1
|
Belbis MD, Holmes MJ, Yao J, Kinnick CW, Kargl CK, Day C, Noel NL, Gavin TP, Roseguini BT, Hirai DM. Effects of acute selective cyclooxygenase-2 inhibition on skeletal muscle microvascular oxygenation and exercise tolerance. Exp Physiol 2025. [PMID: 40159449 DOI: 10.1113/ep092518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
The cyclooxygenase (COX) pathway regulates vascular tone and, therefore, local O2 delivery-utilization matching. The two main isoforms, COX-1 and COX-2, may promote opposing effects on contracting muscle O2 transport in health by inducing vasoconstriction and vasodilatation, respectively. Whether COX-2 and its main vasodilatory product (prostacyclin, PGI2) modulate microvascular O2 transport to skeletal muscle and thus exercise tolerance is unknown. We tested the hypothesis that acute selective COX-2 inhibition (SC2I) would impair cardiorespiratory and skeletal muscle microvascular responses from rest to exercise, thereby reducing exercise tolerance in healthy adults. Twelve individuals participated in a randomized, double-blind, crossover study to receive SC2I (200 mg celecoxib) or placebo (control, CON). Moderate and severe intensity cycling were performed with measurements of heart rate, arterial blood pressure, pulmonary oxygen uptake (V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ ), leg muscle microvascular oxygenation (S t O 2 ${S_{{\mathrm{t}}{{\mathrm{O}}_2}}}$ ; near-infrared spectroscopy) and time to exhaustion. Leg muscleS t O 2 ${S_{{\mathrm{t}}{{\mathrm{O}}_2}}}$ was also assessed during cuff occlusion protocols. SC2I decreased the plasma concentration of the stable PGI2 metabolite 6-keto prostaglandin F1α (CON: 203 (54) pg/mL; SC2I: 108 (54) pg/mL; P = 0.002). There was no difference in exercise tolerance (CON: 278 (55) s; SC2I: 298 (75) s), arterial blood pressure, heart rate, pulmonaryV ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ or leg muscleS t O 2 ${S_{{\mathrm{t}}{{\mathrm{O}}_2}}}$ from rest to moderate or severe exercise between conditions (P > 0.05 for all). Moreover, there was no significant difference inS t O 2 ${S_{{\mathrm{t}}{{\mathrm{O}}_2}}}$ during cuff occlusion protocols between conditions. Contrary to our hypothesis, these data indicate that COX-2 is not obligatory for the regulation of skeletal muscle microvascular oxygenation at rest or during moderate or severe intensity exercise, and therefore does not modulate exercise tolerance in healthy adults.
Collapse
Affiliation(s)
- Michael D Belbis
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA
- Department of Exercise Science, Aurora University, Aurora, Illinois, USA
| | - Michael J Holmes
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA
| | - Joseph Yao
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA
| | - Christopher W Kinnick
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA
| | - Christopher K Kargl
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA
| | - Carly Day
- Athletics Department, Purdue University, West Lafayette, Indiana, USA
| | - Nicole L Noel
- Department of Pharmacy Practice, Purdue University, West Lafayette, Indiana, USA
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Ainab I, Van Ochten N, Suckow E, Pierce K, Arent C, Kay J, Forbes LM, Cornwell WK. Determinants of cardiac output in health and heart failure. Exp Physiol 2025. [PMID: 40121540 DOI: 10.1113/ep091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025]
Abstract
Sustained physical exercise depends on delivery of oxygenated blood to exercising muscle. At least among healthy individuals, bulk transport of blood is tightly matched to metabolic demand, such that cardiac output increases by ∼6 L/min for every 1 L/min increase in oxygen uptake. Multiple factors contribute to the regulation of cardiac output, including central command, the exercise pressor reflex (EPR) and arterial baroreceptors. Pulmonary arterial and left ventricular pressures increase in proportion to the rise in cardiac output and exercise intensity. The right ventricle augments contractility to maintain ventricular-arterial (VA) coupling and lusitropy to facilitate venous return. Among patients with heart failure (HF), however, the ability to deliver blood to exercising muscle is compromised as a result of multiple abnormalities impacting EPR, ventricular contractility, haemodynamics and VA coupling. The purpose of this review is to provide an overview of the factors limiting exercise capacity and cardiac output among patients with HF compared to what is known about normal physiology among healthy individuals.
Collapse
Affiliation(s)
- Ibrahim Ainab
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Natalie Van Ochten
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emmett Suckow
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kathryn Pierce
- Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chelsea Arent
- Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joseph Kay
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lindsey M Forbes
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - William K Cornwell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Salehpoor Z, Koushkie Jahromi M. High-Intensity Interval Training Enhances the Positive Effect of Pentoxifylline on Lipid Profile and Inflammatory Markers in an Endometriosis Animal Model. BIOMED RESEARCH INTERNATIONAL 2025; 2025:6742953. [PMID: 40224541 PMCID: PMC11991807 DOI: 10.1155/bmri/6742953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/12/2025] [Indexed: 04/15/2025]
Abstract
Background: The relationship between endometriosis and cardiovascular disease (CVD) is well established. However, the effects of various exercise training modalities and the anti-inflammatory effects of pentoxifylline (PTX) remain inadequately understood. This investigation is aimed at evaluating the effects of PTX, both independently and in conjunction with high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT), on lipid and inflammatory markers including triglycerides (TGs), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and C-reactive protein (CRP) in a rat model of endometriosis. Materials and Methods: Sprague-Dawley's rats were divided into two primary groups: the healthy control group that received no intervention and the induced endometriosis group. Endometriosis was surgically induced in rats, and those with confirmed endometriotic lesions were further categorized into six groups: control, MICT, drug of PTX (D), MICT+D, HIIT, and HIIT+D. Two weeks after laparotomy, PTX consumption and exercise training were performed for 8 weeks. PTX was administered orally at 100 mg/kg/day. MICT and HIIT sessions were conducted 5 days per week, with MICT beginning at 55% of maximum capacity for 31 min in the first week and progressing to 70% of maximum capacity for 46 min by the eighth week. HIIT sessions consisted of 2 min of running followed by 1 min of passive rest at 85% of maximum capacity, starting with seven intervals in the first week and increasing to twelve by the end of the eighth week. The macroscopic size of endometriosis lesions was measured, and cardiovascular risk factors, including hs-CRP, TC, TG, HDL-C, and LDL-C, were assessed in serum samples. Results: The induction of endometriosis was associated with elevated cardiovascular risk factors, including hs-CRP, TC, and TG. HIIT+D significantly decreased lesion volume (p < 0.0001, 95%confidence interval (CI) = 57.239-94.718), hs-CRP (p = 0.049, CI = -54.083 to - 29.478), TC (p = 0.045, CI = -38.607 to - 25.392), and TG (p = 0.042, CI = 25.531-55.801). PTX significantly decreased lesion volume (p < 0.0001, CI =34.709-73.919) and TC (p = 0.016, CI = -45.153 to - 30.179). Conclusion: All interventions except MICT reduced lesion volume, whereas only HIIT+PTX and PTX, in the order of importance, improved some cardiovascular risk indices in the rat model of endometriosis.
Collapse
Affiliation(s)
- Zahra Salehpoor
- Department of Sports Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- Department of Sports Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Triangto I, Dhamayanti AS, Putra MS, Witjaksono D, Rahmad, Zuhriyah L, Waranugraha Y. Correlation of Sit-to-Stand Test and 6-Minute Walk Test to Illustrate Cardiorespiratory Fitness in Systolic Heart Failure Patients. Ann Rehabil Med 2025; 49:23-29. [PMID: 40033954 PMCID: PMC11895058 DOI: 10.5535/arm.240057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 03/05/2025] Open
Abstract
OBJECTIVE To prove 5-time sit-to-stand (5-STS) and 30-second sit-to-stand (30sSTS) tests in assessing cardiorespiratory fitness in chronic heart failure (HF) patients with systolic dysfunction. Alternative tests, such as 5-STS and 30sSTS, may be used to assess cardiorespiratory fitness in patients with HF but have not been thoroughly evaluated. Thus, this study aimed to prove 5-STS and 30sSTS tests in assessing cardiorespiratory fitness in chronic HF patients with systolic dysfunction. METHODS A cross-sectional study was done, evaluating chronic HF patients with systolic dysfunction that have received optimal guideline directed medical treatment for at least 3 months. All patients underwent the same intervention on the same day, starting with an initial 5-STS test, followed by a 30sSTS, and a 6-minute walk test (6MWT). RESULTS A total of 34 patients were enrolled in this study. The median left ventricular ejection fraction was 44% (interquartile range=34%-48%). Mean values of 5-STS, 30sSTS, and 6MWT were 13.90±4.72, 13.29±3.38, and 463.65±87.04, respectively. 5-STS showed moderate correlation with 6MWT (r=-0.436, p=0.01). However, the 30sSTS revealed strong correlation with 6MWT (r=0.629, p<0.001). CONCLUSION The 30sSTS test had strong correlation with 6MWT. It could be used to illustrate cardiorespiratory fitness in chronic HF patients with systolic dysfunction.
Collapse
Affiliation(s)
- Ivan Triangto
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Physical Medicine and Rehabilitation, Mitra Keluarga Kemayoran, Jakarta, Indonesia
| | - Aulia Syavitri Dhamayanti
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Muhammadiyah Malang, Malang, Indonesia
| | - Made Suariastawa Putra
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Physical Medicine and Rehabilitation, Premagana Hospital, Bali, Indonesia
| | - Djoko Witjaksono
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Rahmad
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Lilik Zuhriyah
- Department of Public Health, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yoga Waranugraha
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
5
|
Schulze KM, Weber RE, Horn AG, Hageman KS, Kenney NJ, Behnke BJ, Poole DC, Musch TI. Skeletal and respiratory muscle blood flow redistribution during submaximal exercise in pulmonary hypertensive rats. J Physiol 2025; 603:337-351. [PMID: 39625445 PMCID: PMC11800354 DOI: 10.1113/jp287549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Pulmonary hypertension (PH) is a chronic, progressive disease characterized by pulmonary vascular remodelling, dyspnoea and exercise intolerance. Key facets of dyspnoea and exercise intolerance include skeletal and respiratory muscle contractile and metabolic disturbances; however, muscle perfusion during exercise has not been investigated. We hypothesized that diaphragm blood flow (Q ̇ $\dot{Q}$ ) would be increased and locomotory muscleQ ̇ $\dot{Q}$ would be decreased during submaximal treadmill running in PH rats compared to healthy controls. Female Sprague-Dawley rats were injected (i.p.) with monocrotaline to induce PH (n = 16), or a vehicle control (n = 15). Disease progression was monitored via echocardiography. When moderate disease severity was confirmed, maximal oxygen uptake (V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{{{2}^{{\mathrm{max}}}}}}}}$ ) tests were performed. Rats were given >24 h to recover, and then fluorescent microspheres were infused during treadmill running (20 m/min, 10% grade; ∼40-50% maximal speed attained during theV ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{{{2}^{{\mathrm{max}}}}}}}}$ test) to determine tissueQ ̇ $\dot{Q}$ . In PH rats compared with healthy controls,V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{{{2}^{{\mathrm{max}}}}}}}}$ was lower (84 (7) vs. 67 (11) ml/min/kg; P < 0.001), exercising diaphragmQ ̇ $\dot{Q}$ was 35% higher and soleusQ ̇ $\dot{Q}$ was 28% lower. DiaphragmQ ̇ $\dot{Q}$ was negatively correlated with soleusQ ̇ $\dot{Q}$ andV ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{{{2}^{{\mathrm{max}}}}}}}}$ in PH rats. Furthermore, there was regionalQ ̇ $\dot{Q}$ redistribution in the diaphragm in PH compared to healthy rats, which may represent or underlie diaphragmatic weakness in PH. These findings suggest the presence of a pathological respiratory muscle blood flow steal phenomenon in PH and that this may contribute to the exercise intolerance reported in patients. KEY POINTS: Pulmonary hypertension (PH) impairs exercise tolerance, which is associated with skeletal and respiratory muscle dysfunction. Increased work of breathing in PH may augment diaphragm blood flow and lower locomotory muscle blood flow during exercise, hindering exercise tolerance. Our findings demonstrate that respiratory muscle blood flow is increased while the locomotory muscle is decreased in PH compared to healthy rats during exercise, suggesting that blood flow is preferentially redistributed to sustain ventilatory demand. Furthermore, blood flow is regionally redistributed within the diaphragm in PH, which may underlie diaphragm dysfunction. Greater respiratory muscle work at a given workload in PH commands higher respiratory muscle blood flow, impairing locomotory muscle oxygen delivery and compromising exercise tolerance, which may be improved by therapeutics which target the diaphragm vasculature.
