1016/j.medengphy.2023.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/13/2023] [Accepted: 06/22/2023] [Indexed: 09/08/2023]
Abstract
Monte Carlo diffusion simulations are commonly used to establish a reliable ground truth of tissue microstructure, including for the validation of diffusion-weighted MRI. However, selecting simulation parameters is challenging and affects validity and reproducibility. We conducted experiments to investigate critical conditions in Monte Carlo simulations, such as tissue representation complexity, simulated molecules, update duration, and compartment size. Results show significant changes in microstructure characteristics when parameters are altered, emphasizing the importance of careful control for a reliable ground truth.
Collapse
Affiliation(s)
- Yuhan Jing
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, 21 Avenue Jean Capelle, Lyon, 69621, France
| | - Isabelle E Magnin
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, 21 Avenue Jean Capelle, Lyon, 69621, France
| | - Carole Frindel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, 21 Avenue Jean Capelle, Lyon, 69621, France.
| |
Collapse
|
8
|
Cormack JM, Simon MA, Kim K. Backscatter tensor imaging and 3D speckle tracking for simultaneous ex vivo structure and deformation measurement of myocardium. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1238-1247. [PMID: 36858914 PMCID: PMC10050135 DOI: 10.1016/j.ultrasmedbio.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Biaxial mechanical testing is a common method for elucidation of mechanical properties of excised ventricular myocardium, especially in the context of structural remodeling that accompanies heart disease. Current imaging strategies in biaxial testing are based on optical camera imaging of the tissue surface, thus providing no information about the tissue microstructure and limiting strain measurements to two dimensions. Here, these limitations are overcome by replacing the camera with ultrasound imaging in order to measure both transmural fiber orientation and 3D tissue deformation during biaxial testing. METHODS Quasi-static biaxial mechanical testing is applied to four samples of excised porcine ventricular myocardium (two left- and two right-ventricular tissues). During testing, a rotational scan of an ultrasound linear array provides data for both backscatter tensor imaging and 3D speckle tracking, from which transmural fiber orientation and tissue deformation are computed, respectively. Ultrasound-derived fiber orientation and tissue strain are validated against histology and camera surface imaging, respectively. DISCUSSION Ultrasound-derived fiber angle and tissue strain exhibit good accuracy, with root-mean-square errors of 9.9° and 1.2% strain, respectively. Further investigation into the optimization of backscatter tensor imaging is warranted. Replacing the rotational scan of a linear array with volume imaging with a matrix array will improve the technique. CONCLUSION Ultrasound imaging can replace the optical camera measurement during biaxial mechanical testing of ventricular myocardium in order to accurately provide measurements of transmural fiber orientation and tissue strain. In situ knowledge of transmural fiber structure and tissue deformation can enhance the inverse problem used to determine tissue mechanical properties from biaxial testing.
Collapse
Affiliation(s)
- John M Cormack
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261-1909, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | - Marc A Simon
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261-1909, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
9
|
Motchon YD, Sack KL, Sirry MS, Kruger M, Pauwels E, Van Loo D, De Muynck A, Van Hoorebeke L, Davies NH, Franz T. Effect of biomaterial stiffness on cardiac mechanics in a biventricular infarcted rat heart model with microstructural representation of in situ intramyocardial injectate. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3693. [PMID: 36864599 PMCID: PMC10909490 DOI: 10.1002/cnm.3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 01/29/2023] [Indexed: 05/13/2023]
Abstract
Intramyocardial delivery of biomaterials is a promising concept for treating myocardial infarction. The delivered biomaterial provides mechanical support and attenuates wall thinning and elevated wall stress in the infarct region. This study aimed at developing a biventricular finite element model of an infarcted rat heart with a microstructural representation of an in situ biomaterial injectate, and a parametric investigation of the effect of the injectate stiffness on the cardiac mechanics. A three-dimensional subject-specific biventricular finite element model of a rat heart with left ventricular infarct and microstructurally dispersed biomaterial delivered 1 week after infarct induction was developed from ex vivo microcomputed tomography data. The volumetric mesh density varied between 303 mm-3 in the myocardium and 3852 mm-3 in the injectate region due to the microstructural intramyocardial dispersion. Parametric simulations were conducted with the injectate's elastic modulus varying from 4.1 to 405,900 kPa, and myocardial and injectate strains were recorded. With increasing injectate stiffness, the end-diastolic median myocardial fibre and cross-fibre strain decreased in magnitude from 3.6% to 1.1% and from -6.0% to -2.9%, respectively. At end-systole, the myocardial fibre and cross-fibre strain decreased in magnitude from -20.4% to -11.8% and from 6.5% to 4.6%, respectively. In the injectate, the maximum and minimum principal strains decreased in magnitude from 5.4% to 0.001% and from -5.4% to -0.001%, respectively, at end-diastole and from 38.5% to 0.06% and from -39.0% to -0.06%, respectively, at end-systole. With the microstructural injectate geometry, the developed subject-specific cardiac finite element model offers potential for extension to cellular injectates and in silico studies of mechanotransduction and therapeutic signalling in the infarcted heart with an infarct animal model extensively used in preclinical research.
Collapse
Affiliation(s)
- Y. D. Motchon
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
| | - Kevin L. Sack
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
- Department of SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - M. S. Sirry
- Department of Biomedical Engineering, School of Engineering and ComputingAmerican International UniversityAl JahraKuwait
| | - M. Kruger
- Cardiovascular Research Unit, MRC IUCHRUUniversity of Cape TownCape TownSouth Africa
| | - E. Pauwels
- Centre for X‐ray Tomography, Department of Physics and AstronomyGhent UniversityGhentBelgium
- Nuclear MedicineUniversity Hospitals LeuvenLeuvenBelgium
| | - D. Van Loo
- Centre for X‐ray Tomography, Department of Physics and AstronomyGhent UniversityGhentBelgium
- XRE nv, Bollebergen 2B box 1, 9052GhentBelgium
| | - A. De Muynck
- Centre for X‐ray Tomography, Department of Physics and AstronomyGhent UniversityGhentBelgium
| | - L. Van Hoorebeke
- Centre for X‐ray Tomography, Department of Physics and AstronomyGhent UniversityGhentBelgium
| | - Neil H. Davies
- Cardiovascular Research Unit, MRC IUCHRUUniversity of Cape TownCape TownSouth Africa
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human BiologyUniversity of Cape TownCape TownSouth Africa
- Bioengineering Science Research Group, Faculty of Engineering and Physical SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
10
|
Sharrack N, Das A, Kelly C, Teh I, Stoeck CT, Kozerke S, Swoboda PP, Greenwood JP, Plein S, Schneider JE, Dall'Armellina E. The relationship between myocardial microstructure and strain in chronic infarction using cardiovascular magnetic resonance diffusion tensor imaging and feature tracking. J Cardiovasc Magn Reson 2022; 24:66. [PMID: 36419059 PMCID: PMC9685947 DOI: 10.1186/s12968-022-00892-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cardiac diffusion tensor imaging (cDTI) using cardiovascular magnetic resonance (CMR) is a novel technique for the non-invasive assessment of myocardial microstructure. Previous studies have shown myocardial infarction to result in loss of sheetlet angularity, derived by reduced secondary eigenvector (E2A) and reduction in subendocardial cardiomyocytes, evidenced by loss of myocytes with right-handed orientation (RHM) on helix angle (HA) maps. Myocardial strain assessed using feature tracking-CMR (FT-CMR) is a sensitive marker of sub-clinical myocardial dysfunction. We sought to explore the relationship between these two techniques (strain and cDTI) in patients at 3 months following ST-elevation MI (STEMI). METHODS 32 patients (F = 28, 60 ± 10 years) underwent 3T CMR three months after STEMI (mean interval 105 ± 17 days) with second order motion compensated (M2), free-breathing spin echo cDTI, cine gradient echo and late gadolinium enhancement (LGE) imaging. HA maps divided into left-handed HA (LHM, - 90 < HA < - 30), circumferential HA (CM, - 30° < HA < 30°), and right-handed HA (RHM, 30° < HA < 90°) were reported as relative proportions. Global and segmental analysis was undertaken. RESULTS Mean left ventricular ejection fraction (LVEF) was 44 ± 10% with a mean infarct size of 18 ± 12 g and a mean infarct segment LGE enhancement of 66 ± 21%. Mean global radial strain was 19 ± 6, mean global circumferential strain was - 13 ± - 3 and mean global longitudinal strain was - 10 ± - 3. Global and segmental radial strain correlated significantly with E2A in infarcted segments (p = 0.002, p = 0.011). Both global and segmental longitudinal strain correlated with RHM of infarcted segments on HA maps (p < 0.001, p = 0.003). Mean Diffusivity (MD) correlated significantly with the global infarct size (p < 0.008). When patients were categorised according to LVEF (reduced, mid-range and preserved), all cDTI parameters differed significantly between the three groups. CONCLUSION Change in sheetlet orientation assessed using E2A from cDTI correlates with impaired radial strain. Segments with fewer subendocardial cardiomyocytes, evidenced by a lower proportion of myocytes with right-handed orientation on HA maps, show impaired longitudinal strain. Infarct segment enhancement correlates significantly with E2A and RHM. Our data has demonstrated a link between myocardial microstructure and contractility following myocardial infarction, suggesting a potential role for CMR cDTI to clinically relevant functional impact.