Collapse
Affiliation(s)
- Kiana M. Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Ramona E. Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Andrew G. Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - K. Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Nathan J. Kenney
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - Bradley J. Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
| | - David C. Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Timothy I. Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
6
|
Yu Y, Yuan H, Han Q, Shi J, Liu X, Xue Y, Li Y. SMOC2, OGN, FCN3, and SERPINA3 could be biomarkers for the evaluation of acute decompensated heart failure caused by venous congestion. Front Cardiovasc Med 2024; 11:1406662. [PMID: 39717447 PMCID: PMC11663912 DOI: 10.3389/fcvm.2024.1406662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Background Venous congestion (VC) sets in weeks before visible clinical decompensation, progressively increasing cardiac strain and leading to acute heart failure (HF) decompensation. Currently, the field lacks a universally acknowledged gold standard and early detection methods for VC. Methods Using data from the GEO database, we identified VC's impact on HF through key genes using Limma and STRING databases. The potential mechanisms of HF exacerbation were explored via GO and KEGG enrichment analyses. Diagnostic genes for acute decompensated HF were discovered using LASSO, RF, and SVM-REF machine learning algorithms, complemented by single-gene GSEA analysis. A nomogram tool was developed for the diagnostic model's evaluation and application, with validation conducted on external datasets. Results Our findings reveal that VC influences 37 genes impacting HF via 8 genes, primarily affecting oxygen transport, binding, and extracellular matrix stability. Four diagnostic genes for HF's pre-decompensation phase were identified: SMOC2, OGN, FCN3, and SERPINA3. These genes showed high diagnostic potential, with AUCs for each gene exceeding 0.9 and a genomic AUC of 0.942. Conclusions Our study identifies four critical diagnostic genes for HF's pre-decompensated phase using bioinformatics and machine learning, shedding light on the molecular mechanisms through which VC worsens HF. It offers a novel approach for clinical evaluation of acute decompensated HF patient congestion status, presenting fresh insights into its pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Bahr AC, Scherer NB, de Gregório E, Kieling L, de Castro AL, Araujo ASDR, Türck P, Dal Lago P. Photobiomodulation and Physical Exercise Modulate of Cell Survival Proteins in the Skeletal Muscle of Rats with Heart Failure and Diabetes Mellitus. Photobiomodul Photomed Laser Surg 2024; 42:768-778. [PMID: 39441652 DOI: 10.1089/photob.2024.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Introduction: Heart failure (HF) and type 2 diabetes mellitus (DM2) are global health problems that often lead to muscle atrophy. These conditions are associated with increased autophagy and apoptosis in the muscle cells, resulting in decreased muscle mass. Physical exercise associated with photobiomodulation (PBM) seems promising to attenuate the skeletal muscle changes caused by HF and DM2, due to its direct effects on mitochondria, which may result in an increase in antioxidant capacity. Objective: To verify the influence of physical exercise and the association with PBM on autophagy, apoptosis, and cell survival signaling pathways in myocytes from rats with HF and DM2. Materials and Methods: Male rats were assigned to one of four groups: control (CT), HF+DM (disease model), exercise+HF+DM (EX+HF+DM), and EX+HF+DM+PBM (EX+HF+DM+PBM). To induce DM2, we administered streptozotocin (STZ) (0.25 mL/kg, intraperitoneally). HF was induced by coronary ligation. One week post-induction, an 8-week aerobic exercise and PBM protocol was initiated. Western blot analysis was used to measure the expression of apoptosis-related proteins and autophagy. Results: The EX+HF+DM+PBM group showed a substantial increase in Nrf2, p-AKT, and LC3-I levels compared to the HF+DM group. Conclusions: These findings suggest that physical exercise combined with PBM can upregulate proteins that promote myocyte survival in rats with HF and DM2.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Naira Bohrer Scherer
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Elizama de Gregório
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas Kieling
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alexandre Luz de Castro
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Patrick Türck
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pedro Dal Lago
- Laboratório de Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| |
Collapse
|
8
|
Wang H, Choy JS, Kassab GS, Lee LC. Computer model coupling hemodynamics and oxygen transport in the coronary capillary network: Pulsatile vs. non-pulsatile analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108486. [PMID: 39549392 DOI: 10.1016/j.cmpb.2024.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Oxygen transport in the heart is crucial, and its impairment can lead to pathological conditions such as hypoxia, ischemia, and heart failure. However, investigating oxygen transport in the heart using in vivo measurements is difficult due to the small size of the coronary capillaries and their deep embedding within the heart wall. METHODS In this study, we developed a novel computational modeling framework that integrates a 0-D hemodynamic model with a 1-D mass transport model to simulate oxygen transport in/across the coronary capillary network. RESULTS The model predictions agree with analytical solutions and experimental measurements. The framework is used to simulate the effects of pulsatile vs. non-pulsatile behavior of the capillary hemodynamics on oxygen-related metrics such as the myocardial oxygen consumption (MVO2) and oxygen extraction ratio (OER). Compared to simulations that consider (physiological) pulsatile behaviors of the capillary hemodynamics, the OER is underestimated by less than 9% and the MVO2 is overestimated by less than 5% when the pulsatile behaviors are ignored in the simulations. Statistical analyses show that model predictions of oxygen-related quantities and spatial distribution of oxygen without consideration of the pulsatile behaviors do not significantly differ from those that considered such behaviors (p-values >0.05). CONCLUSIONS This finding provides the basis for reducing the model complexity by ignoring the pulsatility of coronary capillary hemodynamics in the computational framework without a substantial loss of accuracy when predicting oxygen-related metrics.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jenny S Choy
- California Medical Innovations Institute, San Diego, CA, USA
| | | | - Lik-Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Irwin DC, Calvo ETN, Belbis MD, Ehrenfort SKC, Noguer M, Messonnier LA, Buehler PW, Hirai DM, Ferguson SK. Understanding exercise (in)tolerance in sickle cell disease: impacts of hemolysis and exercise training on skeletal muscle oxygen delivery. J Appl Physiol (1985) 2024; 137:975-983. [PMID: 39205637 DOI: 10.1152/japplphysiol.00390.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Sickle cell disease (SCD) is characterized by central (cardiac) and peripheral vascular dysfunctions, significantly diminishing exercise capacity and quality of life. Although central cardiopulmonary abnormalities in SCD are known to reduce exercise capacity and quality of life; the impact of hemolysis and subsequent cell-free hemoglobin (Hb)-mediated peripheral vascular abnormalities on those outcomes are not fully understood. Despite the recognized benefits of exercise training for cardiovascular health and clinical management in chronic diseases like heart failure, there remains substantial debate on the advisability of regular physical activity for patients with SCD. This is primarily due to concerns that prolonged and/or high-intensity exercise might trigger metabolic shifts leading to vaso-occlusive crises. As a result, exercise recommendations for patients with SCD are often vague or nonexistent, reflecting a gap in knowledge about the mechanisms of exercise intolerance and the impact of exercise training on SCD-related health issues. This mini-review sheds light on recent developments in understanding how SCD affects exercise tolerance, with a special focus on the roles of hemolysis and the release of cell-free hemoglobin in altering cardiovascular and skeletal muscle function. Also highlighted here is the emerging research on the therapeutic effects and safety of exercise training in patients with SCD. In addition, the review identifies future research opportunities to fill existing gaps in our understanding of exercise (in)tolerance in SCD.
Collapse
Affiliation(s)
- David C Irwin
- Cardiovascular and Pulmonary Research Group, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Edward T N Calvo
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Michael D Belbis
- Department of Exercise Science, Aurora University, Aurora, Illinois, United States
| | - Sabrina K C Ehrenfort
- Integrative Aerospace and Exercise Physiology Laboratory, Department of Human Factors, Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States
| | - Mathilde Noguer
- Laboratorie Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc (USMB), Chambéry, France
| | - Laurent A Messonnier
- Laboratorie Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc (USMB), Chambéry, France
- Institut Universitaire de France (IUF), Paris, France
| | - Paul W Buehler
- Department of Pathology and The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Scott K Ferguson
- Integrative Aerospace and Exercise Physiology Laboratory, Department of Human Factors, Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States
| |
Collapse
|
10
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
11
|
Louis M, Hwang R, Sabapathy S, Roberts LA, Morris NR. High-Intensity Small Muscle Mass Training in Patients With Heart Failure: Rationale and Design of a Randomized Controlled Trial. Phys Ther 2024; 104:pzad130. [PMID: 37758445 DOI: 10.1093/ptj/pzad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Small muscle mass training localized to the quadriceps femoris muscle group has been proposed as an intervention to reverse heart failure-related skeletal muscle impairments. Although this training paradigm has demonstrated efficacy in heart failure, it remains to be evaluated in a conventional clinical context. Hence, the aim of this proposed study is to determine the effects of integrating high-intensity small muscle mass training (HISMT) isolated to the knee extensor muscles within a standard heart failure rehabilitation program. METHODS This single-blind, randomized controlled trial will aim to recruit 70 participants with heart failure. Participants will be randomized to either (1) standard training: combination of upper and lower extremity cardiovascular and resistance-based exercises, or (2) HISMT plus modified standard training: bilateral knee extensor HISMT and a modified version of the standard training, so that the total volume of work will be similar to standard training alone. The training interventions will be undertaken twice weekly for 12 weeks in an outpatient clinical setting. Outcome measurements will be performed at baseline and after the 12-week intervention period. The primary outcome will be exercise capacity (6-Minute Walk Test), with secondary outcomes being physical performance measures, muscle strength, and health-related quality of life. Data will be analyzed using the intention-to-treat principle. IMPACT This study will address a gap in the literature regarding the efficacy of small muscle training under routine clinical conditions for individuals with heart failure. The findings will also provide insight into the effects of HISMT within a heart failure rehabilitation program, thus enabling the optimization of exercise prescription for this patient population.
Collapse
Affiliation(s)
- Menaka Louis
- Chronic Disease and Post-Acute Programs, Gold Coast Hospital and Health Service, Robina Health Precinct, Robina, Queensland, Australia
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
| | - Rita Hwang
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
- Department of Physiotherapy, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Surendran Sabapathy
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
| | - Llion Arwyn Roberts
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Norman Rolston Morris
- School of Health Sciences and Social Work, Griffith University, Southport, Queensland, Australia
- The Menzies Health Institute, Griffith University, Southport, Queensland, Australia
- Allied Health Research Collaborative, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
12
|
Buchanan C, Buchanan C, Riordan M, Byrd J, Schulte M, Kohrt WM, Ambardekar AV, Allen LA, Wolfel G, Lawley J, Levine BD, Cornwell WK. Cardiopulmonary Performance Among Heart Failure Patients Before and After Left Ventricular Assist Device Implantation. JACC. HEART FAILURE 2024; 12:117-129. [PMID: 37632493 DOI: 10.1016/j.jchf.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Patients with heart failure with reduced ejection fraction (HFrEF) have persistent impairments in functional capacity after continuous-flow left ventricular assist device (CF-LVAD) implantation. OBJECTIVES This study aims to characterize longitudinal changes in exercise hemodynamics and functional capacity among patients with HFrEF before and after CF-LVAD implantation. METHODS Ten patients underwent 3 invasive cardiopulmonary exercise tests on upright cycle ergometry with pulmonary artery catheterization: 1) Visit 1 before CF-LVAD implantation; 2) Visit 2 after device implantation with CF-LVAD pump speed held constant at baseline speed; and 3) Visit 3 with increases in pump speed during exercise (median: 1,050 rpm [IQR: 750-1,150 rpm] and 220 rpm [IQR: 120-220 rpm] for HeartMate 3 and HeartWare VAD, respectively). Hemodynamics and direct Fick cardiac output were monitored using pulmonary artery catheterization. Gas exchange metrics were determined using indirect calorimetry. RESULTS Maximal oxygen uptake (Visits 1, 2, and 3: 10.8 ± 2.5 mL/kg/min, 10.7 ± 2.2 mL/kg/min, and 11.5 ± 1.7 mL/kg/min; P = 0.92) did not improve after device implantation. Mean pulmonary arterial and pulmonary capillary wedge pressures increased significantly during submaximal and peak exercise on preimplantation testing (P < 0.01 for rest vs peak exercise) and remained elevated, with minimal change on Visits 2 and 3 regardless of whether pump speed was fixed or increased. CONCLUSIONS Among patients with HFrEF, cardiovascular hemodynamics and exercise capacity were similar after CF-LVAD implantation, regardless of whether patients exercised at fixed or adjusted pump speeds during exercise. Further research is needed to determine methods by which LVADs may alleviate the HFrEF syndrome after device implantation. (Effect of mechanIcal circulatoRy support ON exercise capacity aMong pAtieNts with heart failure [IRONMAN]; NCT03078972).
Collapse
Affiliation(s)
- Cole Buchanan
- Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Collen Buchanan
- Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maeveen Riordan
- Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Byrd
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret Schulte
- Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wendy M Kohrt
- Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Medicine-Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amrut V Ambardekar
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Larry A Allen
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gene Wolfel
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Benjamin D Levine
- Department of Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, and the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - William K Cornwell
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Colorado Clinical and Translational Sciences Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
13
|
Manferdelli G, Barstow TJ, Millet GP. NIRS-Based Muscle Oxygenation Is Suitable for Computation of the Convective and Diffusive Components of O 2 Transport at V̇O 2max. Med Sci Sports Exerc 2023; 55:2103-2105. [PMID: 37343383 DOI: 10.1249/mss.0000000000003238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, KS
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| |
Collapse
|
14
|
Webb KL, Joyner MJ, Wiggins CC, Secomb TW, Roy TK. The dependence of maximum oxygen uptake and utilization (V̇O 2 max) on hemoglobin-oxygen affinity and altitude. Physiol Rep 2023; 11:e15806. [PMID: 37653565 PMCID: PMC10471793 DOI: 10.14814/phy2.15806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Oxygen transport from the lungs to peripheral tissue is dependent on the affinity of hemoglobin for oxygen. Recent experimental data have suggested that the maximum human capacity for oxygen uptake and utilization (V̇O2 max) at sea level and altitude (~3000 m) is sensitive to alterations in hemoglobin-oxygen affinity. However, the effect of such alterations on V̇O2 max at extreme altitudes remains largely unknown due to the rarity of mutations affecting hemoglobin-oxygen affinity. This work uses a mathematical model that couples pulmonary oxygen uptake with systemic oxygen utilization under conditions of high metabolic demand to investigate the effect of hemoglobin-oxygen affinity on V̇O2 max as a function of altitude. The model includes the effects of both diffusive and convective limitations on oxygen transport. Pulmonary oxygen uptake is calculated using a spatially-distributed model that accounts for the effects of hematocrit and hemoglobin-oxygen affinity. Systemic oxygen utilization is calculated assuming Michaelis-Menten kinetics. The pulmonary and systemic model components are solved iteratively to compute predicted arterial and venous oxygen levels. Values of V̇O2 max are predicted for several values of hemoglobin-oxygen affinity and hemoglobin concentration based on data from humans with hemoglobin mutations. The model predicts that increased hemoglobin-oxygen affinity leads to increased V̇O2 max at altitudes above ~4500 m.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Tuhin K. Roy
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
15
|
Ikoma T, Narumi T, Akita K, Sato R, Masuda T, Kaneko H, Toda M, Mogi S, Sano M, Suwa K, Naruse Y, Ohtani H, Saotome M, Maekawa Y. Association of an Increased Abnormal Mitochondria Ratio in Cardiomyocytes with a Prolonged Oxygen Uptake Time Constant during Cardiopulmonary Exercise Testing of Patients with Non-ischemic Cardiomyopathy. Intern Med 2023; 62:2163-2170. [PMID: 36450468 PMCID: PMC10465282 DOI: 10.2169/internalmedicine.0697-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Objective The cardiac function, blood distribution, and oxygen extraction in the muscles as well as the pulmonary function determine the oxygen uptake (VO2) kinetics at the onset of exercise. This factor is called the VO2 time constant, and its prolongation is associated with an unfavorable prognosis for heart failure (HF). The mitochondrial function of skeletal muscle is known to reflect exercise tolerance. Morphological changes and dysfunction in cardiac mitochondria are closely related to HF severity and its prognosis. Although mitochondria play an important role in generating energy in cardiomyocytes, the relationship between cardiac mitochondria and the VO2 time constant has not been elucidated. Methods We calculated the ratio of abnormal cardiac mitochondria in human myocardial biopsy samples using an electron microscope and measured the VO2 time constant during cardiopulmonary exercise testing. The VO2 time constant was normalized by the fat-free mass index (FFMI). Patients Fifteen patients with non-ischemic cardiomyopathy (NICM) were included. Patients were divided into two groups according to their median VO2 time constant/FFMI value. Results Patients with a low VO2 time constant/FFMI value had a lower abnormal mitochondria ratio than those with a high VO2 time constant/FFMI value. A multiple linear regression analysis revealed that the ratio of abnormal cardiac mitochondria was independently associated with a high VO2 time constant/FFMI. Conclusion An increased abnormal cardiac mitochondria ratio might be associated with a high VO2 time constant/FFMI value in patients with NICM.
Collapse
Affiliation(s)
- Takenori Ikoma
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Taro Narumi
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Keitaro Akita
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Ryota Sato
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Takayuki Masuda
- Department of Rehabilitation, Hamamatsu University Hospital, Japan
| | - Hanami Kaneko
- Department of Rehabilitation, Hamamatsu University Hospital, Japan
| | - Masahiro Toda
- Department of Rehabilitation, Hamamatsu University Hospital, Japan
| | - Satoshi Mogi
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Makoto Sano
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Kenichiro Suwa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Yoshihisa Naruse
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Hayato Ohtani
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Masao Saotome
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
16
|
Watanabe M, Yano T, Sato T, Umetsu A, Higashide M, Furuhashi M, Ohguro H. mTOR Inhibitors Modulate the Physical Properties of 3D Spheroids Derived from H9c2 Cells. Int J Mol Sci 2023; 24:11459. [PMID: 37511214 PMCID: PMC10380298 DOI: 10.3390/ijms241411459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
To establish an appropriate in vitro model for the local environment of cardiomyocytes, three-dimensional (3D) spheroids derived from H9c2 cardiomyoblasts were prepared, and their morphological, biophysical phase contrast and biochemical characteristics were evaluated. The 3D H9c2 spheroids were successfully obtained, the sizes of the spheroids decreased, and they became stiffer during 3-4 days. In contrast to the cell multiplication that occurs in conventional 2D planar cell cultures, the 3D H9c2 spheroids developed into a more mature form without any cell multiplication being detected. qPCR analyses of the 3D H9c2 spheroids indicated that the production of collagen4 (COL4) and fibronectin (FN), connexin43 (CX43), β-catenin, N-cadherin, STAT3, and HIF1 molecules had increased and that the production of COL6 and α-smooth muscle actin (α-SMA) molecules had decreased as compared to 2D cultured cells. In addition, treatment with rapamycin (Rapa), an mTOR complex (mTORC) 1 inhibitor, and Torin 1, an mTORC1/2 inhibitor, resulted in significantly decreased cell densities of the 2D cultured H9c2 cells, but the size and stiffness of the H9c2 cells within the 3D spheroids were reduced with the gene expressions of several of the above several factors being reduced. The metabolic responses to mTOR modulators were also different between the 2D and 3D cultures. These results suggest that as unique aspects of the local environments of the 3D spheroids, the spontaneous expression of GJ-related molecules and hypoxia within the core may be associated with their maturation, suggesting that this may become a useful in vitro model that replicates the local environment of cardiomyocytes.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Megumi Higashide
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| |
Collapse
|
17
|
Mendelson AA, Erickson D, Villar R. The role of the microcirculation and integrative cardiovascular physiology in the pathogenesis of ICU-acquired weakness. Front Physiol 2023; 14:1170429. [PMID: 37234410 PMCID: PMC10206327 DOI: 10.3389/fphys.2023.1170429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle dysfunction after critical illness, defined as ICU-acquired weakness (ICU-AW), is a complex and multifactorial syndrome that contributes significantly to long-term morbidity and reduced quality of life for ICU survivors and caregivers. Historically, research in this field has focused on pathological changes within the muscle itself, without much consideration for their in vivo physiological environment. Skeletal muscle has the widest range of oxygen metabolism of any organ, and regulation of oxygen supply with tissue demand is a fundamental requirement for locomotion and muscle function. During exercise, this process is exquisitely controlled and coordinated by the cardiovascular, respiratory, and autonomic systems, and also within the skeletal muscle microcirculation and mitochondria as the terminal site of oxygen exchange and utilization. This review highlights the potential contribution of the microcirculation and integrative cardiovascular physiology to the pathogenesis of ICU-AW. An overview of skeletal muscle microvascular structure and function is provided, as well as our understanding of microvascular dysfunction during the acute phase of critical illness; whether microvascular dysfunction persists after ICU discharge is currently not known. Molecular mechanisms that regulate crosstalk between endothelial cells and myocytes are discussed, including the role of the microcirculation in skeletal muscle atrophy, oxidative stress, and satellite cell biology. The concept of integrated control of oxygen delivery and utilization during exercise is introduced, with evidence of physiological dysfunction throughout the oxygen delivery pathway - from mouth to mitochondria - causing reduced exercise capacity in patients with chronic disease (e.g., heart failure, COPD). We suggest that objective and perceived weakness after critical illness represents a physiological failure of oxygen supply-demand matching - both globally throughout the body and locally within skeletal muscle. Lastly, we highlight the value of standardized cardiopulmonary exercise testing protocols for evaluating fitness in ICU survivors, and the application of near-infrared spectroscopy for directly measuring skeletal muscle oxygenation, representing potential advancements in ICU-AW research and rehabilitation.
Collapse
Affiliation(s)
- Asher A. Mendelson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dustin Erickson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rodrigo Villar
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Butenas ALE, Copp SW, Hageman KS, Poole DC, Musch TI. Effects of comorbid type II diabetes mellitus and heart failure on rat hindlimb and respiratory muscle blood flow during treadmill exercise. J Appl Physiol (1985) 2023; 134:846-857. [PMID: 36825642 PMCID: PMC10042612 DOI: 10.1152/japplphysiol.00770.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In rats with type II diabetes mellitus (T2DM) compared with nondiabetic healthy controls, muscle blood flow (Q̇m) to primarily glycolytic hindlimb muscles and the diaphragm muscle are elevated during submaximal treadmill running consequent to lower skeletal muscle mass, a finding that held even when muscle mass was normalized to body mass. In rats with heart failure with reduced ejection fraction (HF-rEF) compared with healthy controls, hindlimb Q̇m was lower, whereas diaphragm Q̇m is elevated during submaximal treadmill running. Importantly, T2DM is the most common comorbidity present in patients with HF-rEF, but the effect of concurrent T2DM and HF-rEF on limb and respiratory Q̇m during exercise is unknown. We hypothesized that during treadmill running (20 m·min-1; 10% incline), hindlimb and diaphragm Q̇m would be higher in T2DM Goto-Kakizaki rats with HF-rEF (i.e., HF-rEF + T2DM) compared with nondiabetic Wistar rats with HF-rEF. Ejection fractions were not different between groups (HF-rEF: 30 ± 5; HF-rEF + T2DM: 28 ± 8%; P = 0.617), whereas blood glucose was higher in HF-rEF + T2DM (209 ± 150 mg/dL) compared with HF-rEF rats (113 ± 28 mg/dL; P = 0.040). Hindlimb muscle mass normalized to body mass was lower in rats with HF-rEF + T2DM (36.3 ± 1.6 mg/g) than in nondiabetic HF-rEF counterparts (40.3 ± 2.7 mg/g; P < 0.001). During exercise, Q̇m was elevated in rats with HF-rEF + T2DM compared with nondiabetic counterparts to the hindlimb (HF-rEF: 100 ± 28; HF-rEF + T2DM: 139 ± 23 mL·min-1·100 g-1; P < 0.001) and diaphragm (HF-rEF: 177 ± 66; HF-rEF + T2DM: 215 ± 93 mL·min-1·100g-1; P = 0.035). These data suggest that the pathophysiological consequences of T2DM on hindlimb and diaphragm Q̇m during treadmill running in the GK rat persist even in the presence of HF-rEF.NEW & NOTEWORTHY Herein, we demonstrate that rats comorbid with heart failure with reduced ejection fraction (HF-rEF) and type II diabetes mellitus (T2DM) have a higher hindlimb and respiratory muscle blood flow during submaximal treadmill running (20 m·min-1; 10% incline) compared with nondiabetic HF-rEF counterparts. These data may carry important clinical implications for roughly half of all patients with HF-rEF who present with T2DM.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
| |
Collapse
|
19
|
da Luz Goulart C, Caruso FR, Garcia de Araújo AS, Garcia de Moura SC, Catai AM, Batista Dos Santos P, Kabbach ÉZ, Arena R, Gonçalves Mendes R, Borghi-Silva A. The Effect of Adding Noninvasive Ventilation to High-Intensity Exercise on Peripheral and Respiratory Muscle Oxygenation. Respir Care 2023; 68:320-329. [PMID: 36750260 PMCID: PMC10027144 DOI: 10.4187/respcare.10315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND We sought to assess whether noninvasive ventilation (NIV) as an adjunct with high-intensity exercise (HIEx) is more effective than exercise alone or exercise + sham on respiratory and peripheral oxygenation and vascular function in subjects with coexisting COPD and heart failure (HF). METHODS On separate days, subjects performed incremental cardiopulmonary exercise testing and 3 constant load tests: HIEx, HIEx+NIV, and HIEx+sham (bi-level mode, Astral 150). Subjects were randomized with a 1:1 block allocation for the HIEx+NIV group and HIEx+sham group until the limit of tolerance (Tlim). Peripheral and respiratory oxygenation were assessed by oxyhemoglobin (O2Hb) and deoxyhemoglobin (Hb) using near-infrared spectroscopy in the respiratory and peripheral musculature. Vascular function was assessed by endothelial function using the flow-mediated vasodilation (FMD) method. RESULTS There was a significant increase in FMD (mm), FMD (%), and shear stress in the HIEx+NIV group when compared to HIEx or HIEx+sham (P < .05). Less extraction of O2 (Hb) in the peripheral and respiratory muscles was observed in the HIEx+NIV group (P < .05). We also found correlations between peripheral muscle oxygenation (O2Hb) at the moment 80% of Tlim (r = 0.71, P = .009) and peak of Tlim (100%) (r = 0.76, P = .004) with absolute FMD (mm) immediately after HIEx+NIV. CONCLUSIONS NIV as an adjunct to HIEx can acutely unload the respiratory musculature with better redistribution of available blood flow and beneficially modulate endothelial function. These results may influence the approach to cardiopulmonary rehabilitation in patients with coexisting COPD-HF.