Collapse
Affiliation(s)
- N Sharrack
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - A Das
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - C Kelly
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - I Teh
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - C T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Centre for Surgical Research, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - S Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - P P Swoboda
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - J P Greenwood
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - S Plein
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - J E Schneider
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - E Dall'Armellina
- Biomedical Imaging Sciences Department, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
11
|
Wilson AJ, Sands GB, LeGrice IJ, Young AA, Ennis DB. Myocardial mesostructure and mesofunction. Am J Physiol Heart Circ Physiol 2022; 323:H257-H275. [PMID: 35657613 PMCID: PMC9273275 DOI: 10.1152/ajpheart.00059.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
The complex and highly organized structural arrangement of some five billion cardiomyocytes directs the coordinated electrical activity and mechanical contraction of the human heart. The characteristic transmural change in cardiomyocyte orientation underlies base-to-apex shortening, circumferential shortening, and left ventricular torsion during contraction. Individual cardiomyocytes shorten ∼15% and increase in diameter ∼8%. Remarkably, however, the left ventricular wall thickens by up to 30-40%. To accommodate this, the myocardium must undergo significant structural rearrangement during contraction. At the mesoscale, collections of cardiomyocytes are organized into sheetlets, and sheetlet shear is the fundamental mechanism of rearrangement that produces wall thickening. Herein, we review the histological and physiological studies of myocardial mesostructure that have established the sheetlet shear model of wall thickening. Recent developments in tissue clearing techniques allow for imaging of whole hearts at the cellular scale, whereas magnetic resonance imaging (MRI) and computed tomography (CT) can image the myocardium at the mesoscale (100 µm to 1 mm) to resolve cardiomyocyte orientation and organization. Through histology, cardiac diffusion tensor imaging (DTI), and other modalities, mesostructural sheetlets have been confirmed in both animal and human hearts. Recent in vivo cardiac DTI methods have measured reorientation of sheetlets during the cardiac cycle. We also examine the role of pathological cardiac remodeling on sheetlet organization and reorientation, and the impact this has on ventricular function and dysfunction. We also review the unresolved mesostructural questions and challenges that may direct future work in the field.
Collapse
Affiliation(s)
- Alexander J Wilson
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ian J LeGrice
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California
- Veterans Administration Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
12
|
Abstract
Major advances in biomedical imaging have occurred over the last 2 decades and now allow many physiological, cellular, and molecular processes to be imaged noninvasively in small animal models of cardiovascular disease. Many of these techniques can be also used in humans, providing pathophysiological context and helping to define the clinical relevance of the model. Ultrasound remains the most widely used approach, and dedicated high-frequency systems can obtain extremely detailed images in mice. Likewise, dedicated small animal tomographic systems have been developed for magnetic resonance, positron emission tomography, fluorescence imaging, and computed tomography in mice. In this article, we review the use of ultrasound and positron emission tomography in small animal models, as well as emerging contrast mechanisms in magnetic resonance such as diffusion tensor imaging, hyperpolarized magnetic resonance, chemical exchange saturation transfer imaging, magnetic resonance elastography and strain, arterial spin labeling, and molecular imaging.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,A.A. Martinos Center for Biomedical Imaging (D.E.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge (D.E.S.)
| | - Marielle Scherrer-Crosbie
- Cardiology Division, Hospital of the University of Pennsylvania and Perelman School of Medicine, Philadelphia (M.S.-C)
| |
Collapse
|
13
|
Huang H, Chang WT, Huang CC. High-Spatiotemporal-Resolution Visualization of Myocardial Strains Through Vector Doppler Estimation: A Small-Animal Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1859-1870. [PMID: 35108204 DOI: 10.1109/tuffc.2022.3148873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-frequency ultrasound (HFUS) imaging is extensively used for cardiac diseases in small animals due to its high spatial resolution. However, there is a lack of a system that can provide a 2-D high-spatiotemporal dynamic visualization of mouse myocardial strains. In this article, a dynamic HFUS (40 MHz) high-resolution strain imaging was developed through the vector Doppler imaging. Following in vitro tests using a rubber balloon phantom, in vivo experiments were performed on wild-type (WT) and myocardial infarction (MI) mice. High-resolution dynamic images of myocardial strains were obtained in the longitudinal, radial, and circumferential directions at a frame rate of 1 kHz. Global peak strain values for WT mice were -19.3% ± 1.3% (longitudinal), 31.4% ± 1.7% (radial in the long axis), -19.9% ±.8% (circumferential), and 34.4% ± 1.9% (radial in the short axis); those for the MI mice were -16.1% ±.9% (longitudinal), 26.8% ± 2.9% (radial in the long axis), -15.2% ± 2.7% (circumferential), and 21.6% ± 4.8% (radial in the short axis). These results indicate that the strains for MI mice are significantly lower than those for WT mice. Regional longitudinal strain curves in the epicardial, midcardial, and endocardial layers were measured and the peak strain values for WT mice were -22.% and -16.8% in the endocardial and epicardial layers, respectively. However, no significant difference in the layer-based values was noted for the MI mice. Regional analysis results revealed obvious myocardial strain variation in the apical anterior region in the MI mice. The experimental results demonstrate that the proposed dynamic cardiac strain imaging can be useful in high-performance imaging of small-animal cardiac diseases.
Collapse
|
14
|
In Vivo Super-Resolution Cardiac Diffusion Tensor MRI: A Feasibility Study. Diagnostics (Basel) 2022; 12:diagnostics12040877. [PMID: 35453925 PMCID: PMC9028988 DOI: 10.3390/diagnostics12040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
A super-resolution (SR) technique is proposed for imaging myocardial fiber architecture with cardiac magnetic resonance. Images were acquired with a motion-compensated cardiac diffusion tensor imaging (cDTI) sequence. The heart left ventricle was covered with three stacks of thick slices, in short axis, horizontal and vertical long axes orientations, respectively. The three low-resolution stacks (2 × 2 × 8 mm3) were combined into an isotropic volume (2 × 2 × 2 mm3) by a super-resolution reconstruction. For in vivo measurements, each slice was acquired during a breath-hold period. Bulk motion was corrected by optimizing a similarity metric between intensity profiles from all intersecting slices in the dataset. The benefit of the proposed approach was evaluated using a numerical heart phantom, a physical helicoidal phantom with artificial fibers, and six healthy subjects. The SR technique showed improved results compared to the native scans, in terms of image quality and cDTI metrics. In particular, the myocardial helix angle (HA) was more accurately estimated in the physical phantom (HA = 41.5° ± 1.1°, with the ground truth being 42.0°). In vivo, it resulted in a sharper rate of change of HA across the myocardial wall (−0.993°/% ± 0.007°/% against −0.873°/% ± 0.010°/%).
Collapse
|
15
|
Rahman T, Moulin K, Perotti LE. Cardiac Diffusion Tensor Biomarkers of Chronic Infarction Based on In Vivo Data. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 36032414 PMCID: PMC9408809 DOI: 10.3390/app12073512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In vivo cardiac diffusion tensor imaging (cDTI) data were acquired in
swine subjects six to ten weeks post-myocardial infarction (MI) to identify
microstructural-based biomarkers of MI. Diffusion tensor invariants, diffusion
tensor eigenvalues, and radial diffusivity (RD) are evaluated in the infarct,
border, and remote myocardium, and compared with extracellular volume fraction
(ECV) and native T1 values. Additionally, to aid the interpretation of the
experimental results, the diffusion of water molecules was numerically simulated
as a function of ECV. Finally, findings based on in vivo measures were confirmed
using higher-resolution and higher signal-to-noise data acquired ex vivo in the
same subjects. Mean diffusivity, diffusion tensor eigenvalues, and RD increased
in the infarct and border regions compared to remote myocardium, while
fractional anisotropy decreased. Secondary (e2) and tertiary
(e3) eigenvalues increased more significantly than the primary
eigenvalue in the infarct and border regions. These findings were confirmed by
the diffusion simulations. Although ECV presented the largest increase in
infarct and border regions, e2, e3, and RD increased the
most among non-contrast-based biomarkers. RD is of special interest as it
summarizes the changes occurring in the radial direction and may be more robust
than e2 or e3 alone.
Collapse
Affiliation(s)
- Tanjib Rahman
- Department of Mechanical and Aerospace Engineering,
University of Central Florida, Orlando, FL 32816, USA
| | - Kévin Moulin
- CREATIS Laboratory, Univ. Lyon, UJM-Saint-Etienne, INSA,
CNRS UMR 5520, INSERM, 69100 Villeurbanne, France
- Department of Radiology, University Hospital Saint-Etienne,
42270 Saint-Priest-en-Jarez, France
| | - Luigi E. Perotti
- Department of Mechanical and Aerospace Engineering,
University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
16
|
From dissection of fibrotic pathways to assessment of drug interactions to reduce cardiac fibrosis and heart failure. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100036. [PMID: 34909666 PMCID: PMC8663973 DOI: 10.1016/j.crphar.2021.100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac fibrosis is characterized by extracellular matrix deposition in the cardiac interstitium, and this contributes to cardiac contractile dysfunction and progression of heart failure. The main players involved in this process are the cardiac fibroblasts, which, in the presence of pro-inflammatory/pro-fibrotic stimuli, undergo a complete transformation acquiring a more proliferative, a pro-inflammatory and a secretory phenotype. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis and suggests potential strategies to monitor the effects of specific drugs designed to slow down the progression of this disease by specifically targeting the fibroblasts.