Collapse
Affiliation(s)
- Cássia da Luz Goulart
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Rodovia Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil
| | - Flávia Rossi Caruso
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Rodovia Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil
| | - Adriana S Garcia de Araújo
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Rodovia Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil
| | - Sílvia Cristina Garcia de Moura
- Cardiovascular Physical Therapy Laboratory, Physiotherapy Department, Federal University of São Carlos, Rod Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil
| | - Aparecida Maria Catai
- Cardiovascular Physical Therapy Laboratory, Physiotherapy Department, Federal University of São Carlos, Rod Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil
| | - Polliana Batista Dos Santos
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Rodovia Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil
| | - Érika Z Kabbach
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Rodovia Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Rodovia Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil
| | - Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Rodovia Washington Luis, KM 235, Monjolinho, CEP: 13565-905, Sao Carlos, São Paulo, Brazil.
| |
Collapse
|
20
|
Md MA, Parrott CF, Ph D MJH, Ph D PHB, Md FY, Md BU. Skeletal muscle abnormalities in heart failure with preserved ejection fraction. Heart Fail Rev 2023; 28:157-168. [PMID: 35353269 DOI: 10.1007/s10741-022-10219-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Almost half of all heart failure (HF) disease burden is due to HF with preserved ejection fraction (HFpEF). The primary symptom in patients with HFpEF, even when well compensated, is severe exercise intolerance and is associated with their reduced quality of life. Recently, studies showed that HFpEF patients have multiple skeletal muscle (SM) abnormalities, and these are associated with decreased exercise intolerance. The SM abnormalities are likely intrinsic to the HFpEF syndrome, not a secondary consequence of an epiphenomenon. These abnormalities are decreased muscle mass, reduced type I (oxidative) muscle fibers, and reduced type I-to-type II fiber ratio as well as a reduced capillary-to-fiber ratio, abnormal fat infiltration into the thigh SM, increased levels of atrophy genes and proteins, reduction in mitochondrial content, and rapid depletion of high-energy phosphate during exercise with markedly delayed repletion of high-energy phosphate during recovery in mitochondria. In addition, patients with HFpEF have impaired nitric oxide bioavailability, particularly in the microvasculature. These SM abnormalities may be responsible for impaired diffusive oxygen transport and/or impaired SM oxygen extraction. To date, exercise training (ET) and caloric restriction are some of the interventions shown to improve outcomes in HFpEF patients. Improvements in exercise tolerance following aerobic ET are largely mediated through peripheral SM adaptations with minimal change in central hemodynamics and highlight the importance of targeting SM to improve exercise intolerance in HFpEF. Focusing on the abnormalities mentioned above may improve the clinical condition of patients with HFpEF.
Collapse
Affiliation(s)
- Matthew Anderson Md
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Clifton Forrest Parrott
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Mark J Haykowsky Ph D
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Peter H Brubaker Ph D
- Department of Health and Exercise Science, Wake Forest School of Medicine, Winston-Salem, USA
| | - Fan Ye Md
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Bharathi Upadhya Md
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA.
| |
Collapse
|
21
|
da Silva ML, de Sousa Neto IV, de Lima ACGB, Barin F, de Toledo Nóbrega O, de Cássia Marqueti R, Cipriano GFB, Durigan JLQ, Ferreira EA, Bottaro M, Arena R, Cahalin LP, Neder JA, Junior GC. Effects of Home-Based Electrical Stimulation on Plasma Cytokines Profile, Redox Biomarkers, and Metalloproteinases in the Heart Failure with Reduced Ejection Fraction: A Randomized Trial. J Cardiovasc Dev Dis 2022; 9:jcdd9120463. [PMID: 36547460 PMCID: PMC9785395 DOI: 10.3390/jcdd9120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Low-frequency electrical stimulation (LFES) is an adjuvant method for heart failure (HF) patients with restrictions to start an exercise. However, the impact on molecular changes in circulating is unknown. We investigated the effects of 10 weeks of home-based LFES on plasma cytokines profile, redox biomarkers, metalloproteinases (MMPs) activity, and exercise performance in HF patients. Methods: Twenty-four HF patients (52.45 ± 9.15 years) with reduced ejection fraction (HFrEF) (EF < 40%), were randomly assigned to a home-based LFES or sham protocol. Plasma cytokines profile was assessed through interleukins, interferon-gamma, and tumor necrosis factor levels. Oxidative stress was evaluated through ferric reducing antioxidant power, thiobarbituric acid-reactive substances, and inducible nitric oxide synthase. The MMPs activity were analyzed by zymography. Cardiorespiratory capacity and muscle strength were evaluated by cardiopulmonary test and isokinetic. Results: LFES was able to increase the active-MMP2 activity post compared to pre-training (0.057 to 0.163, p = 0.0001), while it decreased the active-MMP9 (0.135 to 0.093, p = 0.02). However, it did not elicit changes in cytokines, redox biomarkers, or exercise performance (p > 0.05). Conclusion: LFES protocol is a promising intervention to modulate MMPs activity in HFrEF patients, although with limited functional effects. These preliminary responses may help the muscle to adapt to future mechanical demands dynamically.
Collapse
Affiliation(s)
- Marianne Lucena da Silva
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
- Health Sciences Academic Unit, Federal University of Jataí, Jataí 75801-615, GO, Brazil
| | - Ivo Vieira de Sousa Neto
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Alexandra C. G. B. de Lima
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Fabrício Barin
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Otávio de Toledo Nóbrega
- Department of Medicine, University of Brasilia (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Rita de Cássia Marqueti
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Graziella F. B. Cipriano
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - João Luiz Quagliotti Durigan
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Eduardo Antônio Ferreira
- Department of Pharmacy, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Martim Bottaro
- Department of Physical Education, University of Brasilia (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Ross Arena
- Department of Physical Therapy, University of Illinois, 1919 W Taylor St., Chicago, IL 60612, USA
| | - Larry P. Cahalin
- Department of Physical Therapy, Leonard M. Miller School of Medicine, University of Miami, 5915 Ponce de Leon Blvd., 5th Floor, Coral Gables, FL 33101, USA
| | - José Alberto Neder
- Department of Medicine, School of Medicine at the Queen’s University, Queen’s University & Kingston General Hospital, Etherington Hall, Rooms 3032-3043, 94 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Gerson Cipriano Junior
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
- Correspondence:
| |
Collapse
|
22
|
Long GM, Troutman AD, Gray DA, Fisher AJ, Lahm T, Coggan AR, Brown MB. Skeletal muscle blood flow during exercise is reduced in a rat model of pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 2022; 323:R561-R570. [PMID: 36036455 PMCID: PMC9602702 DOI: 10.1152/ajpregu.00327.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.
Collapse
Affiliation(s)
- Gary Marshall Long
- Department of Kinesiology, University of Indianapolis, Indianapolis, Indiana
| | - Ashley D Troutman
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Derrick A Gray
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Amanda J Fisher
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Tim Lahm
- Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Indiana University, Indianapolis, Indiana
- Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Mary Beth Brown
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Huang J, McDonnell BJ, Lawley JS, Byrd J, Stöhr EJ, Cornwell WK. Impact of Mechanical Circulatory Support on Exercise Capacity in Patients With Advanced Heart Failure. Exerc Sport Sci Rev 2022; 50:222-229. [PMID: 36095073 PMCID: PMC9475848 DOI: 10.1249/jes.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Approximately 6 million individuals have heart failure in the United States alone and 15 million in Europe. Left ventricular assist devices (LVAD) improve survival in these patients, but functional capacity may not fully improve. This article examines the hypothesis that patients supported by LVAD experience persistent reductions in functional capacity and explores mechanisms accounting for abnormalities in exercise tolerance.
Collapse
Affiliation(s)
- Janice Huang
- Department of Medicine-Cardiology. University of Colorado Anschutz Medical Campus, Aurora CO
| | - Barry J. McDonnell
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff UK
| | - Justin S. Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck Austria
| | - Jessica Byrd
- Department of Medicine-Cardiology. University of Colorado Anschutz Medical Campus, Aurora CO
| | - Eric J. Stöhr
- Faculty of Philosophical Sciences, Institute of Sport Science, Leibniz University Hannover, Hannover, Germany
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, NY, USA
| | - William K. Cornwell
- Department of Medicine-Cardiology. University of Colorado Anschutz Medical Campus, Aurora CO
- Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora CO
| |
Collapse
|
24
|
Lahti DS, Pockett C, Boyes NG, Bradley TJ, Butcher SJ, Wright KD, Erlandson MC, Tomczak CR. Effects of 12-Week Home-based Resistance Training on Peripheral Muscle Oxygenation in Children With Congenital Heart Disease: A CHAMPS Study. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:203-212. [PMID: 37969430 PMCID: PMC10642115 DOI: 10.1016/j.cjcpc.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2023]
Abstract
Background A hallmark feature of children with congenital heart disease (CHD) is exercise intolerance. Whether a home-based resistance training intervention improves muscle oxygenation (as measured by tissue oxygenation index, TOI) and exercise tolerance (V ˙ O2 reserve) during aerobic exercise in children with CHD compared with healthy children is unknown. Methods We report findings for 10 children with CHD (female/male: 4/6; mean ± standard deviation age: 13 ± 1 years) and 9 healthy controls (female/male: 5/4; age: 12 ± 3 years). Children with CHD completed a 12-week home-based exercise programme in addition to 6 in-person sessions. Exercise tolerance was assessed with a peak exercise test. Vastus lateralis TOI was continuously sampled during the peak V ˙ O2 test via near-infrared spectroscopy. Results There was a medium effect (Cohen's d = 0.67) of exercise training on lowering TOI at peak exercise (pre: 30 ± 16 %total labile signal vs post: 20 ± 13 % total labile signal; P = 0.099). Exercise training had a small effect (Cohen's d = 0.23) on increasing V ˙ O2 reserve by 1.6 mL/kg/min (pre: 27.2 ± 5.7 mL/kg/min vs post: 29.4 ± 8.8 mL/kg/min; P = 0.382). There was also a small effect (Cohen's d = 0.27) of exercise on peak heart rate (pre: 175 ± 23 beats/min vs post: 169 ± 21 beats/min; P = 0.18). TOI, V ˙ O2 reserve, and heart rate were generally lower than healthy control participants. Conclusions Our findings indicate that home-based resistance training may enhance skeletal muscle oxygen extraction (lower TOI) and subsequently V ˙ O2 reserve in children with CHD.
Collapse
Affiliation(s)
- Dana S. Lahti
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Charissa Pockett
- Division of Cardiology, Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha G. Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Timothy J. Bradley
- Division of Cardiology, Department of Pediatrics, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scotty J. Butcher
- School of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kristi D. Wright
- Department of Psychology, University of Regina, Regina, Saskatchewan, Canada
| | - Marta C. Erlandson
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Corey R. Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Oknińska M, Mackiewicz U, Zajda K, Kieda C, Mączewski M. New potential treatment for cardiovascular disease through modulation of hemoglobin oxygen binding curve: Myo-inositol trispyrophosphate (ITPP), from cancer to cardiovascular disease. Biomed Pharmacother 2022; 154:113544. [PMID: 35988421 DOI: 10.1016/j.biopha.2022.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The human body is a highly aerobic organism, which needs large amount of oxygen, especially in tissues characterized by high metabolic demand, such as the heart. Inadequate oxygen delivery underlies cardiovascular diseases, such as coronary artery disease, heart failure and pulmonary hypertension. Hemoglobin, the oxygen-transport metalloprotein in the red blood cells, gives the blood enormous oxygen carrying capacity; thus oxygen binding to hemoglobin in the lungs and oxygen dissociation in the target tissues are crucial points for oxygen delivery as well as potential targets for intervention. Myo-inositol trispyrophosphate (ITPP) acts as an effector of hemoglobin, shifting the oxygen dissociation curve to the right and increasing oxygen release in the target tissues, especially under hypoxic conditions. ITPP has been successfully used in cancer studies, demonstrating anti-cancer properties due to prevention of tumor hypoxia. Currently it is being tested in phase 2 clinical trials in humans with various tumors. First preclinical evidence also indicates that it can successfully alleviate myocardial hypoxia and prevent adverse left ventricular and right ventricular remodeling in post-myocardial infarction heart failure and pulmonary hypertension. The aim of the article is to summarize the current knowledge on ITTP, as well as to determine the prospects for its potential use in the treatment of many cardiovascular disorders.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland; Center for Molecular Biophysics, UPR 4301 CNRS, Orleans, France
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
26
|
Marco Guazzi M, Wilhelm M, Halle M, Van Craenenbroeck E, Kemps H, de Boer RA, Coats AJ, Lund L, Mancini D, Borlaug B, Filippatos G, Pieske B. Exercise Testing in HFpEF: an Appraisal Through Diagnosis, Pathophysiology and Therapy A Clinical Consensus Statement of the Heart Failure Association (HFA) and European Association of Preventive Cardiology (EAPC) of the European Society of Cardiology (ESC). Eur J Heart Fail 2022; 24:1327-1345. [PMID: 35775383 PMCID: PMC9542249 DOI: 10.1002/ejhf.2601] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/10/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) universally complain of exercise intolerance and dyspnoea as key clinical correlates. Cardiac as well as extracardiac components play a role for the limited exercise capacity, including an impaired cardiac and peripheral vascular reserve, a limitation in mechanical ventilation and/or gas exchange with reduced pulmonary vascular reserve, skeletal muscle dysfunction and iron deficiency/anaemia. Although most of these components can be differentiated and quantified through gas exchange analysis by cardiopulmonary exercise testing (CPET), the information provided by objective measures of exercise performance have not been systematically considered in the recent algorithms/scores for HFpEF diagnosis, neither by European nor US groups. The current Clinical Consensus Statement by the HFA and EAPC Association of the ESC aims at outlining the role of exercise testing and its pathophysiological, clinical and prognostic insights, addressing the implication of a thorough functional evaluation from the diagnostic algorithm to the pathophysiology and treatment perspectives of HFpEF. Along with these goals, we provide a specific analysis on the evidence that CPET is the standard for assessing, quantifying, and differentiating the origin of dyspnoea and exercise impairment and even more so when combined with echo and/or invasive hemodynamic evaluation is here provided. This will lead to improved quality of diagnosis when applying the proposed scores and may also help useful to implement the progressive characterization of the specific HFpEF phenotypes, a critical step toward the delivery of phenotype-specific treatments.
Collapse
Affiliation(s)
- M Marco Guazzi
- Division of Cardiology, University of Milano School of Medicine, San Paolo Hospital, Milano
| | - Matthias Wilhelm
- Department of Cardiology Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Martin Halle
- Department of Prevention and Sports Medicine, Faculty of Medicine, University Hospital 'Klinikum rechts der Isar', Technical University Munich, Munich, Germany; DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), partner site Munich, Munich Heart Alliance, Munich, Germany
| | - Emeline Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Hareld Kemps
- Department of Cardiology, Máxima Medical Center, Eindhoven, Netherlands; Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Rudolph A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | | | - Lars Lund
- Solna, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Donna Mancini
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barry Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55902, United States
| | | | - Burkert Pieske
- Department of Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany, German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany, German Heart Center, Berlin, Germany
| |
Collapse
|
27
|
Nyberg M, Jones AM. Matching of O2 Utilization and O2 Delivery in Contracting Skeletal Muscle in Health, Aging, and Heart Failure. Front Physiol 2022; 13:898395. [PMID: 35774284 PMCID: PMC9237395 DOI: 10.3389/fphys.2022.898395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is one of the most dynamic metabolic organs as evidenced by increases in metabolic rate of >150-fold from rest to maximal contractile activity. Because of limited intracellular stores of ATP, activation of metabolic pathways is required to maintain the necessary rates of ATP re-synthesis during sustained contractions. During the very early phase, phosphocreatine hydrolysis and anaerobic glycolysis prevails but as activity extends beyond ∼1 min, oxidative phosphorylation becomes the major ATP-generating pathway. Oxidative metabolism of macronutrients is highly dependent on the cardiovascular system to deliver O2 to the contracting muscle fibres, which is ensured through a tight coupling between skeletal muscle O2 utilization and O2 delivery. However, to what extent O2 delivery is ideal in terms of enabling optimal metabolic and contractile function is context-dependent and determined by a complex interaction of several regulatory systems. The first part of the review focuses on local and systemic mechanisms involved in the regulation of O2 delivery and how integration of these influences the matching of skeletal muscle O2 demand and O2 delivery. In the second part, alterations in cardiovascular function and structure associated with aging and heart failure, and how these impact metabolic and contractile function, will be addressed. Where applicable, the potential of exercise training to offset/reverse age- and disease-related cardiovascular declines will be highlighted in the context of skeletal muscle metabolic function. The review focuses on human data but also covers animal observations.
Collapse
Affiliation(s)
- Michael Nyberg
- Vascular Biology, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
- *Correspondence: Michael Nyberg,
| | - Andrew M. Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
28
|
Kulej-Lyko K, Niewinski P, Tubek S, Ponikowski P. Contribution of Peripheral Chemoreceptors to Exercise Intolerance in Heart Failure. Front Physiol 2022; 13:878363. [PMID: 35492596 PMCID: PMC9046845 DOI: 10.3389/fphys.2022.878363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Peripheral chemoreceptors (PChRs), because of their strategic localization at the bifurcation of the common carotid artery and along the aortic arch, play an important protective role against hypoxia. Stimulation of PChRs evokes hyperventilation and hypertension to maintain adequate oxygenation of critical organs. A relationship between increased sensitivity of PChRs (hyperreflexia) and exercise intolerance (ExIn) in patients with heart failure (HF) has been previously reported. Moreover, some studies employing an acute blockade of PChRs (e.g., using oxygen or opioids) demonstrated improvement in exercise capacity, suggesting that hypertonicity is also involved in the development of ExIn in HF. Nonetheless, the precise mechanisms linking dysfunctional PChRs to ExIn remain unclear. From the clinical perspective, there are two main factors limiting exercise capacity in HF patients: subjective perception of dyspnoea and muscle fatigue. Both have many determinants that might be influenced by abnormal signalling from PChRs, including: exertional hyperventilation, oscillatory ventilation, ergoreceptor oversensitivity, and augmented sympathetic tone. The latter results in reduced muscle perfusion and altered muscle structure. In this review, we intend to present the milieu of abnormalities tied to malfunctioning PChRs and discuss their role in the complex relationships leading, ultimately, to ExIn.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
29
|
Poole DC, Ferguson SK, Musch TI, Porcelli S. Role of nitric oxide in convective and diffusive skeletal microvascular oxygen kinetics. Nitric Oxide 2022; 121:34-44. [PMID: 35123062 DOI: 10.1016/j.niox.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Progress in understanding physiological mechanisms often consists of discrete discoveries made across different models and species. Accordingly, understanding the mechanistic bases for how altering nitric oxide (NO) bioavailability impacts exercise tolerance (or not) depends on integrating information from cellular energetics and contractile regulation through microvascular/vascular control of O2 transport and pulmonary gas exchange. This review adopts state-of-the-art concepts including the intramyocyte power grid, the Wagner conflation of perfusive and diffusive O2 conductances, and the Critical Power/Critical Speed model of exercise tolerance to address how altered NO bioavailability may, or may not, affect physical performance. This question is germane from the elite athlete to the recreational exerciser and particularly the burgeoning heart failure (and other clinical) populations for whom elevating O2 transport and/or exercise capacity translates directly to improved life quality and reduced morbidity and mortality. The dearth of studies in females is also highlighted, and areas of uncertainty and questions for future research are identified.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Scott K Ferguson
- Department of Kinesiology and Exercise Science, University of Hawaii, Hilo, HI, 96720, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
30
|
Weber RE, Schulze KM, Colburn TD, Horn AG, Hageman KS, Ade CJ, Hall SE, Sandner P, Musch TI, Poole DC. Capillary hemodynamics and contracting skeletal muscle oxygen pressures in male rats with heart failure: Impact of soluble guanylyl cyclase activator. Nitric Oxide 2022; 119:1-8. [PMID: 34871799 PMCID: PMC9469501 DOI: 10.1016/j.niox.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
In heart failure with reduced ejection fraction (HFrEF), nitric oxide-soluble guanylyl cyclase (sGC) pathway dysfunction impairs skeletal muscle arteriolar vasodilation and thus capillary hemodynamics, contributing to impaired oxygen uptake (V̇O2) kinetics. Targeting this pathway with sGC activators offers a new treatment approach to HFrEF. We tested the hypotheses that sGC activator administration would increase the O2 delivery (Q̇O2)-to-V̇O2 ratio in the skeletal muscle interstitial space (PO2is) of HFrEF rats during twitch contractions due, in part, to increases in red blood cell (RBC) flux (fRBC), velocity (VRBC), and capillary hematocrit (Hctcap). HFrEF was induced in male Sprague-Dawley rats via myocardial infarction. After 3 weeks, rats were treated with 0.3 mg/kg of the sGC activator BAY 60-2770 (HFrEF + BAY; n = 11) or solvent (HFrEF; n = 9) via gavage b.i.d for 5 days prior to phosphorescence quenching (PO2is, in contracting muscle) and intravital microscopy (resting) measurements in the spinotrapezius muscle. Intravital microscopy revealed higher fRBC (70 ± 9 vs 25 ± 8 RBC/s), VRBC (490 ± 43 vs 226 ± 35 μm/s), Hctcap (16 ± 1 vs 10 ± 1%) and a greater number of capillaries supporting flow (91 ± 3 vs 82 ± 3%) in HFrEF + BAY vs HFrEF (all P < 0.05). Additionally, PO2is was especially higher during 12-34s of contractions in HFrEF + BAY vs HFrEF (P < 0.05). Our findings suggest that sGC activators improved resting Q̇O2 via increased fRBC, VRBC, and Hctcap allowing for better Q̇O2-to-V̇O2 matching during the rest-contraction transient, supporting sGC activators as a potential therapeutic to target skeletal muscle vasomotor dysfunction in HFrEF.
Collapse
Affiliation(s)
- Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Stephanie E Hall
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Peter Sandner
- Bayer AG, Cardiology Research, Wuppertal, Germany and Hannover Medical School, Department of Pharmacology, Hannover, Germany
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
31
|
Goulart CDL, Caruso FR, de Araújo ASG, de Moura SCG, Catai AM, Agostoni P, Mendes RG, Arena R, Borghi-Silva A. Can Non-invasive Ventilation Modulate Cerebral, Respiratory, and Peripheral Muscle Oxygenation During High-Intensity Exercise in Patients With COPD-HF? Front Cardiovasc Med 2022; 8:772650. [PMID: 35174218 PMCID: PMC8841720 DOI: 10.3389/fcvm.2021.772650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Aim To evaluate the effect of non-invasive positive pressure ventilation (NIPPV) on (1) metabolic, ventilatory, and hemodynamic responses; and (2) cerebral (Cox), respiratory, and peripheral oxygenation when compared with SHAM ventilation during the high-intensity exercise in patients with coexisting chronic obstructive pulmonary disease (COPD) and heart failure (HF). Methods and Results On separate days, patients performed incremental cardiopulmonary exercise testing and two constant-work rate tests receiving NIPPV or controlled ventilation (SHAM) (the bilevel mode—Astral 150) in random order until the limit of tolerance (Tlim). During exercise, oxyhemoglobin (OxyHb+Mb) and deoxyhemoglobin (DeoxyHb+Mb) were assessed using near-infrared spectroscopy (Oxymon, Artinis Medical Systems, Einsteinweg, The Netherlands). NIPPV associated with high-intensity exercise caused a significant increase in exercise tolerance, peak oxygen consumption (V·O2 in mlO2·kg−1·min−1), minute ventilation peak (V·E in ml/min), peak peripheral oxygen saturation (SpO2, %), and lactate/tlim (mmol/s) when compared with SHAM ventilation. In cerebral, respiratory, and peripheral muscles, NIPPV resulted in a lower drop in OxyHb+Mb (p < 0.05) and an improved deoxygenation response DeoxyHb+Mb (p < 0.05) from the half of the test (60% of Tlim) when compared with SHAM ventilation. Conclusion Non-invasive positive pressure ventilation during constant work-rate exercise led to providing the respiratory muscle unloading with greater oxygen supply to the peripheral muscles, reducing muscle fatigue, and sustaining longer exercise time in patients with COPD-HF.
Collapse
Affiliation(s)
- Cássia da Luz Goulart
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
| | - Flávia Rossi Caruso
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
| | - Adriana Sanches Garcia de Araújo
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
| | | | - Aparecida Maria Catai
- Cardiovascular Physical Therapy Laboratory, Physiotherapy Department, Federal University of São Carlos, Sao Carlos, Brazil
| | - Piergiuseppe Agostoni
- Cardiovascular Section, Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, University of Milano, Milan, Italy
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
- *Correspondence: Audrey Borghi-Silva
| |
Collapse
|
32
|
Muscle-Skeletal Abnormalities and Muscle Oxygenation during Isokinetic Strength Exercise in Heart Failure with Preserved Ejection Fraction Phenotype: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020709. [PMID: 35055531 PMCID: PMC8775635 DOI: 10.3390/ijerph19020709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022]
Abstract
Exercise intolerance, a hallmark of patients with heart failure (HF), is associated with muscle weakness. However, its causative microcirculatory and muscle characteristics among those with preserved or reduced ejection fraction (HFpEF or HFrEF) phenotype is unclear. The musculoskeletal abnormalities that could result in impaired peripheral microcirculation are sarcopenia and muscle strength reduction in HF, implying lowered oxidative capacity and perfusion affect transport and oxygen utilization during exercise, an essential task from the microvascular muscle function. Besides that, skeletal muscle microcirculatory abnormalities have also been associated with exercise intolerance in HF patients who also present skeletal muscle myopathy. This cross-sectional study aimed to compare the muscle microcirculation dynamics via near-infrared spectroscopy (NIRS) response during an isokinetic muscle strength test and ultrasound-derived parameters (echo intensity was rectus femoris muscle, while the muscle thickness parameter was measured on rectus femoris and quadriceps femoris) in heart failure patients with HFpEF and HFrEF phenotypes and different functional severities (Weber Class A, B, and C). Twenty-eight aged-matched patients with HFpEF (n = 16) and HFrEF (n = 12) were assessed. We found phenotype differences among those with Weber C severity, with HFrEF patients reaching lower oxyhemoglobin (O2Hb, μM) (−10.9 ± 3.8 vs. −23.7 ± 5.7, p = 0.029) during exercise, while HFpEF reached lower O2Hb during the recovery period (−3.0 ± 3.4 vs. 5.9 ± 2.8, p = 0.007). HFpEF with Weber Class C also presented a higher echo intensity than HFrEF patients (29.7 ± 8.4 vs. 15.1 ± 6.8, p = 0.017) among the ultrasound-derived variables. Our preliminary study revealed more pronounced impairments in local microcirculatory dynamics in HFpEF vs. HFrEF patients during a muscle strength exercise, combined with muscle-skeletal abnormalities detected via ultrasound imaging, which may help explain the commonly observed exercise intolerance in HFpEF patients.