Collapse
|
17
|
Leong CO, Leong CN, Liew YM, Al Abed A, Aziz YFA, Chee KH, Sridhar GS, Dokos S, Lim E. The role of regional myocardial topography post-myocardial infarction on infarct extension. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3501. [PMID: 34057819 DOI: 10.1002/cnm.3501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Infarct extension involves necrosis of healthy myocardium in the border zone (BZ), progressively enlarging the infarct zone (IZ) and recruiting the remote zone (RZ) into the BZ, eventually leading to heart failure. The mechanisms underlying infarct extension remain unclear, but myocyte stretching has been suggested as the most likely cause. Using human patient-specific left-ventricular (LV) numerical simulations established from cardiac magnetic resonance imaging (MRI) of myocardial infarction (MI) patients, the correlation between infarct extension and regional mechanics abnormality was investigated by analysing the fibre stress-strain loops (FSSLs). FSSL abnormality was characterised using the directional regional external work (DREW) index, which measures FSSL area and loop direction. Sensitivity studies were also performed to investigate the effect of infarct stiffness on regional myocardial mechanics and potential for infarct extension. We found that infarct extension was correlated to severely abnormal FSSL in the form of counter-clockwise loop at the RZ close to the infarct, as indicated by negative DREW values. In regions demonstrating negative DREW values, we observed substantial fibre stretching in the isovolumic relaxation (IVR) phase accompanied by a reduced rate of systolic shortening. Such stretching in IVR phase in part of the RZ was due to its inability to withstand the high LV pressure that was still present and possibly caused by regional myocardial stiffness inhomogeneity. Further analysis revealed that the occurrence of severely abnormal FSSL due to IVR fibre stretching near the RZ-BZ boundary was due to a large amount of surrounding infarcted tissue, or an excessively stiff IZ.
Collapse
Affiliation(s)
- Chen Onn Leong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Neng Leong
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Yang Faridah Abdul Aziz
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Han Chee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Socrates Dokos
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Paddock S, Tsampasian V, Assadi H, Mota BC, Swift AJ, Chowdhary A, Swoboda P, Levelt E, Sammut E, Dastidar A, Broncano Cabrero J, Del Val JR, Malcolm P, Sun J, Ryding A, Sawh C, Greenwood R, Hewson D, Vassiliou V, Garg P. Clinical Translation of Three-Dimensional Scar, Diffusion Tensor Imaging, Four-Dimensional Flow, and Quantitative Perfusion in Cardiac MRI: A Comprehensive Review. Front Cardiovasc Med 2021; 8:682027. [PMID: 34307496 PMCID: PMC8292630 DOI: 10.3389/fcvm.2021.682027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is a versatile tool that has established itself as the reference method for functional assessment and tissue characterisation. CMR helps to diagnose, monitor disease course and sub-phenotype disease states. Several emerging CMR methods have the potential to offer a personalised medicine approach to treatment. CMR tissue characterisation is used to assess myocardial oedema, inflammation or thrombus in various disease conditions. CMR derived scar maps have the potential to inform ablation therapy—both in atrial and ventricular arrhythmias. Quantitative CMR is pushing boundaries with motion corrections in tissue characterisation and first-pass perfusion. Advanced tissue characterisation by imaging the myocardial fibre orientation using diffusion tensor imaging (DTI), has also demonstrated novel insights in patients with cardiomyopathies. Enhanced flow assessment using four-dimensional flow (4D flow) CMR, where time is the fourth dimension, allows quantification of transvalvular flow to a high degree of accuracy for all four-valves within the same cardiac cycle. This review discusses these emerging methods and others in detail and gives the reader a foresight of how CMR will evolve into a powerful clinical tool in offering a precision medicine approach to treatment, diagnosis, and detection of disease.
Collapse
Affiliation(s)
- Sophie Paddock
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vasiliki Tsampasian
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hosamadin Assadi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Bruno Calife Mota
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter Swoboda
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva Sammut
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Amardeep Dastidar
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Paul Malcolm
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Julia Sun
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Alisdair Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Chris Sawh
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Richard Greenwood
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - David Hewson
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Rahman T, Moulin K, Ennis DB, Perotti LE. Diffusion biomarkers in chronic myocardial infarction. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2021; 12738:137-147. [PMID: 34585174 PMCID: PMC8476206 DOI: 10.1007/978-3-030-78710-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cardiac diffusion tensor magnetic resonance imaging (cDTI) allows estimating the aggregate cardiomyocyte architecture in healthy subjects and its remodeling as a result of cardiac disease. In this study, cDTI was used to quantify microstructural changes occurring in swine (N=7) six to ten weeks after myocardial infarction. Each heart was extracted and imaged ex vivo with 1mm isotropic spatial resolution. Microstructural changes were quantified in the border zone and infarct region by comparing diffusion tensor invariants - fractional anisotropy (FA), mode, and mean diffusivity (MD) - radial diffusivity, and diffusion tensor eigenvalues with the corresponding values in the remote myocardium. MD and radial diffusivity increased in the infarct and border regions with respect to the remote myocardium (p<0.01). In contrast, FA and mode decreased in the infarct and border regions (p<0.01). Diffusion tensor eigenvalues also increased in the infarct and border regions, with a larger increase in the secondary and tertiary eigenvalues.
Collapse
Affiliation(s)
- Tanjib Rahman
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
20
|
Chowdhury RA, Debney MT, Protti A, Handa BS, Patel KHK, Lyon AR, Shah AM, Ng FS, Peters NS. Rotigaptide Infusion for the First 7 Days After Myocardial Infarction-Reperfusion Reduced Late Complexity of Myocardial Architecture of the Healing Border-Zone and Arrhythmia Inducibility. J Am Heart Assoc 2021; 10:e020006. [PMID: 33870715 PMCID: PMC8200720 DOI: 10.1161/jaha.120.020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Survivors of myocardial infarction are at increased risk of late ventricular arrhythmias, with infarct size and scar heterogeneity being key determinants of arrhythmic risk. Gap junctions facilitate the passage of small ions and morphogenic cell signaling between myocytes. We hypothesized that gap junctions enhancement during infarction–reperfusion modulates structural and electrophysiological remodeling and reduces late arrhythmogenesis. Methods and Results Infarction–reperfusion surgery was carried out in male Sprague‐Dawley rats followed by 7 days of rotigaptide or saline administration. The in vivo and ex vivo arrhythmogenicity was characterized by programmed electrical stimulation 3 weeks later, followed by diffusion‐weighted magnetic resonance imaging and Masson's trichrome histology. Three weeks after 7‐day postinfarction administration of rotigaptide, ventricular tachycardia/ventricular fibrillation was induced on programmed electrical stimulation in 20% and 53% of rats, respectively (rotigaptide versus control), resulting in reduction of arrhythmia score (3.2 versus 1.4, P=0.018), associated with the reduced magnetic resonance imaging parameters fractional anisotropy (fractional anisotropy: −5% versus −15%; P=0.062) and mean diffusivity (mean diffusivity: 2% versus 6%, P=0.042), and remodeling of the 3‐dimensional laminar structure of the infarct border zone with reduction of the mean (16° versus 19°, P=0.013) and the dispersion (9° versus 12°, P=0.015) of the myofiber transverse angle. There was no change in ECG features, spontaneous arrhythmias, or mortality. Conclusions Enhancement of gap junctions function by rotigaptide administered during the early healing phase in reperfused infarction reduces later complexity of infarct scar morphology and programmed electrical stimulation–induced arrhythmias, and merits further exploration as a feasible and practicable intervention in the acute myocardial infarction management to reduce late arrhythmic risk.