Collapse
|
33
|
Oxygen flux from capillary to mitochondria: integration of contemporary discoveries. Eur J Appl Physiol 2022; 122:7-28. [PMID: 34940908 PMCID: PMC8890444 DOI: 10.1007/s00421-021-04854-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Resting humans transport ~ 100 quintillion (1018) oxygen (O2) molecules every second to tissues for consumption. The final, short distance (< 50 µm) from capillary to the most distant mitochondria, in skeletal muscle where exercising O2 demands may increase 100-fold, challenges our understanding of O2 transport. To power cellular energetics O2 reaches its muscle mitochondrial target by dissociating from hemoglobin, crossing the red cell membrane, plasma, endothelial surface layer, endothelial cell, interstitial space, myocyte sarcolemma and a variable expanse of cytoplasm before traversing the mitochondrial outer/inner membranes and reacting with reduced cytochrome c and protons. This past century our understanding of O2's passage across the body's final O2 frontier has been completely revised. This review considers the latest structural and functional data, challenging the following entrenched notions: (1) That O2 moves freely across blood cell membranes. (2) The Krogh-Erlang model whereby O2 pressure decreases systematically from capillary to mitochondria. (3) Whether intramyocyte diffusion distances matter. (4) That mitochondria are separate organelles rather than coordinated and highly plastic syncytia. (5) The roles of free versus myoglobin-facilitated O2 diffusion. (6) That myocytes develop anoxic loci. These questions, and the intriguing notions that (1) cellular membranes, including interconnected mitochondrial membranes, act as low resistance conduits for O2, lipids and H+-electrochemical transport and (2) that myoglobin oxy/deoxygenation state controls mitochondrial oxidative function via nitric oxide, challenge established tenets of muscle metabolic control. These elements redefine muscle O2 transport models essential for the development of effective therapeutic countermeasures to pathological decrements in O2 supply and physical performance.
Collapse
|
34
|
Soman D, Hodovan J, Macon CJ, Davidson BP, Belcik JT, Mudd JO, Park BS, Lindner JR. Contrast Ultrasound Assessment of Skeletal Muscle Recruitable Perfusion after Permanent Left Ventricular Assist Device Implantation: Implications for Functional Recovery. J Am Soc Echocardiogr 2021; 35:495-502. [PMID: 34973393 PMCID: PMC9081119 DOI: 10.1016/j.echo.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND In heart failure with reduced ejection fraction (HFrEF), abnormal regulation of skeletal muscle perfusion contributes to reduced exercise tolerance. The aim of this study was to test the hypothesis that improvement in functional status after permanent left ventricular assist device (LVAD) implantation in patients with HFrEF is related to improvement in muscle perfusion during work, which was measured using contrast-enhanced ultrasound (CEUS). METHODS CEUS perfusion imaging of calf muscle at rest and during low-intensity plantar flexion exercise (20 W, 0.2 Hz) was performed in patients with HFrEF (n = 22) at baseline and 3 months after placement of permanent LVADs. Parametric analysis of CEUS data was used to quantify muscle microvascular blood flow (MBF), blood volume index, and red blood cell flux rate. For subjects alive at 3 months, comparisons were made between those with New York Heart Association functional class I or II (n = 13) versus III or IV (n = 7) status after LVAD. Subjects were followed for a median of 5.7 years for mortality. RESULTS Echocardiographic data before and after LVAD placement and LVAD parameters were similar in subjects classified with New York Heart Association functional class I-II versus functional class III-IV after LVAD. Skeletal muscle MBF at rest and during exercise before LVAD implantation was also similar between groups. After LVAD placement, resting MBF remained similar between groups, but during exercise those with New York Heart Association functional class I or II had greater exercise MBF (111 ± 60 vs 52 ± 38 intensity units/sec, P = .03), MBF reserve (median, 4.45 [3.95 to 6.80] vs 2.22 [0.98 to 3.80]; P = .02), and percentage change in exercise MBF (median, 73% [-28% to 83%] vs -45% [-80% to 26%]; P = .03). During exercise, increases in MBF were attributable to faster microvascular flux rate, with little change in blood volume index, indicating impaired exercise-mediated microvascular recruitment. The only clinical or echocardiographic feature that correlated with post-LVAD exercise MBF was a history of diabetes mellitus. There was a trend toward better survival in patients who demonstrated improvement in muscle exercise MBF after LVAD placement (P = .05). CONCLUSIONS CEUS perfusion imaging can quantify peripheral vascular responses to advanced therapies for HFrEF. After LVAD implantation, improvement in functional class is seen in patients with improvements in skeletal muscle exercise perfusion and flux rate, implicating a change in vasoactive substances that control resistance arteriolar tone.
Collapse
Affiliation(s)
- Divya Soman
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Conrad J Macon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - James O Mudd
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Byung S Park
- School of Public Health, Oregon Health & Science University, Portland, Oregon
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
35
|
Saraiva RM, Mediano MFF, Mendes FSNS, Sperandio da Silva GM, Veloso HH, Sangenis LHC, Silva PSD, Mazzoli-Rocha F, Sousa AS, Holanda MT, Hasslocher-Moreno AM. Chagas heart disease: An overview of diagnosis, manifestations, treatment, and care. World J Cardiol 2021; 13:654-675. [PMID: 35070110 PMCID: PMC8716970 DOI: 10.4330/wjc.v13.i12.654] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/11/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chagas heart disease (CHD) affects approximately 30% of patients chronically infected with the protozoa Trypanosoma cruzi. CHD is classified into four stages of increasing severity according to electrocardiographic, echocardiographic, and clinical criteria. CHD presents with a myriad of clinical manifestations, but its main complications are sudden cardiac death, heart failure, and stroke. Importantly, CHD has a higher incidence of sudden cardiac death and stroke than most other cardiopathies, and patients with CHD complicated by heart failure have a higher mortality than patients with heart failure caused by other etiologies. Among patients with CHD, approximately 90% of deaths can be attributed to complications of Chagas disease. Sudden cardiac death is the most common cause of death (55%–60%), followed by heart failure (25%–30%) and stroke (10%–15%). The high morbimortality and the unique characteristics of CHD demand an individualized approach according to the stage of the disease and associated complications the patient presents with. Therefore, the management of CHD is challenging, and in this review, we present the most updated available data to help clinicians and cardiologists in the care of these patients. We describe the clinical manifestations, diagnosis and classification criteria, risk stratification, and approach to the different clinical aspects of CHD using diagnostic tools and pharmacological and non-pharmacological treatments.
Collapse
Affiliation(s)
- Roberto M Saraiva
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Mauro Felippe F Mediano
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Fernanda SNS Mendes
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Henrique H Veloso
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Luiz Henrique C Sangenis
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paula Simplício da Silva
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Flavia Mazzoli-Rocha
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Andréa S Sousa
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Marcelo T Holanda
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Alejandro M Hasslocher-Moreno
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
36
|
Kerrigan DJ, Cowger JA, Keteyian SJ. Exercise in patients with left ventricular devices: The interaction between the device and the patient. Prog Cardiovasc Dis 2021; 70:33-39. [PMID: 34921848 DOI: 10.1016/j.pcad.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/28/2022]
Abstract
Advances in the engineering of surgically implanted, durable left ventricular assist devices (LVAD) has led to improvements in the two-year survival of patients on LVAD support, which is now comparable to that of heart transplant (HT) recipients. And with the advent of magnetic levitation technology, both the survival rate and average time on LVAD support are expected to improve even further. However, despite these advances, the functional capacity of patients on LVAD support remains reduced compared to those who received a HT. A few small clinical trials have shown improvement in functional capacity with exercise training. Peak oxygen uptake improves modestly (10%-20%) with exercise training, suggesting a possible celling-effect linked to the ability of the LVAD to increase flow during exercise. This paper reviews both (a) the effect of the LVAD on the cardiorespiratory responses during a single, acute bout of exercise up to maximum and (b) the central and peripheral adaptations that occur among patients with an LVAD who undergo an exercise training regimen. We also address the tenets of the exercise prescription that are unique to patients with a durable LVAD.
Collapse
Affiliation(s)
- Dennis J Kerrigan
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA.
| | - Jennifer A Cowger
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Steven J Keteyian
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
37
|
Takada S, Sabe H, Kinugawa S. Treatments for skeletal muscle abnormalities in heart failure: sodium-glucose transporter 2 and ketone bodies. Am J Physiol Heart Circ Physiol 2021; 322:H117-H128. [PMID: 34860594 DOI: 10.1152/ajpheart.00100.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Various skeletal muscle abnormalities are known to occur in heart failure (HF), and are closely associated with exercise intolerance. Particularly, abnormal energy metabolism caused by mitochondrial dysfunction in skeletal muscle is a cause of decreased endurance exercise capacity. However, to date, no specific drug treatment has been established for the skeletal muscle abnormalities and exercise intolerance occurring in HF patients. Sodium-glucose transporter 2 (SGLT2) inhibitors promote glucose excretion by suppressing glucose reabsorption in the renal tubules, which has a hypoglycemic effect independent of insulin secretion. Recently, large clinical trials have demonstrated that treatment with SGLT2 inhibitors suppresses cardiovascular events in patients who have HF with systolic dysfunction. Mechanisms of the therapeutic effects of SGLT2 inhibitors for HF have been suggested to be diuretic, suppression of neurohumoral factor activation, renal protection, and improvement of myocardial metabolism, but has not been clarified to date. SGLT2 inhibitors are known to increase blood ketone bodies. This suggests that they may improve the abnormal skeletal muscle metabolism in HF, i.e., improve fatty acid metabolism, suppress glycolysis, and utilize ketone bodies in mitochondrial energy production. Ultimately, they may improve aerobic metabolism in skeletal muscle, and suppress anaerobic metabolism and improve aerobic exercise capacity at the level of the anaerobic threshold. The potential actions of such SGLT2 inhibitors explain their effectiveness in HF, and may be candidates for new drug treatments aimed at improving exercise intolerance. In this review, we outlined the effects of SGLT2 inhibitors on skeletal muscle metabolism, with a particular focus on ketone metabolism.
Collapse
Affiliation(s)
- Shingo Takada
- Department of Sports Education, Faculty of Lifelong Sport, Hokusho University, Ebetsu, Hokkaido, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
38
|
Salvadego D, Grassi B, Keramidas ME, Eiken O, McDonnell AC, Mekjavic IB. Heterogeneity of human adaptations to bed rest and hypoxia: a retrospective analysis within the skeletal muscle oxidative function. Am J Physiol Regul Integr Comp Physiol 2021; 321:R813-R822. [PMID: 34585615 DOI: 10.1152/ajpregu.00053.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This retrospective study was designed to analyze the interindividual variability in the responses of different variables characterizing the skeletal muscle oxidative function to normoxic (N-BR) and hypoxic (H-BR) bed rests and to a hypoxic ambulatory confinement (H-AMB) of 10 and 21 days. We also assessed whether and how the addition of hypoxia to bed rest might influence the heterogeneity of the responses. In vivo measurements of O2 uptake and muscle fractional O2 extraction were carried out during an incremental one-leg knee-extension exercise. Mitochondrial respiration was assessed in permeabilized muscle fibers. A total of 17 subjects were included in this analysis. This analysis revealed a similar variability among subjects in the alterations induced by N-BR and H-BR both in peak O2 uptake (SD: 4.1% and 3.3% after 10 days; 4.5% and 8.1% after 21 days, respectively) and peak muscle fractional O2 extraction (SD: 5.9% and 7.3% after 10 days; 6.5% and 7.3% after 21 days), independently from the duration of the exposure. The individual changes measured in these variables were significantly related (r = 0.66, P = 0.004 after N-BR; r = 0.61, P = 0.009 after H-BR). Mitochondrial respiration showed a large variability of response after both N-BR (SD: 25.0% and 15.7% after 10 and 21 days) and H-BR (SD: 13.0% and 19.8% after 10 and 21 days); no correlation was found between N-BR and H-BR changes. When added to bed rest, hypoxia altered the individual adaptations within the mitochondria but not those intrinsic to the muscle oxidative function in vivo, both after the short- and medium-term exposures.