Collapse
Affiliation(s)
- Rasheda A Chowdhury
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Michael T Debney
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Andrea Protti
- King's British Heart Foundation Centre School of Cardiovascular Medicine and Sciences Kings College London London United Kingdom
| | - Balvinder S Handa
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Kiran H K Patel
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Alexander R Lyon
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Ajay M Shah
- King's British Heart Foundation Centre School of Cardiovascular Medicine and Sciences Kings College London London United Kingdom
| | - Fu Siong Ng
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| | - Nicholas S Peters
- National Heart & Lung Institute and ElectroCardioMaths Programme of the Imperial Centre for Cardiac EngineeringImperial College London London United Kingdom
| |
Collapse
|
21
|
Das A, Kelly C, Teh I, Stoeck CT, Kozerke S, Chowdhary A, Brown LAE, Saunderson CED, Craven TP, Chew PG, Jex N, Swoboda PP, Levelt E, Greenwood JP, Schneider JE, Plein S, Dall'Armellina E. Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging. Radiology 2021; 299:86-96. [PMID: 33560187 DOI: 10.1148/radiol.2021203208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Cardiac diffusion tensor imaging (cDTI) allows for in vivo characterization of myocardial microstructure. In cDTI, mean diffusivity and fractional anisotropy (FA)-markers of magnitude and anisotropy of diffusion of water molecules-are known to change after myocardial infarction. However, little is known about regional changes in helix angle (HA) and secondary eigenvector angle (E2A), which reflects orientations of laminar sheetlets, and their association with long-term recovery of left ventricular ejection fraction (LVEF). Purpose To assess serial changes in cDTI biomarkers in participants following ST-segment elevation myocardial infarction (STEMI) and to determine their associations with long-term left ventricular remodeling. Materials and Methods In this prospective study, 30 participants underwent cardiac MRI (3 T) after STEMI at 5 days and 3 months after reperfusion (National Institute of Health Research study no. 33963 and Research Ethics no. REC17/YH/0062). Spin-echo cDTI with second-order motion-compensation (approximate duration, 13 minutes; three sections; 18 noncollinear diffusion-weighted scans with b values of 100 sec/mm2 [three acquisitions], 200 sec/mm2 [three acquisitions], and 500 sec/mm2 [12 acquisitions]), functional images, and late gadolinium enhancement images were obtained. Multiple regression analysis was used to assess associations between acute cDTI parameters and 3-month LVEF. Results Acutely infarcted myocardium had reduced FA, E2A, and myocytes with right-handed orientation (RHM) on HA maps compared with remote myocardium (mean remote FA = 0.36 ± 0.02 [standard deviation], mean infarcted FA = 0.25 ± 0.03, P < .001; mean remote E2A = 55° ± 9, mean infarcted E2A = 49° ± 10, P < .001; mean remote RHM = 16% ± 6, mean infarcted RHM = 9% ± 5, P < .001). All three parameters (FA, E2A, and RHM) correlated with 3-month LVEF (r = 0.68, r = 0.59, and r = 0.53, respectively), with acute FA being independently predictive of 3-month LVEF (standardized β = 0.56, P = .008) after multivariable analysis adjusting for factors, including acute LVEF and infarct size. Conclusion After ST-segment elevation myocardial infarction, diffusion becomes more isotropic in acutely infarcted myocardium as reflected by decreased fractional anisotropy. Reductions in secondary eigenvector angle suggest that the myocardial sheetlets are unable to adopt their usual steep orientations in systole, whereas reductions in myocytes with right-handed orientation on helix angle maps are likely reflective of a loss of organization among subendocardial myocytes. Correlations between these parameters and 3-month left ventricular ejection fraction highlight the potential clinical use of cardiac diffusion tensor imaging after myocardial infarction in predicting long-term remodeling. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Arka Das
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christopher Kelly
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Irvin Teh
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christian T Stoeck
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Sebastian Kozerke
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Amrit Chowdhary
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Louise A E Brown
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christopher E D Saunderson
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Thomas P Craven
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Pei G Chew
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Nicholas Jex
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Peter P Swoboda
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Eylem Levelt
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - John P Greenwood
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Jurgen E Schneider
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Sven Plein
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Erica Dall'Armellina
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| |
Collapse
|
22
|
Li W, Gao H, Mangion K, Berry C, Luo X. Apparent growth tensor of left ventricular post myocardial infarction - In human first natural history study. Comput Biol Med 2020; 129:104168. [PMID: 33341555 DOI: 10.1016/j.compbiomed.2020.104168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
An outstanding challenge in modelling biomechanics after myocardial infarction (MI) is to estimate the so-called growth tensor. Since it is impossible to track pure growth induced geometry change from in vivo magnetic resonance images alone, in this work, we propose a way of estimating a surrogate or apparent growth tensor of the human left ventricle using cine magnetic resonance (CMR) and late gadolinium enhanced (LGE) images of 16 patients following acute MI. The apparent growth tensor is evaluated at four time-points following myocardial reperfusion: 4-12 h (baseline), 3 days, 10 days and 7 months. We have identified three different growth patterns classified as the Dilation, No-Change and Shrinkage groups defined by the left ventricle end-diastole cavity volume change from baseline. We study the- trends in both the infarct and remote regions. Importantly, although the No-Change group has little change in the ventricular cavity volume, significant remodelling changes are seen within the myocardial wall, both in the infarct and remote regions. Through statistical analysis, we show that the growth tensor invariants can be used as effective biomarkers for adverse and favourable remodelling of the heart from 10 days onwards post-MI with statistically significant changes over time, in contrast to most of the routine clinical indices. We believe this is the first time that the apparent growth tensor has been estimated from in vivo CMR images post-MI. Our study not only provides much-needed information for understanding growth and remodelling in the human heart following acute MI, but also identifies novel biomarker for assessing heart disease progression.
Collapse
Affiliation(s)
- Wenguang Li
- School of Engineering, University of Glasgow, UK.
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, UK.
| | - Kenneth Mangion
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Colin Berry
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, UK.
| |
Collapse
|
23
|
Agger P, Stephenson RS. Assessing Myocardial Architecture: The Challenges and Controversies. J Cardiovasc Dev Dis 2020; 7:jcdd7040047. [PMID: 33137874 PMCID: PMC7711767 DOI: 10.3390/jcdd7040047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
In recent decades, investigators have strived to describe and quantify the orientation of the cardiac myocytes in an attempt to classify their arrangement in healthy and diseased hearts. There are, however, striking differences between the investigations from both a technical and methodological standpoint, thus limiting their comparability and impeding the drawing of appropriate physiological conclusions from the structural assessments. This review aims to elucidate these differences, and to propose guidance to establish methodological consensus in the field. The review outlines the theory behind myocyte orientation analysis, and importantly has identified pronounced differences in the definitions of otherwise widely accepted concepts of myocytic orientation. Based on the findings, recommendations are made for the future design of studies in the field of myocardial morphology. It is emphasised that projection of myocyte orientations, before quantification of their angulation, introduces considerable bias, and that angles should be assessed relative to the epicardial curvature. The transmural orientation of the cardiomyocytes should also not be neglected, as it is an important determinant of cardiac function. Finally, there is considerable disagreement in the literature as to how the orientation of myocardial aggregates should be assessed, but to do so in a mathematically meaningful way, the normal vector of the aggregate plane should be utilised.
Collapse
Affiliation(s)
- Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, 8220 Aarhus N, Denmark
- Department of Pediatrics, Randers Regional Hospital, Skovlyvej 15, 8930 Randers NE, Denmark
- Correspondence:
| | - Robert S. Stephenson
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
24
|
Le B, Ferreira P, Merchant S, Zheng G, Sutherland MR, Dahl MJ, Albertine KH, Black MJ. Microarchitecture of the hearts in term and former-preterm lambs using diffusion tensor imaging. Anat Rec (Hoboken) 2020; 304:803-817. [PMID: 33015923 DOI: 10.1002/ar.24516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Diffusion tensor imaging (DTI) is an MRI technique that can be used to map cardiomyocyte tracts and estimate local cardiomyocyte and sheetlet orientation within the heart. DTI measures diffusion distances of water molecules within the myocardium, where water diffusion generally occurs more freely along the long axis of cardiomyocytes and within the extracellular matrix, but is restricted by cell membranes such that transverse diffusion is limited. DTI can be undertaken in fixed hearts and it allows the three-dimensional mapping of the cardiac microarchitecture, including cardiomyocyte organization, within the whole heart. The objective of this study was to use DTI to compare the cardiac microarchitecture and cardiomyocyte organization in archived fixed left ventricles of lambs that were born either preterm (n = 5) or at term (n = 7), at a postnatal timepoint equivalent to about 6 years of age in children. Although the findings support the feasibility of retrospective DTI scanning of fixed hearts, several hearts were excluded from DTI analysis because of poor scan quality, such as ghosting artifacts. The preliminary findings from viable DTI scans (n = 3/group) suggest that the extracellular compartment is altered and that there is an immature microstructural phenotype early in postnatal life in the LV of lambs born preterm. Our findings support a potential time-efficient imaging role for DTI in detecting abnormal changes in the microstructure of fixed hearts of former-preterm neonates, although further investigation into factors that affect scan quality is required.
Collapse
Affiliation(s)
- Bianca Le
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | | | - Samer Merchant
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Megan R Sutherland
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Mar Janna Dahl
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Kurt H Albertine
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Victoria, Australia
| |
Collapse
|
25
|
Dejea H, Bonnin A, Cook AC, Garcia-Canadilla P. Cardiac multi-scale investigation of the right and left ventricle ex vivo: a review. Cardiovasc Diagn Ther 2020; 10:1701-1717. [PMID: 33224784 DOI: 10.21037/cdt-20-269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The heart is a complex multi-scale system composed of components integrated at the subcellular, cellular, tissue and organ levels. The myocytes, the contractile elements of the heart, form a complex three-dimensional (3D) network which enables propagation of the electrical signal that triggers the contraction to efficiently pump blood towards the whole body. Cardiovascular diseases (CVDs), a major cause of mortality in developed countries, often lead to cardiovascular remodeling affecting cardiac structure and function at all scales, from myocytes and their surrounding collagen matrix to the 3D organization of the whole heart. As yet, there is no consensus as to how the myocytes are arranged and packed within their connective tissue matrix, nor how best to image them at multiple scales. Cardiovascular imaging is routinely used to investigate cardiac structure and function as well as for the evaluation of cardiac remodeling in CVDs. For a complete understanding of the relationship between structural remodeling and cardiac dysfunction in CVDs, multi-scale imaging approaches are necessary to achieve a detailed description of ventricular architecture along with cardiac function. In this context, ventricular architecture has been extensively studied using a wide variety of imaging techniques: ultrasound (US), optical coherence tomography (OCT), microscopy (confocal, episcopic, light sheet, polarized light), magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and, more recently, synchrotron X-ray phase contrast imaging (SR X-PCI). Each of these techniques have their own set of strengths and weaknesses, relating to sample size, preparation, resolution, 2D/3D capabilities, use of contrast agents and possibility of performing together with in vivo studies. Therefore, the combination of different imaging techniques to investigate the same sample, thus taking advantage of the strengths of each method, could help us to extract the maximum information about ventricular architecture and function. In this review, we provide an overview of available and emerging cardiovascular imaging techniques for assessing myocardial architecture ex vivo and discuss their utility in being able to quantify cardiac remodeling, in CVDs, from myocyte to whole organ.
Collapse
Affiliation(s)
- Hector Dejea
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen PSI, Villigen, Switzerland
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, UK
| | - Patricia Garcia-Canadilla
- Institute of Cardiovascular Science, University College London, London, UK.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
26
|
Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Firmin DN, Pennell DJ. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2020; 13:1235-1255. [DOI: 10.1016/j.jcmg.2019.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
27
|
Agger P, Omann C, Laustsen C, Stephenson RS, Anderson RH. Anatomically correct assessment of the orientation of the cardiomyocytes using diffusion tensor imaging. NMR IN BIOMEDICINE 2020; 33:e4205. [PMID: 31829484 DOI: 10.1002/nbm.4205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Diffusion tensor imaging has been used for assessing the orientation of cardiac myocytes for decades. Striking methodological differences exist between studies when quantifying these orientations. This limits the comparability between studies, and impedes collaboration and the drawing of appropriate physiological conclusions. We have sought to elucidate these differences, permitting us to propose a standardised "tool set" that might better establish consensus in future studies. We fixed hearts from seven 25 kg pigs in formalin, and scanned them using diffusion tensor imaging. Using various angle definitions as found in literature, we assessed the orientations of cardiomyocytes, comparing them in terms of helical and intrusion angles, along with the orientation of their aggregations. The difference between assessment of the helical angle with and without relation to the epicardial curvature was 25.2° (SD: 7.9) at the base, 5.8° (1.9) at the equatorial level, and 28.0° (7.0) at the apex, ANOVA P = 0.001. In comparable fashion, the intrusion angle differed by 25.9° (12.9), 7.6° (0.98) and 17.5° (4.7), P = 0.01, and the angle of the aggregates (E3-angle) differed by 25.0° (13.5) at the base, 9.4° (1.7) at the equator, and 23.1° (6.2) apically, P = 0.003. When assessing 14 definitions used in literature to calculate the orientation of aggregates, only 4 rendered identical results. The findings show that any attempt to use projection of eigenvectors introduces considerable bias. The epicardial curvature of the ventricular cone needs to be taken into account when seeking to provide accurate quantification of the orientation of the aggregated cardiomyocytes, especially in the apical and basal regions. This means that projection of eigenvectors should be avoided prior to quantifying myocyte orientation, especially when assessing radial orientation. Based on our results, we suggest appropriate methods for valid assessment of myocyte orientation using diffusion tensor imaging.
Collapse
Affiliation(s)
- Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Camilla Omann
- Dept. of Cardiothoracic & Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Robert S Stephenson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Institute of Clinical Sciences, The University of Birmingham, Birmingham, UK
| | - Robert H Anderson
- Institute Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
28
|
Li W. Biomechanics of infarcted left Ventricle-A review of experiments. J Mech Behav Biomed Mater 2020; 103:103591. [PMID: 32090920 DOI: 10.1016/j.jmbbm.2019.103591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/14/2023]
Abstract
Myocardial infarction (MI) is one of leading diseases to contribute to annual death rate of 5% in the world. In the past decades, significant work has been devoted to this subject. Biomechanics of infarcted left ventricle (LV) is associated with MI diagnosis, understanding of remodelling, MI micro-structure and biomechanical property characterizations as well as MI therapy design and optimization, but the subject has not been reviewed presently. In the article, biomechanics of infarcted LV was reviewed in terms of experiments achieved in the subject so far. The concerned content includes experimental remodelling, kinematics and kinetics of infarcted LVs. A few important issues were discussed and several essential topics that need to be investigated further were summarized. Microstructure of MI tissue should be observed even carefully and compared between different methods for producing MI scar in the same animal model, and eventually correlated to passive biomechanical property by establishing innovative constitutive laws. More uniaxial or biaxial tensile tests are desirable on MI, border and remote tissues, and viscoelastic property identification should be performed in various time scales. Active contraction experiments on LV wall with MI should be conducted to clarify impaired LV pumping function and supply necessary data to the function modelling. Pressure-volume curves of LV with MI during diastole and systole for the human are also desirable to propose and validate constitutive laws for LV walls with MI.
Collapse
Affiliation(s)
- Wenguang Li
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
29
|
Du'o'ng MT, Holz D, Alkassar M, Dittrich S, Leyendecker S. Interaction of the Mechano-Electrical Feedback With Passive Mechanical Models on a 3D Rat Left Ventricle: A Computational Study. Front Physiol 2019; 10:1041. [PMID: 31607936 PMCID: PMC6769123 DOI: 10.3389/fphys.2019.01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 07/30/2019] [Indexed: 01/28/2023] Open
Abstract
In this paper, we are investigating the interaction between different passive material models and the mechano-electrical feedback (MEF) in cardiac modeling. Various types of passive mechanical laws (nearly incompressible/compressible, polynomial/exponential-type, transversally isotropic/orthotropic material models) are integrated in a fully coupled electromechanical model in order to study their specific influence on the overall MEF behavior. Our computational model is based on a three-dimensional (3D) geometry of a healthy rat left ventricle reconstructed from magnetic resonance imaging (MRI). The electromechanically coupled problem is solved using a fully implicit finite element-based approach. The effects of different passive material models on the MEF are studied with the help of numerical examples. It turns out that there is a significant difference between the behavior of the MEF for compressible and incompressible material models. Numerical results for the incompressible models exhibit that a change in the electrophysiology can be observed such that the transmembrane potential (TP) is unable to reach the resting state in the repolarization phase, and this leads to non-zero relaxation deformations. The most significant and strongest effects of the MEF on the rat cardiac muscle response are observed for the exponential passive material law.
Collapse
Affiliation(s)
- Minh Tuấn Du'o'ng
- Chair of Applied Dynamics, University of Erlangen-Nuremberg, Erlangen, Germany
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - David Holz
- Chair of Applied Dynamics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Muhannad Alkassar
- Pediatric Cardiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sven Dittrich
- Pediatric Cardiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sigrid Leyendecker
- Chair of Applied Dynamics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
30
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
31
|
Khalique Z, Pennell D. Diffusion tensor cardiovascular magnetic resonance. Postgrad Med J 2019; 95:433-438. [DOI: 10.1136/postgradmedj-2019-136429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 11/03/2022]
Abstract
Cardiac structure and function are complex and inter-related. Current in vivo techniques assess the heart on a macroscopic scale, but a novel technique called diffusion tensor cardiovascular magnetic resonance (DT-CMR) can now assess the cardiac microstructure non-invasively. It provides information on the helical arrangement of cardiomyocytes that drives torsion and offers dynamic assessment of the sheetlets (aggregated cardiomyocytes) that rotate through the cardiac cycle to facilitate wall thickening. Through diffusion biomarkers, the expansion and organisation of the underlying myocardium can be described. DT-CMR has already identified novel microstructural abnormalities in cardiomyopathy, and ischaemic and congenital heart disease. This new knowledge supports the potential of DT-CMR to improve diagnostics and prognostication in various cardiac diseases.