Collapse
Affiliation(s)
- Desy Salvadego
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | - Michail E Keramidas
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
39
|
Guimarães GV, Ribeiro F, Castro RE, Roque JM, Machado ADT, Antunes-Correa LM, Ferreira SA, Bocchi EA. Effects of the exercise training on skeletal muscle oxygen consumption in heart failure patients with reduced ejection fraction. Int J Cardiol 2021; 343:73-79. [PMID: 34506822 DOI: 10.1016/j.ijcard.2021.08.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
AIMS Skeletal muscle dysfunction is a systemic consequence of heart failure (HF) that correlates with functional capacity. However, the impairment within the skeletal muscle is not well established. We investigated the effect of exercise training on peripheral muscular performance and oxygenation in HF patients. METHODS AND RESULTS HF patients with ejection fraction ≤40% were randomized 2:1 to exercise training or control for 12 weeks. Muscle tissue oxygen was measured noninvasively by near-infrared spectroscopy (NIRS) during rest and a symptom-limited cardiopulmonary exercise test (CPET) before and after intervention. Measurements included skeletal muscle oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, total hemoglobin concentration, VO2 peak, VE/VCO2 slope, and heart rate. Muscle sympathetic nerve activity by microneurography, and muscle blood flow by plethysmography were also assessed at rest pre and post 12 weeks. Twenty-four participants (47.5 ± 7.4 years, 58% men, 75% no ischemic) were allocated to exercise training (ET, n = 16) or control (CG, n = 8). At baseline, no differences between groups were found. Exercise improved VO2 peak, slope VE/VCO2, and heart rate. After the intervention, significant improvements at rest were seen in the ET group in muscle sympathetic nerve activity and muscle blood flow. Concomitantly, a significant decreased in Oxy-Hb (from 29.4 ± 20.4 to 15.7 ± 9.0 μmol, p = 0.01), Deoxi-Hb (from 16.3 ± 8.2 to 12.2 ± 6.0 μmol, p = 0.003) and HbT (from 45.7 ± 27.6 to 27.7 ± 13.4 μmol, p = 0.008) was detected at peak exercise after training. No changes were observed in the control group. CONCLUSION Exercise training improves skeletal muscle function and functional capacity in HF patients with reduced ejection fraction. This improvement was associated with increased oxygenation of the peripheral muscles, increased muscle blood flow, and decreased sympathetic nerve activity.
Collapse
Affiliation(s)
| | - Fernando Ribeiro
- University of Aveiro, School of Health Sciences and Institute of Biomedicine - iBiMED, Aveiro, Portugal
| | - Rafael Ertner Castro
- University of São Paulo (USP), School of Medicine, Heart Institute, São Paulo, Brazil
| | - Jean Marcelo Roque
- University of São Paulo (USP), School of Medicine, Heart Institute, São Paulo, Brazil
| | | | | | - Silvia Ayub Ferreira
- University of São Paulo (USP), School of Medicine, Heart Institute, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- University of São Paulo (USP), School of Medicine, Heart Institute, São Paulo, Brazil
| |
Collapse
|
40
|
Borghi-Silva A, Garcia-Araújo AS, Winkermann E, Caruso FR, Bassi-Dibai D, Goulart CDL, Dixit S, Back GD, Mendes RG. Exercise-Based Rehabilitation Delivery Models in Comorbid Chronic Pulmonary Disease and Chronic Heart Failure. Front Cardiovasc Med 2021; 8:729073. [PMID: 34722662 PMCID: PMC8548415 DOI: 10.3389/fcvm.2021.729073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Among the most prevalent multimorbidities that accompany the aging process, chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF) stand out, representing the main causes of hospital admissions in the world. The prevalence of COPD coexistence in patients with CHF is higher than in control subjects, given the common risk factors associated with a complex process of chronic diseases developing in the aging process. COPD-CHF coexistence confers a marked negative impact on mechanical-ventilatory, cardiocirculatory, autonomic, gas exchange, muscular, ventilatory, and cerebral blood flow, further impairing the reduced exercise capacity and health status of either condition alone. In this context, integrated approach to the cardiopulmonary based on pharmacological optimization and non-pharmacological treatment (i.e., exercise-based cardiopulmonary and metabolic rehabilitation) can be emphatically encouraged by health professionals as they are safe and well-tolerated, reducing hospital readmissions, morbidity, and mortality. This review aims to explore aerobic exercise, the cornerstone of cardiopulmonary and metabolic rehabilitation, resistance and inspiratory muscle training and exercise-based rehabilitation delivery models in patients with COPD-CHF multimorbidities across the continuum of the disease. In addition, the review address the importance of adjuncts to enhance exercise capacity in these patients, which may be used to optimize the gains obtained in these programs.
Collapse
Affiliation(s)
- Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Adriana S Garcia-Araújo
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Eliane Winkermann
- Graduate Program in Comprehensive Health Care, Universidade de Cruz Alta/Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, Brazil
| | - Flavia R Caruso
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Daniela Bassi-Dibai
- Postgraduate Program in Management and Health Services, Ceuma University, São Luís, Brazil
| | - Cássia da Luz Goulart
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Snehil Dixit
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Guilherme Dionir Back
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Renata G Mendes
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, Sao Carlos, Brazil
| |
Collapse
|
41
|
Ciccarelli M, Dawson D, Falcao-Pires I, Giacca M, Hamdani N, Heymans S, Hooghiemstra A, Leeuwis A, Hermkens D, Tocchetti CG, van der Velden J, Zacchigna S, Thum T. Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovasc Res 2021; 117:2416-2433. [PMID: 33483724 PMCID: PMC8562335 DOI: 10.1093/cvr/cvab009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Heart failure-either with reduced or preserved ejection fraction (HFrEF/HFpEF)-is a clinical syndrome of multifactorial and gender-dependent aetiology, indicating the insufficiency of the heart to pump blood adequately to maintain blood flow to meet the body's needs. Typical symptoms commonly include shortness of breath, excessive fatigue with impaired exercise capacity, and peripheral oedema, thereby alluding to the fact that heart failure is a syndrome that affects multiple organ systems. Patients suffering from progressed heart failure have a very limited life expectancy, lower than that of numerous cancer types. In this position paper, we provide an overview regarding interactions between the heart and other organ systems, the clinical evidence, underlying mechanisms, potential available or yet-to-establish animal models to study such interactions and finally discuss potential new drug interventions to be developed in the future. Our working group suggests that more experimental research is required to understand the individual molecular mechanisms underlying heart failure and reinforces the urgency for tailored therapeutic interventions that target not only the heart but also other related affected organ systems to effectively treat heart failure as a clinical syndrome that affects and involves multiple organs.
Collapse
Affiliation(s)
- Michele Ciccarelli
- University of Salerno, Department of Medicine, Surgery and Dentistry, Via S. Allende 1, 84081, Baronissi(Salerno), Italy
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2DZ, UK
| | - Inês Falcao-Pires
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Mauro Giacca
- King’s College London, Molecular Medicine Laboratory, 125 Caldharbour Lane, London WC2R2LS, United Kingdom
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34129 Trieste, Italy
| | - Nazha Hamdani
- Department of Clinical Pharmacology and Molecular Cardiology, Institute of Physiology, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Stéphane Heymans
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Bus 911, 3000 Leuven, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
- ICIN-Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Astrid Hooghiemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands
- Department of Medical Humanities, Amsterdam Public Health Research Institute, Amsterdam UMC, Location VUmc, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands
| | - Annebet Leeuwis
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands
| | - Dorien Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1118, 1081HZ Amsterdam, the Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34129 Trieste, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nicolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
42
|
Koirala B, Concas A, Sun Y, Gladden LB, Lai N. Blood volume versus deoxygenated NIRS signal: computational analysis of the effects muscle O 2 delivery and blood volume on the NIRS signals. J Appl Physiol (1985) 2021; 131:1418-1431. [PMID: 34528461 PMCID: PMC8906537 DOI: 10.1152/japplphysiol.00105.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) signals quantify the oxygenated (ΔHbMbO2) and deoxygenated (ΔHHbMb) heme group concentrations. ΔHHbMb has been preferred to ΔHbMbO2 in evaluating skeletal muscle oxygen extraction because it is assumed to be less sensitive to blood volume (BV) changes, but uncertainties exist on this assumption. To analyze this assumption, a computational model of oxygen transport and metabolism is used to quantify the effect of O2 delivery and BV changes on the NIRS signals from a canine model of muscle oxidative metabolism (Sun Y, Ferguson BS, Rogatzki MJ, McDonald JR, Gladden LB. Med Sci Sports Exerc 48: 2013-2020, 2016). The computational analysis accounts for microvascular (ΔHbO2, ΔHHb) and extravascular (ΔMbO2, ΔHMb) oxygenated and deoxygenated forms. Simulations predicted muscle oxygen uptake and NIRS signal changes well for blood flows ranging from resting to contracting muscle. Additional NIRS signal simulations were obtained in the absence or presence of BV changes corresponding to a heme groups concentration changes (ΔHbMb = 0-48 µM). Under normal delivery (Q = 1.0 L·kg-1·min-1) in contracting muscle, capillary oxygen saturation (So2) was 62% with capillary ΔHbO2 and ΔHHb of ± 41 µΜ for ΔHbMb = 0. An increase of BV (ΔHbMb = 24 µΜ) caused a ΔHbO2 decrease (16µΜ) almost twice as much as the increase observed for ΔHHb (9 µΜ). When So2 increased to more than 80%, only ΔHbO2 was significantly affected by BV changes. The analysis indicates that microvascular So2 is a key factor in determining the sensitivity of ΔHbMbO2 and deoxygenated ΔHHbMb to BV changes. Contrary to a common assumption, the ΔHHbMb is affected by BV changes in normal contracting muscle and even more in the presence of impaired O2 delivery.NEW & NOTEWORTHY Deoxygenated is preferred to the oxygenated near-infrared spectroscopy signal in evaluating skeletal muscle oxygen extraction because it is assumed to be insensitive to blood volume changes. The quantitative analysis proposed in this study indicates that even in absence of skin blood flow effects, both NIRS signals in presence of either normal or reduced oxygen delivery are affected by blood volume changes. These changes should be considered to properly quantify muscle oxygen extraction by NIRS methods.
Collapse
Affiliation(s)
- B. Koirala
- Department of Electrical and Computer Engineering,
Old Dominion University, Norfolk, Virginia
- Biomedical Engineering Institute, Old
Dominion University, Norfolk, Virginia
| | - A. Concas
- Center for Advanced Studies, Research and
Development in Sardinia (CRS4), Cagliari,
Italy
| | - Yi Sun
- Key Laboratory of Adolescent Health Assessment and
Exercise Intervention of Ministry of Education, East China Normal
University, Shanghai, China
- School of Physical Education & Health Care,
East China Normal University, Shanghai,
China
| | - L. B. Gladden
- School of Kinesiology, Auburn
University, Auburn, Alabama
| | - N. Lai
- Department of Mechanical, Chemical and Materials
Engineering, University of Cagliari, Cagliari,
Italy
- Department of Electrical and Computer Engineering,
Old Dominion University, Norfolk, Virginia
- Biomedical Engineering Institute, Old
Dominion University, Norfolk, Virginia
| |
Collapse
|
43
|
Triantafyllidi H, Birmpa D, Benas D, Trivilou P, Fambri A, Iliodromitis EK. Cardiopulmonary exercise testing: The ABC for the Clinical Cardiologist. Cardiology 2021; 147:62-71. [PMID: 34649252 DOI: 10.1159/000520024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Helen Triantafyllidi
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Dionyssia Birmpa
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Dimitrios Benas
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Paraskevi Trivilou
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Anastasia Fambri
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Efstathios K Iliodromitis
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| |
Collapse
|
44
|
Pandey A, Shah SJ, Butler J, Kellogg DL, Lewis GD, Forman DE, Mentz RJ, Borlaug BA, Simon MA, Chirinos JA, Fielding RA, Volpi E, Molina AJA, Haykowsky MJ, Sam F, Goodpaster BH, Bertoni AG, Justice JN, White JP, Ding J, Hummel SL, LeBrasseur NK, Taffet GE, Pipinos II, Kitzman D. Exercise Intolerance in Older Adults With Heart Failure With Preserved Ejection Fraction: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:1166-1187. [PMID: 34503685 PMCID: PMC8525886 DOI: 10.1016/j.jacc.2021.07.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Exercise intolerance (EI) is the primary manifestation of chronic heart failure with preserved ejection fraction (HFpEF), the most common form of heart failure among older individuals. The recent recognition that HFpEF is likely a systemic, multiorgan disorder that shares characteristics with other common, difficult-to-treat, aging-related disorders suggests that novel insights may be gained from combining knowledge and concepts from aging and cardiovascular disease disciplines. This state-of-the-art review is based on the outcomes of a National Institute of Aging-sponsored working group meeting on aging and EI in HFpEF. We discuss aging-related and extracardiac contributors to EI in HFpEF and provide the rationale for a transdisciplinary, "gero-centric" approach to advance our understanding of EI in HFpEF and identify promising new therapeutic targets. We also provide a framework for prioritizing future research, including developing a uniform, comprehensive approach to phenotypic characterization of HFpEF, elucidating key geroscience targets for treatment, and conducting proof-of-concept trials to modify these targets.