Collapse
|
32
|
Dudenkova VV, Shirmanova MV, Lukina MM, Feldshtein FI, Virkin A, Zagainova EV. Examination of Collagen Structure and State by the Second Harmonic Generation Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S89-S107. [DOI: 10.1134/s0006297919140062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Winters KV, Reynaud O, Novikov DS, Fieremans E, Kim SG. Quantifying myofiber integrity using diffusion MRI and random permeable barrier modeling in skeletal muscle growth and Duchenne muscular dystrophy model in mice. Magn Reson Med 2018; 80:2094-2108. [PMID: 29577406 PMCID: PMC6107391 DOI: 10.1002/mrm.27188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To measure the microstructural changes during skeletal muscle growth and progressive pathologies using the random permeable model with diffusion MRI, and compare findings to conventional imaging modalities such as three-point Dixon and T2 imaging. METHODS In vivo and ex vivo DTI experiments with multiple diffusion times (20-700 ms) were completed on wild-type (n = 22) and muscle-dystrophic mdx mice (n = 8) at various developmental time points. The DTI data were analyzed with the random permeable model framework that provides estimates of the unrestricted diffusion coefficient (D0 ), membrane surface-to-volume ratio (S/V), and membrane permeability (κ). In addition, the MRI experiments included conventional measures, such as tissue fat fractions and T2 relaxation. RESULTS During normal muscle growth between week 4 and week 13, the in vivo S/V, fractional anisotropy, and fat fraction correlated positively with age (ρ = 0.638, 0.664, and 0.686, respectively), whereas T2 correlated negatively (ρ = -0.847). In mdx mice, all DTI random permeable model parameters and fat fraction had significant positive correlation with age, whereas fractional anisotropy and T2 did not have significant correlation with age. Histological measurements of the perimeter-to-area ratio served as a proxy for the model-derived S/V in the cylindrical myofiber geometry, and had a significant correlation with the ex vivo S/V (r = 0.71) as well as the in vivo S/V (r = 0.56). CONCLUSION The present study demonstrates that DTI at multiple diffusion times with the random permeable model analysis allows for noninvasively quantifying muscle fiber microstructural changes during both normal muscle growth and disease progression. Future studies can apply our technique to evaluate current and potential treatments to muscle myopathies.
Collapse
Affiliation(s)
- Kerryanne V. Winters
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Olivier Reynaud
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Dmitry S. Novikov
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Els Fieremans
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Sungheon Gene Kim
- Center for Advanced Imaging Innovation and Research (CAIR), New York, NY USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY USA
| |
Collapse
|
34
|
Kung GL, Vaseghi M, Gahm JK, Shevtsov J, Garfinkel A, Shivkumar K, Ennis DB. Microstructural Infarct Border Zone Remodeling in the Post-infarct Swine Heart Measured by Diffusion Tensor MRI. Front Physiol 2018; 9:826. [PMID: 30246802 PMCID: PMC6113632 DOI: 10.3389/fphys.2018.00826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction: Computational models of the heart increasingly require detailed microstructural information to capture the impact of tissue remodeling on cardiac electromechanics in, for example, hearts with myocardial infarctions. Myocardial infarctions are surrounded by the infarct border zone (BZ), which is a site of electromechanical property transition. Magnetic resonance imaging (MRI) is an emerging method for characterizing microstructural remodeling and focal myocardial infarcts and the BZ can be identified with late gadolinium enhanced (LGE) MRI. Microstructural remodeling within the BZ, however, remains poorly characterized by MRI due, in part, to the fact that LGE and DT-MRI are not always available for the same heart. Diffusion tensor MRI (DT-MRI) can evaluate microstructural remodeling by quantifying the DT apparent diffusion coefficient (ADC, increased with decreased cellularity), fractional anisotropy (FA, decreased with increased fibrosis), and tissue mode (decreased with increased fiber disarray). The purpose of this work was to use LGE MRI in post-infarct porcine hearts (N = 7) to segment remote, BZ, and infarcted myocardium, thereby providing a basis to quantify microstructural remodeling in the BZ and infarcted regions using co-registered DT-MRI. Methods: Chronic porcine infarcts were created by balloon occlusion of the LCx. 6-8 weeks post-infarction, MRI contrast was administered, and the heart was potassium arrested, excised, and imaged with LGE MRI (0.33 × 0.33 × 0.33 mm) and co-registered DT-MRI (1 × 1 × 3 mm). Myocardium was segmented as remote, BZ, or infarct by LGE signal intensity thresholds. DT invariants were used to evaluate microstructural remodeling by quantifying ADC, FA, and tissue mode. Results: The BZ significantly remodeled compared to both infarct and remote myocardium. BZ demonstrated a significant decrease in cellularity (increased ADC), significant decrease in tissue organization (decreased FA), and a significant increase in fiber disarray (decreased tissue mode) relative to remote myocardium (all p < 0.05). Microstructural remodeling in the infarct was similar, but significantly larger in magnitude (all p < 0.05). Conclusion: DT-MRI can identify regions of significant microstructural remodeling in the BZ that are distinct from both remote and infarcted myocardium.
Collapse
Affiliation(s)
- Geoffrey L Kung
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marmar Vaseghi
- Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jin K Gahm
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jane Shevtsov
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alan Garfinkel
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel B Ennis
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Biomedical Physics Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
35
|
MacIver DH, Partridge JB, Agger P, Stephenson RS, Boukens BJD, Omann C, Jarvis JC, Zhang H. The end of the unique myocardial band: Part II. Clinical and functional considerations. Eur J Cardiothorac Surg 2018; 53:120-128. [PMID: 29029119 DOI: 10.1093/ejcts/ezx335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/20/2017] [Indexed: 12/25/2022] Open
Abstract
Two of the leading concepts of mural ventricular architecture are the unique myocardial band and the myocardial mesh model. We have described, in an accompanying article published in this journal, how the anatomical, histological and high-resolution computed tomographic studies strongly favour the latter concept. We now extend the argument to describe the linkage between mural architecture and ventricular function in both health and disease. We show that clinical imaging by echocardiography and magnetic resonance imaging, and electrophysiological studies, all support the myocardial mesh model. We also provide evidence that the unique myocardial band model is not compatible with much of scientific research.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton and Somerset Hospital, Musgrove Park, Taunton, UK.,Medical Education, University of Bristol, Senate House, Bristol, UK.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - John B Partridge
- Eurobodalla Unit, Rural Clinical School of the ANU College of Medicine, Biology & Environment, Batemans Bay, NSW, Australia
| | - Peter Agger
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark.,Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Robert S Stephenson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bastiaan J D Boukens
- Department of Medical Biology, Academic Medical Centre, Amsterdam University, Amsterdam, Netherlands
| | - Camilla Omann
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jonathan C Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Hoffman JIE. Will the real ventricular architecture please stand up? Physiol Rep 2018; 5:5/18/e13404. [PMID: 28947592 PMCID: PMC5617926 DOI: 10.14814/phy2.13404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/23/2017] [Indexed: 12/28/2022] Open
Abstract
Ventricular twisting, essential for cardiac function, is attributed to the contraction of myocardial helical fibers. The exact relationship between ventricular anatomy and function remains to be determined, but one commonly used explanatory model is the helical ventricular myocardial band (HVMB) model of Torrent‐Guasp. This model has been successful in explaining many aspects of ventricular function, (Torrent‐Guasp et al. Eur. J. Cardiothorac. Surg., 25, 376, 2004; Buckberg et al. Eur. J. Cardiothorac. Surg., 47, 587, 2015; Buckberg et al. Eur. J. Cardiothorac. Surg. 47, 778, 2015) but the model ignores important aspects of ventricular anatomy and should probably be replaced. The purpose of this review is to compare the HVMB model with a different model (nested layers). A complication when interpreting experimental observations that relate anatomy to function is that, in the myocardium, shortening does not always imply activation and lengthening does not always imply inactivation.
Collapse
Affiliation(s)
- Julien I E Hoffman
- Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
37
|
What Is the Heart? Anatomy, Function, Pathophysiology, and Misconceptions. J Cardiovasc Dev Dis 2018; 5:jcdd5020033. [PMID: 29867011 PMCID: PMC6023278 DOI: 10.3390/jcdd5020033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Cardiac dynamics are traditionally linked to a left ventricle, right ventricle, and septum morphology, a topography that differs from the heart's five-century-old anatomic description of containing a helix and circumferential wrap architectural configuration. Torrent Guasp's helical ventricular myocardial band (HVMB) defines this anatomy and its structure, and explains why the heart's six dynamic actions of narrowing, shortening, lengthening, widening, twisting, and uncoiling happen. The described structural findings will raise questions about deductions guiding "accepted cardiac mechanics", and their functional aspects will challenge and overturn them. These suppositions include the LV, RV, and septum description, timing of mitral valve opening, isovolumic relaxation period, reasons for torsion/twisting, untwisting, reasons for longitudinal and circumferential strain, echocardiographic sub segmentation, resynchronization, RV function dynamics, diastolic dysfunction's cause, and unrecognized septum impairment. Torrent Guasp's revolutionary contributions may alter future understanding of the diagnosis and treatment of cardiac disease.
Collapse
|
38
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
39
|
Ma S, Nguyen CT, Christodoulou AG, Luthringer D, Kobashigawa J, Lee SE, Chang HJ, Li D. Accelerated Cardiac Diffusion Tensor Imaging Using Joint Low-Rank and Sparsity Constraints. IEEE Trans Biomed Eng 2017; 65:2219-2230. [PMID: 29989936 DOI: 10.1109/tbme.2017.2787111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The purpose of this paper is to accelerate cardiac diffusion tensor imaging (CDTI) by integrating low-rankness and compressed sensing. METHODS Diffusion-weighted images exhibit both transform sparsity and low-rankness. These properties can jointly be exploited to accelerate CDTI, especially when a phase map is applied to correct for the phase inconsistency across diffusion directions, thereby enhancing low-rankness. The proposed method is evaluated both ex vivo and in vivo, and is compared to methods using either a low-rank or sparsity constraint alone. RESULTS Compared to using a low-rank or sparsity constraint alone, the proposed method preserves more accurate helix angle features, the transmural continuum across the myocardium wall, and mean diffusivity at higher acceleration, while yielding significantly lower bias and higher intraclass correlation coefficient. CONCLUSION Low-rankness and compressed sensing together facilitate acceleration for both ex vivo and in vivo CDTI, improving reconstruction accuracy compared to employing either constraint alone. SIGNIFICANCE Compared to previous methods for accelerating CDTI, the proposed method has the potential to reach higher acceleration while preserving myofiber architecture features, which may allow more spatial coverage, higher spatial resolution, and shorter temporal footprint in the future.
Collapse
|
40
|
Goergen CJ, Chen HH, Sakadžić S, Srinivasan VJ, Sosnovik DE. Microstructural characterization of myocardial infarction with optical coherence tractography and two-photon microscopy. Physiol Rep 2017; 4:4/18/e12894. [PMID: 27650248 PMCID: PMC5037910 DOI: 10.14814/phy2.12894] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022] Open
Abstract
Myocardial infarction leads to complex changes in the fiber architecture of the heart. Here, we present a novel optical approach to characterize these changes in intact hearts in three dimensions. Optical coherence tomography (OCT) was used to derive a depth‐resolved field of orientation on which tractography was performed. Tractography of healthy myocardium revealed a smooth linear transition in fiber inclination or helix angle from the epicardium to endocardium. Conversely, in infarcted hearts, no coherent microstructure could be identified in the infarct with OCT. Additional characterization of the infarct was performed by the measurement of light attenuation and with two‐photon microscopy. Myofibers were imaged using autofluorescence and collagen fibers using second harmonic generation. This revealed the presence of two distinct microstructural patterns in areas of the infarct with high light attenuation. In the presence of residual myofibers, the surrounding collagen fibers were aligned in a coherent manner parallel to the myofibers. In the absence of residual myofibers, the collagen fibers were randomly oriented and lacked any microstructural coherence. The presence of residual myofibers thus exerts a profound effect on the microstructural properties of the infarct scar and consequently the risk of aneurysm formation and arrhythmias. Catheter‐based approaches to segment and image myocardial microstructure in humans are feasible and could play a valuable role in guiding the development of strategies to improve infarct healing.
Collapse
Affiliation(s)
- Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts
| | - Howard H Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts
| | - Vivek J Srinivasan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts Department of Biomedical Engineering, University of California Davis, Davis, California
| | - David E Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
41
|
Hoffman JIE. The helical ventricular myocardial band-or what's in a name? Echocardiography 2017; 33:1448-1449. [PMID: 27783872 DOI: 10.1111/echo.13332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Julien I E Hoffman
- Professor Emeritus, Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
42
|
Seidel T, Sankarankutty AC, Sachse FB. Remodeling of the transverse tubular system after myocardial infarction in rabbit correlates with local fibrosis: A potential role of biomechanics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:302-314. [PMID: 28709857 DOI: 10.1016/j.pbiomolbio.2017.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 02/03/2023]
Abstract
The transverse tubular system (t-system) of ventricular cardiomyocytes is essential for efficient excitation-contraction coupling. In cardiac diseases, such as heart failure, remodeling of the t-system contributes to reduced cardiac contractility. However, mechanisms of t-system remodeling are incompletely understood. Prior studies suggested an association with altered cardiac biomechanics and gene expression in disease. Since fibrosis may alter tissue biomechanics, we investigated the local microscopic association of t-system remodeling with fibrosis in a rabbit model of myocardial infarction (MI). Biopsies were taken from the MI border zone of 6 infarcted hearts and from 6 control hearts. Using confocal microscopy and automated image analysis, we quantified t-system integrity (ITT) and the local fraction of extracellular matrix (fECM). In control, fECM was 18 ± 0.3%. ITT was high and homogeneous (0.07 ± 0.006), and did not correlate with fECM (R2 = 0.05 ± 0.02). The MI border zone exhibited increased fECM within 3 mm from the infarct scar (30 ± 3.5%, p < 0.01 vs control), indicating fibrosis. Myocytes in the MI border zone exhibited significant t-system remodeling, with dilated, sheet-like components, resulting in low ITT (0.03 ± 0.008, p < 0.001 vs control). While both fECM and t-system remodeling decreased with infarct distance, ITT correlated better with decreasing fECM (R2 = 0.44) than with infarct distance (R2 = 0.24, p < 0.05). Our results show that t-system remodeling in the rabbit MI border zone resembles a phenotype previously described in human heart failure. T-system remodeling correlated with the amount of local fibrosis, which is known to stiffen cardiac tissue, but was not found in regions without fibrosis. Thus, locally altered tissue mechanics may contribute to t-system remodeling.
Collapse
Affiliation(s)
- T Seidel
- Institute for Cellular and Molecular Physiology, University of Erlangen-Nuremberg, Erlangen, Germany; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA.
| | - A C Sankarankutty
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Department of Bioengineering, University of Utah, Salt Lake City, USA
| | - F B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Department of Bioengineering, University of Utah, Salt Lake City, USA.
| |
Collapse
|
43
|
Bates J, Teh I, McClymont D, Kohl P, Schneider JE, Grau V. Monte Carlo Simulations of Diffusion Weighted MRI in Myocardium: Validation and Sensitivity Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1316-1325. [PMID: 28328501 DOI: 10.1109/tmi.2017.2679809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A model of cardiac microstructure and diffusion MRI is presented, and compared with experimental data from ex vivo rat hearts. The model includes a simplified representation of individual cells, with physiologically correct cell size and orientation, as well as intra- to extracellular volume ratio. Diffusion MRI is simulated using a Monte Carlo model and realistic MRI sequences. The results show good correspondence between the simulated and experimental MRI signals. Similar patterns are observed in the eigenvalues of the diffusion tensor, the mean diffusivity (MD), and the fractional anisotropy (FA). A sensitivity analysis shows that the diffusivity is the dominant influence on all three eigenvalues of the diffusion tensor, the MD, and the FA. The area and aspect ratio of the cell cross-section affect the secondary and tertiary eigenvalues, and hence the FA. Within biological norms, the cell length, volume fraction of cells, and rate of change of helix angle play a relatively small role in influencing tissue diffusion. Results suggest that the model could be used to improve understanding of the relationship between cardiac microstructure and diffusion MRI measurements, as well as in testing and refinement of cardiac diffusion MRI protocols.
Collapse
|
44
|
von Deuster C, Sammut E, Asner L, Nordsletten D, Lamata P, Stoeck CT, Kozerke S, Razavi R. Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.116.005018. [PMID: 27729361 PMCID: PMC5068188 DOI: 10.1161/circimaging.116.005018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Background— The objective of this study is to assess the dynamic alterations of myocardial microstructure and strain between diastole and systole in patients with dilated cardiomyopathy relative to healthy controls using the magnetic resonance diffusion tensor imaging, myocardial tagging, and biomechanical modeling. Methods and Results— Dual heart-phase diffusion tensor imaging was successfully performed in 9 patients and 9 controls. Tagging data were acquired for the diffusion tensor strain correction and cardiac motion analysis. Mean diffusivity, fractional anisotropy, and myocyte aggregate orientations were compared between both cohorts. Cardiac function was assessed by left ventricular ejection fraction, torsion, and strain. Computational modeling was used to study the impact of cardiac shape on fiber reorientation and how fiber orientations affect strain. In patients with dilated cardiomyopathy, a more longitudinal orientation of diastolic myofiber aggregates was measured compared with controls. Although a significant steepening of helix angles (HAs) during contraction was found in the controls, consistent change in HAs during contraction was absent in patients. Left ventricular ejection fraction, cardiac torsion, and strain were significantly lower in the patients compared with controls. Computational modeling revealed that the dilated heart results in reduced HA changes compared with a normal heart. Reduced torsion was found to be exacerbated by steeper HAs. Conclusions— Diffusion tensor imaging revealed reduced reorientation of myofiber aggregates during cardiac contraction in patients with dilated cardiomyopathy relative to controls. Left ventricular remodeling seems to be an important factor in the changes to myocyte orientation. Steeper HAs are coupled with a worsening in strain and torsion. Overall, the findings provide new insights into the structural alterations in patients with dilated cardiomyopathy.