Collapse
Affiliation(s)
- Ambarish Pandey
- University of Texas Southwestern Medical Center, Dallas, Texas, USA. https://twitter.com/ambarish4786
| | - Sanjiv J Shah
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Javed Butler
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Dean L Kellogg
- University of Texas Health Science Center and GRECC, South Texas Veterans Affairs Health System, San Antonio, Texas, USA
| | | | - Daniel E Forman
- University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Robert J Mentz
- Duke Clinical Research Center, Durham, North Carolina, USA
| | | | - Marc A Simon
- University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | | | | | - Elena Volpi
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | | | | | - Flora Sam
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Bret H Goodpaster
- Advent Health Translational Research Institute, Orlando, Florida, USA
| | - Alain G Bertoni
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jamie N Justice
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Jingzhone Ding
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Scott L Hummel
- University of Michigan and the VA Ann Arbor Health System, Ann Arbor, Michigan, USA
| | | | | | | | - Dalane Kitzman
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
45
|
Zuccarelli L, Baldassarre G, Magnesa B, Degano C, Comelli M, Gasparini M, Manferdelli G, Marzorati M, Mavelli I, Pilotto A, Porcelli S, Rasica L, Šimunič B, Pišot R, Narici M, Grassi B. Peripheral impairments of oxidative metabolism after a 10-day bed rest are upstream of mitochondrial respiration. J Physiol 2021; 599:4813-4829. [PMID: 34505290 PMCID: PMC9293208 DOI: 10.1113/jp281800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract In order to identify peripheral biomarkers of impaired oxidative metabolism during exercise following a 10‐day bed rest, 10 males performed an incremental exercise (to determine peak pulmonary V̇O2 (V̇O2p)) and moderate‐intensity exercises, before (PRE) and after (POST) bed rest. Blood flow response was evaluated in the common femoral artery by Eco‐Doppler during 1 min of passive leg movements (PLM). The intramuscular matching between O2 delivery and O2 utilization was evaluated by near‐infrared spectroscopy (NIRS). Mitochondrial respiration was evaluated ex vivo by high‐resolution respirometry in isolated muscle fibres, and in vivo by NIRS by the evaluation of skeletal muscle V̇O2 (V̇O2m) recovery kinetics. Resting V̇O2m was estimated by NIRS. Peak V̇O2p was lower in POST vs. PRE. The area under the blood flow vs. time curve during PLM was smaller (P = 0.03) in POST (274 ± 233 mL) vs. PRE (427 ± 291). An increased (P = 0.03) overshoot of muscle deoxygenation during a metabolic transition was identified in POST. Skeletal muscle citrate synthase activity was not different (P = 0.11) in POST (131 ± 16 nmol min–1 mg–1) vs. PRE (138 ± 19). Maximal ADP‐stimulated mitochondrial respiration (66 ± 18 pmol s–1 mg–1 (POST) vs. 72 ± 14 (PRE), P = 0.41) was not affected by bed rest. Apparent Km for ADP sensitivity of mitochondrial respiration was reduced in POST vs. PRE (P = 0.04). The V̇O2m recovery time constant was not different (P = 0.79) in POST (22 ± 6 s) vs. PRE (22 ± 6). Resting V̇O2m was reduced by 25% in POST vs. PRE (P = 0.006). Microvascular‐endothelial function was impaired following a 10‐day bed rest, whereas mitochondrial mass and function (both in vivo and ex vivo) were unaffected or slightly enhanced. Key points Ten days of horizontal bed rest impaired in vivo oxidative function during exercise. Microvascular impairments were identified by different methods. Mitochondrial mass and mitochondrial function (evaluated both in vivo and ex vivo) were unchanged or even improved (i.e. enhanced mitochondrial sensitivity to submaximal [ADP]). Resting muscle oxygen uptake was significantly lower following bed rest, suggesting that muscle catabolic processes induced by bed rest/inactivity are less energy‐consuming than anabolic ones.
Collapse
Affiliation(s)
| | | | | | | | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Giorgio Manferdelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Mauro Marzorati
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Andrea Pilotto
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Simone Porcelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Letizia Rasica
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Boštjan Šimunič
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Rado Pišot
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
46
|
Schulze KM, Weber RE, Colburn TD, Horn AG, Ade CJ, Hsu WW, Poole DC, Musch TI. The effects of pulmonary hypertension on skeletal muscle oxygen pressures in contracting rat spinotrapezius muscle. Exp Physiol 2021; 106:2070-2082. [PMID: 34469618 DOI: 10.1113/ep089631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does impairment in the dynamics of O2 transport in skeletal muscle during a series of contractions constitute a potential mechanism underlying reduced exercise capacity in pulmonary hypertension? What is the main finding and its importance? Pulmonary hypertension compromises the dynamic matching of skeletal muscle O2 delivery-to-utilization following contraction onset in the rat spinotrapezius muscle. These results implicate a role for vascular dysfunction in the slow V ̇ O 2 kinetics and exercise intolerance present in pulmonary hypertension. ABSTRACT Pulmonary hypertension (PH) is characterized by pulmonary vascular dysfunction and exercise intolerance due, in part, to compromised pulmonary and cardiac function. We tested the hypothesis that there are peripheral (i.e., skeletal muscle) aberrations in O2 delivery ( Q ̇ O 2 )-to-O2 utilization ( V ̇ O 2 ) matching and vascular control that might help to explain poor exercise tolerance in PH. Furthermore, we investigated the peripheral effects of nitric oxide (NO) in attenuating these decrements. Male Sprague-Dawley rats (n = 21) were administered monocrotaline (MCT; 50 mg/kg, i.p.) to induce PH. Disease progression was monitored via echocardiography. Phosphorescence quenching determined the O2 partial pressure in the interstitial space ( P O 2 is ) in the spinotrapezius muscle at rest and during contractions under control (SNP-) and NO-donor (sodium nitroprusside, SNP+) conditions. MCT rats displayed right ventricular (RV) hypertrophy (right ventricle/(left ventricle + septum): 0.44 (0.13) vs. 0.28 (0.05)), pulmonary congestion, increased RV systolic pressure (48 (18) vs. 20 (8) mmHg) and arterial hypoxaemia ( P a O 2 : 64 (9) vs. 82 (9) mmHg) compared to healthy controls (HC) (P < 0.05). P O 2 is was significantly lower in MCT rats during the first 30 s of SNP- contractions. SNP superfusion elevated P O 2 is in both groups; however, MCT rats demonstrated a lower P O 2 is throughout SNP+ contractions versus HC (P < 0.05). Thus, for small muscle mass exercise in MCT rats, muscle oxygenation is impaired across the rest-to-contractions transition and exogenous NO does not raise the Q ̇ O 2 -to- V ̇ O 2 ratio in contracting muscle to the same levels as HC. These data support muscle Q ̇ O 2 -to- V ̇ O 2 mismatch as a potential contributor to slow V ̇ O 2 kinetics and therefore exercise intolerance in PH and suggest peripheral vascular dysfunction or remodelling as a possible mechanism.
Collapse
Affiliation(s)
- Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Wei-Wen Hsu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
47
|
Butenas ALE, Rollins KS, Williams AC, Parr SK, Hammond ST, Ade CJ, Hageman KS, Musch TI, Copp SW. Thromboxane A 2 receptors contribute to the exaggerated exercise pressor reflex in male rats with heart failure. Physiol Rep 2021; 9:e15052. [PMID: 34558221 PMCID: PMC8461035 DOI: 10.14814/phy2.15052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fiber muscle afferents and produce reflex increases in sympathetic nerve activity and blood pressure during exercise (i.e., the exercise pressor reflex; EPR). The EPR is exaggerated in patients and animals with heart failure with reduced ejection fraction (HF-rEF) and its activation contributes to reduced exercise capacity within this patient population. Accumulating evidence suggests that the exaggerated EPR in HF-rEF is partially attributable to a sensitization of mechanically activated channels produced by thromboxane A2 receptors (TxA2 -Rs) on those sensory endings; however, this has not been investigated. Accordingly, the purpose of this investigation was to determine the role played by TxA2 -Rs on the sensory endings of thin fiber muscle afferents in the exaggerated EPR in rats with HF-rEF induced by coronary artery ligation. In decerebrate, unanesthetized rats, we found that injection of the TxA2 -R antagonist daltroban (80 μg) into the arterial supply of the hindlimb reduced the pressor response to 30 s of electrically induced 1 Hz dynamic hindlimb muscle contraction in HF-rEF (n = 8, peak ∆MAP pre: 22 ± 3; post: 14 ± 2 mmHg; p = 0.01) but not sham (n = 10, peak ∆MAP pre: 13 ± 3; post: 11 ± 2 mmHg; p = 0.68) rats. In a separate group of HF-rEF rats (n = 4), we found that the systemic (intravenous) injection of daltroban had no effect on the EPR (peak ΔMAP pre: 26 ± 7; post: 25 ± 7 mmHg; p = 0.50). Our data suggest that TxA2 -Rs on thin fiber muscle afferents contribute to the exaggerated EPR evoked in response to dynamic muscle contraction in HF-rEF.
Collapse
Affiliation(s)
| | | | - Auni C. Williams
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | - Shannon K. Parr
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | | | - Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | - K. Sue Hageman
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKansasUSA
| | - Timothy I. Musch
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKansasUSA
| | - Steven W. Copp
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
48
|
Smarz K, Jaxa-Chamiec T, Zaborska B, Tysarowski M, Budaj A. Combined use of stress echocardiography and cardiopulmonary exercise testing to assess exercise intolerance in patients treated for acute myocardial infarction. PLoS One 2021; 16:e0255682. [PMID: 34351993 PMCID: PMC8341484 DOI: 10.1371/journal.pone.0255682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
Exercise intolerance after acute myocardial infarction (AMI) is a predictor of worse prognosis, but its causes are complex and poorly studied. This study assessed the determinants of exercise intolerance using combined stress echocardiography and cardiopulmonary exercise testing (CPET-SE) in patients treated for AMI. We prospectively enrolled patients with left ventricular ejection fraction (LV EF) ≥40% for more than 4 weeks after the first AMI. Stroke volume, heart rate, and arteriovenous oxygen difference (A-VO2Diff) were assessed during symptom-limited CPET-SE. Patients were divided into four groups according to the percentage of predicted oxygen uptake (VO2) (Group 1, <50%; Group 2, 50-74%; Group 3, 75-99%; and Group 4, ≥100%). Among 81 patients (70% male, mean age 58 ± 11 years, 47% ST-segment elevation AMI) mean peak VO2 was 19.5 ± 5.4 mL/kg/min. A better exercise capacity was related to a higher percent predicted heart rate (Group 2 vs. Group 4, p <0.01), higher peak A-VO2Diff (Group 1 vs. Group 3, p <0.01) but without differences in stroke volume. Peak VO2 and percent predicted VO2 had a significant positive correlation with percent predicted heart rate at peak exercise (r = 0.28, p = 0.01 and r = 0.46, p < 0.001) and peak A-VO2Diff (r = 0.68, p <0.001 and r = 0.36, p = 0.001) but not with peak stroke volume. Exercise capacity in patients treated for AMI with LV EF ≥40% is related to heart rate response during exercise and peak peripheral oxygen extraction. CPET-SE enables non-invasive assessment of the mechanisms of exercise intolerance.
Collapse
Affiliation(s)
- Krzysztof Smarz
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, Warsaw, Poland
| | - Tomasz Jaxa-Chamiec
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, Warsaw, Poland
| | - Beata Zaborska
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, Warsaw, Poland
| | - Maciej Tysarowski
- Department of Cardiovascular Medicine, Hartford Hospital, University of Connecticut School of Medicine, Hartford, CT, United States of America
| | - Andrzej Budaj
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, Warsaw, Poland
| |
Collapse
|
49
|
Sandberg C, Crenshaw AG, Elçadi GH, Christersson C, Hlebowicz J, Thilén U, Johansson B. Patients with complex congenital heart disease have slower calf muscle oxygenation during exercise. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2021. [DOI: 10.1016/j.ijcchd.2021.100157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Smith JR, Berg JD, Curry TB, Joyner MJ, Olson TP. Respiratory muscle work influences locomotor convective and diffusive oxygen transport in human heart failure during exercise. Physiol Rep 2021; 8:e14484. [PMID: 32562374 PMCID: PMC7305241 DOI: 10.14814/phy2.14484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction It remains unclear if naturally occurring respiratory muscle (RM) work influences leg diffusive O2 transport during exercise in heart failure patients with reduced ejection fraction (HFrEF). In this retrospective study, we hypothesized that RM unloading during submaximal exercise will lead to increases in locomotor muscle O2 diffusion capacity (DMO2) contributing to the greater leg VO2. Methods Ten HFrEF patients and 10 healthy control matched participants performed two submaximal exercise bouts (i.e., with and without RM unloading). During exercise, leg blood flow was measured via constant infusion thermodilution. Intrathoracic pressure was measured via esophageal balloon. Radial arterial and femoral venous blood gases were measured and used to calculate leg arterial and venous content (CaO2 and CvO2, respectively), VO2, O2 delivery, and DMO2. Results From CTL to RM unloading, leg VO2, O2 delivery, and DMO2 were not different in healthy participants during submaximal exercise (all, p > .15). In HFrEF, leg VO2 (CTL: 0.7 ± 0.3 vs. RM unloading: 1.0 ± 0.4 L/min, p < .01), leg O2 delivery (CTL: 0.9 ± 0.4 vs. RM unloading: 1.4 ± 0.5 L/min, p < .01), and leg DMO2 (CTL: 31.5 ± 11.4 vs. RM unloading: 49.7 ± 18.6 ml min−1 mmHg−1) increased from CTL to RM unloading during submaximal exercise (all, p < .01), whereas CaO2‐CvO2 was not different (p = .51). The degree of RM unloading (i.e., % decrease in esophageal pressure‐time integral during inspiration) was related to the % increase in leg DMO2 with RM unloading (r = −.76, p = .01). Conclusion Our data suggest RM unloading leads to increased leg VO2 due to greater convective and diffusive O2 transport during submaximal exercise in HFrEF patients.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jessica D Berg
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy B Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|