Collapse
Affiliation(s)
- Constantin von Deuster
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Eva Sammut
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Liya Asner
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - David Nordsletten
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Pablo Lamata
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Christian T Stoeck
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| | - Sebastian Kozerke
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.).
| | - Reza Razavi
- From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.)
| |
Collapse
|
45
|
Mekkaoui C, Reese TG, Jackowski MP, Bhat H, Sosnovik DE. Diffusion MRI in the heart. NMR IN BIOMEDICINE 2017; 30:e3426. [PMID: 26484848 PMCID: PMC5333463 DOI: 10.1002/nbm.3426] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/01/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non-rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion-weighted MR acquisition sequences combined with advanced post-processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual-gated stimulated echo approach, a velocity- (M1 ) or an acceleration- (M2 ) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well-established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcel P Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | | | - David E Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Zhu Y, Peng X, Wu Y, Wu EX, Ying L, Liu X, Zheng H, Liang D. Direct diffusion tensor estimation using a model‐based method with spatial and parametric constraints. Med Phys 2017; 44:570-580. [DOI: 10.1002/mp.12054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging Shenzhen Institutes of Advanced Technology Shenzhen China
| | - Xi Peng
- Paul C. Lauterbur Research Centre for Biomedical Imaging Shenzhen Institutes of Advanced Technology Shenzhen China
| | - Yin Wu
- Paul C. Lauterbur Research Centre for Biomedical Imaging Shenzhen Institutes of Advanced Technology Shenzhen China
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering The University of Hong Kong Pokfulam Hong Kong
| | - Leslie Ying
- Department of Electrical Engineering Department of Biomedical Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
| | - Xin Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging Shenzhen Institutes of Advanced Technology Shenzhen China
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging Shenzhen Institutes of Advanced Technology Shenzhen China
| | - Dong Liang
- Paul C. Lauterbur Research Centre for Biomedical Imaging Shenzhen Institutes of Advanced Technology Shenzhen China
| |
Collapse
|
47
|
Pashakhanloo F, Herzka DA, Mori S, Zviman M, Halperin H, Gai N, Bluemke DA, Trayanova NA, McVeigh ER. Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction. J Cardiovasc Magn Reson 2017; 19:9. [PMID: 28122618 PMCID: PMC5264305 DOI: 10.1186/s12968-016-0317-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Knowledge of the three-dimensional (3D) infarct structure and fiber orientation remodeling is essential for complete understanding of infarct pathophysiology and post-infarction electromechanical functioning of the heart. Accurate imaging of infarct microstructure necessitates imaging techniques that produce high image spatial resolution and high signal-to-noise ratio (SNR). The aim of this study is to provide detailed reconstruction of 3D chronic infarcts in order to characterize the infarct microstructural remodeling in porcine and human hearts. METHODS We employed a customized diffusion tensor imaging (DTI) technique in conjunction with late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) on a 3T clinical scanner to image, at submillimeter resolution, myofiber orientation and scar structure in eight chronically infarcted porcine hearts ex vivo. Systematic quantification of local microstructure was performed and the chronic infarct remodeling was characterized at different levels of wall thickness and scar transmurality. Further, a human heart with myocardial infarction was imaged using the same DTI sequence. RESULTS The SNR of non-diffusion-weighted images was >100 in the infarcted and control hearts. Mean diffusivity and fractional anisotropy (FA) demonstrated a 43% increase, and a 35% decrease respectively, inside the scar tissue. Despite this, the majority of the scar showed anisotropic structure with FA higher than an isotropic liquid. The analysis revealed that the primary eigenvector orientation at the infarcted wall on average followed the pattern of original fiber orientation (imbrication angle mean: 1.96 ± 11.03° vs. 0.84 ± 1.47°, p = 0.61, and inclination angle range: 111.0 ± 10.7° vs. 112.5 ± 6.8°, p = 0.61, infarcted/control wall), but at a higher transmural gradient of inclination angle that increased with scar transmurality (r = 0.36) and the inverse of wall thickness (r = 0.59). Further, the infarcted wall exhibited a significant increase in both the proportion of left-handed epicardial eigenvectors, and in the angle incoherency. The infarcted human heart demonstrated preservation of primary eigenvector orientation at the thinned region of infarct, consistent with the findings in the porcine hearts. CONCLUSIONS The application of high-resolution DTI and LGE-CMR revealed the detailed organization of anisotropic infarct structure at a chronic state. This information enhances our understanding of chronic post-infarction remodeling in large animal and human hearts.
Collapse
Affiliation(s)
- Farhad Pashakhanloo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Daniel A. Herzka
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University, Baltimore, MD USA
| | - Muz Zviman
- Department of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Henry Halperin
- Department of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Neville Gai
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD USA
| | - David A. Bluemke
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
| | - Elliot R. McVeigh
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD USA
- Departments of Bioengineering, Medicine, Radiology, University of California, 9500 Gilman Drive-MC0412,La Jolla, San Diego, 92093-0412 CA USA
| |
Collapse
|
48
|
Wise P, Davies NH, Sirry MS, Kortsmit J, Dubuis L, Chai CK, Baaijens FPT, Franz T. Excessive volume of hydrogel injectates may compromise the efficacy for the treatment of acute myocardial infarction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02772. [PMID: 26822845 DOI: 10.1002/cnm.2772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Biomaterial injectates are promising as a therapy for myocardial infarction to inhibit the adverse ventricular remodeling. The current study explored interrelated effects of injectate volume and infarct size on treatment efficacy. A finite element model of a rat heart was utilized to represent ischemic infarcts of 10%, 20%, and 38% of left ventricular wall volume and polyethylene glycol hydrogel injectates of 25%, 50%, and 75% of the infarct volume. Ejection fraction was 49.7% in the healthy left ventricle and 44.9%, 46.4%, 47.4%, and 47.3% in the untreated 10% infarct and treated with 25%, 50%, and 75% injectate, respectively. Maximum end-systolic infarct fiber stress was 41.6, 53.4, 44.7, 44.0, and 45.3 kPa in the healthy heart, the untreated 10% infarct, and when treated with the three injectate volumes, respectively. Treating the 10% and 38% infarcts with the 25% injectate volume reduced the maximum end-systolic fiber stress by 16.3% and 34.7% and the associated strain by 30.2% and 9.8%, respectively. The results indicate the existence of a threshold for injectate volume above which efficacy does not further increase but may decrease. The efficacy of an injectate in reducing infarct stress and strain changes with infarct size. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peter Wise
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Neil H Davies
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Mazin S Sirry
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
- Department of Biomedical Engineering, University of Medical Sciences and Technology, Khartoum, Sudan
| | - Jeroen Kortsmit
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Laura Dubuis
- Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Chen-Ket Chai
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
- Research Office, University of Cape Town, Mowbray, South Africa
- Center for High Performance Computing, Rosebank, South Africa
| |
Collapse
|
49
|
McClymont D, Teh I, Carruth E, Omens J, McCulloch A, Whittington HJ, Kohl P, Grau V, Schneider JE. Evaluation of non-Gaussian diffusion in cardiac MRI. Magn Reson Med 2016; 78:1174-1186. [PMID: 27670633 PMCID: PMC5366286 DOI: 10.1002/mrm.26466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non-Gaussian modeling. The aim of this study was to investigate non-Gaussian diffusion in healthy and hypertrophic hearts. METHODS Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion-weighted images were acquired at b-values up to 10,000 s/mm2 . Models of diffusion were fit to the data and ranked based on the Akaike information criterion. RESULTS The diffusion tensor was ranked best at b-values up to 2000 s/mm2 but reflected the signal poorly in the high b-value regime, in which the best model was a non-Gaussian "beta distribution" model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet-normal directions. CONCLUSION Non-Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174-1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric Carruth
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
| | - Jeffrey Omens
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA.,Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Andrew McCulloch
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg, Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Jürgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Wang Y, Cai W, Wang L, Xia R, Chen W, Zheng J, Gao F. Evaluation of the Differences of Myocardial Fibers between Acute and Chronic Myocardial Infarction: Application of Diffusion Tensor Magnetic Resonance Imaging in a Rhesus Monkey Model. Korean J Radiol 2016; 17:725-33. [PMID: 27587961 PMCID: PMC5007399 DOI: 10.3348/kjr.2016.17.5.725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/29/2016] [Indexed: 02/05/2023] Open
Abstract
Objective To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI. Materials and Methods Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). Results Comparing with acute MI monkeys (FA: 0.59 ± 0.02; ADC: 5.0 ± 0.6 × 10-4 mm2/s; HA: 94.5 ± 4.4°), chronic MI monkeys showed remarkably decreased FA value (0.26 ± 0.03), increased ADC value (7.8 ± 0.8 × 10-4mm2/s), decreased HA transmural range (49.5 ± 4.6°) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted to more components of negative left-handed helix in chronic MI monkeys (-38.3 ± 5.0°–11.2 ± 4.3°) than in acute MI monkeys (-41.4 ± 5.1°–53.1 ± 3.7°), but the HA in remote regions shifted to more components of positive right-handed helix in chronic MI monkeys (-43.8 ± 2.7°–66.5 ± 4.9°) than in acute MI monkeys (-59.5 ± 3.4°–64.9 ± 4.3°). Conclusion Diffusion tensor MRI method helps to quantify differences of mechanical microstructure and water diffusion of myocardial fibers between acute and chronic MI monkey's models.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China.; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Wei Cai
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China.; Department of Radiology, Beijing Jishuitan Hospital, 4th Clinical Medical College of Peking University, Beijing 100035, China
| | - Lei Wang
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Rui Xia
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China.; Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Chen
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China.; Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Yunnan 650032, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China
| |
Collapse
|